
SCLA: Automated Smart Contract Summarization via LLMs and Control
Flow Prompt

Anonymous ACL submission

Abstract001

Smart contract code summarization is crucial002
for efficient maintenance and vulnerability mit-003
igation. While many studies use Large Lan-004
guage Models (LLMs) for summarization, their005
performance still falls short compared to fine-006
tuned models like CodeT5+ and CodeBERT.007
Some approaches combine LLMs with data008
flow analysis but fail to fully capture the hi-009
erarchy and control structures of the code, lead-010
ing to information loss and degraded summa-011
rization quality. We propose SCLA, an LLMs-012
based method that enhances summarization by013
integrating a Control Flow Graph (CFG) and014
semantic facts from the code’s control flow into015
a semantically enriched prompt. SCLA uses016
a control flow extraction algorithm to derive017
control flows from semantic nodes in the Ab-018
stract Syntax Tree (AST) and constructs the019
corresponding CFG. Code semantic facts re-020
fer to both explicit and implicit information021
within the AST that is relevant to smart con-022
tracts. This method enables LLMs better to cap-023
ture the structural and contextual dependencies024
of the code. We validate the effectiveness of025
SCLA through comprehensive experiments on026
a dataset of 40,000 real-world smart contracts.027
The experiment shows that SCLA significantly028
improves summarization quality, outperform-029
ing the SOTA baselines with improvements of030
26.7%, 23.2%, 16.7%, and 14.7% in BLEU-4,031
METEOR, ROUGE-L, and BLEURT scores,032
respectively.033

1 Introduction034

Smart contracts (Liao et al., 2023) are self-035

executing programs on Ethereum, and the036

blockchain’s immutability complicates vulnerabil-037

ity maintenance (Zhang et al., 2022). Solidity, de-038

signed specifically for smart contract development,039

compiles code into bytecode and ABI for execution040

on the Ethereum Virtual Machine (EVM). Unlike041

general-purpose languages like Java and Python,042

Solidity emphasizes security with strict type safety043

and single-threaded execution. Analyzing Solidity 044

code requires examining syntax, semantics, and 045

state management. Even minor vulnerabilities can 046

result in financial losses (Kushwaha et al., 2022), 047

making smart contract code summarization essen- 048

tial for improving efficiency and reducing secu- 049

rity risks. Smart contract summarization has re- 050

ceived less attention than Java and Python, with 051

traditional methods relying on deep learning and 052

fine-tuning. Yang et al. (Yang et al., 2021) pro- 053

posed MMTrans, integrating deep learning with 054

structure-based traversal (SBT) and Abstract Syn- 055

tax Tree (AST) graphs for code summarization. 056

Lei et al. (Lei et al., 2024) introduced FMCF, a 057

Transformer-based method that fuses multi-scale 058

features to preserve both semantic and syntactic 059

information. Zhao et al. (Zhao et al., 2024) pro- 060

posed SCCLLM, combining context learning with 061

information retrieval to improve summarization. 062

However, these approaches pose security risks. 063

Fine-tuning is limited by the quality and size of 064

training data, which may lack emerging vulnera- 065

bilities. Additionally, fine-tuned models may suf- 066

fer from knowledge forgetting (De Lange et al., 067

2022), reducing adaptability. In contrast, LLMs- 068

based approaches leverage extensive pre-trained 069

datasets to identify vulnerabilities and enhance se- 070

curity. However, prior methods mainly use isolated 071

code snippets, failing to capture the full semantic 072

context. Ahmed et al. (Ahmed et al., 2024) demon- 073

strated that LLMs struggle with implicit semantics, 074

leading to the loss of critical information. These 075

methods also neglect control structures, hindering 076

accurate summarization and security. 077

To address the limitations of existing methods 078

and generate more secure smart contract code sum- 079

marization, we propose SCLA (Smart Contract 080

summarization with LLMs and Semantic Augmen- 081

tation). SCLA integrates LLMs with control flow 082

analysis to enhance scalability and summarization 083

quality. Incorporating control flow-based semantic 084

1

Sbert

Smart Contract Input (~40K samples)

Output Control Flow & Semantic Fact (~10K samples)

Code Text
Math Library Token Contract

Reference Library Executing Function
Decompose

Contract

............

contract ERC20Interface {
event Transfer(address
indexed from, address
indexed to, uint256 value);}
...............

library SafeMath {
 function sub(uint a, uint b)
internal pure returns (uint) {
 assert(b <= a);
 return a - b;}}..............

function resetBet() external
onlyOwner {
hashNext = block.number +3;
hashBetSum = 0;}

pragma solidity ^0.4.23;
import "./MintableToken.sol";
import "./BurnableToken.sol";
import "./Blacklisted.sol";

............

SemFlow

Contract Variables

Inner Function

Function Name

Modifiers

............

Input
Code

LLMs

Control Flow Prompt

Contract name: “TEXT”
Contract_type:“TEXT”
Contract_variables:“TEXT”

Function_name:“TEXT”
Function_modifiers:“TEXT”
Inner_function_code:“TEXT”
Function_code:“TEXT”
Function_comment:“TEXT”

（...other omitted...）
Control_flow_graph:“IMAGE/PNG”

（...above omitted...）

Output Prompt

0

1

3 54

2

6 7

9

8

Semantic FactControl Flow Graph

Contract Composition

SemFlow

Learning Samples
Output

Semantic
Matching

function balanceOf
(address _owner)
public view returns (uint256
balance) {
return balances[_owner];}

onlyOwner；
pubilc；
private；
external；
internal；

string public constant name =
"Smart Reward Token";
string public constant symbol
= "SRT"; uint8 public
constant decimals = 18;

balanceOf；
addManyToBlacklist；
removeFromBlacklist；
_burn；
finishMinting；

Sbert Parsing Results
Output

Parsing

function transfer(address _to, uint256 _value) public returns
(bool) {require(_to != address(0));
 require(_value <= balances[msg.sender]);
 balances[msg.sender] = balances[msg.sender].sub(_value);
 balances[_to] = balances[_to].add(_value);
 emit Transfer(msg.sender, _to, _value);
 return true;}

Output
Code Summarization

Summarization
Text

Getter for Challenge tokenClaims mappings
_challengeID .The challengeID to query _voter
The voter whose claim status to query for the
provided challengeID,Getter for Challenge
tokenClaims mappings _challengeID.
The challengeID to query _voter The voter
whose claim status to query for the provided
challengeID.

Response

Input Code Summarization:

(a) Semantic Extraction Phase (b) Prompt Construction Phase (c) LLMs Inference

Common LLMs

Figure 1: Overview of our proposed framework, SCLA, powered by Google’s Gemini-1.5-Pro, performs automated
generation of smart contract code summarization. SCLA extracts control flow semantic facts from smart contract
code and uses Gemini-1.5-Pro to generate code summarization from control flow semantic facts.

information and control flow graphs improves se-085

curity and semantic accuracy in LLMs-generated086

summarization. The approach extracts this infor-087

mation via semantic analysis and generates con-088

trol flow graphs. Using few-shot prompting and089

a fine-tuned Sentence-Transformer(Reimers and090

Gurevych, 2020), SCLA identifies semantically091

similar examples for task-specific prompts. Sem-092

Flow, a core component, extracts control flow093

graphs and semantic details, such as function call094

graphs and variables. To prevent overwhelm-095

ing LLMs, non-control flow information is pre-096

sented separately, while control flow graphs are097

provided in a tagged PNG format. Our experiments098

on 14,789 method-comment pairs from a GitHub099

repository of 40,000 smart contracts show that con-100

trol flow graphs improve LLMs’ performance.101

Our main contributions can be summarized as102

follows:103

• We propose SCLA, the first framework that in-104

tegrates LLMs with smart contract code sum-105

marization using control flow prompts. It ex-106

tracts control flow graphs and associated se-107

mantic information from the AST, enhancing108

the LLM’s understanding of code structure.109

• We conduct extensive experiments on a110

dataset with 14,795 method-comment pairs,111

using BLEU-4, METEOR, ROUGE-L, and 112

BLEURT as evaluation metrics. We per- 113

form a comparative analysis with state-of-the- 114

art approaches, achieving a 37.53 BLEU-4 115

score, 52.54 METEOR score, 56.97 ROUGE- 116

L score, and 63.4 BLEURT score. 117

• We thoroughly evaluated the generalizability 118

of SCLA through extensive experiments on 119

Java and Python datasets, offering valuable 120

insights for future research on control flow- 121

based prompts in other code domains. 122

• We have uploaded the related code and exper- 123

imental data to Figshare, with plans to open- 124

source them after the paper’s publication. 125

2 Related Work 126

Smart Contract Summarization 127

Deep learning models have made significant ad- 128

vances in smart contract code summarization. Yang 129

et al. (Yang et al., 2021) proposed MMTrans, which 130

extracts SBT sequences and AST-based graphs 131

to capture global and local semantics using dual 132

encoders and a joint decoder. Transformer mod- 133

els like CodeT5 (Wang et al., 2021) and Code- 134

BERT (Feng et al., 2020) also enhance summariza- 135

tion quality but require extensive fine-tuning and 136

2

large datasets. LLMs, such as GPT-4o and Gemini-137

1.5-Pro, excel in few-shot or zero-shot summariza-138

tion tasks, bypassing fine-tuning. Previous stud-139

ies (Ahmed and Devanbu, 2023; Ahmed et al.,140

2024) highlight the benefits of few-shot learning.141

However, LLMs often produce suboptimal summa-142

rization, lacking conciseness and functional gener-143

alization. Ahmed et al. (Ahmed et al., 2024) pro-144

posed ASAP, incorporating data flow and GitHub145

context. Still, it fails to capture function call rela-146

tionships and control flow, suggesting the need for147

improved semantic facts and control flow integra-148

tion for better summarization.149

3 METHODOLOGY150

Control flow prompt template

Contract name: “TEXT”
Contract_type:“TEXT”
Contract_variables:“TEXT”

Please generate a short code comment based on the examples
learned above and combined with the following information.

The following is the information of the code, learn its
semantics and structure.

Function_name:“TEXT”
Function_modifiers:“TEXT”
Inner_function_code:“TEXT”
Function_code:“TEXT”
Function_comment:“TEXT”

example 1:

（...other n-1 examples omitted...）

Function_name:“release”
Function_modifiers:“public”
Inner_function_code:“...........”
Function_code:“............”

Contract name: “TokenTimelock”
Contract_type:“contract”
Contract_variables:“address public owner,address public wallet”

Learn the following n samples.

Control_flow_graph:“IMAGE/PNG”

Control_flow_graph: release

balanceOf safeTransfer

Figure 2: An Example of Control Flow Prompt.

3.1 Control Flow Prompt151

In this section, we discuss the control flow prompt152

and the corresponding semantic facts utilized by153

SCLA, as illustrated in Figure 2. These semantic154

facts are carefully integrated into the prompts to en-155

hance the LLMs’ ability to generate more accurate,156

relevant, and comprehensive summarizations.157

Control Flow Graph & Inner Function. We158

define the set of inner functions as those invoked159

within the target function, with each element re-160

ferred to as an inward function. The function call161

graph captures the precise sequence of function 162

calls, representing the control flow of the target 163

code. This graph is used as control flow input 164

for the LLMs, along with the set of inner func- 165

tions, to provide valuable additional context about 166

invoked functions. This approach mitigates misin- 167

terpretation based solely on function names, signif- 168

icantly enhancing semantic inference. Moreover, 169

the function call graph helps the LLMs accurately 170

determine the sequence and depth of function calls, 171

thereby aiding in the understanding of complex 172

functions and their interdependencies. 173

Identifiers. Previous studies highlight that iden- 174

tifiers play a critical role in helping language mod- 175

els retrieve valuable information for code summa- 176

rization (Ahmed and Devanbu, 2022). Identifiers, 177

including modifiers, local variables, and function 178

names, offer essential context about the code’s op- 179

erations. By understanding an identifier’s role, the 180

language model can better interpret the code. In 181

our approach, we use a tree-sitter to traverse the 182

AST of the function, collect identifiers and their 183

roles, and incorporate them into the prompt. 184

Contract Name & Global Member Variables. 185

Incorporating domain-specific information into 186

prompts greatly enhances LLMs’ overall perfor- 187

mance and effectiveness, particularly in specialized 188

tasks such as smart contract analysis. For instance, 189

smart contract names (Kong et al., 2024) often re- 190

flect their functional roles or token names (Chen 191

et al., 2021), providing valuable contextual infor- 192

mation for the LLMs. Additionally, global member 193

variables, such as contract addresses and account 194

balances, assist LLMs in more effectively under- 195

standing contract functions and their interrelations. 196

This significantly reduces the need for LLMs to in- 197

fer complex operations from variable names, lead- 198

ing to more precise descriptions and significantly 199

improved summarization accuracy. 200

3.2 Semantic-based Retrieval 201

In this paper, we use the Sentence-Transformer 202

(Sbert)(Reimers and Gurevych, 2020) model to se- 203

mantically match the code samples in the reposi- 204

tory that are most similar to the target code snippet, 205

which is then used as few-shot learning examples 206

in the prompt. First, we divide the samples in the 207

code repository into three subsets: training set, test 208

set, and validation set (as shown in Table 1), and 209

fine-tune the SBERT model using the training set. 210

We begin by vectorizing the given sentences S1 and 211

3

S2, as described by the following formula:212

v1 = Pooling(BERT (S1))

v2 = Pooling(BERT (S2))
(1)213

Sbert is trained using contrastive learning or214

triplet loss, optimizing sentence embeddings such215

that similar sentences are closer in vector space216

and dissimilar sentences are farther apart. Given a217

positive pair (S1, S2) and a negative pair (S1, S3),218

the model optimizes the following loss function:219

L = max (0, cosine_similarity(v1,v2)

−cosine_similarity(v1,v3) + ∆)
(2)220

where ∆ is a margin hyperparameter that controls221

the minimum desired similarity difference, and v1222

and v2 are the vector representations of sentences223

S1 and S2.224

Finally, we compute the cosine similarity be-225

tween the target code vector and the repository226

code vectors to identify the most semantically sim-227

ilar samples. The formula is as follows:228

cosine_similarity(v1,v2) =
v1 · v2

∥v1∥∥v2∥
(3)229

For each target sample, we rank the repository230

samples by cosine similarity in descending order.231

The top k matches, as specified by the parameter232

number_top_matches, are selected and stored in a233

result dictionary, which contains the matched code234

snippets and their similarity scores. If a file path235

is provided, the results are serialized and saved in236

JSON format for further analysis or review.237

3.3 SCLA Framework238

Figure 1 illustrates the overall framework of SCLA.239

We outline the three stages of the SCLA process240

for generating smart contract code summarization.241

Semantic Extraction: We use local extraction242

methods to segment .sol files, avoiding parsing er-243

rors. Regular expressions extract code and com-244

ments, which are then passed to SemFlow for se-245

mantic extraction. The function call graph and246

semantic facts are stored in a repository, indexed247

by contract file path, and named UUIDs.248

Prompt Construction: SCLA uses few-shot249

learning to enhance LLMs’ code summarization250

performance. Sentence-Transformer (Reimers and251

Gurevych, 2020) retrieves the top k semantically252

similar code samples. The extracted semantic in-253

formation, including function call graphs, function254

arguments, function modifiers, and contract meta- 255

data, is integrated into the prompt. 256

LLMs Inference: The semantically enhanced 257

prompt, including the function call graph, is input 258

into the LLMs interface to improve understanding 259

of the function call sequence, resulting in higher- 260

quality code summarization. 261

Algorithm 1 Source Data to Function Call Tree
1: Input: Source code f to be parsed by Solparser; initialized empty dictio-

nary T
2: Output: Function call tree T
3: AST ← Solparser.parser(f)
4: T ← {}
5: for each c in AST do
6: for each g in c do
7: for each x in g.calls do
8: n← x.name
9: if n /∈ T [c][g] then
10: T [c][g][n]← {c : c, count : 1}
11: else
12: T [c][g][n].count← T [c][g][n].count + 1
13: end if
14: end for
15: end for
16: end for
17: for each c, g in T do
18: CreateCallTree(c, g, T [c][g], T)
19: end for
20: return T
21: function CREATECALLTREE(p, k, n, T)
22: for each m in n.keys do
23: o← n[m]
24: if m /∈ T [p][k].keys then
25: T [p][k][m]← T [o.c][m]
26: CreateCallTree(k, m, T [o.c][m], T)
27: end if
28: end for
29: end function

3.4 Control Flow Extraction 262

We use SemFlow, a component integrated with a 263

control flow extraction algorithm, to extract func- 264

tion call graphs from the AST as control flow input 265

in the prompt." The algorithm in 1 demonstrates 266

the entire extraction process. It first uses an AST 267

parsing tool to parse the input code into an AST. 268

The AST is traversed in a depth-first manner to 269

remove irrelevant nodes, such as imports. Function 270

nodes with calls are marked in the "FunctionCall" 271

field, allowing the construction of a reference tree 272

(lines 5-20 of Algorithm 1). The depth of the refer- 273

ence tree ranges from 2 to 3 layers, depending on 274

the presence of function calls. When a third-level 275

call points to a second or third-level node, the ref- 276

erence tree is transformed into a complete call tree 277

by grafting branch nodes (lines 21-29 of Algorithm 278

1). The call tree is then visualized using Graphviz 279

and saved to the code sample repository. 280

4 EXPERIMENT 281

In the empirical study, we conducted comparison, 282

ablation, and generalization experiments. First, we 283

4

2
4

6
8

10

Llama-3.2-1b-preview

GPT4-o
Gemini-1.0-Pro-Vision

Gemini-1.5-Pro
Claude-3.5-sonnet

SCLA
SCCLLM

(a) Comparison Results on BELU-4

5 10 15 20 25 30 35

Llama-3.2-1b-preview

GPT4-o
Gemini-1.0-Pro-Vision

Gemini-1.5-Pro
Claude-3.5-sonnet

SCLA
SCCLLM

(b) Comparison Results on METEOR

5 10152025303540

Llama-3.2-1b-preview

GPT4-o
Gemini-1.0-Pro-Vision

Gemini-1.5-Pro
Claude-3.5-sonnet

SCLA
SCCLLM

(c) Comparison Results on ROUGE-L

Figure 3: The Comparison of BLEU, METEOR, and ROUGE-L Scores on Our Test Set Under Five Different LLMs,
Using the SCCLLM and the Proposed SCLA for Zero-Shot Summarization Tasks.

Type Train Validation Test
Number 11032 2758 1000

Avg. tokens in codes 42.44 42.08 41.95
Avg. tokens in comments 26.34 26.16 26.66

Table 1: Statistics of Experimental Dataset.

used SemFlow to process the raw data and generate284

semantic facts, data flow graphs, and the semantic285

sample library. The code snippets were then input286

into SCLA for summarization and evaluation. In287

the comparison experiment, we varied the num-288

ber of few-shot learning samples and compared289

the evaluation scores with baseline methods. Abla-290

tion experiments assessed the contribution of dif-291

ferent semantic components, while generalization292

experiments extended SCLA to Java and Python293

code summarization tasks. The results and expert294

evaluations validate the effectiveness of SCLA in295

generating smart contract code summarizations.296

4.1 Experiment Settings297

All our experiments are performed on a computer298

equipped with an Nvidia GeForce RTX 4070Ti299

GPU (12GB graphic memory), Gen Intel (R) Core300

(TM) i9-13900K, running Ubuntu 22.04 LTS.301

4.2 DataSet302

The raw data for our study, provided by Liu et303

al.(Liu et al., 2021), consists of 40,000 Solidity304

smart contracts from Etherscan.io1, authored by305

professional developers and deployed on Ethereum.306

Building on Yang et al.’s work(Yang et al., 2021),307

we developed an extraction method using AST lo-308

cation data to segment the code into distinct do-309

mains and extract functions with their documen-310

tation via regular expressions. After filtering low-311

quality summarizations, we removed poor entries,312

resulting in 14,790 method-comment pairs. The313

dataset is divided into 11,032 training, 2,758 valida-314

tion, and 1,000 test sets, with average token counts315

1https://etherscan.io/

reported. Notably, unlike baselines, our approach, 316

SCLA, does not require a validation set. 317

4.3 Baseline 318

We compare our proposed SCLA with six state-of- 319

the-art methods, including general code summariza- 320

tion models such as CodeT5 (Wang et al., 2021), 321

CodeT5+ (Wang et al., 2023), and CodeBERT (?), 322

deep learning-based smart contract code summa- 323

rization methods MMTran (Yang et al., 2021) 324

and FMCF (Lei et al., 2024), and smart contract- 325

specific code summarization methods based on the 326

latest LLMs, such as SCCLLM (Zhao et al., 2024). 327

4.4 Performance Metrics 328

To evaluate SCLA performance against baselines, 329

we adopted various automatic performance met- 330

rics, including BLEU-4 (Papineni et al., 2002), 331

METEOR (Banerjee and Lavie, 2005), ROUGE- 332

L (Lin, 2004), and BLEURT (Sellam et al., 2020). 333

These metrics effectively assess the similarity be- 334

tween the automatically generated smart contract 335

summarization and the real human-generated sum- 336

marization. BLEURT, in particular, calculates sim- 337

ilarity based on sentence semantics by using a pre- 338

trained BERT model, providing a more accurate 339

reflection of semantic meaning. 340

4.5 Main Results 341

We conducted a comprehensive evaluation of the 342

LLMs-driven SCLA framework in two different 343

experimental setups. The framework demonstrated 344

significant performance improvements in smart 345

contract code summarization tasks in both zero- 346

shot and few-shot settings. These findings provide 347

valuable insights and contributions to the research 348

community. The specific results are as follows: 349

Zero-shot Results. To evaluate the impact 350

of function call graphs and internal functions on 351

LLMs-generated code summarization, we con- 352

ducted experiments using GPT-4o, Gemini-1.5-Pro, 353

and Claude-3.5-Sonnet under zero-shot conditions. 354

5

Model # of sample
BLEU-4 METEOR ROUGE-L

p-value
Zero-Shot +CFG +IF Gain(%) Zero-Shot +CFG +IF Gain(%) Zero-Shot +CFG +IF Gain(%)

Llama-3.2-1b-preview 11032 3.03 5.43 +79.21% 19.58 23.97 +22.42 18.88 23.49 +24.42 <0.01
GPT-4o 11032 5.34 7.45 +39.51% 22.32 26.62 +19.27 25.32 32.62 +28.83 <0.01

Gemini-1.0-Pro-Vision 11032 3.01 5.32 +76.74% 16.89 20.73 +22.73 18.46 20.31 +10.02 <0.01
Gemini-1.5-Pro 11032 3.21 5.87 +82.87% 19.89 25.61 +28.76 23.95 27.42 +14.49 <0.01

Claude-3.5-sonnet 11032 3.31 5.32 +60.73% 23.42 28.62 +22.20 25.82 30.12 +16.65 <0.01

Table 2: Performance of different LLMs on smart contract code summarization, measured using BLEU-4, METEOR,
ROUGE-L. p-values are calculated applying a one-sided pairwise Wilcoxon signed-rank test and B-H corrected.

Approach #of training sample #of test sample BLEU-4 METEOR ROUGE-L BLEURT p-values
CodeT5+ 11032 1000 28.95 45.62 49.77 57.79 /
CodeT5 11032 1000 27.24 43.31 49.03 52.61 /

CodeBERT 11032 1000 26.31 39.57 44.52 52.74 /
MMTran 11032 1000 22.12 38.92 40.12 54.73 /
FMCF 11032 1000 29.98 36.67 51.21 51.73 /

SCCLLM (One-Shot) / 1000 19.45 20.12 19.12 36.56 <0.01
SCCLLM (Three-Shot) / 1000 29.73 35.33 49.44 50.91 <0.01
SCCLLM (Five-Shot) / 1000 31.73 48.12 60.44 58.74 <0.01

SCLA (Zero-Shot) / 1000 6.09 25.80 29.45 46.63 <0.01
SCLA (One-Shot) / 1000 25.46 42.78 47.55 57.07 <0.01

SCLA (Three-Shot) / 1000 35.15 51.80 55.89 63.11 <0.01
SCLA (Five-Shot) / 1000 37.53 52.54 56.97 63.44 <0.01

Table 3: The impact of different few-shot learning quantities on SCLA performance with Gemini-1.5-Pro. p-values
are calculated applying a one-sided pairwise Wilcoxon signed-rank test and B-H corrected.

Type Zero-Shot One-Shot Three-Shot Five-Shot
Avg. tokens in prompt 561.4 1154.8 2242.5 3330.3

Table 4: Number of Tokens Consumed with Different
Numbers of Learning Sample for SCLA.

The experiment had two phases: first, the target355

code was embedded into the prompt and evaluated356

with standard metrics; second, the prompt was en-357

hanced with internal functions and control flow358

graphs, followed by re-evaluation. Table 2 shows359

that incorporating internal functions and call graphs360

improved summarization. GPT-4o improved by361

39.51%, 19.27%, and 28.83%; Gemini-1.5-Pro by362

82.87%, 28.76%, and 14.49%; and Claude-3.5-363

Sonnet by 60.73%, 22.20%, and 16.65%. However,364

Gemini-1.5-Pro underperformed compared to GPT-365

4o and Claude-3.5-Sonnet. These results validate366

our hypothesis that control flow graphs enhance367

smart contract summarization. To further val-368

idate the control flow prompt’s effectiveness, we369

compared SCLA with SCCLLM using five mul-370

timodal models on the test set. Results in Figure371

3 show SCLA outperforming SCCLLM in BLEU,372

METEOR, and ROUGE-L scores. This demon-373

strates that SCLA with the control flow prompt374

outperforms SCCLLM, confirming the effective-375

ness of control flow prompts.376

Few-shot Results. To evaluate the performance377

of SCLA against SOTA baseline models, we con-378

ducted a validation experiment. Since SCLA em-379

ploys few-shot learning, we tested its performance 380

under Zero-Shot, One-Shot, Three-Shot, and Five- 381

Shot conditions to investigate the number of learn- 382

ing samples required for optimal performance. 383

The results (see Table 3) indicate that SCLA ini- 384

tially lags behind the baseline models in Zero-Shot 385

and One-Shot settings. However, starting from 386

Three-Shot, SCLA outperforms the baseline mod- 387

els across all four evaluation metrics: BLEU-4, 388

METEOR, ROUGE-L, and BLEURT. Compared 389

to FMCF, SCLA improved by 17.24%, 41.26%, 390

9.14%, and 22.00%, and compared to CodeT5+, 391

the improvements were 21.42%, 13.55%, 12.30%, 392

and 9.21%. Compared to all baseline models, 393

SCLA showed average improvements of 26.7%, 394

23.2%, 16.7%, and 14.7% in these metrics. Per- 395

formance continued to improve under Five-Shot, 396

although the gains were modest. We also analyzed 397

token consumption to determine the optimal num- 398

ber of few-shot samples (see Table 4). The token 399

consumption for Five-Shot was 48.51% higher than 400

for Three-Shot, but the average improvement in 401

generated code summarization metrics was only 402

2.20%. Therefore, Three-Shot provides the best 403

balance between performance and efficiency. 404

4.6 Ablation Study 405

We conducted We conducted ablation experiments 406

to assess the contributions of different semantic 407

facts in SCLA. The goal was to quantify the impact 408

6

Language Model #of Test Sample BLEU-4 BLEURT p-valuesSCCLLM SCLA Gain (%) SCCLLM SCLA Gain (%)

Java
GPT-4o 1000 28.59 38.43 +34.42 50.34 68.89 +36.85 <0.01

Gemini-1.5-Pro 1000 23.22 31.43 +35.36 56.33 63.67 +13.03 <0.01
Claude-3.5-sonnet 1000 31.05 39.13 +26.02 58.89 70.90 +20.40 <0.01

Python
GPT-4o 1000 22.78 29.56 +29.76 55.90 64.23 +14.90 <0.01

Gemini-1.5-Pro 1000 20.15 26.06 +29.33 51.78 61.03 +17.86 <0.01
Claude-3.5-sonnet 1000 25.45 33.77 +32.69 58.21 73.56 +26.37 <0.01

Overall / / 25.21 33.06 +31.14 55.24 67.05 +21.38 <0.01
Table 5: The performance of SCLA and SCCLLM on the Java and Python tasks, driven by three different LLMs,
was evaluated using BLEU-4 and BLEURT as metrics. To assess the statistical significance of the results, p-values
were calculated using a one-sided pairwise Wilcoxon signed-rank test, with Benjamini-Hochberg (B-H) correction
applied for multiple comparisons.

Approach #of Training Sample #of Test Sample
Java Python

BLEU-4 METEOR ROUGE-L BLEU-4 METEOR ROUGE-L
CodeBERT 8000 1000 19.91 25.11 34.34 20.56 33.37 33.19

CodeT5 8000 1000 22.45 28.98 41.98 28.82 37.98 39.52
CodeT5+ 8000 1000 28.82 39.79 49.31 34.67 46.98 47.34

SCLA / 1000 34.34 50.66 60.71 37.34 52.61 57.49
Table 6: The performance of our proposed method and the baseline model was evaluated on Java and Python
datasets.

Approach Prompt Component BLEU-4 METEOR ROUGE-L BLEURT

SCLA

ALL 6.09 25.80 29.45 46.63
-CFG 5.21 27.77 27.94 45.90

-IF 4.42 25.43 26.23 44.56
-Id&MGV 5.62 25.47 29.01 46.32

-ALL 0.85 20.28 18.53 43.53

Table 7: Ablation study. Effect of Semantic Augmenta-
tion on Gemini-1.5-Pro Generated Summarization. CFG
is Control Flow Graph, IF is Inner Function, Id&MGV
is Identifiers&Global Member Variables.

0 50 100 150 200 250 300

CodeBERT

CodeT5

CodeT5+

SCCLLM

SCLA

201

215

238

259

262

99

85

62

41

38

Passed Manual Inspection Failed Manual Inspection

Figure 4: Human Evaluation Results of 300 Code Sum-
marizations Generated by SCLA and the Baseline.

of each component on Gemini-1.5-Pro’s code sum-409

marization performance. Five experiments were410

performed by selectively removing semantic ele-411

ments used in semantically enhanced prompts, all412

under Zero-Shot learning. The results, shown in Ta-413

ble 7, highlight the importance of inner function or-414

dering, function call graphs, identifiers, and global415

member variables. Removing inner functions re-416

sulted in performance drops of 27.42%, 1.43%,417

10.93%, and 4.44% across key metrics. Excluding418

the function call graph caused declines of 14.45419

(BLEU-4), 5.13 (ROUGE-L), and 1.57 (BLEURT). 420

The removal of identifiers and global member vari- 421

ables led to decreases of 7.72%, 1.28%, 1.49%, 422

and 0.65%. These findings confirm that inline 423

functions and call graphs are crucial for improv- 424

ing Gemini-1.5-Pro’s code summarization. Addi- 425

tionally, experiments underscore the significance 426

of global member variables in maintaining se- 427

mantic consistency, while function call graphs 428

provide a structural understanding that directly 429

influences summarization accuracy. Removing 430

these elements disrupts both the coherence and 431

comprehensiveness of the generated summariza- 432

tion. Ultimately, the ablation study validates the 433

necessity of each semantic component for optimiz- 434

ing code summarization performance in scenarios. 435

4.7 Human Evaluation of Summarization 436

Generated by SCLA and the Baseline 437

To assess the summarization generated by SCLA, 438

we randomly selected 300 samples from the smart 439

contract code summarization generated by SCLA 440

and baseline models for manual evaluation. This 441

evaluation focused on similarity, conciseness, and 442

completeness, categorizing the summarization as 443

usable or unusable. To reduce subjectivity and 444

bias, six volunteer evaluators, all Chinese graduate 445

students with experience in smart contract devel- 446

opment, were recruited and briefed on the research 447

and evaluation standards. The results, shown in 448

Figure 4, reveal that SCLA generated the fewest 449

unusable summarization (38), outperforming all 450

7

Example
#Input Function Code

function transferDataOwnership (address _addr) onlyOwner public {

data.transferOwnership(_addr);

}

#inner function code

function transferOwnership(address _newOwner) public onlyOwner {

_transferOwnership(_newOwner);

}

Approach Coment BLEU-4 METEOR ROUGE-L
Ground Truth Transfer ownership of data contract to _addr. _addr address. NA NA NA

CodeBERT
Transfer ownership of an address to another.

_addr address The address to transfer to.
51.20 28.00 67.00

CodeT5
Allows the owner to transfer control of the contract to an address.

_addr The address to transfer ownership to.
42.48 26.64 47.62

CodeT5+ Allows the owner to transfer control of data contract to _addr. _addr The address. 60.68 41.67 60.00
SCLA Transfers ownership of the data contract to _addr. 70.77 72.70 75.00

Table 8: An example illustrating the effectiveness of SCLA.

baseline models. These findings demonstrate451

that SCLA is more likely to generate satisfactory452

smart contract code summarization, reducing453

the chances of low-quality outputs.454

4.8 Case Study455

Upon reviewing the results, we found that the456

SCLA prompt includes crucial information for457

effective summarization. Table 8 highlights the458

differences between real-world smart contract ab-459

stracts and Summarization generated by Code-460

BERT, CodeT5, CodeT5+, and SCLA. CodeBERT461

identifies key terms like "transfer," "ownership,"462

and "address," but lacks clarity, with ambiguous463

pronoun references and repetition of the transfer464

concept. CodeT5 captures "onlyOwner" but over-465

looks broader global semantics, rendering the sec-466

ond sentence redundant. CodeT5+ addresses this467

limitation with more precise terminology, such468

as identifying the object as a "data contract." In469

contrast, SCLA’s Summarization aligns more470

closely with real-world Summarization, being471

both more concise and semantically accurate,472

omitting redundancy for a much clearer, more473

refined, and contextually precise structure.474

4.9 Generalization Study475

To evaluate the generalization and representa-476

tiveness of SCLA, we selected 10,000 samples477

each from Java and Python in the CodeSearch-478

Net dataset (Husain et al., 2019). From these,479

1,000 samples per language were randomly cho-480

sen as test sets. We compared SCLA’s per-481

formance against state-of-the-art fine-tuned mod-482

els—CodeT5, CodeT5+, CodeBERT, and SC-483

CLLM—using BLEU-4, METEOR, and ROUGE- 484

L. On the Java dataset, SCLA outperformed 485

CodeT5+ with improvements of 19%, 12%, and 486

23% in BLEU-4, METEOR, and ROUGE-L, re- 487

spectively. On the Python dataset, SCLA showed 488

gains of 7%, 18%, and 21%, respectively. We fur- 489

ther compared SCLA to SCCLLM on both datasets 490

using BLEU-4 and BLEURT. With LLMs GPT- 491

4o, Gemini-1.5-Pro, and Claude-3.5-Sonnet, SCLA 492

consistently outperformed SCCLLM, achieving an 493

average improvement of 31.14 in BLEU-4 and 494

21.38 in BLEURT. These results demonstrate 495

that SCLA’s control flow-based prompts gener- 496

alize effectively to Java and Python, enhancing 497

the LLMs’ ability to capture code structure and 498

improve summarization quality. 499

5 Conclusion 500

We propose that control flow graphs enhance 501

LLMs’ understanding of smart contract code se- 502

mantics, and experiments confirm their positive im- 503

pact on code comprehension. Ablation studies as- 504

sess the contribution of each prompt component to 505

summarization quality. SCLA is a framework that 506

combines LLMs with control flow prompts, out- 507

performing six baseline models. The experiments 508

show that, compared to other baseline models, 509

SCLA significantly improves BLEU-4, METEOR, 510

ROUGE-L, and BLEURT scores with improve- 511

ments of 30.34%, 23.15%, 16.74%, and 14.86%, 512

respectively. We also extended SCLA to Java 513

and Python code, further improving summarization 514

and providing new insights for advancing LLM- 515

generated code summarization. 516

8

Limitations517

Our framework enhances Gemini-1.5-Pro’s under-518

standing using function call graphs. However,519

Gemini-1.5-Pro struggles with deep call stacks520

or circular calls. Figure. 5 shows that circular521

chains, like transferFrom → removeTokenFrom →522

ownerOf → isApprovedOrOwner → transferFrom,523

confuse the model, leading to misinterpretations524

and incorrect summarization. In contrast, Gemini-525

1.5-Pro handles typical tree structures even with a526

depth of 5. Further research is needed to explore527

the impact of loop calls and depth on-call interpre-528

tation.529

Another key challenge in using LLMs for smart530

contract code summarization is the potential expo-531

sure of test data during pre-training. Since general-532

purpose LLMs like GPT-4o and Gemini-1.5-Pro533

are not publicly accessible, direct verification of534

this exposure is difficult. Additionally, LLMs’535

memorization capability can produce artificially536

high scores if prior summarizations are retained.537

We also analyzed the effect of few-shot learning538

on SCLA’s performance in Section 3. Our results539

show that SCLA outperforms the baseline with a540

Three-Shot setup, while performance gains plateau541

at five shots, with a 1.5x increase in computational542

cost.543

transferFrom

removeTokenFrom isApproveOrOwnerclearApproval Transfer

addTokenTo ownerOfsub isApproveForAll

add addressrequire

getApproved

Figure 5: An Example of a Function Call Graph in
Which Gemini-1.5-Pro Has Difficulty Understanding
the Call Information.

References544

Toufique Ahmed and Premkumar Devanbu. 2022. Mul-545
tilingual training for software engineering. In Pro-546
ceedings of the 44th International Conference on547
Software Engineering, pages 1443–1455.548

Toufique Ahmed and Premkumar Devanbu. 2023.549
Few-shot training llms for project-specific code-550
summarization. In Proceedings of the 37th551
IEEE/ACM International Conference on Automated552
Software Engineering, pages 1–5.553

Toufique Ahmed, Kunal Suresh Pai, Premkumar De- 554
vanbu, and Earl Barr. 2024. Automatic semantic 555
augmentation of language model prompts (for code 556
summarization). In Proceedings of the IEEE/ACM 557
46th International Conference on Software Engineer- 558
ing, pages 1–13. 559

Satanjeev Banerjee and Alon Lavie. 2005. Meteor: An 560
automatic metric for mt evaluation with improved cor- 561
relation with human judgments. In Proceedings of 562
the acl workshop on intrinsic and extrinsic evaluation 563
measures for machine translation and/or summariza- 564
tion, pages 65–72. 565

Xiangping Chen, Peiyong Liao, Yixin Zhang, Yuan 566
Huang, and Zibin Zheng. 2021. Understanding code 567
reuse in smart contracts. In Proceedings of the 2021 568
IEEE International Conference on Software Analysis, 569
Evolution and Reengineering, pages 470–479. IEEE. 570

Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah 571
Parisot, Xu Jia, Aleš Leonardis, Gregory Slabaugh, 572
and Tinne Tuytelaars. 2022. A continual learning sur- 573
vey: Defying forgetting in classification tasks. IEEE 574
Transactions on Pattern Analysis and Machine Intel- 575
ligence, pages 3366–3385. 576

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi- 577
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin, 578
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code- 579
BERT: A pre-trained model for programming and 580
natural languages. In Findings of the Association 581
for Computational Linguistics: EMNLP 2020, pages 582
1536–1547. 583

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis 584
Allamanis, and Marc Brockschmidt. 2019. Code- 585
searchnet challenge: Evaluating the state of semantic 586
code search. arXiv preprint arXiv:1909.09436. 587

Dechao Kong, Xiaoqi Li, and Wenkai Li. 2024. Char- 588
acterizing the solana nft ecosystem. In Companion 589
Proceedings of the ACM on Web Conference, pages 590
766–769. 591

Satpal Singh Kushwaha, Sandeep Joshi, Dilbag Singh, 592
Manjit Kaur, and Heung-No Lee. 2022. System- 593
atic review of security vulnerabilities in ethereum 594
blockchain smart contract. IEEE Access, pages 6605– 595
6621. 596

Gang Lei, Donghua Zhang, Jianmao Xiao, Guodong 597
Fan, Yuanlong Cao, and Zhiyong Feng. 2024. Fmcf: 598
A fusing multiple code features approach based 599
on transformer for solidity smart contracts source 600
code summarization. Applied Soft Computing, page 601
112238. 602

Zeqin Liao, Sicheng Hao, Yuhong Nan, and Zibin 603
Zheng. 2023. Smartstate: Detecting state-reverting 604
vulnerabilities in smart contracts via fine-grained 605
state-dependency analysis. In Proceedings of the 606
32nd ACM SIGSOFT International Symposium on 607
Software Testing and Analysis, pages 980—-991. 608

9

Chin-Yew Lin. 2004. Rouge: A package for automatic609
evaluation of summaries. In Text summarization610
branches out, pages 74–81.611

Zhenguang Liu, Peng Qian, Xiang Wang, Lei Zhu, Qin-612
ming He, and Shouling Ji. 2021. Smart contract613
vulnerability detection: From pure neural network to614
interpretable graph feature and expert pattern fusion.615
In Proceedings of the Thirtieth International Joint616
Conference on Artificial Intelligence, pages 2751–617
2759.618

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-619
Jing Zhu. 2002. Bleu: a method for automatic evalu-620
ation of machine translation. In Proceedings of the621
40th annual meeting of the Association for Computa-622
tional Linguistics, pages 311–318.623

Nils Reimers and Iryna Gurevych. 2020. Making624
monolingual sentence embeddings multilingual using625
knowledge distillation. In Proceedings of the Con-626
ference on Empirical Methods in Natural Language627
Processing, pages 4512–4525.628

Thibault Sellam, Dipanjan Das, and Ankur Parikh. 2020.629
BLEURT: Learning robust metrics for text genera-630
tion. In Proceedings of the 58th Annual Meeting of631
the Association for Computational Linguistics, pages632
7881–7892.633

Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Jun-634
nan Li, and Steven Hoi. 2023. CodeT5+: Open code635
large language models for code understanding and636
generation. In Proceedings of the Conference on637
Empirical Methods in Natural Language Processing,638
pages 1069–1088.639

Yue Wang, Weishi Wang, Shafiq Joty, and Steven C.H.640
Hoi. 2021. Codet5: Identifier-aware unified pre-641
trained encoder-decoder models for code understand-642
ing and generation. In Proceedings of the Conference643
on Empirical Methods in Natural Language Process-644
ing, pages 8696–8708.645

Zhen Yang, Jacky Keung, Xiao Yu, Xiaodong Gu,646
Zhengyuan Wei, Xiaoxue Ma, and Miao Zhang. 2021.647
A multi-modal transformer-based code summariza-648
tion approach for smart contracts. In Proceedings649
of the IEEE/ACM 29th International Conference on650
Program Comprehension, pages 1–12.651

Shenhui Zhang, Wenkai Li, Xiaoqi Li, and Boyi Liu.652
2022. Authros: Secure data sharing among robot653
operating systems based on ethereum. In Proceed-654
ings of the IEEE 22nd International Conference on655
Software Quality, Reliability and Security, pages 147–656
156. IEEE.657

Junjie Zhao, Xiang Chen, Guang Yang, and Yiheng658
Shen. 2024. Automatic smart contract comment659
generation via large language models and in-context660
learning. 168.661

10

	Introduction
	Related Work
	METHODOLOGY
	Control Flow Prompt
	Semantic-based Retrieval
	SCLA Framework
	Control Flow Extraction

	EXPERIMENT
	Experiment Settings
	DataSet
	Baseline
	Performance Metrics
	Main Results
	Ablation Study
	Human Evaluation of Summarization Generated by SCLA and the Baseline
	Case Study
	Generalization Study

	Conclusion

