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ABSTRACT

Partial graph matching extends traditional graph matching by allowing some nodes
to remain unmatched, enabling applications in more complex scenarios. However,
this flexibility introduces additional complexity, as both the subset of nodes to
match and the optimal mapping must be determined. While recent studies have
explored deep learning techniques for partial graph matching, a significant lim-
itation remains: the absence of an optimization objective that fully captures the
problem’s intrinsic nature while enabling efficient solutions. In this paper, we
propose a novel optimization framework for partial graph matching, inspired by
optimal partial transport. Our approach formulates an objective that enables partial
assignments while incorporating matching biases, using weighted total variation
as the divergence function to guarantee optimal partial assignments. Our method
can achieve efficient, exact solutions within cubic worst case time complexity. Our
contributions are threefold: (i) we introduce a novel optimization objective that
balances matched and unmatched nodes; (ii) we establish a connection between
partial graph matching and linear sum assignment problem, enabling efficient
solutions; (iii) we propose a deep graph matching architecture with a novel partial
matching loss, providing an end-to-end solution. The empirical evaluations on
standard graph matching benchmarks demonstrate the efficacy of the proposed
approach.

1 INTRODUCTION

Graph matching is a fundamental problem in network analysis, aiming to establish one-to-one
correspondences between nodes in two graphs based on a defined objective. It has broad applications
across various fields, including computer vision (Sun et al., 2020), bioinformatics (Zaslavskiy et al.,
2009), and social network analysis (Zhang et al., 2019), where it is used to solve complex real-world
problems. Traditional graph matching assumes a bijective mapping between the nodes of two graphs
or a total injective mapping from the smaller graph to the larger one. However, these assumptions
often restrict its applicability in more complex, real-world scenarios. Partial graph matching, a
generalized version of the graph matching problem, addresses these limitations by allowing some
nodes in both graphs to remain unmatched (Wang et al., 2023; Jiang et al., 2022b). It seeks an optimal
partial assignment, an injective partial function between node sets, thereby expanding the practical
utility of graph matching. This approach is particularly useful in applications where not all nodes
have meaningful counterparts. For example, in image keypoint matching, not all keypoints in two
given images have correspondences (Jiang et al., 2022b), and in biological networks, certain proteins
may lack direct counterparts in other species (Zaslavskiy, 2010).

Solving partial graph matching is inherently more complex than traditional graph matching due to
the additional challenge of determining both the subset of nodes to match and the optimal mapping
itself. Graph matching is generally framed as a combinatorial optimization problem, where the
choice of optimization objective is crucial. Early works formulated it as a Quadratic Assignment
Problem (QAP), which is NP-hard (Koopmans & Beckmann, 1957; Lawler, 1963). Recent approaches
(Wang et al., 2021; 2020a; Rolínek et al., 2020; Fey et al., 2020) use neural networks to learn node
representations and derive a cross-graph node-to-node cost matrix. This allows graph matching to
be framed as a linear sum assignment problem (Burkard et al., 2012; Yu et al., 2020), assuming a
bijective mapping between two node sets of equal size. Even if two graphs have an unequal number of
nodes, the problem can still be framed as a linear sum assignment by assuming an injective mapping
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from the smaller graph to the larger one (Bonneel & Coeurjolly, 2019; Wang et al., 2019b). A key
advantage of this approach is that it can be efficiently solved with cubic worst-case time complexity
using the Hungarian algorithm (Kuhn, 1955). However, Partial graph matching does not assume
a total mapping, adding an extra layer of complexity. It requires selecting the subset of nodes to
be matched while determining the mapping, making the problem more challenging. Consequently,
traditional linear assignment methods like linear sum or k assignment cannot be directly applied.

Despite its challenging nature, recent studies have attempted to address the partial graph matching
problem using deep learning techniques (Jiang et al., 2022b; Wang et al., 2023). One approach (Jiang
et al., 2022b) frames the problem as an Integer Linear Programming (ILP) task with dummy nodes.
However, ILPs rely on branch and bound algorithms, which lack polynomial worst-case time com-
plexity, and the use of dummy nodes can hinder node representation learning (Wang et al., 2023).
Another approach (Wang et al., 2023) estimates the number of matchings (k) between two graphs,
solving it as a k-assignment problem (Burkard et al., 2012) using GreedyTopK algorithm (Wang
et al., 2023). However, determining the optimal k is difficult and requires separate neural modules,
leading to multiple training stages. These limitations highlight the need for an efficient optimization
objective that captures the inherent nature of partial graph matching.

Present work We address limitations in partial graph matching studies by proposing a novel
optimization objective that finds an optimal partial mapping between two node sets while identifying
which nodes should be matched. While optimal transport has been previously studied for graph
matching (Xu et al., 2019; Saad-Eldin et al., 2021; Chen et al., 2020), its conservation of mass
constraint, requiring all mass to be transported between distributions, limits its applicability to partial
graph matching. In optimal partial transport, the mass conservation constraint is relaxed, allowing
partial mass to be transported, with the optimal amount of mass determined during the optimization
process (Séjourné et al., 2023; Bai et al., 2023). Although optimal partial transport and partial
graph matching share similarities, i.e., both involve partial solutions, with the former identifying
a plan where not all mass is transported and the latter finding a mapping where not all nodes are
matched, they differ fundamentally. Partial graph matching requires the mapping to be an injective
partial function (a partial assignment), while optimal partial transport does not. As a first step to
bridging this fundamental difference, we reformulate partial graph matching as an optimal partial
transport problem, where each node is assigned a unit mass and weighted total variation acts as
the divergence function to dynamically balance matched and unmatched nodes. The optimization
problem accomplishes two critical objectives: (i) it guarantees the existence of an optimal solution
that induces a partial assignment, and (ii) it enables the incorporation of information related to relative
significance of nodes to the matching process.

Based on these theoretical observations, we define a new optimization objective for partial graph
matching. We demonstrate that the proposed optimization objective for partial graph matching can be
solved by embedding it in a linear sum assignment problem. This enables solving the partial graph
matching problem within a cubic worst case time complexity.

In summary, we make the following contributions in this work:

• We define a new optimization problem for partial graph matching, inspired by optimal partial
transport. This formulation provides a robust optimization objective that carefully balances the
selection of matched and unmatched nodes. Further, the formulation enables the incorporation
of information related to the relative significance of each node to the matching process, which
we term as matching bias.

• To solve the proposed optimization problem efficiently, we explore the underlying structure of
its solution spaces. This reveals a notable embedding of the partial graph matching problem in a
linear sum assignment problem. Furthermore, the solutions of the latter assignment problem
can be mapped efficiently to solutions of the partial matching problem, which are themselves
optimal. This allows us to solve the partial graph matching problem exactly within a cubic
worst case time complexity.

• Building on the theoretical insights of our proposed optimization objective, we introduce a
deep graph matching architecture that embeds feature and structural properties into the cross-
graph node-to-node cost matrix and matching biases. This architecture provides an end-to-end
solution for the partial graph matching problem, incorporating a novel loss function called
partial matching loss.
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We conduct experiments to empirically validate our proposed approach on partial graph matching
benchmarks. The results demonstrate the efficacy and efficiency of the proposed approach.

2 RELATED WORK

2.1 DEEP GRAPH MATCHING

Several graph matching methods leverage neural networks to learn matching-aware node embed-
dings (Jiang et al., 2022b; Rolínek et al., 2020; Wang et al., 2020a; Yu et al., 2020; Gao et al., 2021).
These methods integrate cross-graph node affinity with feature and structural data to learn node
embeddings. The learned embeddings are then used to derive cross-graph node-to-node affinities.
Then, the soft correspondences between nodes are typically obtained by applying Sinkhorn nor-
malization on the cost-graph node-to-node affinity matrix. Once the soft correspondence matrix is
obtained, it is projected into the space of permutation like binary matrices to achieve one-to-one
node correspondences using algorithms such as the Hungarian algorithm (Kuhn, 1955) and Stable
Matching algorithm (Ratnayaka et al., 2023), assuming a total injective mapping from the smaller
graph to the larger graph.

Optimal transport techniques have also been discussed to solve the graph matching problem (Xu
et al., 2019), where each node in the source graph is matched to a node in the target graph. Moreover,
optimal partial transport techniques have been applied to subgraph matching (Pan et al., 2024), where
a preset fraction of mass (corresponding to a fixed number of nodes) from a smaller graph is matched
to nodes in a larger graph. This approach constrains the matching process by specifying in advance
how many nodes from the smaller graph must be matched. However, these approaches are not directly
applicable to partial graph matching, which requires identifying corresponding nodes between two
graphs without any prior assumptions about the number of nodes to be matched. Moreover,spectral
methods have been successfully applied to both graph matching (Wang et al., 2019a) and also
to compactly encode maps between graphs and subgraphs (Pegoraro et al., 2022). While these
problems share similarities in attempting to find correspondences at node or graph level, they differ
fundamentally from partial graph matching in their matching objectives and constraints.

So far, only a few deep learning approaches have addressed partial graph matching. Jiang et al.
(2022b) introduces dummy nodes to bypass explicit match number estimation, framing the problem
as an Integer Linear Programming (ILP) task. However, ILP with branch and bound suffers from high
time complexity, and the use of dummy nodes can distort node representations by implying higher
similarity with unmatched nodes. Wang et al. (2023) attempts to solve partial graph matching as a
k-assignment problem. However, as the match count (k) between two graphs is not known in a partial
graph matching problem, their approach to handle partial matchings include two steps, first estimating
the match count (k) by using a separate neural module and solving an entropic optimal transport
problem and then using the estimated k value to solve partial graph matching as a k-assignment
problem. This two step approach increase computational complexity and error propagation. Another
line of work (Nurlanov et al., 2023; Jiang et al., 2022a) to perform partial graph matching have
explored universe graph representation learning, where a "universe" graph is constructed for each
object class in keypoint-based image analysis. However, these methods require prior knowledge
specific to each class, such as the exact number of distinct keypoints (nodes) in a class, making
them difficult to generalize to graphs or images from previously unseen classes. In contrast, our
work addresses a more general form of partial graph matching problem that operates without any
class-specific assumptions, allowing it to work with arbitrary graph structures.

2.2 OPTIMAL TRANSPORT AND THE ASSIGNMENT PROBLEM

Assignment problems, especially the linear sum assignment problem, can be modeled as an Optimal
transport problem by considering assignment costs as transportation costs between two discrete
distributions (Burkard et al., 2012). The Hungarian algorithm (Kuhn, 1955) which is a well-known
methods for solving the linear sum assignment problem, operates with a worst-case time complexity
of O(n3), and is widely used in many real world applications (Munkres, 1957; Yu et al., 2020).

In contrast to the linear sum assignment problem, partial graph matching can be considered an
assignment problem where elements in both sets can remain unassigned. This characteristic makes
conventional optimal transport methods unsuitable for solving partial assignment problems. While
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efforts have been made to adapt optimal partial transport for partial assignments (Bai et al., 2023;
Bonneel & Coeurjolly, 2019), these methods have limitations. (Bai et al., 2023) propose an optimal
partial transport formulation that can guarantee an optimal solution inducing a partial assignment
between two sets, but their algorithm is restricted to one-dimensional data with convex cost metrics,
whereas partial graph matching typically involves higher-dimensional data and requires more flexible
cost functions. Moreover, their formulation does not account for matching bias of elements, which is
crucial in partial graph matching, especially in data-driven approaches where certain elements should
be prioritized for assignment. Efficient algorithms (≤ (O(n3))) for solving partial assignments in
higher-dimensional spaces with general cost functions have not yet been developed, leaving a gap in
the literature.

3 BACKGROUND

Notations We denote the set of source elements as WS and the set of target elements as WT . We
also use ∥ · ∥1 to refer the L1 norm, ⟨, ⟩F to refer the Frobenius inner product, and 1n to denote
a column vector of ones with n elements. For any given matrix π ∈ Rm×n, π1 and π2 denotes
marginals of π where π1 = π1n and π2 = π⊺1m

Optimal Transport (Balanced) Let µ ∈ Rn
≥0 and ν ∈ Rm

≥0 be two non-negative vectors repre-
senting distributions with equal total mass, such that ∥µ∥1 = ∥ν∥1. We are also given a cost matrix
C ∈ Rm×n, where Cij denotes the cost of transporting a unit of mass from location i in the source
set WS to location j in the target set WT . The (balanced) optimal transport problem considers all
possible transport plans Π(µ, ν) = {π ∈ Rm×n

≥0 |π1n = µ, π⊺1m = ν} and is defined as,

OT(µ, ν) := min
π∈Π(µ,ν)

⟨π,C⟩F . (1)

The marginal conditions π1n = µ and π⊺1m = ν impose the mass conservation constraint, ensuring
that the total mass is transported from one distribution to the other.

Optimal Partial Transport In the optimal partial transport problem, the mass conservation con-
straint is relaxed, allowing partial mass transportation between distributions. While some stud-
ies (Chapel et al., 2020; Figalli, 2010) address predefined amounts of partial mass, we consider
the optimal partial transportation problem where the amount of partial mass being transported is
determined by the optimization objective.

Let Π≤(µ, ν) be the set of admissible partial transport plans defined as

Π≤(µ, ν) = {π ∈ Rm×n
≥0 |π1n ≤ µ, π⊺1m ≤ ν}. (2)

The optimal partial transport problem is usually defined as

OPTρ(µ, ν) := min
π∈Π≤(µ,ν)

⟨π,C⟩F + ρD(π1|µ) + ρD(π2|ν). (3)

Here, ρ > 0, which is also termed as the unbalancedness parameter, is used to control the tolerance for
destroying or creating mass, and D(·|·) represents a divergence between two discrete measures. The
term ⟨π,C⟩F captures the cost of transporting the mass by π while ρD(π1|µ) + ρD(π2|ν) accounts
for the mass that has not been transported.

In the optimal transport literature, Total Variation (TV) and Kullback-Leibler (KL) divergence are
commonly used divergence functions (Séjourné et al., 2023). Using TV as the divergence function in
optimal partial transport is known to identify zero entries in the optimal plan based on the cost matrix
(Bai et al., 2023; Séjourné et al., 2023).

4 PARTIAL GRAPH MATCHING PROBLEM

We represent a graph as G = (V,E), where V is the set of nodes and E is the set of edges. Let
GS = (VS , ES) be the source graph and GT = (VT , ET ) be the target graph for matching, with
|VS | = m and |VT | = n. Without loss of generality, we can assume m ≤ n.
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In this work, we tackle the partial graph matching problem through the lens of optimal partial
transport, which offers a flexible and efficient framework for dealing with graphs of different sizes
and structures. To this end, we define an objective function that is well suited to our partial graph
matching task. We first state this objective as a general optimal transport problem, then adapt it to our
setting of graph matching.

We represent VS and VT as mass vectors µ ∈ Rm and ν ∈ Rm respectively. We also assume a cost
matrix C ∈ Rm×n, where Cij indicates the cost of moving a unit mass from i ∈ VS to j ∈ VT . We
take inspiration from the use of the objective function defined in Eq. (3), and adapt it to our purposes.
In particular, we use a weighted total variation (TV) divergence, which both ensures sparse optimal
transport plans, and furthermore allows us to incorporate a matching bias to each node in the source
and target graphs. The matching bias weights are given by two vectors, α ∈ Rm

≥0 for nodes in VS and
β ∈ Rn

≥0 for nodes in VT , finally resulting in a objective function given by

TC(π;C,α, β) := ⟨π,C⟩F + ρ (⟨α, µ− π1⟩+ ⟨β, ν − π2⟩) . (4)

As we consider marginal constraints π1n ≤ µ and π⊺1m ≤ ν, the weighted total variation diver-
gences can be written as ⟨α, µ − π1⟩, and ⟨β, ν − π2⟩. In the general transport setting our set of
feasible partial plans would be Π≤(µ, ν) as defined as in Eq. (2), and the optimal partial transport
problem with weighted total variation as the divergence function then is

WOPTρ(µ, ν) := min
π∈Π≤(µ,ν)

TC(π;C,α, β). (5)

It should be noted that in our partial graph matching method discussed in Section 7, the cost matrix
C, and matching bias values α and β are learned from data. In our setting however, we require
optimal partial assignments rather than plans, meaning that each node in one graph is matched to
a node in the other graph or no node at all. We can define the set M of all m× n binary matrices
representing possible partial assignments between VS and VT as follows

M := {π ∈ {0, 1}m×n | ∀i ∈ VS ,

n∑
j=1

πij ≤ 1 and ∀j ∈ VT ,

m∑
i=1

πij ≤ 1}.

For any π ∈ M, πij = 1 if and only if node i ∈ VS is matched with node j ∈ VT . Given the graphs
GS and GT , the partial graph matching problem seeks to find an optimal π ∈ M with respect to the
objective given in Eq. (4), that is we are solving the

PGMρ := min
π∈M

TC(π;C,α, β). (6)

Note that the partial assignments form a subset of the partial transport plans between 1m and 1n, that
is M ⊂ Π≤(1m,1n), and in fact we have that M = Π≤(1m,1n) ∩ {0, 1}m×n.

5 PARTIAL GRAPH MATCHING SOLUTIONS

In this section we demonstrate that partial assignments solutions of PGMρ (i.e. that sit in M) do
indeed occur in the solution set of WOPTρ(1m,1n), which we can consider to be a relaxed version
of PGMρ. We further note that in general solutions of WOPTρ(µ, ν) are not necessarily partial
assignments as the marginal constraints might rule out solutions in M.

First we consider the following theorem, which shows that our choice of weighted TV defined in
Eq. (4) can distinguish between feasible and non-feasible assignments.
Theorem 5.1 (Infeasible Assignments). Let π⋆ ∈ argminΠ≤(µ,ν) TC(π;C,α, β) be any optimal
solution of Eq. (5). For any 1 ≤ i ≤ m and 1 ≤ j ≤ n we have that Cij > ρ(αi+βj) =⇒ π⋆

ij = 0.

From this theorem, we define Cij > ρ(αi + βj) as the feasibility condition for i and j. If the cost
Cij exceeds this threshold, no mass will be transported between i and j. When considering graph
matching, this means that no assignment will occur between i ∈ VS and j ∈ VT .

Now we consider the unit-weighted case, that is when µ = 1m and ν = 1n. The following theorem
demonstrates that there is at least one solution of Eq. (5) that is a partial assignment between VS and
VT , i.e. is a solution of Eq. (6).

5
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Theorem 5.2 (Existence of Optimal Solution). If µ = 1m, ν = 1n there exists an optimal plan
π⋆ ∈ argminΠ≤(µ,ν) TC(π;C,α, β) such that π⋆ ∈ M.

For the remainder of the paper we consider µ = 1m, ν = 1n, and to distinguish our objective
function in this case, we write T̂C to denote the total cost in this unit-weight setting, that is

T̂C(π;C,α, β) := ⟨π,C⟩F + ρ (⟨α,1m − π1⟩+ ⟨β,1n − π2⟩) . (7)

From Theorem 5.2, when T̂C(π;C,α, β) is the objective function of Eq. (5), there exists an optimal
plan π ∈ M that ensures each node is either matched with at most one element or left unmatched,
inducing a valid partial matching between VS and VT . Moreover, based on Theorem 5.1, if αp > αq

for two source elements p and q, then p is more likely to satisfy the feasibility condition with each
target element compared to q, giving p a higher chance of being assigned to a target element.

6 SOLVING THE PARTIAL GRAPH MATCHING PROBLEM

Although Theorem 5.2 shows that there is always an optimal transport plan that induces a valid
solution to the partial graph matching problem, it does not specify how to find such a plan. In this
section, we address this challenge. Our main result demonstrates that it is possible to derive a linear
sum assignment problem for which a closed-form mapping exists from any of its given solution to
a solution of the partial graph matching problem defined in Eq. (6). The significance of this result
is that it allows us to adapt the celebrate Hungarian algorithm to solve the partial graph matching
problem with cubic worst-case time complexity algorithm.

Given two sets of elements with equal cardinality, the linear sum assignment problem aims to find a
bijective assignment that minimizes the total cost of assignment (Burkard et al., 2012). In order to
demonstrate a connection between the partial graph matching problem and the linear sum assignment
problem, we first create a set VD by appending (n − m) dummy elements to VS , thus making
|VD| = |VT | = n. Let α∗ > 0 be any value such that α∗ > max

1≤i≤m
αi. We define a cost matrix

C ∈ Rn×n s.t.,

Cij =


Cij , if 1 ≤ i ≤ m and Cij ≤ ρ(αi + βj)

ρ(αi + βj), if 1 ≤ i ≤ m and Cij > ρ(αi + βj)

ρ(α∗ + βj), if m < i ≤ n.

(8)

Let Pn = {π ∈ {0, 1}n×n |π1n = 1n, π
⊺1n = 1n} denote the set of n× n permutation matrices.

Then, we consider the following linear sum assignment problem,
LAP(VD, VT , C) := min

π∈P
⟨π,C⟩F . (9)

We first establish an equivalence between the objective functions of the partial graph matching
problem in Eq. (6) and the linear sum assignment problem in Eq. (9).

To this end we define a closed form mapping that will obtain valid solutions to the original partial
graph matching problem Eq. (6) from solutions of the linear sum assignment problem Eq. (9). We
write h : Rn×n → Rm×n to denote the mapping which for 1 ≤ i ≤ m and 1 ≤ j ≤ n is given by

[h(π)]ij =

{
πij , if Cij ≤ ρ(αi + βj),

0 otherwise.
(10)

Lemma 6.1 (Equivalence). Given a cost matrix C and the weights α and β, any permutation matrix
π ∈ Pn will have h(π) ∈ M and h(π) satisfies ⟨π,C⟩F = T̂C(h(π);C,α, β) + ρ(n−m)α∗.

The following theorem effectively states that h(π⋆) will be a valid solution for our problem of interest.
Theorem 6.2 (Optimal Solution). If π⋆ ∈ argminπ∈Pn

⟨π,C⟩F , then π⋆ = h(π⋆) is a solution of
partial graph matching problem, that is π⋆ ∈ argminπ∈M T̂C(π;C,α, β).

The proofs of all the theorems and lemmas including Theorem 6.2 are provided in the appendix.
Remark 6.3. It is known that the linear sum assignment problem can be solved using the Hungarian
algorithm, which has a cubic worst-case time complexity (Kuhn, 1955). Therefore, the worst case
time complexity of solving the partial graph matching problem is O(n3).
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GT = (VT, ET)
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Figure 1: An overview of our end-to-end learning architecture for partial graph matching. Given two input
graphs GS and GT , the neural network NNθ generates the cross-graph node-to-node affinity matrix A. The
affinity matrix A is then used to learn the matching bias values α, β, and also the cost matrix C. The partial
matching loss is computed by taking into account the ground truth, C, α, and β.

7 PARTIAL GRAPH MATCHING ARCHITECTURE

In this section, we present an end-to-end learning architecture ( Fig. 1) for partial graph matching,
building upon the theoretical properties discussed earlier. This architecture learns both the cost matrix
C and the matching biases of nodes (α and β). We also introduce a novel loss function, partial
matching loss, designed to optimize performance in partial graph matching.

Graph Affinity Encoding Graph affinity encoding uses a neural network NNθ to transform ge-
ometric affinities between nodes into node embeddings, leveraging their features and structural
information. These embeddings are then used to construct a matrix representing the cross-graph
affinity between nodes in graphs GS and GT . Specifically, given two input graphs GS and GT , the
neural network NNθ : G × G → Rm×n, parameterized by θ, returns a cross-graph node-to-node
affinity matrix A ∈ Rm×n. Essentially, the neural network NNθ first applies an embedding function
femb : G → Rm×d to generate node embeddings femb(GS) ∈ Rm×d and femb(GT ) ∈ Rn×d for
the graphs GS and GT , respectively. Then, the affinity function faff : Rm×d × Rn×d → Rm×n

combines these embeddings to compute a cross-graph node-to-node affinity matrix such that

NNθ(GS ,GT ) = faff (femb(GS), femb(GT )) .

Matching Biases and Cost The matching biases α and β are calculated based on the cross-graph
node-to-node affinity matrix A. For each node i ∈ VS , define ri = max1≤j≤n Aij , which represents
the highest affinity of node i in GS with any node in GT . Similarly, for each node j ∈ VT , define
rj = max1≤i≤m Aij , representing the highest affinity of node j in GT with any node in GS . The
matching bias is then calculated as αi = σ(wrs × ri) for each i ∈ VS and βj = σ(wrs × rj) for
each j ∈ VT , where σ(·) is the sigmoid function, and wrs is a learnable parameter. A value of αi

closer to 1 indicates a higher chance of node i being matched, while a value closer to 0 indicates a
lower chance. Similarly, for βj , a value closer to 1 suggests a higher chance of node j being matched,
and a value closer to 0 suggests a lower chance.

We compute the cost matrix C between the nodes of GS and GT by applying Sinkhorn normalization
(Sinkhorn, 1964) to the cross-graph node-to-node affinity matrix A. This normalization transforms A
into a doubly stochastic matrix S ∈ [0, 1]m×n such that S1n = 1m and S⊺1m ≤ 1n (Knight, 2008).
The cost matrix C ∈ [0, 1]m×n is then derived from S, with each element defined as Cij = 1− Sij

for all nodes i in GS (where 1 ≤ i ≤ m) and j in GT (where 1 ≤ j ≤ n).

Partial Matching Loss We have two primary learning objectives during training: (1) learning the
matching cost matrix C, and (2) learning the matching biases α and β of nodes in the source and
target graphs. Below, we propose a new loss function that integrates these two learning objectives.

Let I(·) denote the indicator function. Using the feasibility condition from Theorem 5.1, we define
the matching attention matrix Z as:

Zij = I (Mij = 1 or Cij ≤ ρ(αi + βj)) .
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Based on Z and the ground truth matching matrix M ∈ M, we propose the loss term Lcost to guide
the learning of the matching cost matrix C:

Lcost =
1

m

∑
i,j

Zij [Mij log(1− Cij) + (1−Mij) log(Cij)] .

A node pair is included in the loss Lcost under two conditions: (1) The ground truth indicates the pair
should be matched (Mij = 1), or (2) The pair should not be matched (Mij = 0) but the matching cost
is below the feasibility condition (Cij ≤ ρ(αi + βj)). According to Theorem 5.1, pairs exceeding the
threshold are infeasible and thus are not penalized in the loss, as they cannot produce false positives.

To guide the learning of the matching biases α and β, we propose the loss term Lbias:

Lbias =
1

m

m∑
i=1

(M1n)i [1− αi]
2
+

1

n

n∑
j=1

(M⊺1m)j [1− βj ]
2
.

The goal of Lbias is to increase the matching bias of a node that should be matched. The partial
matching loss is defined as L = Lcost + λLbias, where λ ∈ (0, 1] is the regularization parameter.

8 EXPERIMENTS

We evaluate the performance and robustness of our proposed approach through several experiments:
(1) We evaluate the efficacy of our approach through experiments on image keypoint matching
datasets and Protein-Protein Interaction (PPI) networks under varying noise levels; (2) We analyze
the effects of the matching biases α and β on overall performance by considering two model variants:
OPGM, with fixed equal matching biases (α = 1m, β = 1n), and OPGM-rs, with learnable matching
biases. Note that when training OPGM, L = Lcost, as we do not need to learn matching biases. (3)
We conduct a sensitivity analysis on the unbalancedness parameter ρ and regularization parameter λ
to understand their impact on partial graph matching performance; (4) We analyze the training and
testing efficiency of our approach compared to other baselines.

8.1 EXPERIMENTAL SETUP

Image Keypoint Matching In this task, we focus on image keypoint matching, which aims to find
corresponding annotated keypoints between two given images. We use three image keypoint matching
datasets that inherently contain outliers: 1) the Pascal VOC Keypoint with Berkeley annotations
(Everingham et al., 2010), which includes keypoint-annotated images from 20 classes; 2) SPair-71k
(Min et al., 2019), featuring 70,958 high-quality image pairs from Pascal VOC 2012 and Pascal 3D+,
covering 18 classes; and 3) IMC PT SparseGM (Wang et al., 2023), a recently proposed dataset
specifically for partial graph matching.

Experimental Setting. We follow the same experimental setting in (Wang et al., 2023). A pre-trained
VGG16 model (Simonyan & Zisserman, 2014) is used to extract visual features of annotated image
keypoints. Graphs are created using the extracted keypoint features following the same protocol as
in (Wang et al., 2023). We use the neural network proposed in GCAN (Jiang et al., 2022b) as NNθ to
learn node embeddings and compute the cross-graph node-to-node affinity matrix.

Consistent with (Wang et al., 2023), we report the matching F1-score as the evaluation metric. When
reporting the results, we run 5 random starts and report the 95% confidence interval as the error
bars, similarly to (Wang et al., 2023). We considered the following baselines: NGM-v2 (Wang
et al., 2020b), GCAN (Jiang et al., 2022b), AFAT-U (Jiang et al., 2022b), and AFAT-I (Wang et al.,
2023). Our evaluation is based on the implementation and results reported in (Wang et al., 2023)1.
In Table 1, and Table 2(left), GM Network denotes the neural network architecture that each of the
given baselines used to learn node embeddings and to obtain the cross-graph node-to-node affinity
matrix (A). PMH indicates the technique that is used to distinguish matching vs non-matching nodes
and to obtain the final partial matching.

1https://github.com/Thinklab-SJTU/ThinkMatch
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GM Network PMH aero bike bird boat bottle bus car cat chair cow dog horse mbike person plant sheep train tv mean

NGM-v2 dummy 47.7 41.6 62.1 30.3 59.0 49.7 27.4 68.3 33.9 62.4 57.3 46.7 46.4 42.7 78.7 43.5 80.5 89.5 53.8 ±0.4

NGM-v2 AFAT-U 50.3 43.5 63.8 32.4 59.0 60.1 39.7 68.6 36.1 63.6 56.5 46.3 51.4 43.3 77.0 51.2 81.1 89.4 56.3 ±0.4

NGM-v2 AFAT-I 50.4 43.6 63.9 32.1 61.2 58.5 38.0 68.4 35.7 62.7 56.4 47.7 51.9 44.3 78.5 50.7 79.2 91.2 56.4 ±0.4

GCAN ILP 49.0 41.3 64.0 30.3 57.3 55.0 37.4 64.8 36.6 63.0 58.0 44.4 46.4 42.6 68.4 42.3 83.2 91.9 54.2±0.3

GCAN AFAT-U 46.7 43.3 65.8 33.3 61.5 54.9 35.2 68.4 37.7 59.9 56.0 47.6 47.2 43.5 80.3 47.7 83.8 89.0 55.7±0.4

GCAN AFAT-I 46.8 44.3 65.9 32.4 61.5 53.8 33.7 68.4 38.1 60.1 56.3 47.9 48.3 43.8 81.2 48.4 82.9 88.0 55.7 ±0.4

GCAN OPGM 51.9 43.8 66.6 28.9 60.9 60.6 37.8 67.8 37.7 64.3 58.9 47.6 47.8 43.1 77.3 49.5 82.1 90.9 56.5 ±0.4
GCAN OPGM-rs 52.5 43.2 67.9 32.3 61.2 61.2 39.9 68.9 38.2 67.1 60.0 50.1 47.4 46.3 78.8 50.2 82.9 92.7 57.8±0.2

Table 1: Performance (matching F1-score) on the dataset SPair-71K. The best results are colored in black and
the second best are in blue.

Dataset Name IMCPT 50 IMCPT 100
GM Network PMH reichstag sacre st peters mean reichstag sacre st peters mean
NGM-v2 dummy 88.5 56.1 63.0 69.2±0.5 80.0 57.0 71.3 69.5±0.3
NGM-v2 AFAT-U 90.5 58.7 66.9 72.0±0.3 81.7 57.0 72.2 70.3±0.2
NGM-v2 AFAT-I 92.3 58.7 66.7 72.8±0.4 82.0 57.0 71.4 70.1±0.3
GCAN ILP 87.2 55.1 63.0 68.4±0.5 80.4 55.7 72.8 69.6±0.4
GCAN AFAT-U 86.9 59.4 67.1 71.1±0.4 82.6 58.2 73.8 71.5±0.2
GCAN AFAT-I 91.0 60.3 67.3 72.9±0.6 82.7 57.8 72.4 70.9±0.4
GCAN OPGM 91.2 57.0 68.1 71.9±0.2 81.7 59.1 76.1 72.3±0.4
GCAN OPGM-rs 91.7 59.2 67.2 72.7±0.1 82.6 59.6 75.9 72.7±0.2

OPGM-rs

AFA
T-I

AFA
T-U

GCAN
0

200

400

600

117.7

367.1 371.8

561.1

(m
s)

Inference time

Table 2: (left) Performance (matching F1-score) on the datasets IMCPT 50 and IMCPT 100, where the best
results are colored in black and the second best are in blue; (right) Inference time of our model OPGM-rs against
the state-of-the-art methods AFAT-I, AFAT-U, and GCAN on the dataset IMCPT 100.

PPI Network Matching In this task, we focus on Protein Protein Interaction network matching
under varying noise levels. PPI network matching dataset is a standard graph matching benchmark
that can be used to evaluate performance of a graph matching model under various noise levels
(Liu et al., 2021; Ratnayaka et al., 2023). It is a protein protein interaction (PPI) network of yeasts,
consisting of 1004 proteins and 4920 high-confidence interactions among those proteins. The PPI
network matching problem is to match this network with its noisy versions, which contain 5%, 10%,
15%,20%,25% additional interactions (low-confidence interactions), respectively.

Experimental Setting. We adopt the experimental settings of the baseline methods SIGMA (Liu et al.,
2021) and StableGM (Ratnayaka et al., 2023) and use node correctness (the percentage of nodes
that have the same matching as the ground truth) as the evaluation metric, similarly to (Liu et al.,
2021; Ratnayaka et al., 2023). The neural network architecture NNθ follows the design used in these
baselines, where each node’s input feature is derived from its degree. A 5-layer Graph Isomorphism
Network (GIN) (Xu et al., 2018) is employed. Node-to-node affinities across graphs are computed
using the cosine similarities of node embeddings. Note that PPI network matching focuses on finding
a bijective mapping between two graphs with an equal number of nodes. As shown in Theorem 5.1,
our method achieves bijective mapping for sufficiently large ρ. Hence, we set ρ = 1011 for this task.
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Figure 2: (left) Performance (node correctness) of our model OPGM-rs against SIGMA and StableGM on
PPI Network Matching with varying noise levels; (middle) Sensitivity analysis of our model OPGM-rs on the
unbalancedness parameter ρ; (right) Sensitivity analysis of our model OPGM-rs on the regularization parameter
λ. Performance in sensitivity analysis is measured by matching F1-score.
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8.2 RESULTS AND DISCUSSION

Ext-1 Architecture Efficacy Table 1 presents the results for the Spair-71K dataset (Table 1). Both
OPGM and OPGM-rs outperform other baselines in terms of mean F1-score and achieve superior
results in 11 out of 18 classes. The Spair-71K dataset provides several advantages over the Pascal
VOC Keypoint dataset, including higher image quality, richer keypoint annotations, and the removal
of ambiguous annotations (Rolínek et al., 2020). Evaluations on the Pascal VOC Keypoint dataset
are discussed in the appendix, where our models perform slightly worse than some baselines, likely
due to the poor and ambiguous annotations in Pascal VOC (Rolínek et al., 2020). These results
highlight the effectiveness of our approach for visual graph matching, particularly on high-quality
datasets like Spair-71K.

Table 2 (left) presents the results for the IMCPT 50 and IMCPT 100 datasets. On the IMCPT 100
dataset, our models achieve higher mean F1-scores than the baselines and outperform them in 2
out of 3 classes. For the IMCPT 50 dataset, our method performs comparably to the best baselines.
Notably, the IMCPT 100 dataset, with the largest number of nodes among visual graph matching
datasets (Wang et al., 2023), showing the efficacy of our approach for partial graph matching.

As shown in Fig. 2 (left), OPGM-rs consistently outperforms other baselines across all noise levels
for PPI network matching (see the appendix for numerical results). However, at higher noise levels,
the performance gap between OPGM-rs and StableGM narrows.

Ext-2 Impact of matching biases From the results given in Tables 1 and 2 and Fig. 2 (left), it is
clear that OPGM-rs consistently outperforms OPGM in most cases, highlighting the importance of
learning the matching biases of nodes in partial graph matching.

Ext-3 Sensitivity analysis We evaluated the impact of the unbalancedness parameter ρ and the
regularization parameter λ on partial graph matching performance using Spair-71K and IMCPT
100 datasets. For ρ, we varied its values while keeping other hyperparameters fixed. As shown in
Fig. 2 (middle), mean F1-scores highlight ρ’s critical role: smaller values restrict valid matches, while
larger values may allow incorrect matches, both reducing performance. For λ, starting from 0.01, we
tested λ ∈ {0.2, 0.4, 0.6, 0.8, 1} with fixed hyperparameters. As shown in Fig. 2 (right), the mean
F1-scores show slight variation, indicating that the impact of λ is not significant.

Ext-4 Efficiency analysis We evaluated the average runtime for processing a pair of graphs (i.e.,
keypoint-annotated images) during the inference phase for OPGM-rs, GCAN, AFAT-I, and AFAT-U
using the IMCPT 100 dataset, the largest image keypoint matching dataset (Wang et al., 2023).
Matching was performed on 3,000 keypoint-annotated pairs. As shown in Table 2 (right), OPGM-rs
demonstrates significantly lower inference time compared to the other models. It is important to note
that all models use the same neural network architecture from (Jiang et al., 2022b) (corresponding
to NNθ) to compute the cross-graph node-to-node affinity matrix A and the Sinkhorn algorithm to
derive the doubly stochastic affinity matrix S, differing only in their partial matching techniques.

9 CONCLUSION AND LIMITATIONS

In this work, we proposed a new problem formulation for partial graph matching based on optimal
partial transport. Our approach can dynamically determine which nodes would be matched or left
unmatched during the optimization process. We demonstrate how our problem formulation enabled
solving the partial graph matching problem within cubic worst case time complexity. We then showed
how our proposed solution for partial graph matching can be effectively integrated to a learning
setting. Evaluations on various partial graph matching benchmarks demonstrate that our method
outperform the baselines in most of the benchmarks. Beyond these specific tasks discussed in this
work, the optimization problem we proposed and the solution mechanism we developed can be
adapted to any application requiring optimal partial assignment between two sets.

While our proposed method demonstrated strong performance on datasets with reliable annotations,
its effectiveness diminished when faced with unreliable or ambiguous annotations, or higher noise
levels in the data. Enhancing the robustness of our method under these challenging conditions is an
important direction for future work.
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A APPENDIX

A.1 EQUIVALENCE BETWEEN OPTIMAL TRANSPORT AND OPTIMAL PARTIAL TRANSPORT

Inspired by (Bai et al., 2023; Caffarelli & McCann, 2010), we show that the optimal partial transport
problem proposed in Eq. (5) has an equivalance with an optimal (balanced) transport problem. In the
following we will write ∥µ∥1 =

∑m
i=1 |µi| or ∥π∥1 =

∑m,n
i,j=1 |πij | to denote the 1-norm or sum of

elements of probability vectors and matrices noting that all µi, πij > 0.

Let K be a constant satisfying K ≥ ∥µ∥1 + ∥ν∥1, and we define extended vectors ν̂, µ̂ ∈ Rm+n as

µ̂i =

{
µi if i ≤ m,
1
n (K − ∥µ∥1) if m < i ≤ m+ n

and ν̂j =

{
νj if j ≤ n,
1
m (K − ∥ν∥1) if n < j ≤ m+ n

and note that ∥µ̂∥1 = ∥ν̂∥1 = K. We define Ĉ ∈ R(m+n)×(m+n) such that

Ĉij =

{
Cij − ρ(αi + βj) if i ≤ m and j ≤ n,

0 if otherwise.
(11)

We consider the following balanced optimal transport problem between the extended vectors µ̂ to
ν̂ that optimizes over the set of admissible couplings Π(µ̂, ν̂) = {π ∈ R(m+n)×(m+n)

≥0 |π1m+n =

µ̂, π⊺1m+n = ν̂}.
OT(µ̂, ν̂) = min

π∈Π(µ̂,ν̂)
⟨π, Ĉ⟩. (12)

We claim that there exists an equivalence between this OT problem and Eq. (5).
Proposition A.1 (Equivalent cost of couplings). For any π̂, π̂′ ∈ Π(µ̂, ν̂) with π̂[1 : m][1 : n] =
π̂′[1 : m][1 : n] = π

⟨Ĉ, π̂⟩F = ⟨Ĉ, π̂′⟩F
and

TC(π;C,α, β) = ⟨Ĉ, π̂⟩F + ρ(∥α∥1 + ∥β∥1).

Proof. Based on the definition of Ĉ, we can derive that for any π ∈ Π(µ̂, ν̂),

⟨Ĉ, π⟩F =

m∑
i=1

n∑
j=1

Ĉijπij

Together with the above result and the fact that π̂[1 : m][1 : n] = π̂′[1 : m][1 : n] = π, we can derive

⟨Ĉ, π̂⟩F =

m∑
i=1

n∑
j=1

Ĉij π̂ij =

m∑
i=1

n∑
j=1

Ĉijπij =

m∑
i=1

n∑
j=1

Ĉij π̂
′
ij = ⟨Ĉ, π̂′⟩F (13)

Thus, ⟨Ĉ, π̂⟩F = ⟨Ĉ, π̂′⟩F .

From Eq. (7), we know that,

TC(π;C,α, β) = ⟨π,C⟩F + ρ (⟨α,1n − π1⟩+ ⟨β,1m − π2⟩)

=
m∑
i=1

n∑
j=1

(Cij − ρ(αi + βj))πij + ρ(∥α∥1 + ∥β∥1)

= ⟨Ĉ, π̂⟩F + ρ(∥α∥1 + ∥β∥1)

where in the last step we used Eq. (13). Thus, the proof is complete.
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Proposition A.2 (Equivalence of minimizers). For any π̂ ∈ Π(µ̂, ν̂) that minimizes equation 12
then the top left corner π = π̂[1 : m][1 : n] satisfies π ∈ Π≤(µ, ν), and π furthermore minimizes
equation 5.

Proof. For any π̂ ∈ Π(µ̂, ν̂), let π̂[1 : m][1 : n] = π.

From the definitions of µ̂ and ν̂, we know that µ̂[1 : m] = µ and ν̂[1 : n] = ν. Therefore, π1 ≤ µ
and π2 ≤ ν. Thus, π ∈ Π≤(µ, ν).

From Proposition A.1, we know that,

TC(π;C,α, β) = ⟨Ĉ, π̂⟩F + ρ(∥α∥1 + ∥β∥1).

We also know that for any π̂ ∈ Π(µ̂, ν̂), ∃ π ∈ Π≤(µ, ν) s.t. π = π̂[1 : m][1 : n]. Therefore,
TC(π;C,α, β) is minimized when ⟨Ĉ, π̂⟩F is minimized. Consequently, for any π̂ ∈ Π(µ̂, ν̂) that
minimizes Eq. (12) then the top left corner π = π̂[1 : m][1 : n] satisfies π ∈ Π≤(µ, ν), and π
furthermore minimizes Eq. (5).

A.2 PROOFS

Theorem 5.1 (Infeasible Assignments). Let π⋆ ∈ argminΠ≤(µ,ν) TC(π;C,α, β) be any optimal
solution of Eq. (5). For any 1 ≤ i ≤ m and 1 ≤ j ≤ n we have that Cij > ρ(αi+βj) =⇒ π⋆

ij = 0.

Proof. When total variation is assumed as the divergence function D(.|.), Eq. (4) can be written as

TC(π;C,α, β) := ⟨π,C⟩F + ρ (⟨α, µ− π1⟩+ ⟨β, ν − π2⟩) .

For any given source sample p ∈ VS and any given target sample q ∈ VT , we can write TC(π;C,α, β)
by separating the terms related to masses of p ∈ VS and q ∈ VT (See Eq. (7) as well).

TC(π;C,α, β) =
∑

1≤i≤m
i ̸=p

∑
1≤j≤n
i ̸=q

πijCij +
∑

1≤j≤n
i̸=q

πpjCpj +
∑

1≤i≤m
i ̸=p

πiqCiq + πpqCpq

+ρ

 ∑
1≤i≤m
i ̸=p

αi(µi − (π1)i) + αp

µp −
∑

1≤j≤n
i ̸=q

πpj − πpq




+ρ

 ∑
1≤j≤n
i̸=q

βj(νj − (π2)j) + βq

νq −
∑

1≤i≤m
i̸=p

πiq − πpq




We consider two plans π, π′ ∈ Π≤(µ, ν) such that πpq ̸= π′
pq, but otherwise πij = π′

ij for all other
1 ≤ i ≤ m ,1 ≤ j ≤ n. Note that this is possible as they are partial transport plans that do not have
strict marginal equality constraints. In this case we find that

TC(π;C,α, β)− TC(α, β, π′, C) = (πpq − π′
pq)(Cpq − ρ(αp + βq))

We note that this implies strict monotonicity of the total transport cost if Cpq − ρ(αp + βq) > 0, i.e.
that TC(π;C,α, β) > TC(α, β, π′, C) if πpq > π′

pq .

Therefore, if Cpq − ρ(αp + βq) > 0 then the optimal strategy is always going to be to set πpq = 0,
ensuring the lowest total cost possible. In other words, if for any sample p ∈ VS and q ∈ VT ,
Cpq > ρ(αp + βq), it is always less costly to transport no mass from p to q.

Therefore, if π∗ ∈ Π≤(µ, ν) be any optimal solution of Eq. (5). Then, ∀i ∈ VS ,∀j ∈ VT , if
Cij > ρ(αi + βj) then π⋆

ij = 0.
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Theorem 5.2 (Existence of Optimal Solution). If µ = 1m, ν = 1n there exists an optimal plan
π⋆ ∈ argminΠ≤(µ,ν) TC(π;C,α, β) such that π⋆ ∈ M.

Proof. Let us define extended vectors ν̂ = 1m+n, µ̂ = 1m+n. Once again we make use of the matrix
Ĉ as defined in Eq. (11).

Next, we consider the following optimal transport problem that optimizes over the set of admissible
couplings Π(µ̂, ν̂) = {π ∈ R(m+n)×(m+n)

≥0 |π1m+n = µ̂ = 1m+n, π
⊺1m+n = ν̂ = 1m+n}.

OT(µ̂, ν̂) = min
π∈Π(µ̂,ν̂)

⟨π, Ĉ⟩. (14)

From the results of Appendix A.1, we can derive that the optimization problem OT(µ̂, ν̂) given in
Eq. (14) has a clear equivalence to the optimization problem OPTρ(µ, ν) given in Eq. (5) when
K = m+ n. From Appendix A.1, we also know that the optimal plan for Eq. (5) can be obtained
by restricting an optimal plan π̂ ∈ argminπ∈Π(µ̂,ν̂) ⟨π, Ĉ⟩ to the set [1 : m]× [1 : n].

It should be noted that when ν̂ = 1m+n, and µ̂ = 1m+n, the set Π(µ̂, ν̂) corresponds to the set of
doubly stochastic matrices. By the Birkhoff-von-Neumann theorem, it is known that the set of doubly
stochastic matrices forms a convex polytope and its extremal points are permutation matrices. From
the Linear Programming theory, it is known that at least one optimal solution to a linear program
over a polytope (here, it is the set of doubly stochastic matrices) lies at an extreme point of the
polytope. Thus, there always exist an optimal plan π̂ ∈ Π(µ̂, ν̂) which is a permutation matrix.
Therefore, the optimal plan π⋆ ∈ argminΠ≤(µ,ν) TC(π;C,α, β) that is obtained by restricting such

π̂ ∈ argminπ∈Π(µ̂,ν̂) ⟨π, Ĉ⟩ (which is a permutation matrix) to its restriction to [1 : m] × [1 : n]

(i.e., π∗ = π̂[1 : m][1 : n]) will be a binary matrix with atmost one 1 per row or column. Therefore,
we can always find an optimal plan π⋆ ∈ argminΠ≤(µ,ν) TC(π;C,α, β) s.t. π⋆ ∈ M.

Lemma 6.1 (Equivalence). Given a cost matrix C and the weights α and β, any permutation matrix
π ∈ Pn will have h(π) ∈ M and h(π) satisfies ⟨π,C⟩F = T̂C(h(π);C,α, β) + ρ(n−m)α∗.

Proof. We first recall the definition of C given component-wise in Eq. (8) by

Cij =


Cij , if i ≤ m and Cij ≤ ρ(αi + βj)

ρ(αi + βj), if i ≤ m and Cij > ρ(αi + βj)

ρ(α∗ + βj), if i > m

We use case-by-case definition to decompose the Frobenius inner product. We now define index sets
of rows and columns which indicate where π takes a value of 1 that violates the conditions for setting
Cij , that is

I = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, such that πij = 1 and Cij ≤ ρ(αi + βj)}
J = {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n, such that πij = 1 and Cij > ρ(αi + βj)}
K = {(i, j) : m < i ≤ n, 1 ≤ j ≤ n, such that πij = 1}

and we note that the sets are disjoint within {1, . . . , n} × {1, . . . , n}. We now decompose the inner
product as follows

⟨π,C⟩ =
∑

(i,j)∈I

Cijh(π)ij + ρ

 ∑
(i,j)∈J

(αi + βj)πij +
∑

(i,j)∈K

(α⋆ + βj)πij


where we have immediately used the fact that πij = h(π)ij for all (i, j) ∈ I. Note furthermore that
I is exactly the index set where h(π) is non-zero, hence that∑

(i,j)∈I

Cijh(π)ij = ⟨C, h(π)⟩F .

We recall the notation h(π)1 that denotes the first marginal given by (h(π)1)i =
∑n

j=1 h(π)ij . For
any fixed row index i where for some j the pair (i, j) ∈ J , then the the marginal vectors have values
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(π1)i = 1 whereas (h(π)1)i = 0. On the other hand, if for fixed i if there is no pair (i, j) ∈ J , then
the marginal is given by (h(π)1)i = 1 but it does not contribute to the sum, and we see that we have∑

(i,j)∈J

αiπij =

m∑
i=1

(1− (h(π)1)i)αi.

We have a similar logic for the column sums, with the exception that some of the marginal mass is
accounted for in the index set K, so similar to above we have that∑

(i,j)∈J

βjπij +
∑

(i,j)∈K

βjπij =

n∑
j=1

(1− (h(π)2)j)βj .

Finally, as π is a complete permutation, we know that each row m < i ≤ n has some index j for
which πij = 1 and hence ∑

(i,j)∈K

α⋆πij = (n−m)α⋆

All put together this yields

⟨π,C⟩ = ⟨C,h(π)⟩F + ρ

 m∑
i=1

αi(1− (h(π)1)i) +

n∑
j=1

βj(1− (h(π)2)j) + (n−m)α⋆


= ⟨C,h(π)⟩F + ρ (⟨α,1m − h(π)1⟩+ ⟨β,1n − h(π)2⟩) + ρ(n−m)α⋆

= T̂C(h(π);C,α, β) + ρ(n−m)α⋆.

Before we prove Theorem 6.2, we prove the following two technical lemmas which will be used to
prove Theorem 6.2.
Lemma A.3. Let π∗ ∈ M be a solution for the partial graph matching problem, that is π⋆ ∈
argminπ∈M T̂C(π;C,α, β). For any 1 ≤ p ≤ m and any 1 ≤ q ≤ n,

((π∗
1)p = 0) and ((π∗

2)q = 0) =⇒ Cpq ≥ ρ(αp + βq).

Proof. We prove this by contradiction and assume there exist p, q such that (π∗
1)p = 0, (π∗

2)q = 0,
and Cpq < ρ(αp + βq). As (π∗

1)p = 0 and (π∗
2)q = 0, T̂C(π∗;C,α, β) can be expanded as

T̂C(π∗;C,α, β) =
∑

1≤i≤m
i ̸=p

∑
1≤j≤n
j ̸=q

π∗
ijCij + ρ

 ∑
1≤i≤m
i̸=p

αi(1− (π∗
1)i) + αp



+ρ

 ∑
1≤j≤n
j ̸=q

βj(1− (π∗
2)j) + βq


Now we consider a plan π′ ∈ M such that π′

pq = 1, but otherwise π′
ij = π∗

ij for all other 1 ≤ i ≤ m
and 1 ≤ j ≤ n. Note that this is possible as mass of p and q is not transported in π∗. Based on
marginal constraints, we know that π′

pq = 1 implies that π′
pj = 0 for all j ̸= q and π′

iq = 0 for all
i ̸= p. Therefore, T̂C(π′;C,α, β) can be rewritten as,

T̂C(π′;C,α, β) =
∑

1≤i≤m
i ̸=p

∑
1≤j≤n
j ̸=q

π′
ijCij + Cpq + ρ

 ∑
1≤i≤m
i ̸=p

αi(1− (π′
1)i)



+ρ

 ∑
1≤j≤n
j ̸=q

βj(1− (π′
2)j)


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Thus we see that the difference in the objective between these two plans is T̂C(π′;C,α, β) −
T̂C(π∗;C,α, β) = Cpq − ρ(αp + βq), and finally as Cpq < ρ(αp + βq) we have

T̂C(π′;C,α, β) < T̂C(π∗;C,α, β).

However, this is a contradiction as π⋆ ∈ argminπ∈M T̂C(π;C,α, β). Therefore, the assumption
is wrong. Thus, for any π⋆ ∈ argminπ∈M T̂C(π;C,α, β), (π∗

1)p = 0 and (π∗
2)q = 0 implies that

Cpq ≥ ρ(αp + βq).

Lemma A.4. Let π∗ ∈ M be a solution for the partial graph matching problem, that is π⋆ ∈
argminπ∈M T̂C(π;C,α, β). Then, there exists π ∈ Pn such that ⟨π,C⟩F = T̂C(π⋆;C,α, β) +
ρ(n−m)α∗.

Proof. Let us consider some π ∈ argminπ∈M T̂C(π;C,α, β). Our objective is to show that we
can find π′ ∈ Pn such that T̂C(α, β, π, C) + (n−m)α⋆ = ⟨π′, C⟩ where C ∈ Rn×n is defined as
Eq. (8)

First, we extend π to π′ ∈ {0, 1}n×n by padding with zeros, defining it as

π′
ij =

{
πij , if i ≤ m

0 if i > m.

The idea of the proof that follows is that we define a permutation matrix π ∈ Pn that is equal to π
where it is 1, but fills in the unmatched nodes with some arbitrary permutation. That is, we assume a
decomposition s.t. for all 1 ≤ i, j ≤ n

πij = π′
ij + π̂ij , (15)

with π′
ij = 1 if πij = 1, and we note that the marginals satisfy π1 = π′

1 + π̂1 = 1n and π2 =
π′
2 + π̂2 = 1n. Now the total cost function Eq. (7) can be rewritten as

T̂C(π;C,α, β) = ⟨π,C⟩F + ρ

 m∑
i=1

αi(π̂1)i +

n∑
j=1

βj(π̂2)j



By the definition of π′
ij , we know that for all i > m, π′

ij = 0. Therefore, for all i > m, π̂1 = 1.
Thus, we have,

n∑
i=m+1

(π̂1)i = (n−m)

Therefore, we can derive the following,

T̂C(π;C,α, β) + ρ(n−m)α∗ = ⟨π,C⟩F + ρ

 m∑
i=1

αi(π̂1)i +

n∑
j=1

βj(π̂2)j +

n∑
i=m+1

(π̂1)iα∗


=

∑
1≤i≤m
1≤j≤n

π′
ijCij +

∑
1≤i≤m
1≤j≤n

ρ(αi + βj)π̂ij +
∑

m<i≤n
1≤j≤n

ρ(βj + α∗)π̂ij

(16)

The contrapositive of Theorem 5.1 tells us that as π is optimal, πij = 1 implies that Cij ≤ ρ(αi+βj).
By definition of π′, we know that, π′

ij = 1 if and only πij = 1, so hence π′
ij = 1 also implies that

Cij ≤ ρ(αi + βj). Thus, based on the definition of C in Eq. (8), we can deduce that∑
1≤i≤m
1≤j≤n

πijCij =
∑

1≤i≤m
1≤j≤n

π′
ijCij =

∑
1≤i≤m
1≤j≤n

π′
ijCij (17)
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From Eq. (15), we know that, for any 1 ≤ i, j ≤ n, π̂ij = 1 if and only if (π′
1)i = 0 and (π′

2)j = 0.
Moreover, from the definition of π′, for any 1 ≤ i ≤ m and 1 ≤ j ≤ n, (π′

1)i = 0 and (π′
2)j = 0 if

and only if (π1)i = 0 and (π2)j = 0. And, from Lemma A.3, we know that (π1)i = 0 and (π2)j = 0
implies that Cij ≥ ρ(αi + βj). Therefore, for any 1 ≤ i ≤ m and 1 ≤ j ≤ n, π̂ij = 1 implies that
Cij ≥ ρ(αi + βj) hence that Cij = ρ(αi + βj). Thus, we can deduce,∑

1≤i≤m
1≤j≤n

ρ(αi + βj)π̂ij =
∑

1≤i≤m
1≤j≤n

π̂ijCij (18)

From definition of C, we know that for all i > m,Cij = ρ(α∗ + βj). Therefore, we have,∑
m<i≤n
1≤j≤n

ρ(βj + α∗)π̂ij =
∑

m<i≤n
1≤j≤n

π̂ijC (19)

From Eqs. (17) to (19), and using the fact that π′
ij = 0 for m < i ≤ n, we can rewrite Eq. (16) as

T̂C(π;C,α, β) + ρ(n−m)α∗ =
∑

1≤i≤m
1≤j≤n

π′
ijCij +

∑
1≤i≤m
1≤j≤n

π̂ijCij +
∑

m<i≤n
1≤j≤n

π̂ijCij

=
∑

1≤i≤n
1≤j≤n

π′
ijCij +

∑
1≤i≤n
1≤j≤n

π̂ijCij

= ⟨π,C⟩F (20)

Theorem 6.2 (Optimal Solution). If π⋆ ∈ argminπ∈Pn
⟨π,C⟩F , then π⋆ = h(π⋆) is a solution of

partial graph matching problem, that is π⋆ ∈ argminπ∈M T̂C(π;C,α, β).

Proof. Let π⋆ ∈ argminπ∈P⟨π,C⟩F be any optimal solution of Eq. (9) and π⋆ ∈
argminπ∈M T̂C(π;C,α, β) be any optimal solution of Eq. (5)

From Lemma A.4, we know that, there exists a π ∈ Pn s.t. T̂C(π⋆;C,α, β)+ (n−m)α∗ = ⟨π,C⟩.
Therefore,

⟨π∗, C⟩ ≤ ⟨π,C⟩ = T̂C(π⋆;C,α, β) + ρ(n−m)α∗ (21)
From Lemma 6.1, we have h(π∗) ∈ M as defined in Eq. (10) from π∗ such that the following
condition holds,

T̂C(h(π∗);C,α, β) + (n−m)α∗ = ⟨π∗, C⟩ (22)
Finally, from Eq. (21) and Eq. (22),

T̂C(h(π∗);C,α, β) + ρ(n−m)α∗ ≤ T̂C(π⋆;C,α, β) + ρ(n−m)α∗

and as π⋆ is already a minimizer of T̂C, implies that T̂C(h(π∗);C,α, β) = T̂C(π⋆;C,α, β), which
indicates that h(π∗) ∈ argminπ∈M T̂C(π;C,α, β).

Thus, from any π∗ ∈ argminπ′∈Pn
⟨π,C⟩F , which is an optimal solution of Eq. (9), it is possible

to derive h(π∗) ∈ argminπ∈M T̂C(π;C,α, β), which solves Eq. (6)). Thus, the proof is complete.

B ADDITIONAL DETAILS ON EXPERIMENTS

Discussion on PascalVOC and PPI Network Matching As shown in Table 3, OPGM and OPGM-
rs achieve lower mean matching F1-scores compared to the AFAT-U (GCAN) and AFAT-I (GCAN)
models. This is mainly due to the poor performance of OPGM-rs in the table and sofa classes, which
are known to have ambiguous and poor annotations. Notably, these classes were excluded from the
SPair-71K dataset for the same reason (Rolínek et al., 2020).
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GM Network PMH aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mean

NGM-v2 dummy 44.7 61.9 57.1 41.9 83.9 63.9 54.1 60.8 40.5 64.2 36.2 60.6 60.8 61.9 48.7 91.2 56.2 37.4 63.2 82.2 58.6±0.5

NGM-v2 AFAT-U 45.7 67.7 57.3 44.9 90.1 65.5 49.9 59.3 44.0 62.0 54.9 58.4 58.6 63.8 45.9 94.8 50.9 37.3 74.2 82.8 60.2±0.4

NGM-v2 AFAT-I 45.0 67.3 55.9 45.6 90.3 64.6 48.7 58.0 44.7 60.2 54.8 57.2 57.5 63.4 45.2 95.3 49.3 41.6 73.6 82.4 59.9±0.3

GCAN ILP 46.3 67.7 57.4 45.0 87.1 64.8 57.5 61.2 40.8 61.6 37.3 59.9 59.2 64.6 49.7 95.1 54.5 28.5 77.9 83.1 59.7±0.3

GCAN AFAT-U 47.1 70.8 58.1 45.8 90.8 66.5 49.6 58.8 50.6 64.6 47.2 60.5 62.3 65.7 46.3 95.4 52.7 47.4 74.2 83.8 62.0±0.2
GCAN AFAT-I 46.1 69.9 56.1 46.6 90.7 66.1 48.1 57.9 49.9 63.9 50.4 59.0 61.6 65.0 44.7 95.5 50.9 49.2 74.0 83.8 61.6±0.3
GCAN OPGM 46.5 70.1 55.8 47.1 89.5 62.4 46 60.8 48.9 63.4 46.2 58.9 60.2 67.7 47.7 94.9 51.5 42 73.1 82.9 60.8 ±0.4

GCAN OPGM-rs 47.4 72.9 58.4 47.8 90.1 64.6 46.3 62.0 49.8 63.9 31.7 59.0 61.2 69.3 48.9 95.6 52.8 40.5 73.7 82.9 60.9 ±0.2

Table 3: Matching F1-score on Pascal VOC Keypoint. The best results are colored in black and the second best
are in blue

.

Method Yeast 5% Yeast 10% Yeast 15% Yeast 20% Yeast 25%
SIGMA 84.7±0.4 68.8 ±2.5 57.4±1.1 46.7 ±2.3 41.4 ±1.7
StableGM 86.1 ± 0.9 75.6 ±0.8 67.9 ± 1.1 63.2 ±0.9 57 ± 0.6
OPGM (ours) 87.8 ± 0.3 80 ±0.4 71.9 ±0.9 66.9 ±1.0 58.8 ±0.8
OPGM-rs (ours) 88.3 ±0.6 79.7 ±0.8 71.5 ±0.9 66.3 ±0.8 57.6 ±0.8

Table 4: Node correctness (%) results on the PPI dataset. The best results are colored in black and the second
best are in blue

.

In PPI network matching, as shown in Table 4, OPGM-rs generally outperforms OPGM at lower
noise levels, but OPGM demonstrates better performance as noise increases. This behavior can
be attributed to the learnable cost matrix C in OPGM-rs, which is utilized during training. When
inputs are noisy, the information in C may also become noisy, and simultaneously learning α and β
alongside C can negatively impact the training process under high noise levels. These observations
indicate that OPGM-rs is more sensitive to poor or ambiguous annotations and increased noise in the
data, which adversely affects its performance.

Discussion on efficiency analysis As detailed in Section 8, all the models analyzed in Table 2(right)
use the same neural architecture (Jiang et al., 2022b) to compute the cross-graph node-to-node affinity
matrix and apply Sinkhorn normalization to obtain the doubly stochastic affinity matrix.

Our model, OPGM-rs, solves the partial graph matching problem as described in Section 6 by solving
a linear sum assignment problem (LAP). We use SciPy’s LAP solver (Virtanen et al., 2020), which is
computationally efficient. In contrast, GCAN (Jiang et al., 2022b) formulates partial graph matching
as an integer linear programming (ILP) problem, solved using Google’s OR-tools (Wang et al., 2023),
which is generally more computationally expensive than LAP solvers.

AFAT-I and AFAT-U models introduce additional complexities by employing separate neural modules
to estimate the number of matchings between graphs. This process includes solving an entropic
optimal transport problem, followed by the GreedyTopK algorithm (Wang et al., 2023), which is
based on the Hungarian algorithm, to compute the final matching. These extra steps increase the
average inference time of AFAT-I and AFAT-U compared to OPGM-rs.

All experiments were conducted on a Linux server equipped with an Intel Xeon W-2175 2.50GHz
processor (28 cores), an NVIDIA RTX A6000 GPU, and 512GB of main memory.

Hyperparameters For the image keypoint matching task, the hyperparameters of OPGM-rs
are searched within the following ranges: ρ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}, λ ∈ {0.01, 0.2, 0.3, 0.4,
0.5, 0.6, 0.8, 1.0}, learning rate ∈ {0.001, 0.002}, VGG16 backbone learning rate ∈ {0.0001}, batch
size ∈ {4, 8}, and number of epochs ∈ {15, 20, 25}. To select ρ, we perform a grid search from 0.1
to 0.5 with a step size of 0.1. We use the Adam algorithm (Diederik, 2014) as our optimizer, and the
initial learning rate decays by a factor of 0.5 after every two epochs.

For the PPI network matching task, the hyperparameters of OPGM-rs are searched within the
following ranges: ρ = 1011, λ ∈ {0.25, 0.5, 0.75, 1.0}, learning rate ∈ {0.0001, 0.0002}, and
number of epochs = 100. The Adam algorithm (Diederik, 2014) is also used as the optimizer.

Failure mode analysis The feasibility of matching a pair of nodes i and j is influenced by their cost
Cij , the matching biases αi and βj , and the hyperparameter ρ. A specific failure mode we observed
is when node pairs that should be matched according to the ground truth are deemed infeasible by the
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Figure 3: Failure mode analysis across four different datasets.

optimization objective in Eq. (9) (as described in Theorem 5.1). Consequently, these nodes remain
unmatched in the final solution. This failure mode typically arises when the graph matching network
NNθ assigns an excessively low affinity (resulting in a high matching cost) to pairs of nodes that
should otherwise be matched.

We quantify the error by analyzing:

• Partiality error: The percentage of true matches (as per the ground truth) that fail to meet
the feasibility condition outlined in Theorem 5.1. This error reflects mismatches caused by
incorrect partiality identification involving matching biases.

• Mismatching error: The percentage of true matches that are not identified even though they
meet the feasibility condition.

Figure 3 demonstrates the partiality error, mismatching error and total error related to this failure
mode across four different datasets. The total error is equal to the summation of partiality error and
the mismatching error.
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