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Abstract

Smart contract code summarization is crucial
for efficient maintenance and vulnerability mit-
igation. While many studies use Large Lan-
guage Models (LLMs) for summarization, their
performance still falls short compared to fine-
tuned models like CodeT5+ and CodeBERT.
Some approaches combine LLMs with data
flow analysis but fail to fully capture the hi-
erarchy and control structures of the code, lead-
ing to information loss and degraded summa-
rization quality. We propose SCLA, an LLMs-
based method that enhances summarization by
integrating a Control Flow Graph (CFG) and
semantic facts from the code’s control flow into
a semantically enriched prompt. SCLA uses
a control flow extraction algorithm to derive
control flows from semantic nodes in the Ab-
stract Syntax Tree (AST) and constructs the
corresponding CFG. Code semantic facts re-
fer to both explicit and implicit information
within the AST that is relevant to smart con-
tracts. This method enables LLMs better to cap-
ture the structural and contextual dependencies
of the code. We validate the effectiveness of
SCLA through comprehensive experiments on
a dataset of 40,000 real-world smart contracts.
The experiment shows that SCLA significantly
improves summarization quality, outperform-
ing the SOTA baselines with improvements of
26.7%, 23.2%, 16.7%, and 14.7% in BLEU-4,
METEOR, ROUGE-L, and BLEURT scores,
respectively.

1 Introduction

Smart contracts (Liao et al., 2023) are self-
executing programs on Ethereum, and the
blockchain’s immutability complicates vulnerabil-
ity maintenance (Zhang et al., 2022). Solidity, de-
signed specifically for smart contract development,
compiles code into bytecode and ABI for execution
on the Ethereum Virtual Machine (EVM). Unlike
general-purpose languages like Java and Python,
Solidity emphasizes security with strict type safety

and single-threaded execution. Analyzing Solidity
code requires examining syntax, semantics, and
state management. Even minor vulnerabilities can
result in financial losses (Kushwaha et al., 2022),
making smart contract code summarization essen-
tial for improving efficiency and reducing secu-
rity risks. Smart contract summarization has re-
ceived less attention than Java and Python, with
traditional methods relying on deep learning and
fine-tuning. Yang et al. (Yang et al., 2021) pro-
posed MMTrans, integrating deep learning with
structure-based traversal (SBT) and Abstract Syn-
tax Tree (AST) graphs for code summarization.
Lei et al. (Lei et al., 2024) introduced FMCEF, a
Transformer-based method that fuses multi-scale
features to preserve both semantic and syntactic
information. Zhao et al. (Zhao et al., 2024) pro-
posed SCCLLM, combining context learning with
information retrieval to improve summarization.

However, these approaches pose security risks.
Fine-tuning is limited by the quality and size of
training data, which may lack emerging vulnera-
bilities. Additionally, fine-tuned models may suf-
fer from knowledge forgetting (De Lange et al.,
2022), reducing adaptability. In contrast, LLMs-
based approaches leverage extensive pre-trained
datasets to identify vulnerabilities and enhance se-
curity. However, prior methods mainly use isolated
code snippets, failing to capture the full semantic
context. Ahmed et al. (Ahmed et al., 2024) demon-
strated that LLMs struggle with implicit semantics,
leading to the loss of critical information. These
methods also neglect control structures, hindering
accurate summarization and security.

To address the limitations of existing methods
and generate more secure smart contract code sum-
marization, we propose SCLA (Smart Contract
summarization with LLMs and Semantic Augmen-
tation). SCLA integrates LLLMs with control flow
analysis to enhance scalability and summarization
quality. Incorporating control flow-based semantic
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Figure 1: Overview of our proposed framework, SCLA, powered by Google’s Gemini-1.5-Pro, performs automated
generation of smart contract code summarization. SCLA extracts control flow semantic facts from smart contract
code and uses Gemini-1.5-Pro to generate code summarization from control flow semantic facts.

information and control flow graphs improves se-
curity and semantic accuracy in LL.Ms-generated
summarization. The approach extracts this infor-
mation via semantic analysis and generates con-
trol flow graphs. Using few-shot prompting and
a fine-tuned Sentence-Transformer(Reimers and
Gurevych, 2020), SCLA identifies semantically
similar examples for task-specific prompts. Sem-
Flow, a core component, extracts control flow
graphs and semantic details, such as function call
graphs and variables. To prevent overwhelm-
ing LLLMs, non-control flow information is pre-
sented separately, while control flow graphs are
provided in a tagged PNG format. Our experiments
on 14,789 method-comment pairs from a GitHub
repository of 40,000 smart contracts show that con-
trol flow graphs improve LLMs’ performance.

Our main contributions can be summarized as
follows:

* We propose SCLA, the first framework that in-
tegrates LLMs with smart contract code sum-
marization using control flow prompts. It ex-
tracts control flow graphs and associated se-
mantic information from the AST, enhancing
the LLM’s understanding of code structure.

* We conduct extensive experiments on a
dataset with 14,795 method-comment pairs,

using BLEU-4, METEOR, ROUGE-L, and
BLEURT as evaluation metrics. We per-
form a comparative analysis with state-of-the-
art approaches, achieving a 37.53 BLEU-4
score, 52.54 METEOR score, 56.97 ROUGE-
L score, and 63.4 BLEURT score.

* We thoroughly evaluated the generalizability
of SCLA through extensive experiments on
Java and Python datasets, offering valuable
insights for future research on control flow-
based prompts in other code domains.

* We have uploaded the related code and exper-
imental data to Figshare, with plans to open-
source them after the paper’s publication.

2 Related Work

Smart Contract Summarization

Deep learning models have made significant ad-
vances in smart contract code summarization. Yang
et al. (Yang et al., 2021) proposed MMTrans, which
extracts SBT sequences and AST-based graphs
to capture global and local semantics using dual
encoders and a joint decoder. Transformer mod-
els like CodeT5 (Wang et al., 2021) and Code-
BERT (Feng et al., 2020) also enhance summariza-
tion quality but require extensive fine-tuning and



large datasets. LLMs, such as GPT-40 and Gemini-
1.5-Pro, excel in few-shot or zero-shot summariza-
tion tasks, bypassing fine-tuning. Previous stud-
ies (Ahmed and Devanbu, 2023; Ahmed et al.,
2024) highlight the benefits of few-shot learning.
However, LLMs often produce suboptimal summa-
rization, lacking conciseness and functional gener-
alization. Ahmed et al. (Ahmed et al., 2024) pro-
posed ASAP, incorporating data flow and GitHub
context. Still, it fails to capture function call rela-
tionships and control flow, suggesting the need for
improved semantic facts and control flow integra-
tion for better summarization.

3 METHODOLOGY

Control flow prompt template

Learn the following n samples.
example 1:

The following is the information of the code, learn its
semantics and structure.

Function_name:“TEXT”
Function_modifiers:“TEXT”
Inner_function _code:“TEXT”
Function_code:“TEXT”
Function_comment:“TEXT”

Control_flow_graph:“IMAGE/PNG”

(...other n-1 examples omitted...)

Please generate a short code comment based on the examples
learned above and combined with the following information.

Function_name:“release”
Function_modifiers:*“public”
Inner_function_code:“........... ”

Function_code:*“............ ”
release

balanceOf

Control_flow_graph:

safeTransfer

Figure 2: An Example of Control Flow Prompt.

3.1 Control Flow Prompt

In this section, we discuss the control flow prompt
and the corresponding semantic facts utilized by
SCLA, as illustrated in Figure 2. These semantic
facts are carefully integrated into the prompts to en-
hance the LLMs’ ability to generate more accurate,
relevant, and comprehensive summarizations.
Control Flow Graph & Inner Function. We
define the set of inner functions as those invoked
within the target function, with each element re-
ferred to as an inward function. The function call

graph captures the precise sequence of function
calls, representing the control flow of the target
code. This graph is used as control flow input
for the LLMs, along with the set of inner func-
tions, to provide valuable additional context about
invoked functions. This approach mitigates misin-
terpretation based solely on function names, signif-
icantly enhancing semantic inference. Moreover,
the function call graph helps the LLMs accurately
determine the sequence and depth of function calls,
thereby aiding in the understanding of complex
functions and their interdependencies.

Identifiers. Previous studies highlight that iden-
tifiers play a critical role in helping language mod-
els retrieve valuable information for code summa-
rization (Ahmed and Devanbu, 2022). Identifiers,
including modifiers, local variables, and function
names, offer essential context about the code’s op-
erations. By understanding an identifier’s role, the
language model can better interpret the code. In
our approach, we use a tree-sitter to traverse the
AST of the function, collect identifiers and their
roles, and incorporate them into the prompt.

Contract Name & Global Member Variables.
Incorporating domain-specific information into
prompts greatly enhances LLMs’ overall perfor-
mance and effectiveness, particularly in specialized
tasks such as smart contract analysis. For instance,
smart contract names (Kong et al., 2024) often re-
flect their functional roles or token names (Chen
et al., 2021), providing valuable contextual infor-
mation for the LLMs. Additionally, global member
variables, such as contract addresses and account
balances, assist LLMs in more effectively under-
standing contract functions and their interrelations.
This significantly reduces the need for LLMs to in-
fer complex operations from variable names, lead-
ing to more precise descriptions and significantly
improved summarization accuracy.

3.2 Semantic-based Retrieval

In this paper, we use the Sentence-Transformer
(Sbert)(Reimers and Gurevych, 2020) model to se-
mantically match the code samples in the reposi-
tory that are most similar to the target code snippet,
which is then used as few-shot learning examples
in the prompt. First, we divide the samples in the
code repository into three subsets: training set, test
set, and validation set (as shown in Table 1), and
fine-tune the SBERT model using the training set.
We begin by vectorizing the given sentences S and



Sa, as described by the following formula:

vi = Pooling(BERT'(S1))

vy = Pooling( BERT'(S2)) W

Sbert is trained using contrastive learning or

triplet loss, optimizing sentence embeddings such

that similar sentences are closer in vector space

and dissimilar sentences are farther apart. Given a

positive pair (S7,.52) and a negative pair (S1, S3),
the model optimizes the following loss function:

L = max (0, cosine_similarity(vy, v2)

2

—cosine_similarity(vy, vs) + A)

where A is a margin hyperparameter that controls
the minimum desired similarity difference, and v
and vq are the vector representations of sentences
Sl and 52.

Finally, we compute the cosine similarity be-
tween the target code vector and the repository
code vectors to identify the most semantically sim-
ilar samples. The formula is as follows:

Vi Vo

cosine_similarity(vy, ve) = Tvalival 3)

For each target sample, we rank the repository
samples by cosine similarity in descending order.
The top k£ matches, as specified by the parameter
number_top_matches, are selected and stored in a
result dictionary, which contains the matched code
snippets and their similarity scores. If a file path
is provided, the results are serialized and saved in
JSON format for further analysis or review.

3.3 SCLA Framework

Figure 1 illustrates the overall framework of SCLA.
We outline the three stages of the SCLA process
for generating smart contract code summarization.

Semantic Extraction: We use local extraction
methods to segment .sol files, avoiding parsing er-
rors. Regular expressions extract code and com-
ments, which are then passed to SemFlow for se-
mantic extraction. The function call graph and
semantic facts are stored in a repository, indexed
by contract file path, and named UUIDs.

Prompt Construction: SCLA uses few-shot
learning to enhance LLMs’ code summarization
performance. Sentence-Transformer (Reimers and
Gurevych, 2020) retrieves the top k£ semantically
similar code samples. The extracted semantic in-
formation, including function call graphs, function

arguments, function modifiers, and contract meta-
data, is integrated into the prompt.

LLMs Inference: The semantically enhanced
prompt, including the function call graph, is input
into the LLMs interface to improve understanding
of the function call sequence, resulting in higher-
quality code summarization.

Algorithm 1 Source Data to Function Call Tree

1: Input: Source code f to be parsed by Solparser; initialized empty dictio-
nary T'
. Output: Function call tree T'
AST < Solparser.parser( f)
T {}
. for each cin AST do
for each g in c do
for each z in g.calls do
n <— x.name
if n ¢ T'[c][g] then
T[c]lg]l[n] < {c: ¢,count : 1}

T[c][g][n].count < T[c][g][n].count 4+ 1

e
SRoSYeNUELY

14: end for

16: end for

17: for each ¢, g in T do

18: CreateCallTree(c, g, T'[c][g], T")
19: end for

20: return T

21: function CREATECALLTREE(p, k, n, T)
22: for each m in n.keys do

23: 0 < n[m]

24: if m ¢ T'[p][k].keys then

25: T{p][k][m] < Tlo.cl[m]

26: CreateCallTree(k, m, T'[o.c][m], T)
27: end if

28:  end for

29: end function

3.4 Control Flow Extraction

We use SemFlow, a component integrated with a
control flow extraction algorithm, to extract func-
tion call graphs from the AST as control flow input
in the prompt." The algorithm in 1 demonstrates
the entire extraction process. It first uses an AST
parsing tool to parse the input code into an AST.
The AST is traversed in a depth-first manner to
remove irrelevant nodes, such as imports. Function
nodes with calls are marked in the "FunctionCall"
field, allowing the construction of a reference tree
(lines 5-20 of Algorithm 1). The depth of the refer-
ence tree ranges from 2 to 3 layers, depending on
the presence of function calls. When a third-level
call points to a second or third-level node, the ref-
erence tree is transformed into a complete call tree
by grafting branch nodes (lines 21-29 of Algorithm
1). The call tree is then visualized using Graphviz
and saved to the code sample repository.

4 EXPERIMENT

In the empirical study, we conducted comparison,
ablation, and generalization experiments. First, we
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Figure 3: The Comparison of BLEU, METEOR, and ROUGE-L Scores on Our Test Set Under Five Different LLMs,
Using the SCCLLM and the Proposed SCLA for Zero-Shot Summarization Tasks.

Type Train | Validation | Test

Number 11032 2758 1000

Avg. tokens in codes 42.44 42.08 41.95
Avg. tokens in comments | 26.34 26.16 26.66

Table 1: Statistics of Experimental Dataset.

used SemFlow to process the raw data and generate
semantic facts, data flow graphs, and the semantic
sample library. The code snippets were then input
into SCLA for summarization and evaluation. In
the comparison experiment, we varied the num-
ber of few-shot learning samples and compared
the evaluation scores with baseline methods. Abla-
tion experiments assessed the contribution of dif-
ferent semantic components, while generalization
experiments extended SCLA to Java and Python
code summarization tasks. The results and expert
evaluations validate the effectiveness of SCLA in
generating smart contract code summarizations.

4.1 Experiment Settings

All our experiments are performed on a computer
equipped with an Nvidia GeForce RTX 4070Ti
GPU (12GB graphic memory), Gen Intel (R) Core
(TM) i9-13900K, running Ubuntu 22.04 LTS.

4.2 DataSet

The raw data for our study, provided by Liu et
al.(Liu et al., 2021), consists of 40,000 Solidity
smart contracts from Etherscan.io', authored by
professional developers and deployed on Ethereum.
Building on Yang et al.’s work(Yang et al., 2021),
we developed an extraction method using AST lo-
cation data to segment the code into distinct do-
mains and extract functions with their documen-
tation via regular expressions. After filtering low-
quality summarizations, we removed poor entries,
resulting in 14,790 method-comment pairs. The
dataset is divided into 11,032 training, 2,758 valida-
tion, and 1,000 test sets, with average token counts

"https://etherscan.io/

reported. Notably, unlike baselines, our approach,
SCLA, does not require a validation set.

4.3 Baseline

We compare our proposed SCLA with six state-of-
the-art methods, including general code summariza-
tion models such as CodeT5 (Wang et al., 2021),
CodeT5+ (Wang et al., 2023), and CodeBERT (?),
deep learning-based smart contract code summa-
rization methods MMTran (Yang et al., 2021)
and FMCEF (Lei et al., 2024), and smart contract-
specific code summarization methods based on the
latest LLMs, such as SCCLLM (Zhao et al., 2024).

4.4 Performance Metrics

To evaluate SCLA performance against baselines,
we adopted various automatic performance met-
rics, including BLEU-4 (Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), ROUGE-
L (Lin, 2004), and BLEURT (Sellam et al., 2020).
These metrics effectively assess the similarity be-
tween the automatically generated smart contract
summarization and the real human-generated sum-
marization. BLEURT, in particular, calculates sim-
ilarity based on sentence semantics by using a pre-
trained BERT model, providing a more accurate
reflection of semantic meaning.

4.5 Main Results

We conducted a comprehensive evaluation of the
LLMs-driven SCLA framework in two different
experimental setups. The framework demonstrated
significant performance improvements in smart
contract code summarization tasks in both zero-
shot and few-shot settings. These findings provide
valuable insights and contributions to the research
community. The specific results are as follows:
Zero-shot Results. To evaluate the impact
of function call graphs and internal functions on
LLMs-generated code summarization, we con-
ducted experiments using GPT-40, Gemini-1.5-Pro,
and Claude-3.5-Sonnet under zero-shot conditions.



BLEU-4 METEOR ROUGE-L
Model # of p-value
Zero-Shot | +CFG +IF | Gain(%) | Zero-Shot | +CFG +IF | Gain(%) | Zero-Shot | +CFG +IF | Gain(%)

Llama-3.2-1b-preview 11032 3.03 5.43 +79.21% 19.58 23.97 +22.42 18.88 23.49 +24.42 <0.01
GPT-40 11032 5.34 7.45 +39.51% 2232 26.62 +19.27 25.32 32.62 +28.83 <0.01
Gemini-1.0-Pro-Vision 11032 3.01 5.32 +76.74% 16.89 20.73 +22.73 18.46 20.31 +10.02 <0.01
Gemini-1.5-Pro 11032 3.21 5.87 +82.87% 19.89 25.61 +28.76 23.95 27.42 +14.49 <0.01
Claude-3.5-sonnet 11032 3.31 532 +60.73% 23.42 28.62 +22.20 25.82 30.12 +16.65 <0.01

Table 2: Performance of different LLMs on smart contract code summarization, measured using BLEU-4, METEOR,
ROUGE-L. p-values are calculated applying a one-sided pairwise Wilcoxon signed-rank test and B-H corrected.

Approach #of training sample | #of test sample | BLEU-4 | METEOR | ROUGE-L | BLEURT | p-values
CodeT5+ 11032 1000 28.95 45.62 49.77 57.79 /
CodeT5 11032 1000 27.24 43.31 49.03 52.61 /
CodeBERT 11032 1000 26.31 39.57 44.52 52.74 /
MMTran 11032 1000 22.12 38.92 40.12 54.73 /
FMCF 11032 1000 29.98 36.67 51.21 51.73 /
SCCLLM (One-Shot) / 1000 19.45 20.12 19.12 36.56 <0.01
SCCLLM (Three-Shot) / 1000 29.73 35.33 49.44 50.91 <0.01
SCCLLM (Five-Shot) / 1000 31.73 48.12 60.44 58.74 <0.01
SCLA (Zero-Shot) / 1000 6.09 25.80 29.45 46.63 <0.01
SCLA (One-Shot) / 1000 25.46 42.78 47.55 57.07 <0.01
SCLA (Three-Shot) / 1000 35.15 51.80 55.89 63.11 <0.01
SCLA (Five-Shot) / 1000 37.53 52.54 56.97 63.44 <0.01

Table 3: The impact of different few-shot learning quantities on SCLA performance with Gemini-1.5-Pro. p-values
are calculated applying a one-sided pairwise Wilcoxon signed-rank test and B-H corrected.

Type Zero-Shot One-Shot Three-Shot Five-Shot
Avg. tokens in prompt 561.4 1154.8 22425 3330.3

Table 4: Number of Tokens Consumed with Different
Numbers of Learning Sample for SCLA.

The experiment had two phases: first, the target
code was embedded into the prompt and evaluated
with standard metrics; second, the prompt was en-
hanced with internal functions and control flow
graphs, followed by re-evaluation. Table 2 shows
that incorporating internal functions and call graphs
improved summarization. GPT-40 improved by
39.51%, 19.27%, and 28.83%; Gemini-1.5-Pro by
82.87%, 28.76%, and 14.49%; and Claude-3.5-
Sonnet by 60.73%, 22.20%, and 16.65%. However,
Gemini-1.5-Pro underperformed compared to GPT-
40 and Claude-3.5-Sonnet. These results validate
our hypothesis that control flow graphs enhance
smart contract summarization. To further val-
idate the control flow prompt’s effectiveness, we
compared SCLA with SCCLLM using five mul-
timodal models on the test set. Results in Figure
3 show SCLA outperforming SCCLLM in BLEU,
METEOR, and ROUGE-L scores. This demon-
strates that SCLA with the control flow prompt
outperforms SCCLLM, confirming the effective-
ness of control flow prompts.

Few-shot Results. To evaluate the performance
of SCLA against SOTA baseline models, we con-
ducted a validation experiment. Since SCLA em-

ploys few-shot learning, we tested its performance
under Zero-Shot, One-Shot, Three-Shot, and Five-
Shot conditions to investigate the number of learn-
ing samples required for optimal performance.
The results (see Table 3) indicate that SCLA ini-
tially lags behind the baseline models in Zero-Shot
and One-Shot settings. However, starting from
Three-Shot, SCLA outperforms the baseline mod-
els across all four evaluation metrics: BLEU-4,
METEOR, ROUGE-L, and BLEURT. Compared
to FMCF, SCLA improved by 17.24%, 41.26%,
9.14%, and 22.00%, and compared to CodeT5+,
the improvements were 21.42%, 13.55%, 12.30%,
and 9.21%. Compared to all baseline models,
SCLA showed average improvements of 26.7 %,
23.2%,16.7%, and 14.7 % in these metrics. Per-
formance continued to improve under Five-Shot,
although the gains were modest. We also analyzed
token consumption to determine the optimal num-
ber of few-shot samples (see Table 4). The token
consumption for Five-Shot was 48.51% higher than
for Three-Shot, but the average improvement in
generated code summarization metrics was only
2.20%. Therefore, Three-Shot provides the best
balance between performance and efficiency.

4.6 Ablation Study

We conducted We conducted ablation experiments
to assess the contributions of different semantic
facts in SCLA. The goal was to quantify the impact



BLEU-4 BLEURT
Language Model ol Test Sample o7 TM T SCLA | Gain (%) | SCCLLM | SCLA | Gain (%) | P-Y21ues
GPT-40 1000 2859 | 3843 | +34.42 5034 | 68.89 | +36.85 | <0.01

Java Gemini-1.5-Pro 1000 2322 | 3143 | +3536 5633 | 63.67 | +13.03 | <0.01
Claude-3.5-sonnet 1000 31.05 39.13 +26.02 58.89 70.90 +20.40 <0.01

GPT-40 1000 2278 | 2956 | +29.76 5590 | 64.23 | +1490 | <0.01

Python | Gemini-1.5-Pro 1000 2015 | 2606 | +29.33 5178 | 61.03 | +17.86 | <0.01
Claude-3.5-sonnet 1000 2545 | 3377 | +32.69 5821 | 7356 | 42637 | <0.01

Overall / / 2521 | 33.06 | +31.14 5524 | 67.05  +21.38 | <0.01

Table 5: The performance of SCLA and SCCLLM on the Java and Python tasks, driven by three different LLMs,
was evaluated using BLEU-4 and BLEURT as metrics. To assess the statistical significance of the results, p-values
were calculated using a one-sided pairwise Wilcoxon signed-rank test, with Benjamini-Hochberg (B-H) correction

applied for multiple comparisons.

Approach | #of Training Sample | #of Test Sample Java Python
BLEU-4 | METEOR | ROUGE-L | BLEU-4 | METEOR | ROUGE-L
CodeBERT 8000 1000 19.91 25.11 34.34 20.56 33.37 33.19
CodeT5 8000 1000 2245 28.98 41.98 28.82 37.98 39.52
CodeT5+ 8000 1000 28.82 39.79 49.31 34.67 46.98 47.34
SCLA / 1000 34.34 50.66 60.71 37.34 52.61 57.49

Table 6: The performance of our proposed method and the baseline model was evaluated on Java and Python

datasets.

Approach Prompt Component BLEU-4 METEOR ROUGE-L BLEURT
ALL 6.09 25.80 29.45 46.63
-CFG 5.21 27.77 27.94 45.90
-IF 4.42 25.43 26.23 44.56
-Id&MGV 5.62 25.47 29.01 46.32
-ALL 0.85 20.28 18.53 4353
Table 7: Ablation study. Effect of Semantic Augmenta-
tion on Gemini-1.5-Pro Generated Summarization. CFG
is Control Flow Graph, IF is Inner Function, [d&kMGV

is Identifiers&Global Member Variables.
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Figure 4: Human Evaluation Results of 300 Code Sum-
marizations Generated by SCLA and the Baseline.

of each component on Gemini-1.5-Pro’s code sum-
marization performance. Five experiments were
performed by selectively removing semantic ele-
ments used in semantically enhanced prompts, all
under Zero-Shot learning. The results, shown in Ta-
ble 7, highlight the importance of inner function or-
dering, function call graphs, identifiers, and global
member variables. Removing inner functions re-
sulted in performance drops of 27.42%, 1.43%,
10.93%, and 4.44% across key metrics. Excluding
the function call graph caused declines of 14.45

(BLEU-4), 5.13 (ROUGE-L), and 1.57 (BLEURT).
The removal of identifiers and global member vari-
ables led to decreases of 7.72%, 1.28%, 1.49%,
and 0.65%. These findings confirm that inline
functions and call graphs are crucial for improv-
ing Gemini-1.5-Pro’s code summarization. Addi-
tionally, experiments underscore the significance
of global member variables in maintaining se-
mantic consistency, while function call graphs
provide a structural understanding that directly
influences summarization accuracy. Removing
these elements disrupts both the coherence and
comprehensiveness of the generated summariza-
tion. Ultimately, the ablation study validates the
necessity of each semantic component for optimiz-
ing code summarization performance in scenarios.

4.7 Human Evaluation of Summarization
Generated by SCLA and the Baseline

To assess the summarization generated by SCLA,
we randomly selected 300 samples from the smart
contract code summarization generated by SCLA
and baseline models for manual evaluation. This
evaluation focused on similarity, conciseness, and
completeness, categorizing the summarization as
usable or unusable. To reduce subjectivity and
bias, six volunteer evaluators, all Chinese graduate
students with experience in smart contract devel-
opment, were recruited and briefed on the research
and evaluation standards. The results, shown in
Figure 4, reveal that SCLA generated the fewest
unusable summarization (38), outperforming all



Example

#Input Function Code

function transferDataOwnership (address _addr) onlyOwner public {
data.transferOwnership(_addr);

3

#inner function code

function transferOwnership(address _newOwner) public onlyOwner {
_transferOwnership(_newOwner);

}
Approach Coment BLEU-4 METEOR ROUGE-L
Ground Truth Transfer ownership of data contract to _addr. _addr address. NA NA NA
CodeBERT of an to another. 5120 28.00 67.00
_addr address to transfer to.
Allows the owner to control of the contract to an
CodeT5 . 42.48 26.64 47.62
_addr The address to transfer ownership to.
CodeT5+  Allows the owner to control of to _addr. 60.68 41.67 60.00
SCLA Transfers ownership of the data contract to _addr. 70.77 72.70 75.00

Table 8: An example illustrating the effectiveness of SCLA.

baseline models. These findings demonstrate
that SCLA is more likely to generate satisfactory
smart contract code summarization, reducing
the chances of low-quality outputs.

4.8 Case Study

Upon reviewing the results, we found that the
SCLA prompt includes crucial information for
effective summarization. Table 8 highlights the
differences between real-world smart contract ab-
stracts and Summarization generated by Code-
BERT, CodeT5, CodeT5+, and SCLA. CodeBERT
identifies key terms like "transfer," "ownership,"
and "address," but lacks clarity, with ambiguous
pronoun references and repetition of the transfer
concept. CodeT5 captures "onlyOwner" but over-
looks broader global semantics, rendering the sec-
ond sentence redundant. CodeT5+ addresses this
limitation with more precise terminology, such
as identifying the object as a "data contract." In
contrast, SCLA’s Summarization aligns more
closely with real-world Summarization, being
both more concise and semantically accurate,
omitting redundancy for a much clearer, more
refined, and contextually precise structure.

4.9 Generalization Study

To evaluate the generalization and representa-
tiveness of SCLA, we selected 10,000 samples
each from Java and Python in the CodeSearch-
Net dataset (Husain et al., 2019). From these,
1,000 samples per language were randomly cho-
sen as test sets. We compared SCLA’s per-
formance against state-of-the-art fine-tuned mod-
els—CodeT5, CodeT5+, CodeBERT, and SC-

CLLM—using BLEU-4, METEOR, and ROUGE-
L. On the Java dataset, SCLA outperformed
CodeT5+ with improvements of 19%, 12%, and
23% in BLEU-4, METEOR, and ROUGE-L, re-
spectively. On the Python dataset, SCLA showed
gains of 7%, 18%, and 21%, respectively. We fur-
ther compared SCLA to SCCLLM on both datasets
using BLEU-4 and BLEURT. With LLMs GPT-
40, Gemini-1.5-Pro, and Claude-3.5-Sonnet, SCLA
consistently outperformed SCCLLM, achieving an
average improvement of 31.14 in BLEU-4 and
21.38 in BLEURT. These results demonstrate
that SCLA’s control flow-based prompts gener-
alize effectively to Java and Python, enhancing
the LLMs’ ability to capture code structure and
improve summarization quality.

5 Conclusion

We propose that control flow graphs enhance
LLMs’ understanding of smart contract code se-
mantics, and experiments confirm their positive im-
pact on code comprehension. Ablation studies as-
sess the contribution of each prompt component to
summarization quality. SCLA is a framework that
combines LLMs with control flow prompts, out-
performing six baseline models. The experiments
show that, compared to other baseline models,
SCLA significantly improves BLEU-4, METEOR,
ROUGE-L, and BLEURT scores with improve-
ments of 30.34%, 23.15%, 16.74%, and 14.86%,
respectively. We also extended SCLA to Java
and Python code, further improving summarization
and providing new insights for advancing LLM-
generated code summarization.



Limitations

Our framework enhances Gemini-1.5-Pro’s under-
standing using function call graphs. However,
Gemini-1.5-Pro struggles with deep call stacks
or circular calls. Figure. 5 shows that circular
chains, like transferFrom — removeTokenFrom —
ownerOf — isApprovedOrOwner — transferFrom,
confuse the model, leading to misinterpretations
and incorrect summarization. In contrast, Gemini-
1.5-Pro handles typical tree structures even with a
depth of 5. Further research is needed to explore
the impact of loop calls and depth on-call interpre-
tation.

Another key challenge in using LLMs for smart
contract code summarization is the potential expo-
sure of test data during pre-training. Since general-
purpose LLMs like GPT-40 and Gemini-1.5-Pro
are not publicly accessible, direct verification of
this exposure is difficult. Additionally, LLMs’
memorization capability can produce artificially
high scores if prior summarizations are retained.
We also analyzed the effect of few-shot learning
on SCLA’s performance in Section 3. Our results
show that SCLA outperforms the baseline with a
Three-Shot setup, while performance gains plateau
at five shots, with a 1.5x increase in computational

cost.
clear \pprova . isApproveOrOwner

isApproveForAll

address

Figure 5: An Example of a Function Call Graph in
Which Gemini-1.5-Pro Has Difficulty Understanding
the Call Information.
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