
wbsheets - Google Sheets extension for Wikibase
editing
Kesäniemi, Joonas1

1Aalto University, Espoo, Finland

Abstract
In this paper we introduce a new tool for editing Wikibase data in tabular format called wbsheets. The
goal of the tool is to be approachable to wide audience of data editors for which reason it is implemented
as a Google Sheets extension. The editable subsets of data are defined using the EntitySchema Wikibase
extension as ShEx shape expressions. Schemas and property metadata is used by the wbsheets to generate
validation rules in the Sheets documents as well provide autocomplete support against SPARQL endpoints
for linkimg cell data to external resources. Finally, data can be synchronized with the connectedWikibase
instance directly from Google Sheets with support for custom rank selection and collision detection.
wbsheets can be used to either import data from Wikibase to Sheets for editing or map an existing
Sheets document to an EntitySchema. The latter approach was used in the case study with the National
Archives of Finland where an existing spreadsheets of thousands of corrections based on feedback from
the public was mapped to an EntitySchema, reconciliated, validated and synchronized to a custom
Wikibase instance.

Keywords
Knowledge graph, Wikibase, Linked data management, Tabular data

1. Introduction

Wikibase is the technology behind Wikidata, the free, collaborative knowledge graph with
more than 100000000 data items 1 and counting. Wikibase incorporates many useful features
for data management such as authentication and authorization, automatically assigned public
identifiers, versioning with provenance information and commenting facilities. Expanding
the use of Wikibase beyound Wikidata has been part of the Wikimedia Linked Open Data
strategy [1] since 2021 and the results are starting to show as more and more projects are
experimenting and deploying Wikibase-based data management solutions. The forerunner in
these activities has been the library world with lesson learnt from OCLC [2] in 2019. Other
more recent examples of standalone Wikibase instances can be found various domains such as
EU knowledge [3], library cataloguing [4] and research data [5],[6] and [7]. And the growing
usage creates opportunities for new tools such as the wbsheets presented in the paper.

The data model of Wikibase is based on Items and Properties, which are identified by Q and P
numbers respectively. Both can be described using multilingual labels, descriptions and aliases
as well as with statements. Properties contain additional data type information. A statement is

Fifth International Workshop on Knowledge Graph Construction@ESWC2024
Envelope-Open joonas.kesaniemi@aalto.fi (K. Joonas)
Orcid 0000-0002-0877-7063 (K. Joonas)

© 2024 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
1Based on statistics from the Wikidata website https://wikidata.org. Accessed 11.03.2024.

mailto:joonas.kesaniemi@aalto.fi
https://orcid.org/0000-0002-0877-7063
https://creativecommons.org/licenses/by/4.0

used to make a claim about an Item or Property in question by assigning a Value to a Property,
e.g. Berlin<Item> capital of<Property> Germany<Value>. Additional details, such as time range
when the statement is valid, can be added with Qualifiers. Finally each statement can contain
multiple references to record the provenance of the claim. Each statement is associated with a
rank that can be used to prioritize statements.

The UI that ships with the Wikibase is handy for making individual edits to statements that
involve properties with data types such as string, quantity or point int time, since it provides
convenient input widget for each type. However, this is not case with statements that are used
for linking things, such as properties with external-id or URL data type, as it is not possible
to query for possible values via the UI, so the user needs to use an external system to look
up an copy/paste the values. For properties with wikibase-item data type, it is possible use
an autocomplete feature, but the item query is executed against the whole Wikibase instance,
which can make it difficult to find the correct value. It is also very easy to add statements
that do not make any sense (e.g. Finland is part of Sega Genesis). Editing a larger amount of
Items requires the use of custom scripts or general data cleaning and transformation tools with
Wikibase support.

This paper presents an ongoing work that allows user to add and edit Wikibase Items using
Google Sheets. The idea is to provide the data in a familiar tabular format and take advantage
of the collaboration (e.g. sharing and real-time collaborative editing) and validation features
built in to the Google Sheets. wbsheets uses a combination of custom Property metadata and a
Google Sheets extension to generate validation rules, provide fine-grained autocomplete queries
against external data endpoints, and two-way synchronization of data between the Sheets
document and Wikibase. wbsheets can be used to populate an empty spreadsheet with data
from the Wikibase as well as edit or create Wikibase items by mappings an existing spreadsheet
(e.g. Excel import) to Wikibase. Editing is based on ShEx shape expressions that are created
using the EntitySchema Wikibase extension 2. wbsheets specific Wikibase properties are used
to for example assign classes to Wikibase Items and EntitySchemas to classes. wbsheets does
not require any installations or programming experience from the data editors and it makes it
easy to integrate externally managed domain ontologies to Wikibase. However, the setup of
the wbsheets does require Wikibase and ShEx know-how, and the prototype implementation
still uses a custom server-side API for some of the Wikibase processing, so it currently not
straight-forward to use it against any Wikibase instance.

2. Related work

A custom property can be used to map Wikibase content to existing ontologies or other RDF
resources. The downside of such approach is that it is always an instance specific customization
and requires special handling of certain properties when accessing the data through the SPARQL
endpoint. WikibaseRDF extension [8] is an effort which brings these features closer to the
core of Wikibase. It can be used to create similar mappings to existing external RDF resources
with a customized set of mapping predicates (e.g. owl:sameAs, owl:equivalentProperty and

2https://www.mediawiki.org/wiki/Extension:EntitySchema

owl:equivalentClass). These configuration can then be used to generate mapping triples with
external mapping predicates to the triplestore and accessed through the SPARQL endpoint.

When it comes to tooling related reading and writing data to the Wikibase, there are program-
ming libraries for different languages 3 that work as wrappers for the Wikibase API, but they
have a substantial learning curve for users without prior programming experience. There are
two main tools for making changes to Wikibase using a tabular data format: QuickStatements 4

and OpenRefine 5.
Quickstatements is based on command sequences that can be expressed in CSV format. It

supports adding and deletion of statements, labels, descriptions and aliases as well as addition
of qualifiers and references. QuicksStatements does not currently support setting ranks to
statements 6. The header columns of the QuickStatements CSV file uses Wikibase property
numbers and they must be expressed in a specific format. For example S1545 would add a
reference using property P1545 (series ordinal) 7 to the statement that was defined in the same
line before it. Although the format is easy to create and modify with any spreadsheet editor, it
does require the user to keep track of all the ids and their corresponding labels for both the
headers and the column values. However, due to the low-level and general command structure,
there are other tools that can be used in conjunction with more specialized programs, such
as zotkat 8 that translates exports from Zotero 9 reference manager to QuickStatements. Also
OpenRefine support QuickStatements exports.

OpenRefine is a general data manipulation tool for cleaning, transforming and extending
data in various formats and external services. Wikibase integration is provided by an extension
that ships by default with OpenRefine. The extension provides a visual tool for mapping tabular
data to statements, labels and aliases with a look that resembles the Wikibase’s own editor.
OpenRefine support only addition and updates to statements. The mapping editor provides a
way to configure how data is merged in case a statement with matching properties or qualifiers
already exists as part of the item. All the new statements are added with the rank ”Normal”.
OpenRefine provides a powerful reconciliation features for turning strings (or numbers) to
things using for example services that supports the Reconciliation Service API 10, SPARLQ
endpoints or local datasets. Modifications and additions are also checked againts a set of quality
assurance rules that include Wikibase Quality Constraint 11 based check as well as some custom
ones. OpenRefine has many useful and powerful features for cleaning, transforming and linking
data, but those come with a learning curve, which might be too much for some users. Although
OpenRefine runs in a browser and is implemented using a client server architecture, it is still
meant to be installed for single machine usage only.

3https://www.wikidata.org/wiki/Wikidata:Tools/For𝑝𝑟𝑜𝑔𝑟𝑎𝑚𝑚𝑒𝑟𝑠
4https://www.wikidata.org/wiki/Help:QuickStatements
5https://openrefine.org/
6https://www.wikidata.org/wiki/Help:QuickStatementsLimitations
7https://www.wikidata.org/wiki/Property:P1545
8https://github.com/UB-Mannheim/zotkat
9https://www.zotero.org/
10https://reconciliation-api.github.io/specs/draft/
11https://gerrit.wikimedia.org/g/mediawiki/extensions/WikibaseQualityConstraints

https://github.com/UB-Mannheim/zotkat

3. wb-sheets

This section describes the architecture and basic functionality of the wbheets. The solution is
still a prototype, but it has enough features that it can be used for solving real world problems
(see Case study section). wbsheets development has been done in the context of Semantic
Computing Research Group (Seco) at the Aalto University.

As mentioned in the introduction, Wikibase has been used lately more and more as the tool
of choice for maintaining datasets that are modelled in a entity-based way [9]. wbsheet has a
familiar and easily approachable spreadsheet interface for doing mass editing with features that
support the linking of local data to the external domain ontologies and vocabularies. Google
Sheets was selected as the implementation platform mainly due to its popularity and powerful
Apps Script scripting features 12.

The architecture of wbsheets consists of Wikibase with SPARQL endpoint and EntitySchema
extension 13, a custom wbsheets API, and the wbsheets Google Sheets extension. The extension
consists of React based frontend and an Apps Script back-end. With Sheets API all modifications
to the spreadsheet must happen in the back-end, which in turn calls the wbsheets API. wbsheets
API is a NodeJS application that uses wikibase-edit 14 to execute the changes and shexjs 15 for
ShEx parsing.

The current prototype supports adding and modifying items, labels, descriptions and state-
ments without qualifiers or references. The support for multilingual content is limited and all
the language dependent values are submitted using the default language configured for the
document (see Connecting to Wikibase instance below).

3.1. Setting up Wikibase

In order to use wbsheets with Wikibase, the instance must be first populated with wbsheets
specific properties and at least one Item presenting a class and one EntitySchema. All of them
are needed for building the configuration for the Sheets extension. There are six required
wbsheets properties:

uri mapping for mapping Wikibase identifier to URIs.

instance of for denoting the class of an item.

has schema for linking class Item to EntitySchema.

endpoint url for expressing the url of the SPARQL endpoint where the values for the property
should be fetched.

query template for string template to use for searching resources for properties with endpoint
url.

recon template for string template to use for reconciliation for properties with endpoint url.

12https://developers.google.com/apps-script/guides/sheets
13https://www.mediawiki.org/wiki/Extension:EntitySchema
14https://github.com/maxlath/wikibase-edit
15https://github.com/shexjs/shex.js

The EntitySchema represent an editable ”slice” of the item. From the ShEx node constraints
only literal facets (e.g. length, pattern andminExclusive) and value sets with stems are handled at
the moment in addition to any cardinality information expressed as part of the triple constraints.
All other information from the schema is skipped. See listing 1 for an example of a simple
EntitySchema in ShEx.

<DeathRecord > {
wdp : P10 xsd : s t r i n g { 1 : 1 0 } ;
wdp : P11 URI [< h t t p : / / l d f . f i /ammo/ >~] ? ;
wdp : P12 xsd : s t r i n g { 1 } ;

}

Listing 1: Example ShEx EntitySchema with property references, a stem and cardinalities.

3.2. Using the Google Sheets extension

The UI of the wb-sheets consists of five views: Connect, Import, Column editor, Data editor
and Synchronization. The basic functionality of each view will be described in the proceeding
sections.

Connecting to Wikibase instance
Before any operation can be completed against the Wikibase instance, the user must first

configure the document with an url of the instance and select the EntitySchema they want to
edit. Available EntitySchemas are retrieved from configured Wikibase instance. Connection
does not currently contain any authentication setup, so only openly available Wikibases can be
used. Configurations also include the default language used for Wikibase item labels and labels
for external resources and mapping of P numbers to the wbsheet specific properties (e.g. P10
equals uri mapping).

Import
Import view can be used in a cases where the user wants edit existing data. First, user filters

the data using properties available from the EntitySchema selected in the in the connect phase.
It is also possible to just provide a list of Q numbers to import. Whenever filters are changed
the size of the result table is calculated. This information can be used to estimate how long
the import operation will last, but also to make sure that the resulting data does not exceed
the cells per spreadsheet limit of Google Sheets. Sheet also has a row limit and new sheets are
automatically added when the sheet is full. Finally, the user can select which properties are
fetched for editing and begin the import process.

Column editor
Column editor is used to manage the column to Wikibase Property mappings. For imported

data, the editor can only be used to list available properties and the mappings are created as
part of the import process. Editing is not available for now to keep the implementation simple,
because adding new columns to imported data would also mean fetching data for those columns.
For new data, the user can map columns to properties by highlight the column and clicking
the name of the property. Two generated properties ”Wikibase ID” and ”Wikibase label” are
always added to the list of available properties and they must always be mapped in order for the
synchronization to work. Columns do not need to be mapped in a particular order and is by no

means necessary to map all columns or all properties. When a property mapping is applied to a
column, a note is added to header row with information about the property such as P number,
data type and possible endpoint for fetching property values. Mapping also generates a set of
validation rules for the column based on the property. In addition to simple number and date
validations, more complex rules are generated for columns with associated property data types
wikibase-item, external-id or url. They must for example contain Q numbers and URIs with
optionally required prefix (stem). If the property can have multiple values, it can be mapped to
as many times to different columns as specified by the maximum cardinality of the property in
the EntitySchema. For example, a property ”Author” might be mapped to three columns with
headers ”author1”, ”author2”, and ”author3”. The column-property mapping is stored as part of
the Sheets document and it is used when editing data for providing contextual information to
the data editor view.

Data editor
Basic data editing does not involve any special handling by the wb-sheets. Users can use

all functionality of the Google Sheets, such as notes and styling, normally to facilitate the
editing process. The data editor has three functions: ”link cells”, ”search and link cells”, and
”search”. Linking is applied to all selected cells. The purpose of linking is to turn plain text
cell values in columns that are mapped to properties with wikibase-item, url or external-
id into values that include wb-sheets’ custom formulas (see 1. Let’s assume that a column
named ”occupation” is mapped to a property with external-id data type and the values must
be taken from AMMO ontology [10]. Let’s further assume that the initial value of the cell is
”brush maker”, which do not match the validation rule, since it is not a properly formatted
wb-sheets reference to an external resource. If the user selects the cell and clicka ”Search and
link cells”, the backend will query the configured SPARQL endpoint for resources with label
”brush maker” and if only one result is found, the value of the cell will be replaced by a formula
”SKOSEXTERNALID(”http://ldf.fi/ammo/harjantekija”, ”en”) and the label will stay the same.
Now the cell value is valid and it contains both the URI and the label of the external resource.
”Link cells” works similarly, but it does not make a query, but checks the existence of an URI
that is either the value of the cell as for URL datatype, or created by combining the URI prefix
configured for the property with the value of the cell for external-ids data type.

Figure 1: caption

Synchronization
wbsheets uses Google Sheets feature called developer metadata 16 to keep track of the status

and possible revision identifier for each row. The revision identifier is stored if the data is

16https://developers.google.com/sheets/api/guides/metadata

imported from the Wikibase and can be used to detect edit collisions, if a newer version is
available at the server. The row status indicates whether the local data is unmodified, edited
or has newer data. With the Synchronization view, the user can write the data back to the
Wikibase and handle possible edit collisions. Thanks to the status metadata, only rows with
changes are sent to the server.

User can control the way how statements and their ranks are handled as part of the write
operation. If statements with the same property already exist, the new data is either added to
the item, or all existing statements with that property are replaced with it. The latter option
might not be in the ethos of Wikidata, but it does make it straight-forward to keep statements
clear of clutter when that is needed. The other option is related to ranks and can be set to either
normal, preferred or preferred+. Normal and preferred rank modes works as the name suggests
and they set the rank of new statements to either ”Normal” or ”Preferred”. The preferred+
mode works similarly, but also changes the rank of all the statements with the same property to
”deprecated”. When combined with the ”add” property mode, it is easy to retain the alternative
values for a property, but only have one preferred value. wbsheets checks for edit collisions by
default, but it can also be disabled. Rows with edit collisions are highlighted in the table and
they can be handled with the resolve part of the synchronization view. The user can choose to
either push their changes to Wikibase and ignore the collision or fetch the new data to the table
for selected or all the rows that have collisions.

4. Case study: Finnish National Archives

The development of wb-sheets has been done in co-operation with the National Archives of
Finland. The initial ideas related to mapping Wikibase’s data model to the spreadsheet and
the functionality of the Google Sheets extension were developed together with the potential
end-users from the Archives in a series of workshops. The motivation behind National Archive’s
interest in the development comes from the fact that they receive significant amount of feedback
from the public related to the WarSampo portal[?], a popular destination for information about
Finland in the second World War.

Generating the WarSampo dataset is a complex process that includes multiple preprocessing
and mapping tasks??. In practice, any changes to the dataset would require assistance from the
the researchers that were part of the original WarSampo project, which is not sustainable in the
long run. The goal is to give the Natinal Archives the tools to maintain the data themselves and
wb-sheets is a part of that work.

Based on the analysis of the feedback, it was clear that most of the feedback dealt with details
of individual soldiers. This is natural, since the feedback often comes from the family or relatives
of the deceased. It also allowed us to focus our maintenance efforts on a small subset of the
data, namely the DeathRecords??. The RDF dataset is maintained in a Gitlab instance with
hooks in place that update DeathRecord specific named graphs behind SPARQL endpoints for
test and production environment on a commit to a specific git branch. A custom component
was developed that reads the data from the Wikibase’s SPARQL endpoint with the changes and
from the Gitlab repository and then creates a new version of the dataset where the properties
than overlap are overridden using the data coming from the Wikibase.

After setting up the Wikibase instance as described in the previous sections, the DeathRecord
dataset was imported using a Python scripts that took advantage of RaiseWiki?? for speedier
creation of new Items for a around 100000 persons. The details of the ingestion process and the
data model are out of the scope of this article. The National Archives employed a person whose
task was to manually process feedback email into something that can be used to make changes to
the WarSampo data. Our first idea was to use the browser to make changes directly to Wikibase,
but the vanilla UI was too cumbersome to use for properties that needed to be linked to existing
WarSampo resources outside the current dataset. These properties were implemented using an
external identifier type, which required user to enter the local name of the RDF resource as a
value. For example, in order to set Helsinki (http://ldf.fi/warsa/casualties/municipalities/k0005)
as the municipality of birth, the user would need to set the value to ”k0005”. This could have
been solved by also importing all the referenced data to the Wikibase, but that would have
made the setup process a lot more complex. In the end, we ended compiling all the changes
in a spreadsheet, which was first mapped with Wikibase properties with wb-sheets’ Column
Editor as explained in the previous section. Then properties with links to other resources were
mapped to URIs using the Data editor and finally the data was synchronized to the Wikibase
instance using override existing values settings.

Most of the time went to the gathering and structuring of feedback into the spreadsheet form.
The final table contained one or more changes for roughly 1000 different Items. Applying the
wb-sheets based mappings and updating the data took less than a working day.

5. Conclusions and future work

There are not that many options available for editingWikibase data in a tabular format, which do
not require coding. wbsheets utilizes the familiar and easily approachable spreadsheets format
and the extensibility and collaborative feature of Google Sheets to provide a new take on an old
idea of editing graph based data in a table. The current implementation is in a prototype stage,
but it has already been applied successfully in real world use case in collaboration with National
Archives of Finland. One of the major limitation of wbsheets is lack support of qualifiers and
references, but support for both is under development. From an extension adoption point
of view, it would beneficial to remove the wbsheets-api, because that would allow wbsheets
to integrated with any Wikibase instance more easily. The user experience could improved
for example by allowing items belonging to multiple schemes to be editable within the same
spreadsheet in different sheets, providing a work-around to the fact that only one value endpoint
per property can be processed and adding support for Reconciliation API. The usage of Google
Sheets API is limited by quotas and we have not yet investigated what kind of usage is possible
within the free plan. Google’s services are also not suitable for all datasets for example due to
nature of the data or organizational policies.

Acknowledgments

This project has received funding from the Memory Foundation for the Fallen (Kaatuneiden
Muistosäätiö).

References

[1] LinkedOpenData/Strategy2021/Wikibase - Meta — meta.wikimedia.org, https://meta.
wikimedia.org/wiki/LinkedOpenData/Strategy2021/Wikibase, 2021. [Accessed 11-03-2024].

[2] J. Godby, K. Smith-Yoshimura, B. Washburn, K. K. Davis, C. F. Eslao, S. Folsom, X. Li,
M. McGee, K. Miller, H. Moody, et al., Creating library linked data with wikibase: Lessons
learned from project passage (2019).

[3] D. Diefenbach, M. D. Wilde, S. Alipio, Wikibase as an infrastructure for knowledge graphs:
The eu knowledge graph, in: A. Hotho, E. Blomqvist, S. Dietze, A. Fokoue, Y. Ding,
P. Barnaghi, A. Haller, M. Dragoni, H. Alani (Eds.), The Semantic Web – ISWC 2021,
Springer International Publishing, Cham, 2021, pp. 631–647.

[4] S. Zapounidou, L. Ioannidis, M. Gerolimos, E. Koufakou, C. Bratsas, Entity management
using rda and wikibase: A case study at the national library of greece, Journal of Library
Metadata (2024) 1–21.

[5] M. Koho, L. P. Coladangelo, L. Ransom, D. Emery, Wikibase model for premodern
manuscript metadata harmonization, linked data integration, and discovery, J. Comput.
Cult. Herit. 16 (2023). URL: https://doi.org/10.1145/3594723. doi:10.1145/3594723.

[6] C. Shimizu, P. Hitzler, S. Gonzalez-Estrecha, J. Goeke-Smith, D. Rehberger, C. Foley,
A. Sheill, The wikibase approach to the enslaved.org hub knowledge graph, in: T. R.
Payne, V. Presutti, G. Qi, M. Poveda-Villalón, G. Stoilos, L. Hollink, Z. Kaoudi, G. Cheng,
J. Li (Eds.), The Semantic Web – ISWC 2023, Springer Nature Switzerland, Cham, 2023, pp.
419–434.

[7] L. Rossenova, P. Duchesne, I. Blümel, Wikidata and Wikibase as complementary research
data management services for cultural heritage data, in: The 3rd Wikidata Workshop,
Workshop for the Scientific Wikidata Community, 2022. URL: http://ceur-ws.org/Vol-3262/
paper15.pdf.

[8] GitHub - ProfessionalWiki/WikibaseRDF: Wikibase extension that allows defining RDF
mappings for Wikibase Entities — github.com, https://github.com/ProfessionalWiki/
WikibaseRDF, ???? [Accessed 11-03-2024].

[9] F. Ibekwe-Sanjuan, B. Geoffrey, Implications of big data for knowledge organization.,
Knowledge organization 44 (2017) 187–198.

[10] M. Koho, L. Gasbarra, J. Tuominen, H. Rantala, I. Jokipii, E. Hyvönen, Ammo ontology
of finnish historical occupations, CEUR Workshop Proceedings 2375 (2019) 91–96. In-
ternational Workshop on Open Data and Ontologies for Cultural Heritage, ODOCH ;
Conference date: 03-06-2019 Through 03-06-2019.

https://meta.wikimedia.org/wiki/LinkedOpenData/Strategy2021/Wikibase
https://meta.wikimedia.org/wiki/LinkedOpenData/Strategy2021/Wikibase
https://doi.org/10.1145/3594723
http://dx.doi.org/10.1145/3594723
http://ceur-ws.org/Vol-3262/paper15.pdf
http://ceur-ws.org/Vol-3262/paper15.pdf
https://github.com/ProfessionalWiki/WikibaseRDF
https://github.com/ProfessionalWiki/WikibaseRDF

	1 Introduction
	2 Related work
	3 wb-sheets
	3.1 Setting up Wikibase
	3.2 Using the Google Sheets extension

	4 Case study: Finnish National Archives
	5 Conclusions and future work

