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ABSTRACT

High-throughput sequencing has greatly advanced cancer research, but a major
gap remains in connecting TCGA transcriptomic data with detailed metabolomic
profiles. This disconnect limits our understanding of metabolic changes that
drive tumor progression and resistance to treatment. To address this, we intro-
duce the Pathway-Attentive GAN (PathGAN), a new framework that combines
transformer-based attention mechanisms with a GNN discriminator to generate
realistic and biologically relevant metabolite profiles as a case study. We vali-
date these profiles using COBRApy-based flux balance analysis to ensure they
align with key metabolic pathways. By linking transcriptomics and metabolomics,
PathGAN improves our understanding of tumor metabolism and provides valuable
insights for cancer therapy. We belive this work can offer a powerful tool for pre-
cision oncology, helping to develop more targeted and effective treatments.

1 INTRODUCTION

The landscape of cancer research has been profoundly transformed by high-throughput sequencing
technologies, which have enabled comprehensive profiling of tumor genomes and transcriptomes, as
exemplified by The Cancer Genome Atlas (TCGA) (Vashisht et al., 2024). However, while these ex-
tensive datasets provide critical insights into genetic and transcriptional alterations, they lack paired
metabolomic information essential for deciphering the complex metabolic reprogramming that char-
acterizes many cancers (Chiu et al., 2024). Tumor metabolism is a key driver of disease progres-
sion and therapeutic response, and the absence of detailed metabolic profiles hampers our ability
to fully understand the biochemical networks underlying cancer (El-Tanani et al., 2024). More-
over, as cancer cells often display remarkable metabolic plasticity, integrating transcriptomic data
with metabolic modeling could reveal novel vulnerabilities and foster the development of targeted
interventions (Abecunas et al., 2024). This gap in knowledge is particularly significant given that
metabolic reprogramming not only fuels tumor growth but also contributes to treatment resistance,
emphasizing the urgent need to bridge these multi-omics datasets (Otakhor & Soladoye, 2024).
Thus, establishing a framework that can effectively link genomic, transcriptomic, and metabolic
data stands as a critical frontier in precision oncology.

Contemporary research efforts have made strides in multi-omics integration through methods such as
multiDGD, variational autoencoders (VAEs), and generative adversarial networks (GANs) (Schuster
et al., 2024; Doersch, 2016; Creswell et al., 2018). These approaches have demonstrated promise
in capturing the complexity of cancer biology; however, they often fall short in generating metabol-
ically actionable features and providing clear pathway-level interpretations (Liu et al., 2024). For
instance, while graph neural networks (GNNs) have been employed to model relationships across di-
verse omics data, they rarely elucidate the underlying metabolic pathways driving these interactions
(Valous et al., 2024). Additionally, existing generative models lack robust attention mechanisms
to map synthetic features directly to key cancer-related pathways, such as those governing redox
balance or energy metabolism (Wang et al., 2023). This disconnect limits their clinical utility, par-
ticularly in contexts where understanding the mechanistic basis of therapy resistance is paramount
. Furthermore, the absence of integrated in silico validation pipelines, like flux balance analysis
(FBA), prevents comprehensive evaluation of the biological relevance of generated data (Joseph
et al., 2024). These critical gaps highlight the need for innovative computational strategies that can
seamlessly integrate transcriptomic signals with metabolomic outcomes and provide interpretable
insights into tumor biology.
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In response to these challenges, our work introduces the Pathway-Attentive GAN (PathGAN), a
novel framework designed to bridge the gap between TCGA transcriptomic data and synthetic
metabolomic profiles [14]. PathGAN leverages transformer-based architectures with multi-head at-
tention to map high-dimensional RNA-seq features onto biologically meaningful metabolic fluxes,
thus enhancing pathway-level interpretability. Uniquely, our model integrates a graph neural net-
work (GNN)-based discriminator to assess the biological plausibility of the generated metabolite
profiles against established protein–protein interaction networks. Moreover, by coupling the gener-
ative process with COBRApy-based flux balance analysis (FBA) Ebrahim et al. (2013), we provide
an in silico validation pipeline that rigorously tests the functional impact of synthetic metabolite
production on cellular phenotypes, such as growth under therapeutic stress. Complementary in-
terpretability tools, including SHAP and gene set enrichment analysis (GSEA) Subramanian et al.
(2005), further enable us to pinpoint key transcriptomic drivers linked to hallmark cancer pathways.
Collectively, our approach not only addresses the current limitations in multi-omics integration but
also offers a scalable, interpretable, and clinically relevant tool for precision oncology, opening new
avenues for hypothesis generation and targeted therapeutic development.

2 METHODOLOGY

In this work, we propose an integrative computational framework, Pathway-Attentive GAN (Path-
GAN), to generate synthetic metabolomic profiles from TCGA transcriptomic data while preserving
pathway-level interpretability. Our approach leverages two primary datasets: (i) RNA-seq transcrip-
tomic data from TCGA, denoted as X ∈ RN×D, where N is the number of patient samples and
D is the number of genes, and (ii) precomputed metabolic flux profiles derived from a genome-
scale metabolic model (Recon3D) via COBRApy-based flux balance analysis (FBA), denoted as
Y ∈ RN×M , with M representing the number of metabolite fluxes. The integration of these two
modalities is crucial because, while transcriptomic profiles provide insight into gene expression pat-
terns, the metabolic fluxes encapsulate the functional state of cellular metabolism—a key factor in
understanding tumor progression and treatment resistance ??. By bridging these modalities, our
framework addresses the critical gap of missing paired metabolomic data and facilitates the elucida-
tion of the biochemical pathways underlying therapy resistance.

The core of our methodology is the design of a generative adversarial network (GAN) that comprises
a transformer-based generator and a graph neural network (GNN) discriminator (Creswell et al.,
2018; Scarselli et al., 2008). The generator, denoted as G, is a function G : RN×D → RN×M

that maps high-dimensional RNA-seq features to synthetic metabolic fluxes. Within G, we employ
a multi-head attention mechanism. Formally, given an input X, we compute the query, key, and
value matrices Q,K,V ∈ RN×D, respectively, and then obtain an intermediate representation
H ∈ RN×D via the attention operation:

H = Softmax

(
QK⊤
√
dk

)
V,

where dk is the dimensionality of the key vectors. This attention output is subsequently fed into a
multilayer perceptron (MLP), fMLP : RD → RM , to produce the synthetic flux vector Ŷ. The dis-
criminator, D, is designed to assess the biological plausibility of the generated fluxes. It employs a
graph neural network architecture that leverages known protein-protein interaction networks to pro-
duce a scalar score for each input flux profile, thus encouraging the generator to produce outputs that
are consistent with established biological networks. The entire framework is trained adversarially,
such that G learns to generate realistic flux profiles while D becomes increasingly adept at distin-
guishing between real and synthetic data.The following algorithm summarizes the overall training
and validation process:

The training procedure involves iterative optimization of both G and D, along with an interpretabil-
ity pipeline that elucidates the contributions of individual transcriptomic features to the generated
metabolic fluxes. In addition to the adversarial loss, we incorporate interpretability constraints
by computing SHAP values for the generator output and performing gene set enrichment analy-
sis (GSEA) to map attention weights to hallmark cancer pathways. Moreover, the synthetic flux
profiles are validated in silico using COBRApy-based FBA to simulate cellular growth under radia-
tion therapy, thereby providing a mechanistic link between the generated metabolomic features and
biological phenotypes.
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Algorithm 1 Training Procedure for Pathway-Attentive GAN (PathGAN)
1: Input: RNA-seq data X ∈ RN×D, Flux data Y ∈ RN×M , learning rates ηG, ηD, number of

epochs E
2: Initialize: Generator parameters θG, Discriminator parameters θD
3: for epoch = 1 to E do
4: Sample a mini-batch {Xb,Yb} from the dataset
5: Compute synthetic fluxes: Ŷb = G(Xb; θG)
6: Update Discriminator:
7: Compute discriminator loss:

LD = − 1

|b|
∑
i

[
D(Y

(i)
b ; θD)−D(Ŷ

(i)
b ; θD)

]
8: Update θD via gradient descent: θD ← θD − ηD∇θDLD

9: Update Generator:
10: Compute generator loss:

LG = − 1

|b|
∑
i

D(Ŷ
(i)
b ; θD)

11: Update θG via gradient descent: θG ← θG − ηG∇θGLG

12: Interpretability Step: (Periodically)
13: Compute SHAP values for Ŷb with respect to Xb

14: Perform GSEA to associate attention weights with biological pathways
15: In Silico Validation: (Periodically)
16: Feed Ŷb into a COBRApy FBA model to simulate growth under radiation therapy
17: end for

Each component of the framework has been carefully designed to ensure consistency in notation
and functionality. The RNA-seq input matrix X is consistently used to derive the intermediate rep-
resentation H through multi-head attention, and subsequently, the MLP fMLP produces the synthetic
flux output Ŷ. In contrast, the discriminator D, parameterized by θD, processes both the ground
truth flux data Y and the synthetic flux data Ŷ to generate a plausibility score. The adversarial
training objective is designed to minimize the difference between the distributions of Y and Ŷ,
while the interpretability pipeline ensures that the mapping from X to Ŷ is biologically meaningful.
By integrating these components into a unified framework, our methodology provides a robust and
scalable tool for generating and validating synthetic biomolecular data, thereby contributing a novel
approach to the field of precision oncology.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

For the initial experimental case study, we used GDC TCGA Breast Cancer1

(TCGA.BRCA.sampleMap/HiSeqV2) dataset from xenahub and Recon3D2 Brunk et al.
(2018) for flux calculations. We use the Recon3D metabolic model using TCGA RNA-seq data to
estimate metabolic fluxes via flux balance analysis (FBA). For each sample, we dynamically adjust
the upper bounds of key glutathione-related reactions based on gene expression levels, using the
formula UB = 1000(1 + avgexpr/100). We then run FBA on each modified model and store
the resulting flux values for analysis. Then, we designed a GAN-based metabolic flux prediction
framework using RNA-seq data, where a Transformer-based generator maps gene expression
(log2(RNA-seq + 1), selecting the top 20,000 variable genes) to flux values, and a GNN-based
discriminator distinguishes real vs. generated flux graphs. The generator employs multi-head
attention (4 heads) and an MLP with hidden dimension = 256, while the discriminator uses a 2-layer

1https://portal.gdc.cancer.gov/projects/TCGA-BRCA
2http://bigg.ucsd.edu/static/models/Recon3D.xml
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Figure 1: PathGAN Model Training Outcomes

GATv2 network with hidden channels = 64, followed by a linear classification layer. A k-NN graph
(k = 5) is constructed using flux vectors as node features. The model is trained using Wasserstein
loss: LD = −E[D(x)] + E[D(G(z))] and LG = −E[D(G(z))], optimized with Adam (learning
rate = 0.0002, β1 = 0.5, β2 = 0.999), for 100 epochs (intial experiments). Graph-level pooling
ensures per-sample learning, capturing metabolic interactions via attention-based feature extraction
and topology-aware GNN discrimination. Upon acceptance, we will release the full code, datasets,
and analysis for transparency and reproducibility.

3.2 FINDINGS

Initially, while training, we observe that the discriminator loss rises sharply, indicating strong differ-
entiation between real and fake data, as presented in Figure 1. After epoch 30, losses stabilize and
start converging, showing improved generator performance. The oscillations in later epochs reflect
the adversarial dynamics typical of GAN training.

After training the model, we generated new examples with the generator and employed SHAP to
interpret the outputs, thereby pinpointing key transcriptomic drivers responsible for variations in
metabolic fluxes; among these, notable genes such as PROL1, GSTT1, TBC1D3G, SERPINA6,
KLK11, DLK1, KCNJ3, NXPH1, FABP7, and CLEC3A emerged as critical influencers. Subse-
quently, gene set enrichment analysis (GSEA) using gseapy was conducted on these top genes to
identify enriched hallmark cancer pathways, effectively linking the attention-derived gene impor-
tance to underlying biological processes and offering insights into pathway-level dysregulation in
cancer.

For in silico validation, flux balance analysis (FBA) using COBRApy Ebrahim et al. (2013) was per-
formed on the reaction EX gthox e, yielding a predicted growth rate (objective value) of 755.0032,
which reflects a robust metabolic state and enhanced cellular proliferation under the simulated con-
ditions. We provide pathway-level interpretations by using SHAP to quantify the contribution of
individual RNA-seq features, and then employing GSEA to map these influential genes to estab-
lished biological pathways. This dual approach directly links synthetic metabolic fluxes to hallmark
cancer pathways, enhancing our understanding of underlying tumor biology.

More analysis and findings in included in the Appendix A.

4 CONCLUDING REMARKS

In conclusion, our study introduces PathGAN—a novel, integrative framework that effectively
bridges transcriptomic and metabolomic data to reveal the metabolic underpinnings of cancer. By
harnessing transformer-based multi-head attention to map RNA-seq features to metabolic fluxes
and employing a graph neural network-based discriminator for biological plausibility, we generate
metabolically actionable profiles that are directly linked to key cancer pathways through SHAP and
GSEA analyses. Complemented by rigorous in silico validation via flux balance analysis, PathGAN
not only addresses critical gaps in multi-omics integration but also paves the way for more targeted
therapeutic strategies in precision oncology.
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A MORE ANALYSIS

A.1 TOP GENES USING SHAP

In this analysis provided in Figure 2 and 3, We first took the initial ten samples from our RNA-seq
dataset to keep things straightforward and manageable. After computing the SHAP values for each
sample’s predicted metabolite fluxes, we averaged these values over the output dimension. This step
gave us a single SHAP score for each gene, reflecting how much that gene, on average, influences
the model’s predictions across all flux outputs.

Figure 2: Top 10 Genes Contributing to Metabolite Prediction using SHAP Value Barplot

Next, we created a SHAP summary plot to visualize which genes are pushing the model’s output
higher or lower and to see how each gene’s expression level (shown by color) affects the predicted
flux. We then calculated the mean absolute SHAP values for every gene, picked the top ten with
the highest scores, and displayed them in a bar chart. By focusing on these top contributors, we can
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more easily pinpoint the genes that have the strongest overall impact on our metabolite predictions.
This process helps us highlight key transcriptomic features for deeper biological investigation or for
refining therapeutic strategies.

Figure 3: Top 10 Genes Contributing to Metabolite Prediction using Mean Absolute SHAP Value

A.2 SHAP FORCE PLOT ANALYSIS

We began by focusing on the first sample in our dataset and creating a shap Explanation object that
captures how each gene influences the model’s flux prediction. Specifically, we used the SHAP
values for this sample, along with the expected (baseline) value and the sample’s gene expression
data, to visualize a force plot for each relevant output (in this case, Figure and ). The force plot helps
us see which genes are pushing the flux higher (shown in pink) or pulling it lower (shown in blue)
compared to the baseline prediction. By comparing the two plots, we can see how different genes
drive the flux in slightly different ways for each output. This view gives us a clearer picture of the
local decision-making process of the model, allowing us to identify which transcriptomic features
play the biggest roles in shaping the predicted metabolite fluxes for this particular sample.

Figure 4: SHAP Force Plot for First RNA Sample

7
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Figure 5: SHAP Force Plot for Second RNA Sample

A.3 SHAP FORCE PLOT ANALYSIS

To analyze the top enriched hallmark pathways, we use GSEA results, focusing on identifying
the most significantly enriched pathways in our dataset. GSEA helps us understand which bio-
logical pathways, represented by sets of genes, are over-represented or under-represented in our
data. By sorting the pathways based on their Combined Score, we can prioritize the pathways
that are most significantly enriched. The bar chart in Figure reveals that the ’Pperoxisome’ path-
way has the highest Combined Score, indicating it’s the most significantly enriched, suggesting a
major role in metabolic functions like lipid metabolism and detoxification. Following this, ’Bile
Acid Metabolism’ and ’Apoptosis’ are also highly enriched, pointing to changes in digestion, lipid
processing, and cell death mechanisms. Other enriched pathways like ’Xenobiotic Metabolism’,
’Adipogenesis’, and ’Estrogen Response Late’ highlight involvement in detoxification, fat cell for-
mation, and estrogen signaling. This analysis helps us focus on key biological processes for further
investigation.

Figure 6: Top Enriched Hallmark Pathways

A.4 ANALYZING THE IMPACT OF RADIATION THERAPY ON SYNTHETIC GLUTATHIONE
FLUX

In our study, we aimed to investigate how radiation therapy influences glutathione production, a
crucial antioxidant in cells. To do this, we used our trained PathGAN model to predict synthetic
metabolic fluxes from gene expression data. We fed the gene expression data into the trained gener-

8
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ator to predict metabolic fluxes, extracting the glutathione flux values. We stored these values in a
pandas DataFrame, ensuring each sample was correctly indexed.

Next, we merged the synthetic flux data with clinical information, particularly focusing on the ra-
diation therapy status, to examine potential differences in glutathione flux between groups that did
and did not receive radiation therapy. We then visualized these differences using a boxplot, with
radiation therapy status on the x-axis and synthetic glutathione flux on the y-axis.

Figure 7: Synthetic Glutathione Flux by Radiation Therapy Status

The boxplot showed some differences in glutathione flux between the groups, particularly with
the radiation therapy group (’1’) displaying a higher median flux than the non-radiation therapy
group (’0’). However, there was also overlap in distributions, suggesting that the differences might
not be large. The ’NaN’ and ’3’ groups showed more variability and potential outliers, indicating
the need for further investigation into the biological factors affecting glutathione production. This
visualization provides a starting point for understanding the relationship between radiation therapy
and glutathione flux, with further statistical analysis needed for more definitive conclusions.

9


	Introduction
	Methodology
	Experiments
	Experimental Setup
	Findings

	Concluding Remarks
	More Analysis
	Top Genes using SHAP
	SHAP Force Plot Analysis
	SHAP Force Plot Analysis
	Analyzing the Impact of Radiation Therapy on Synthetic Glutathione Flux


