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Abstract

Type 2 Diabetes (T2D) is a common chronic disease that can lead to serious comor-
bidities. Prediabetes is a state of increased health risk that is defined by abnormal
glucose homeostasis and is strongly associated with the development of T2D and
diabetic complications. Novel diagnostic or screening tools are required to identify
T2D and prediabetic patients. In this study, we developed a predictive model
that uses continuous glucose monitoring (CGM) signals to classify individuals
as T2D, prediabetic, or healthy. We tested different durations of CGM signals to
determine the minimum length of time required to achieve a reliable prediction
of diabetic outcomes. We found that 12 hours of CGM signals were sufficient to
achieve a classifier with a high degree of accuracy. The performance of the 12-hour
model was equivalent to the performance of a model using the full period of CGM
signals. The 12-hour model achieved AUCs of 0.83, 0.69, and 0.77 to identify T2D,
prediabetes, and healthy individuals, respectively. The overall AUC of the 12-hour
ensemble model was 0.86. Our findings propose a new application of currently
available CGM systems to identify T2D and prediabetes based on only a short-time
series of glucose profiles.

1 Introduction

Diabetes is a chronic metabolic disease characterized by elevated blood glucose (BG) levels due to
insufficient insulin production or decreased insulin sensitivity [1]. Diabetes has become a major
public health problem worldwide with an estimated 463 million people diagnosed. T2D accounts for
approximately 90% of the diagnosed population [2]. T2D can lead to serious damage to the heart,
eyes, kidneys, and nerves if patients fail to receive appropriate treatment on time [1]. Prediabetes is
a state of increased health risk that is defined by abnormal glucose homeostasis, such as impaired
fasting glucose or impaired glucose tolerance [3]. It is increasingly recognized as a critical metabolic
state, since prediabetic individuals are at increased risk of developing T2D and diabetic complications.
The global prevalence of prediabetes was estimated at 7.3% of the adult population in 2017 [4]. It
also has been reported that about 90% of prediabetic U.S adults were unaware of their condition [5].
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When potential T2D is detected early, patients may delay or prevent progression to diabetes. Disease
prevention is significantly less expensive than the treatment of T2D and diabetic complications.
Therefore, developing a new test to identify potential patients with T2D or prediabetes is essential
for improving patient outcomes and quality of life, reducing the medical burden, and enhancing
overall population health. Here, we propose a novel predictive model that can classify T2D patients,
prediabetic patients, and healthy individuals using continuously reported blood glucose levels. To
do this, we recruited 436 participants (172 T2D, 87 prediabetes and 177 healthy individuals) and
measured the blood glucose levels of participants as they went about their daily lives. Next, we
investigated the effect of different durations of CGM signals on the identification of patient types,
and found the minimum duration of CGM signals required to build a reliable predictive model.

2 Related Work

A CGM measures blood glucose levels every 15 minutes for a maximum of 14 days. In addition to
blood glucose levels, CGM systems provide alerts if hypo- or hyper-glycemic events, which can lead
to serious medical complications [6, 7], are detected. CGM systems also provide information on
glucose variability, such as the degree of BG level fluctuation, variance from average BG levels, and
the frequency of variations [8].

Researchers have explored various applications of CGM data by integrating machine-learning algo-
rithms such as XGBoost [9], convolutional neural network [10], and recurrent neural network [11, 12]
to predict future BG levels in 30-60 minutes, hypoglycemia events [12, 13], and hyperglycemia
events [13] in diabetic patients. CGM data, also, has been used to predict the level of glycated
hemoglobin (HbA1c), whose elevated level is significantly associated with the risk of developing
diabetic complications [14].

Recently, stratification of different patient types using CGM data has been investigated. From the
analysis of CGM profiles, subsets of glycemic variability indices that distinguished healthy individuals
from subjects with diabetes [15] and distinguished individuals with impaired glucose tolerance from
T2D patients [16, 17] have been proposed. Through a multilevel clustering approach, four subgroups
of T2D patients showing distinct CGM profiles and physiological characteristics were proposed
[18]. Detrended fluctuation function has been applied to the CGM data to classify T1D and T2D
patients [19]. Nevertheless, several challenges have remained. Many studies used a small number
of samples which restricted applying machine- or deep-learning algorithms to build a classifier, and
achieve reliable performance to identify T2D, prediabetes, and healthy individuals. Furthermore, it
still remains unknown what time duration of CGM signals can capture unique glucose profiles for
patients with T2D, prediabetes, and healthy individuals (i.e. how many hours of CGM recordings are
sufficient to classify patient types).

3 Methods

3.1 Data

3.1.1 Collecting CGM signals and demographic information

In this study, 568 participants were recruited from 4 states in India. The study was performed in
accordance with relevant guidelines and regulations, and informed consent was obtained from all
participants prior to study entry. Participants’ blood glucose levels were measured using a FreeStyle
Libre Pro glucose monitoring device (Abbott Diabetes Care). Participants were requested to report
sex and age, and measured height, weight, and body mass index (BMI) at the first day of wearing a
device. HbA1c concentration was measured at the last day of wearing a device. On average, each
participant wore a CGM device for 12 days (288 hours), and we considered 288 hours as the full-time
duration of CGM signals. 132 participants failed to measure BG levels due to a malfunctioning CGM
device or failed to collect demographic information and were therefore removed from our dataset.

3.1.2 Defining T2D, prediabetes and healthy individuals

T2D patients have HbA1c > 6.5%. Their disease states are confirmed by medical doctors. Prediabetes
patients have HbA1c concentration between 5.5% and 6.5%. Healthy individuals have HbA1c < 5.5%.
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Table 1: Patient types and demographic characteristics

T2D Prediabetes Healthy individual

Number 172 87 177
Sex (Female / Male) 50 / 122 29 / 58 69 / 108
Age (years) 51 ± 9 40 ± 12 30 ± 10
BMI 27.42 ± 5.08 27.47 ± 4.80 27.32 ± 5.41
Height (cm) 164 ± 8.9 164 ± 7.4 162 ± 9.8
Weight (Kg) 73.45 ± 13.01 73.61 ± 12.32 71.35 ± 12.92
HbA1c (%) 8.59 ± 1.66 5.85 ± 0.28 4.94 ± 0.48
* Average value and standard deviation are reported.

HbA1c level of 6.5% is considered as a symptom of hyperglycemia or diabetes [20, 21]. HbA1c
level of 5.5% is related to the development of diabetes [22] and cardiovascular disease [23]. It is also
associated with increased all-cause mortality of patients with acute ischemic stroke [24].

Of the 436 participants used for analysis, 172 were T2D, 87 were prediabetes and 177 were healthy
individuals. Since T2D tends to be occurred more often in older adults [25], we observed T2D
patients are relatively older than prediabetic patients or healthy individuals. A summary of patient
types and demographic characteristics is shown in Table 1.

3.2 Predictive model development

3.2.1 Preprocessing CGM signals and building predictive models

To examine the effect of CGM signal duration on the prediction of patient types, we generated 5
CGM datasets that represented different time durations (window sizes): 12, 24, 72, 168, and 288
hours. To make a balanced training dataset, a window was slided with a stride size of 150 minutes
(T2D), 30 minutes (prediabetes), and 75 minutes (healthy individual). We only considered windows
without missing values for further analysis. Next, the 1D CGM signal with a given window size was
converted to a 2D spectrogram and fed into convolutional neural networks (CNNs). We used CGM
signals from 70% of the participants to train and validate predictive models, while the remaining 30%
of participants were used to test model performance. For the test set, we adopted a stride size of 150
minutes for all patient types. Adam was used to optimize a class-weighted cross-entropy loss. The
categorical accuracy was used for selecting the best model based on validation. The initial value for
the learning rate was 0.001, and 128 epochs were used to train the model with a batch size of 128-512
(depending on the input size). The total number of trainable parameters in this network were between
400,000 and 1,000,000 depending on the input size.

3.2.2 Generating baseline models using demographic information

As a baseline model, we built a random forest (RF) and XGBoost classifiers using patients’ demo-
graphic information, such as gender, age, height, weight, and BMI. Using grid-search, random forest
parameters (the number of trees, depth of each tree, number of features selected at random, and class
weight) and XGBoost parameters (number of trees, depth of each tree, and number of features to
choose from at every split in a given tree) were optimized to have the highest categorical accuracy.

4 Results and Discussion

4.1 Performance of CGM-based models on patient type classification

We investigated the prediction ability of CGM signals to classify T2D, prediabetes, and healthy
individuals. To examine whether the length of wearing a CGM device affected the prediction accuracy,
we processed the CGM data into short-time (12, 24, 72, and 168 hour windows) and full-time (288
hour windows) BG readings. Processed datasets were fed into CNN models to identify distinct patient
types. CGM-based models outperformed the baseline models (Table 2).

Both RF- and XGBoost-based baseline models had an overall balanced accuracy (BCC) of 0.48 (95%
confidence interval (CI) = 0.41 to 0.54) for RF and BCC of 0.54 (95% CI = 0.47 to 0.60) for XGBoost.
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Table 2: Performance of window-based predictions depending on the time duration of CGM signals

Overall performance (95% CI) Patient type-specific AUC (95% CI)

window size BCC AUC* Healthy individual Prediabetes T2D

12 hours 0.67 (0.66-0.68) 0.78 (0.773-0.784) 0.77 (0.76-0.78) 0.69 (0.68-0.70) 0.83 (0.821-0.835)
24 hours 0.67 (0.66-0.68) 0.79 (0.781-0.792) 0.76 (0.75-0.77) 0.66 (0.65-0.67) 0.87 (0.868-0.880)
72 hours 0.68 (0.675-0.692) 0.79 (0.785-0.796) 0.77 (0.76-0.78) 0.68 (0.67-0.69) 0.86 (0.85-0.87)
168 hours 0.67 (0.66-0.68) 0.80 (0.787-0.805) 0.80 (0.79-0.81) 0.62 (0.61-0.64) 0.87 (0.86-0.88)
288 hours 0.67 (0.65-0.70) 0.79 (0.78-0.82) 0.81 (0.79-0.84) 0.63 (0.59-0.67) 0.86 (0.84-0.88)
Demographic info. only (RF) 0.48 (0.41 - 0.54) 0.65 (0.58-0.71) 0.67 (0.57-0.77) 0.49 (0.35-0.63) 0.71 (0.62-0.81)
Demographic info. only (XGBoost) 0.54 (0.47 - 0.60) 0.70 (0.63-0.76) 0.76 (0.67-0.85) 0.52 (0.38-0.66) 0.72 (0.63-0.82)
* Weighted AUC was measured to correct imbalanced data.

Table 3: Performance of ensemble predictions depending on the time duration of CGM signals

Overall performance (95% CI) Patient type-specific AUC (95% CI)

Ensemble of windows BCC Weighted AUC Healthy individual Prediabetes T2D

12 hours 0.81 (0.74-0.86) 0.86 (0.81-0.91) 0.86 (0.80-0.93) 0.84 (0.77-0.92) 0.87 (0.80-0.93)
24 hours 0.75 (0.66-0.82) 0.84 (0.79-0.90) 0.84 (0.77-0.91) 0.73 (0.62-0.84) 0.90 (0.84-0.96)
72 hours 0.75 (0.65-0.83) 0.83 (0.77-0.89) 0.82 (0.74-0.90) 0.76 (0.66-0.86) 0.86 (0.80-0.93)
168 hours 0.68 (0.59-0.75) 0.81 (0.75-0.86) 0.81 (0.73-0.89) 0.64 (0.52-0.77) 0.88 (0.82-0.94)
288 hours 0.68 (0.60-0.76) 0.80 (0.75-0.86) 0.81 (0.73-0.89) 0.63 (0.51-0.76) 0.88 (0.81-0.94)
Demographic info. only (RF) 0.48 (0.41 - 0.54) 0.65 (0.58-0.71) 0.67 (0.57-0.77) 0.49 (0.35-0.63) 0.71 (0.62-0.81)
Demographic info. only (XGBoost) 0.54 (0.47 - 0.60) 0.70 (0.63-0.76) 0.76 (0.67-0.85) 0.52 (0.38-0.66) 0.72 (0.63-0.82)

Baseline models showed the lowest performance to detect prediabetic patients (Area Under the Curve
(AUC) = 0.49 for RF and 0.52 for XGBoost). CGM-based models improved overall BCC by 140%
and AUC by 122%. CGM-based models also showed 1.21, 1.34, and 1.17 times higher prediction
accuracy to identify T2D, prediabetes, and healthy individuals, respectively. Our findings imply that
physiological indices could be weak indicators whereas CGM signals have the predictive power to
classify different patient types.

We found that the 12-hour model achieved a competitive performance compared to the longer duration
time-based models. The 12-hour model showed an overall BCC of 0.67 (95% CI = 0.66 to 0.68),
which was equivalent to the performance of the model using the full-time CGM signals (Table 2).
The 12-hour model had an overall AUC of 0.78 (95% CI = 0.773 to 0.784), which was similar to
those of other models. The model also showed the highest accuracy to identify prediabetes (AUC =
0.69), and had high ability to predict T2D (AUC = 0.83) and healthy individuals (AUC = 0.77). Our
results suggest that using only 4% of the entire duration of CGM signals is enough to capture unique
BG characteristics of individual patient types.

4.2 Ensemble analysis and prediction of patient types

To examine whether ensemble predictions improved predictive performance, we assigned an overall
individual patient type based on the majority of short-time predictions. Ensemble predictions showed
higher accuracy (average 109% increase) and weighted AUC (average 105% increase) compared
to window-based predictions. Interestingly, we found that predictive performance improved more
when shorter-time CGM signals were combined. For example, the 12-hour ensemble model achieved
120% and 111% improvements in BCC and AUC compared to the 12-hour model. Meanwhile, we
only found 101% - 103% improvements in BCC and AUC for the 168-hour and 288-hour ensemble
models. The 12-hour ensemble model showed the highest overall BCC (0.81, 95% CI = 0.74-0.86)
and weighted AUC (0.86, 95% CI = 0.81-0.91). Patient type-specific AUCs were 0.87, 0.84, and 0.86
for T2D, prediabetes, and healthy individuals, respectively (Table 3). We suspect that the short-time
series of CGM signals contain information to identify distinct patient types, and their aggregation
could enhance the predictive performance.

4.3 CGM signal and demographic characteristics of miss-classified participants

From the 12-hour ensemble prediction, we found that 23 participants were misclassified. To under-
stand the cause of misclassification, we examined the changes in BG levels for these participants.
We found that misclassified participants were likely to have unusual BG measurement patterns. For
example, misclassified participants tended to report the same BG levels continuously over time. We
counted the number of continuous blocks, which are a group of continuous timestamps with the
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same BG level, and found that misclassified participants have continuous blocks 1.2 times more than
correctly predicted participants (Mann-Whitney U test, P = 0.004). We suspect that misclassified
participants generated 12-hour windows which were mainly composed of constant CGM signals,
and these unusual BG measurements caused poor window-based predictions leading to the failure
of ensemble prediction. No significant association was observed between misclassification and
demographic indices: age (P = 0.36), height (P = 0.20), weight (P = 0.21), BMI (P = 0.38), and
HbA1c (P = 0.27).

5 Conclusion

In this study, we demonstrated the potential application of CGM systems for the quick and accurate
screening of diabetic outcomes. 12 hours of glucose profiles provide enough information to identify
T2D, prediabetes, and healthy individuals, and are sufficient to achieve a classifier with a high degree
of accuracy.

Based on our knowledge, our predictive model is the first CNN-based model which is trained
and tested by over 400 participants’ CGM signals, and classifies T2D, prediabetes and healthy
individuals. Several studies have been conducted to identify patients with impaired glucose tolerance
or diabetes [15–17, 19]. These studies collected CGM signals from a small number of participants
(∼ 100 participants) and mainly focused on the classification of two patient groups (e.g. T2D vs
impaired glucose tolerance or T1D vs T2D or healthy individual vs diabetic patients). Therefore,
a direct comparison between our model and previous studies is challenging. We suggest that our
predictive model could be benchmarked to other similar research studies.

Future developments should consider the imputation strategies for missing BG values to reflect the
real-world behavior of the CGM device, and the application of CNN-based predictive models on
larger holdout datasets with shorter durations of CGM signals (e.g. less than 12 hours) to evaluate the
robust classification of patient types in different experimental settings.
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