Under review as a conference paper at ICLR 2025

GREC: DOUBLY EFFICIENT PRIVACY-PRESERVING REC-
OMMENDER SYSTEMS FOR RESOURCE-CONSTRAINED
DEVICES

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated recommender system (FedRec) has emerged as a solution to protect
user data through collaborative training techniques. However, the real-world
implementation of FedRec is hindered by two critical resource constraints of
edge devices: a) limited upload bandwidth and b) limited user computational
power and storage. Existing methods addressing the first issue, such as message
compression techniques, often result in accuracy degradation or potential privacy
leakage. For the second issue, most federated learning (FL) protocols assume that
users must store and maintain the entire model locally for private inference, which
is resource intensive. To address these challenges, we propose doubly efficient
privacy-perserving recommender systems (GREC) consisting of both training
and inference phase. To reduce communication costs during the training phase,
we design a lossless secure aggregation (SecAgg) protocol based on functional
secret sharing leveraging the sparsity of the update matrix. During the inference
phase, we implement a user-side post-processing local differential privacy (LDP)
algorithm to ensure privacy while shifting the bulk of computation to the cloud. Our
framework reduces uplink communication costs by up to 90x compared to existing
SecAgg protocols and decreases user-side computation time during inference by
an average of 11x compared to full-model inference. This makes GREC a practical
and scalable solution for deploying federated recommender systems on resource-
constrained devices.

1 INTRODUCTION

Personalized recommendation systems (RecSys) model the interactions between users and items to
uncover users’ interests. To understand the underlying preferences of users and properties of items,
various model-based approaches have been developed to learn hidden representations of both users
and items [Koren et al.| (2009); Xue et al.| (2017); Rendle| (2010). These methods embed users and
items into fixed-size latent vectors, which are then used to predict interactions. The parameters of
these latent vectors are known as user and item embeddings.

The development of personalized recommendation systems (RecSys) relies heavily on collecting user
profiles and behavioral data, such as gender, age, and item interactions. However, the sensitive nature
of this information often makes users hesitate to share it with service providers. Recent advancements
in edge computing have provided a potential solution through federated learning (FL), which allows
users to collaboratively train models on their local devices without exposing personal dataMcMahan
et al. (2017). In a typical FL setup, a central server aggregates model updates from multiple edge
devices. The aggregated parameters are then redistributed to the devices for further training. During
inference, users employ the locally stored global model to make predictions on previously unseen
items, maintaining privacy while benefiting from collective learning.

Despite various FL-based architectures proposed for RecSys|Ammad-Ud-Din et al.|(2019); [Chai et al.
(2020); Jia & Lei/(2021); Wang et al.|(2022), there remains a significant gap between research and
real-world applications, mainly due to the resource limitations of edge devices. Two critical resource
constraints in FL-based RecSys are: (1) Limited upload bandwidth. Clients in federated networks
often experience slower upload speeds compared to downloads. This issue becomes particularly



Under review as a conference paper at ICLR 2025

problematic in latent factor-based RecSys, where the communication payload for uploads scales
linearly with the number of items, potentially leading to substantial transmission overhead in practical
applications. (2) Limited user computational power and storage. Edge devices generally have limited
processing capabilities, memory, and storage compared to centralized servers. Running large models
locally can place a heavy computational burden on users, degrading performance and negatively
impacting the user experience.

To address the first constraint, existing message compression methods can be categorized into three
categories: (1) Top-K sparsification that transmits a subset of updates to reduce the message size
Gupta et al.|(2021)); |Aji & Heafield| (2017). (2) Quantization that represents each element in the
gradients with fewer bits|Zheng et al.|(2023). (3) Dimension reduction that involves factorizing the
transmission matrix into low-rank matrices or projecting the matrix into a lower-dimensional space
Nguyen et al.|(2024)); Shin et al.| (2018)). However, these methods are lossy in principle and often
result in non-negligible accuracy loss in practice, highlighting the need for a lossless communication-
efficient approach. For the second constraint, many FL protocols require users to store the entire
global model for both training and inference, placing considerable demands on long-term storage and
computational resources—especially for resource-constrained edge devices.

In practice, users typically interact with only a small subset of available items, which presents two
key opportunities for payload optimization. First, during training, only the embeddings of the items a
user interacts with are relevant for model updates. As a result, users can store and update only these
relevant item embeddings, significantly reducing computational and storage overhead. While this
approach effectively addresses the training phase, there is a noticeable lack of research focused on
minimizing costs during inference. For subsequent recommendations, users are often required to
retain the entire item embedding matrix, which is resource-intensive. An ideal solution would enable
cloud-based inference that preserves user privacy by keeping their embeddings and features secure
from the server, while offloading the bulk of the computational burden.

Secondly, the update vector is highly sparse in that only a small subset of the item embeddings are
non-zero. Therefore, it is desirable to make the per-user communication succinct, i.e., independent
of or logarithmic in the item size. A naive solution is to transmit only updates of rated items to the
server, possibly supplemented with fake items sampled [Lin et al.| (2022)). However, this method
compromises privacy by revealing which items the user has rated, or significantly narrowing the set
of potential rated items. To protect user interaction data, it is crucial to ensure that no information
about the specific update vector is disclosed to the server, aside from its aggregate. At the same
time, communication efficiency should be achieved by leveraging the sparsity of the update vector,
ensuring both privacy and reduced transmission overhead.

In this paper, we propose doubly efficient privacy-perserving recommender systems (GREC) that
collectively address the above challenges. To reduce communication costs during the training stage,
we design a secure aggregation protocol based on functional secret sharing Boyle et al.| (2015
2016)), achieving succinct communication cost. Unlike methods based on dimension reduction, top-k
sparsification, or quantization, our protocol reduces communication costs without compromising
accuracy and privacy. For privacy-preserving inference, we introduce a user-side post-processing
local differential privacy (LDP) algorithm, which performs cloud inference on users’ privatized
embeddings and subsequently allows users to locally post-processing the server response using their
knowledge of raw inputs and specific noise. This approach effectively resolves the inherent trade-off
between privacy and utility for traditional LDP approaches.

We defer the discussion of related work to appendix The contribution of our work can be
summarized as follows:

(1) We develop a SecAgg protocol that achieves succinct communication by exploiting the sparsity of
the embedding update matrix. Although existing SecAgg protocols incur communication overhead
that scales linearly with model size, our approach significantly improves upon this by achieving a
slower scaling rate as the model size grows.

(2) We design a cloud inference approach for recommender systems with LDP guarantee. This
method significantly reduces users’ computational and storage overheads relative to the full model
inference required by existing FL protocols, and addresses the inherent trade-off between utility and
privacy in traditional LDP-based methods.



Under review as a conference paper at ICLR 2025

2 BACKGROUND AND PRELIMINARIES

2.1 PROBLEM STATEMENT

In FedRec, a number of users want to jointly train a recommendation system based on their private
data. Denote U = {uq,us, ..., u, } as the set of common users and Z = {41, i2, ..., %, } as the set of
items. Each user v € U has a private interaction set R,, = {(4,7,:)|¢ € Z,} C [m] x R, where Z,,
denotes the set of items rated by user v and r,, ; denotes the rating user u gives to item ¢. Denote
X € R"*l= and Y € R™*!v, respectively, as the user and item feature matrix. Our goal is to generate
a rating prediction that minimizes the squared deviation between actual and estimated ratings.

We focus on a class of RecSys that models low-dimensional latent factors for user and items [Koren
et al.| (2009); [Xue et al.[(2017); Rendle| (2010). The recommender fits a model f comprising of
d-dimensional latent factors (or embeddings) for user P € R"*¢ and item Q € R™*?, along with
the remaining parameters 6. Denote p,, € R? and ¢; € R? as the latent factors (or embeddings) for
user v and item ¢. A general form of the rating prediction can be expressed as:

Pui = f(Tu, Yii Pus €, 0) )

, where z,, € Rl= and Yi € Rl denote the feature vector for user v and item 4, and i 18 the
estimated prediction for user u on item i.

Denote [(-) as a general loss function. The model is trained by minimizing:

L= 1(rus i) )

The remaining parameters 6 typically include but are not limited to: (1) Feature extractors that convert
user and item feature vectors into fixed size representations, denoted as F), : Rl= — RlaXd gpd
F, : Rlv — Rb>4 respectively. (2) The feed-forward layers within a deep neural network model.

In each training round, users locally update their private parameters ©, and upload their updates
of public parameters gg, to the server. To safeguard the privacy of individual gradients, the server
employs SecAgg to aggregate the gradients from all active clients and update the public model O.

2.2 FUNCTIONAL SECRET SHARING

Our protocol leverages functional secret sharing (FSS) Boyle et al.| (2015} |2016)) to optimize the
communication payload. FSS secret shares a function f : {0,1}" — G, for some abelian group G,
into two functions f1, f2 such that: (1) f(z) = 25:1 fi(z) for any z, and (2) each description of f;
hides f.

Definition 2.1 (Function Secret Sharing). A function secret sharing (FSS) scheme with respect to a
function class F is a pair of efficient algorithms (FSS.Gen, FSS.Eval):

* FSS.Gen(1*, f): Based on the security parameter 1* and function description f, the key
generation algorithm outputs a pair of keys, (k1, k2).

» FSS.Eval(k;, z): Based on key k; and input = € {0, 1}", the evaluation algorithm outputs
party 4’s share of f(z), denoted as f;(z). f1(z) and fo(x) form additive shares of f(x).

FSS scheme should satisfy the following informal properties (defined formally in Appendix [A.3.2):

* Correctness: Given keys (k1, ko) of a function f € F, it holds that FSS.Eval(kq, z) +
FSS.Eval(ks, z) = f(x) for any x.

* Security: Given keys (k1, k2) of a function f € F, a computationally-bounded adversary
that learns either k; or k2 gains no information about the function f, except that f € F.

A naive form of FSS scheme is to additively secret share each entry in the truth-table of f. However,
this approach results in each share containing 2" elements. To obtain polynomial share size, nontrivial
scheme of FSS has been developed for simple function classses, e.g., point functions Boyle et al.
(20155 2016). Our approach utilizes the advanced FSS scheme for the point function. In the following,
we provide the formal definition of point function.



Under review as a conference paper at ICLR 2025

Definition 2.2 (Point Function). For @ € {0,1}" and 8 € G, the point function f, 5 : {0,1}" — G
is defined as f,, g(a) = B and f, g(z) = 0 for x # a.

2.3 DIFFERENTIAL PRIVACY

Differential privacy (DP) Dwork| (2006); |Cormode et al.|(2018)) is regarded as the gold standard for
privacy protection. We introduce the definition of local differential privacy (LDP), a specific case of
DP where the server is untrusted and data privatization is conducted by the client.

Definition 2.3 (Local Differential Privacy). A randomized algorithm M is (e, §)-locally differentially
private if it satisfies:

Pr[M(z) € S] < e Pr[M(z') € S|+ 4 3)

for any inputs x, ' € D and any measurable subset subset S C Range(M).

An essential property of DP algorithms is the post-processing immunity property, stating that the
composition of any data-independent function with a (¢, §)-DP mechanism will remain (e, §)-DP.

Definition 2.4 (Post-Processing). Let M : D — ) be an (¢, §)-differentially private mechanism and
f Y — Z be any data-independent function. Then, f o M is (¢, d)-differentially private.

It is important to note that the post-processing immunity only holds when f is independent of the
original data as well as the randomized mapping M. From the utility perspective, this property
implies a lower bound on the error rate of the results returned by any data-independent function f.

Recent works have developed post-processing mechanisms to enhance the accuracy of DP algorithms
by leveraging prior knowledge of data. Wang et al.|(2024) utilizes resampling techniques to improve
the utility of DP synthetic data on downstream tasks. Balle & Wang| (2018) post-processes the
output of Gaussian mechanism with adaptive estimation technique. Split-and-Denoise [Mati et al.
(2024) divides the language model into a local encoder and a cloud encoder, and employs a user-side
pre-trained model to denoise output embedding. To bypass the post-processing immunity, our work
will use a user-side post-processing function that is dependent on the original data and mapping
mechanism M without additional effort to collect prior knowledge.

3 METHODOLOGY

In this section, we provide a detailed description of our GREC, illustrated in Figure|l} In the training
phase, our key design is a communication-efficient SecAgg algorithm to aggregate the gradients
of item embedding of the model. In the inference phase, our key design is a computation and
memory-efficient algorithm for privacy-preserving cloud-based recommendation. Our GREC ensures
consistent privacy and efficiency throughout the training and inference stage.

Bexf Generate FSS keys on
- EVICE = gradients for item embedding

Communication-efficient federated training

Model Secure aggregation on gradients
update for item embedding

Global model FSS keys

v
User embedding
never leaves
edge device

.

Item embedding
never fully
offloaded to
edge device

Server

Privatized user

representation Privacy-preserving cloud inference Noisy prediction

) -[ Device User representation ‘{ LDP perturbation ] [ User-side post-processing ]‘/ ]

Figure 1: Overview of GREC, consisting of training and inference phase.



Under review as a conference paper at ICLR 2025

3.1 TRAINING

Observing that the public gradients primarily consist of highly sparse item embedding updates, we
introduce a SecAgg protocol based on FSS to optimize the communication cost for the gradients of
item embedding. Algorithm 2]outlines the training process for GREC.

3.1.1 KEY OBSERVATION

In most practical recommendation scenarios, the number of items a user has previously interacted
with is typically much smaller than the total number of available items (see Figure 2(a)). This
observation is linked to the information overload phenomenon, which recommender systems aim to
address. Consequently, the gradient of the item embedding is zero for all items except those with
which the user has previously interacted.

Denote g as the gradient of item embedding (), which is a sparse matrix. If using a general-purpose
SecAgg, the communication cost to upload the sparse matrix is at least O(bmd), where b is number
of bits required to represent a single numerical value. It is important to note that this corresponds to
the bottleneck, since the embedding layer dominates the total model size as the item size increases

(see Figure 2(D)).

Our goal is to optimize the communication cost for embedding layer, as this can significantly reduce
the overall communication overhead, particularly under huge value of item size m.

® Item Embedding m Other Parameters

8000

4.61%

7000
90% users ML25M

6000 (62.4k Items)
5000
4000

3000

# Rated Items

2000 Yelp

(93.4kItems)
1000 k
—

User ID Embedding size d=32 Embedding size d=64

(a) Distribution of # rated items in ML10M (b) Proportion of parameters in DeepFM

Figure 2: (a) The long-tailed distribution of the number of rated items in ML10M. The x-axis is the
user id sorted by their activeness, and the y-axis represents the number of rated items for the user.
For ML10M dataset with 27,278 items, nearly 90% users have rated only up to 300 items. (b) The
proportion of item embeddings and other parameters within a three-layer deep factorization machine
(DeepFM) for ML25M and Yelp, under two different embedding sizes d = 32 and d = 64.

3.1.2 SECURE AGGREGATION ON SPARSE UPDATE

Our key idea is to encode the sparse matrix (i.e., gradient of item embedding) gg € R™*4 into some
point functions. Then we can construct a 2-server secure aggregation (SecAgg) scheme based on the
function secret sharing (FSS) of these point functions. We begin with the case where user u rates a
single item, i.e., m}, = 1.

Suppose user u has a sparse update ggu« € R™*? with only one non-zero row. Let i denote the item
index for the non-zero update. The SecAgg can be performed using the following steps:
Step 1: Encode non-zero update with a point function, g — f, ;. User u begins by encoding
g € R? with a point function fu,i + T — G, for some abelian group G. The function f,, ; takes an
item id z € Z as input and outputs f, ;(x) = gou € R?if 2 = i, and 0 € R? elsewhere.

Step 2: Generate keys for the point function. User u secret shares the function f,, ; with FSS
scheme and outputs a pair of keys, i.e., (k}, k2) = FSS.Gen(1%, f,.;). The keys k. and k2 are sent
to server 1 and 2, respectively.



Under review as a conference paper at ICLR 2025

Step 3: Aggregate secret shares from users. On receiving £, from all participating users, each
server s € {1,2} computes their secret shares of the aggregated matrix as follows:

vy, = > FSSEval(kj,j), VjeT )

Step 4: Reconstruct gradient aggregation. The two servers can collaborate to reconstruct the
plaintext aggregation matrix. To be specific, server 2 sends the aggregated secret shares to server 1,
and the plaintext aggregation can be recover by:

80 =V + Vo 5)

In the above procedure, user u uploads only a single key to each server instead of the whole sparse
vector. Additionally, the FSS security property ensures that each server learns no information about
the rated item index ¢ and its gradient g¢«. In the following, we extend the method to cases where

my, > 1.

SecAgg for m!, > 1: In step 1, user u generates m,, point functions f, ; : Z — G for i € [m/,]. Let
idx(z) denote the global index of the i-th rated item. Accordingly, f,,; takes a item id « € Z as input
and outputs fui(z) = gy, , € R if 7 = i, and 0 € R? elsewhere. In step 2, user u produces m/,

pairs of secret keys (k. ;, k2 ) fori € [m/)]. In step 3, each server s € {1,2} computes their secret

w2’ "Vu,

shares of the aggregated matrix as follows:
vy, = > FSSEval(k}, j), VjeT ©)
u ie[m!,]

The above design allows the user to transmit only m/, keys to each server without leaking the rated
item index and their actual gradients. To further hide the number of rated items m/, from servers, we
can pre-specify a unified update size m’ and accordingly pad or truncate the updated vectors to be an
m’ x d matrix (see Appendix [A.4).

3.1.3 COMPLEXITY AND SECURITY ANALYSIS

Complexity: Denote A as the security parameter of FSS scheme, and b as number of bits required
to represent a single numerical value. The variables d and 6 refer to the embedding size and the
parameters other than item embeddings. For a point function f : X — ), the user communication
cost of function sharing f is || + (A + 2) log | X|, and the computation cost is O(log | X| - AES),
where AES denotes the complexity for each AES operation |Boyle et al.|(2016)). In our specific case,
the communication and computation costs for each point function are (A+2) log m+bd and O(log m -
AES), respectively. Considering m’ functions and O(|6]) dense updates, we have communication
complexity of O (m' (bd + Alogm) + |0]b), and computation cost of O (m'logm - AES + |6]).

TableT|compares the user-side cost between GREC and General-purpose SecAgg Xiong et al.| (2020).
We adopt the most efficient cost for General-purpose SecAgg (see Table [). The communication
cost of GREC scales linearly with m’ and logarithmically with m. GREC offers advantages over
the General-purpose SecAgg scheme in terms of uplink communication cost as long as m/' <
mbd/ (A + 2)logm + bd). The computation complexity of GREC primarily arises from AES
operations, which can be mitigated when m/ is sufficiently small compared with m.

Table 1: User computation and communication cost of GREC and General-purpose SecAgg.

Communication Cost Computation Cost
GREC O (m' (bd+ Alogm) + |0]b) O (m'logm - AES + |6])
General-purpose SecAgg O (b(md + 10])) O (md + 1))

Security: The FSS security property ensures that the two non-colluding servers learn no more
information than just the aggregated gradients. The FSS keys hide the rated item index as well as the
values of updated gradients from each server. Under a pre-determined m/’, servers are ignorant about
the number of rated item for each user. Consequently, no additional information about the individual



Under review as a conference paper at ICLR 2025

updates is revealed to the servers. It is important to note that our algorithm can be integrated with DP
to achieve stronger privacy protection. In particular, each server can independently add calibrated
noises to the aggregated secret shares matrix, so that recovered aggregation matrix adheres to formal
DP guarantee.

3.2 INFERENCE
3.2.1 MOTIVATION

Existing protocols for FedRec neglect the computation cost and privacy concerns during inference,
assuming that the user should maintain the full model for privacy-preserving inference, incurring
a storage and memory cost of O(md + 6). Note that this cost is not inherent, even if we take into
account the cost of training. During training, each user v maintains only the rated item embeddings
{Qi}iez, , their own user embedding p,,, and the remaining parameters 6, resulting in O(m/,d + 6)
memory and storage cost. Therefore, considering the limited computational power of edge devices, a
privacy-preserving cloud inference solution is highly desirable.

3.2.2 A NAIVE LDP SOLUTION

We start with a naive LDP-based solution for cloud-based inference framework. In this approach,
users perturb their user embeddings and user feature representations under the LDP guarantee and
then transmit them to the server.

Before privatization, the user obtains a continuous representation of their hidden factors. In particular,
user u transforms the user feature x,, into a [, x d matrix V,, using a local feature extractor F,.
This matrix is then concatenated with the user latent factor p,, to form a (I, + 1) X d representation
matrix H, = [py; V,]. To satisfy LDP guarantee, the representation matrix is clipped to a maximum
Frobenius norm of B and noises drawn from normal distribution are added:

H, = H, -min{1,B/||H,||r}; H, = H, + Z, 7

, where || - || > denotes the Frobenius norm, and Z,, € RU=+1*d is a noise matrix with each element
independently drawn from N'(0, o). Under (¢,0)-LDP, o is setto 0 = B - /2 - log(1.25/4) /e.

The deviation between H,, and qu is bounded by:
B (||, = Hull}/|Hal| < E[IH, = Bul3/1Hal] +0?
= E [| Hy — Hull%/|Hul] +2B? - log(1.25/5) /¢ ®)

clipping error privatization error

Focusing on the privatization error, we find that the mean square error (MSE) increases polynomially
with B and inversely with e. Note that B typically scales with the number of elements in ,,. The
analysis indicates that the LDP mechanism could result in lower error bound when [,, and d are
sufficiently small. An ideal case is [, = 0, i.e., user u merely transmits the privatized user embedding
Py, to the server. Then the user could make acceptable trade-off between prediction utility and privacy
budget for low level of d.

3.2.3 POST-PROCESSING LDP

The above LDP mechanism encounters a deteriorating performance as feature size [, and embedding
size d scale. Furthermore, the intrinsic trade-off between utility and privacy constrains users to opt
for a reduced level of privacy budget e. The following proposition provides a lower bound of MSE
for the rating prediction returned by the server|Guo et al.|(2022).

Proposition 3.1. Letr € R C R™ be the rating prediction obtained from non-privatized represen-
tation H, and let T € R C R™ be the noisy prediction obtained under (¢, 0)-privacy mechanism.
Denote Fs : R™ — R™ as the server-side post-processing on the noisy rating prediction T. Suppose
fs is unbiased, then:

m .
~ " diam;(R)?/4m
Bl Fu(F) — xf fm)] > 2=t TR

where diam;(R) = SUD,. 1 cg.r,—r1vji [Ti — 13| is the diameter of R in the i-th dimension.
t/ ER:xy=T]

©))



Under review as a conference paper at ICLR 2025

Proposition [3.1] reveals that the MSE lower bound increases inversely with e, regardless of any
post-processing techniques the server applies to correct prediction errors. One critical limitation
of server-side post-processing is that Fj is independent of H and Z, which constrains the server’s
capacity to conduct error correction on the results.

To overcome the fundamental barrier of post-processing immunity, we propose a user-side post-
processing LDP approach, which leverages users’ pre-stored noise matrices and non-privatized
representations. Denote F), : (Z, R2(=+1)xd+1) 4 R as a user-side post-processing function that
takes the noisy rating (i, 7, ;), noise matrix Z,,, and clean representation matrix H, as inputs, and
outputs a prediction 7, ; with lower expected error than 7, ;.

The post-processing function F}, is parameterized by a lightweight denoise model. The denoise model
is trained in an FL setting subsequent to the training of the recommender system, and deployed on
user device in the inference phase. Since the the user representation is obtained during the training
stage, there is no need to gather prior knowledge about the private input for denoise model training.
Refer to Appendix for more details on the architecture and training of denoise model.

3.2.4 PRIVACY ANALYSIS

During inference, only the privatized representation matrix H,, is transmitted to the server. Conse-
quently, the server’s view is limited to the privatized matrix H,.In the following, we will demonstrate
that the server’s view adheres to the LDP guarantee. The process that privatizes the representation
matrix H,, into H,, denoted as M : RU=+t1)xd _y RUa+1)xd gatisfies LDP:

Theorem 3.2. For any § > 0 and € > 0, the mechanism M : RU=+tDxd _ RUADXd gepioyes
(¢, 0)-differential privacy.

We proceed to analyze the security of the denoise model. During inference, the server is unable to
infer the actual prediction using the denoise model. The inputs to the denoise model F}, include the
noise matrix and the clean embedding matrix, both of which are maintained privately on the user side.
Consequently, the server does not have access to the critical inputs required for error correction.

4 EXPERIMENT EVALUATION

4.1 EXPERIMENT SETTING

We evaluate our GREC on five public datasets: MovieLens 100K (ML100K), MovieLens 1M
(ML1M), MovieLens 10M (ML10M), MovieLens 25M (ML25M), and Yelp Harper & Konstan
(2015); [Yelp| (2015)). For the Yelp dataset, we sample a portion of top users ranked in descending
order by their number of rated items, and obtain a subset containing 10,000 users and 93,386 items.
Table |5 summarizes the statistics for the datasets.

Our framework is tested with four latent factor-based recommender models: matrix factorization
with biased term (MF) Koren et al.| (2009), neural collaborative filtering (NCF) |He et al.| (2017),
factorization machine (FM) Rendle| (2010), and deep factorization machine (DeepFM) |Guo et al.
(2017). Detailed hyperparameters for each model are provided in Appendix[A.9.2]

4.2 COMMUNICATION ANALYSIS

To evaluate the communication efficiency of our framework, we conduct a comparative analysis
of the communication payload during upload transmission between GREC and General-purpose
SecAgg, as presented in Table[2] We use the two-server ASS, which has the minimal communication
overhead, to compute the cost for General-purpose SecAgg (see Table d). A key finding is that
GREC’s communication overhead increases at a significantly slower rate with item size compared to
the two-server ASS, particularly for models characterized by a higher proportion of sparse updates.

Specifically, for MF and FM, which involve minimal dense updates, our protocol reduces the
communication costs by approximately 4x to 90x, depending on the item size of the dataset. For
NCEF that includes a small share of dense updates, GREC achieves overhead reductions ranging from
roughly 3.5x to 70x. For DeepFM, the reduction is less pronounced for the ML100K and ML1M
datasets with item sizes lower than 4k, while the cost savings become more substantial as the item



Under review as a conference paper at ICLR 2025

size exceeds 10k. Note that our method is lossless, and the utility comparison with existing message
compression methods is presented in the Appendix[A.10.1]

Table 2: Communication cost (in MB) per user for GREC and General-purpose SecAgg during
upload transmission in one iteration. Reduction ratio is given by the ratio of communication overhead
of General-purpose SecAgg to that of GREC.

ML100K MLIM ML10M ML25M Yelp
(1.7k Items)  (3.9k Items)  (10.7k Items)  (62.4k Items) (93.4k Items)

General SecAgg 0.87 2.02 5.55 32.46 48.56

MF GREC 0.17 0.27 0.28 0.51 0.52
Reduction Ratio 5.12 7.53 19.69 63.54 93.35

General SecAgg 0.45 1.03 4.20 24.48 30.64

NCF GREC 0.13 0.20 0.26 0.46 0.43
Reduction Ratio 3.59 5.24 16.42 53.34 70.82

General SecAgg 0.93 2.04 5.56 32.47 48.57

FM GREC 0.22 0.29 0.29 0.52 0.53
Reduction Ratio 4.13 6.98 19.03 62.29 91.90
General SecAgg 14.96 8.87 8.72 35.63 51.20

DeepFM  GREC 14.26 7.12 3.45 3.68 3.16
Reduction Ratio 1.05 1.25 2.53 9.69 16.20

4.3 INFERENCE UTILITY ANALYSIS

In Table 3] we examine the prediction accuracy of our GREC during inference phase in terms of
RMSE under three settings: (1) Non-private, where raw features and user embeddings are directly
transmitted to the server for cloud inference. (2) Naive LDP, where the representation matrix H,, is
privatized with LDP before sending to the server. (3) Post-processing LDP, the inference protocol
proposed by our GREC.

Table 3: Inference accuracy in terms of RMSE. The privacy budget is fixed to e = 1 and § = 1074,
Diff (%) is the percentage difference between naive LDP and post-processing LDP.

ML100K MLIM ML10M ML25M Yelp
Non-private 0.944 +0003  0.903+0002  0.868+0003  0.864+0002  1.050+ 0.001
MF Naive LDP 1.693 +0021  1.637+0008  1.403 +0009  1.603+0017  1.580 =+ 0.008
Post-processing LDP  0.957 +0007  0.919 £0001  0.875 0001  0.870 0002  1.097 + 0.001

Diff (%) 43.47 43.86 37.63 45.73 30.57
Non-private 0.949 0014  0.897 +0006 0.819 0003 0.786 +0.008  1.035 +0.001
NCF Naive LDP 1.297+ 0015 1.169+ 0068  1.383+0016  1.496+0020  1.857+ 0.006
Post-processing LDP  0.962+ 0000  0.915+0005  0.8394+ 0001  0.812 +0000  1.083+ 0.001

Diff (%) 25.83 22.73 39.33 45.72 41.68
Non-private 0.937+0004  0.906 +0000 0.848+0002  0.789+0003  1.008+ 0.003
FM Naive LDP 1.851+0020  2.350+0018 1.411 +0008 2.042 0009  1.851+0.005
Post-processing LDP  0.945+ 0003  0.908+0000  0.881+0001  0.813+£0003  1.055 + 0.002

Dift (%) 48.95 61.36 37.56 60.19 43.00
Non-private 0.939 + 0006  0.902+0001  0.821+0001  0.791+0.001 1.011+ 0.002
DeepFM  Naive LDP 2120+ 0018 2.281x0007  1.703£o0011  1.573x0010  1.776x0.008
Post-processing LDP  0.943+ 0001 0.905+0003  0.833+0002  0.799+0001  1.055+ 0.002

Dift (%) 55.52 60.32 51.09 49.21 40.60

It can be observed that our proposed GREC inference protocol significantly enhances the prediction
performance via a user-side post-processing LDP, with little performance loss compared to the non-
private setting. Specifically, employing the user-side post-processing function results in an average
RMSE reduction of 40.3%, 34.9%, 50.2%, and 51.3% for MF, NCF, FM, and DeepFM, respectively.
Compared with the non-private setting, the average decrease in accuracy remains within 2.2%.



Under review as a conference paper at ICLR 2025

4.4 COMPUTATION ANALYSIS

The computation time to generate the secret shares and FSS keys is presented in Figure 3] We utilize
the computation cost for two-server ASS, which has the minimal computation overhead. GREC
offers a computational advantage over the General-purpose SecAgg, as users need to generate shares
only for the non-zero gradients of item embeddings rather than for the entire matrix.

In Figure 4] we compare the user-side computation time and memory cost between full model
inference and post-processing LDP on four datasets. Using the post-processing LDP approach, the
user’s computation time and memory cost is reduced by, respectively, 11.48x and 7.32x, on average
compared with the full model inference.

. GREC . General-purpose SecAgg

60 [

s0 50
0 30
20 0
10 10
[ ] PR— — - | P— - - |
F

M Despfi wF N M Despf MF NCE M Despf

.

M Despfi wF e

; ;
3 3
2 2
1 I I 1
, al &=l =& , mll &

MLIM ML10M ML25M Yelp

Figure 3: User computation time (in milliseconds) for secret shares generation during training phase.

. Post-processing LDP . Full Model Inference

1 14 1 12

12 10
10 . N
¢ 6
.
2II : I
cnll 0 ol 6B = B ol @B ., =H N ol 2N nf .H oR N
.

WF NCF M DespFM MF NeF M Despfi MF NeE M Deepfil MF NCF M DespfM

Computation time (ms)

5 5 20 30

s s
s 1 =
35 35 1 .
3 3 n
25 23 10 15
2 2 8
15 15 s o
1 I I 1 ’ .
% b : | [ | | |
o =l =l =l = , Bl Al &0 @& , | | ., M [ |
3 3 3 F

MF NeE M DespFht ME Nt M DespfM MF [ M DeepM ME [ M DespfM

Memory cost (MB)
.

ML1M ML1OM ML25M Yelp

Figure 4: Computation time (in milliseconds) and memory cost (in MB) per user during inference
phase. The computation cost is evaluated on the inference for 150 items. Full model inference
deploys the entire model on user side for private inference.

5 CONCLUSION

This paper proposes a doubly efficient privacy-perserving recommender systems (GREC) to address
the resource constraint of edge devices in terms of (a) upload bandwidth, and (b) computational power
and storage. To reduce communication costs during upload transmission, we design a FSS-based
SecAgg, achieving communication cost logarithmic in item size m. To reduce user computation
burdens during inference, we introduce a post-processing LDP approach that addresses the intrinsic
trade-off between privacy and utility. The empirical evaluation demonstrates that: (1) Our algorithm
reduces communication costs by up to 90x compared with existing SecAgg protocols. (2) Our
post-processing LDP approach enhances prediction accuracy by an average of 43.9% compared to
standard LDP perturbation, while also reducing user-side computation time by approximately 11x
relative to full model inference. Refer to Appendix [A-TT]for further discussions of our framework.

10



Under review as a conference paper at ICLR 2025

REFERENCES

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent. In
Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pp.
440445, 2017.

Muhammad Ammad-Ud-Din, Elena Ivannikova, Suleiman A Khan, Were Oyomno, Qiang Fu,
Kuan Eeik Tan, and Adrian Flanagan. Federated collaborative filtering for privacy-preserving
personalized recommendation system. arXiv preprint arXiv:1901.09888, 2019.

Borja Balle and Yu-Xiang Wang. Improving the gaussian mechanism for differential privacy:
Analytical calibration and optimal denoising. In International Conference on Machine Learning,
pp- 394-403. PMLR, 2018.

James Henry Bell, Kallista A Bonawitz, Adria Gascén, Tancrede Lepoint, and Mariana Raykova.
Secure single-server aggregation with (poly) logarithmic overhead. In Proceedings of the 2020
ACM SIGSAC Conference on Computer and Communications Security, pp. 1253-1269, 2020.

Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, Antonio Marcedone, H Brendan McMahan, Sarvar
Patel, Daniel Ramage, Aaron Segal, and Karn Seth. Practical secure aggregation for privacy-
preserving machine learning. In proceedings of the 2017 ACM SIGSAC Conference on Computer
and Communications Security, pp. 1175-1191, 2017.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing. In Annual international conference
on the theory and applications of cryptographic techniques, pp. 337-367. Springer, 2015.

Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements and extensions. In
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pp- 1292-1303, 2016.

Christian Cachin, Silvio Micali, and Markus Stadler. Computationally private information re-
trieval with polylogarithmic communication. In Advances in Cryptology—EUROCRYPT’99:
International Conference on the Theory and Application of Cryptographic Techniques Prague,
Czech Republic, May 2-6, 1999 Proceedings 18, pp. 402—414. Springer, 1999.

Di Chai, Leye Wang, Kai Chen, and Qiang Yang. Secure federated matrix factorization. IEEE
Intelligent Systems, 36(5):11-20, 2020.

Beidi Chen, Tharun Medini, James Farwell, Sameh Gobriel, Charlie Tai, and Anshumali Shrivastava.
Slide: In defense of smart algorithms over hardware acceleration for large-scale deep learning
systems. arXiv preprint arXiv:1903.03129, 2019.

Beidi Chen, Zichang Liu, Binghui Peng, Zhaozhuo Xu, Jonathan Lingjie Li, Tri Dao, Zhao Song,
Anshumali Shrivastava, and Christopher Re. Mongoose: A learnable Ish framework for efficient
neural network training. In International Conference on Learning Representations, 2020.

Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homomorphic encryption for
arithmetic of approximate numbers. In Advances in Cryptology—ASIACRYPT 2017: 23rd
International Conference on the Theory and Applications of Cryptology and Information Security,
Hong Kong, China, December 3-7, 2017, Proceedings, Part I 23, pp. 409—437. Springer, 2017.

Benny Chor and Niv Gilboa. Computationally private information retrieval. In Proceedings of the
twenty-ninth annual ACM symposium on Theory of computing, pp. 304-313, 1997.

Benny Chor, Eyal Kushilevitz, Oded Goldreich, and Madhu Sudan. Private information retrieval.
Journal of the ACM (JACM), 45(6):965-981, 1998.

Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava, and Tianhao Wang.
Privacy at scale: Local differential privacy in practice. In Proceedings of the 2018 International
Conference on Management of Data, pp. 1655-1658, 2018.

Ronald Cramer, Ivan Bjerre Damgérd, et al. Secure multiparty computation. Cambridge University
Press, 2015.

11



Under review as a conference paper at ICLR 2025

Cynthia Dwork. Differential privacy. In International colloquium on automata, languages, and
programming, pp. 1-12. Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends® in Theoretical Computer Science, 9(3—4):211-407, 2014.

Hossein Fereidooni, Samuel Marchal, Markus Miettinen, Azalia Mirhoseini, Helen Mollering,
Thien Duc Nguyen, Phillip Rieger, Ahmad-Reza Sadeghi, Thomas Schneider, Hossein Yalame,
et al. Safelearn: Secure aggregation for private federated learning. In 2021 IEEE Security and
Privacy Workshops (SPW), pp. 56-62. IEEE, 2021.

Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In Advances
in Cryptology—-EUROCRYPT 2014: 33rd Annual International Conference on the Theory
and Applications of Cryptographic Techniques, Copenhagen, Denmark, May 11-15, 2014.

Proceedings 33, pp. 640-658. Springer, 2014.

Chuan Guo, Brian Karrer, Kamalika Chaudhuri, and Laurens van der Maaten. Bounding training
data reconstruction in private (deep) learning. In International Conference on Machine Learning,
pp- 8056-8071. PMLR, 2022.

Huifeng Guo, Ruiming Tang, Yunming Ye, Zhenguo Li, and Xiuqiang He. Deepfm: a factorization-
machine based neural network for ctr prediction. In Proceedings of the 26th International Joint
Conference on Artificial Intelligence, pp. 1725-1731, 2017.

Vipul Gupta, Dhruv Choudhary, Peter Tang, Xiaohan Wei, Xing Wang, Yuzhen Huang, Arun
Kejariwal, Kannan Ramchandran, and Michael W Mahoney. Training recommender systems at
scale: Communication-efficient model and data parallelism. In Proceedings of the 27th ACM
SIGKDD Conference on Knowledge Discovery & Data Mining, pp. 2928-2936, 2021.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):1-19, 2015.

Xiangnan He, Tao Chen, Min-Yen Kan, and Xiao Chen. Trirank: Review-aware explainable recom-
mendation by modeling aspects. In Proceedings of the 24th ACM international on conference on
information and knowledge management, pp. 1661-1670, 2015.

Xiangnan He, Lizi Liao, Hanwang Zhang, Ligiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th international conference on world wide web, pp.
173-182, 2017.

Junjie Jia and Zhipeng Lei. Personalized recommendation algorithm for mobile based on federated
matrix factorization. In Journal of Physics: Conference Series, volume 1802, pp. 032021. IOP
Publishing, 2021.

Swanand Kadhe, Nived Rajaraman, O Ozan Koyluoglu, and Kannan Ramchandran. Fast-
secagg: Scalable secure aggregation for privacy-preserving federated learning. arXiv preprint
arXiv:2009.11248, 2020.

Wang-Cheng Kang and Julian McAuley. Self-attentive sequential recommendation. In 2018 IEEE
international conference on data mining (ICDM), pp. 197-206. IEEE, 2018.

Diederik P Kingma. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.
In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 426-434, 2008.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, 42(8):30-37, 2009.

Mu Li, Ziqi Liu, Alexander J Smola, and Yu-Xiang Wang. Difacto: Distributed factorization machines.
In Proceedings of the Ninth ACM International Conference on Web Search and Data Mining, pp.
377-386, 2016.

12



Under review as a conference paper at ICLR 2025

Guanyu Lin, Feng Liang, Weike Pan, and Zhong Ming. Fedrec: Federated recommendation with
explicit feedback. IEEE Intelligent Systems, 36(5):21-30, 2020.

Zhaohao Lin, Weike Pan, Qiang Yang, and Zhong Ming. A generic federated recommendation
framework via fake marks and secret sharing. ACM Transactions on Information Systems, 41(2):
1-37, 2022.

Tao Liu, Zhi Wang, Hui He, Wei Shi, Liangliang Lin, Ran An, and Chenhao Li. Efficient and secure
federated learning for financial applications. Applied Sciences, 13(10):5877, 2023.

Shiwei Lu, Ruihu Li, Wenbin Liu, Chaofeng Guan, and Xiaopeng Yang. Top-k sparsification with
secure aggregation for privacy-preserving federated learning. Computers & Security, 124:102993,
2023.

Peihua Mai and Yan Pang. Privacy-preserving multiview matrix factorization for recommender
systems. IEEE Transactions on Artificial Intelligence, 5(1):267-277, 2023.

Peihua Mai, Ran Yan, Zhe Huang, Youjia Yang, and Yan Pang. Split-and-denoise: Protect large
language model inference with local differential privacy. In Forty-first International Conference
on Machine Learning, 2024.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Ar-
cas. Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pp. 1273-1282. PMLR, 2017.

Ngoc-Hieu Nguyen, Tuan-Anh Nguyen, Tuan Nguyen, Vu Tien Hoang, Dung D Le, and Kok-Seng
Wong. Towards efficient communication and secure federated recommendation system via low-rank
training. In Proceedings of the ACM on Web Conference 2024, pp. 3940-3951, 2024.

Vasileios Perifanis and Pavlos S Efraimidis. Federated neural collaborative filtering.
Knowledge-Based Systems, 242:108441, 2022.

Tahseen Rabbani, Marco Bornstein, and Furong Huang. Large-scale distributed learning via private
on-device locality-sensitive hashing. In Proceedings of the 37th International Conference on
Neural Information Processing Systems, pp. 16153-16171, 2023.

Steffen Rendle. Factorization machines. In 2010 IEEE International conference on data mining, pp.
995-1000. IEEE, 2010.

Hyejin Shin, Sungwook Kim, Junbum Shin, and Xiaokui Xiao. Privacy enhanced matrix factorization
for recommendation with local differential privacy. IEEE Transactions on Knowledge and Data
Engineering, 30(9):1770-1782, 2018.

Jinhyun So, Chaoyang He, Chien-Sheng Yang, Songze Li, Qian Yu, Ramy E Ali, Basak Guler, and
Salman Avestimehr. Lightsecagg: a lightweight and versatile design for secure aggregation in
federated learning. Proceedings of Machine Learning and Systems, 4:694-720, 2022.

Fei Sun, Jun Liu, Jian Wu, Changhua Pei, Xiao Lin, Wenwu Ou, and Peng Jiang. Bert4rec: Sequential
recommendation with bidirectional encoder representations from transformer. In Proceedings of the
28th ACM international conference on information and knowledge management, pp. 1441-1450,
2019.

Hao Wang, Shivchander Sudalairaj, John Henning, Kristjan Greenewald, and Akash Srivastava.
Post-processing private synthetic data for improving utility on selected measures. Advances in
Neural Information Processing Systems, 36, 2024.

Qinyong Wang, Hongzhi Yin, Tong Chen, Junliang Yu, Alexander Zhou, and Xiangliang Zhang.
Fast-adapting and privacy-preserving federated recommender system. The VLDB Journal, 31(5):
877-896, 2022.

Ziyang Wang, Wei Wei, Gao Cong, Xiao-Li Li, Xian-Ling Mao, and Minghui Qiu. Global context
enhanced graph neural networks for session-based recommendation. In Proceedings of the 43rd
international ACM SIGIR conference on research and development in information retrieval, pp.
169-178, 2020.

13



Under review as a conference paper at ICLR 2025

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. Advances in neural
information processing systems, 30, 2017.

Lizhi Xiong, Wenhao Zhou, Zhihua Xia, Qi Gu, and Jian Weng. Efficient privacy-preserving
computation based on additive secret sharing. arXiv preprint arXiv:2009.05356, 2020.

Zhaozhuo Xu, Luyang Liu, Zheng Xu, and Anshumali Shrivastava. Adaptive sparse federated learning
in large output spaces via hashing. In Workshop on Federated Learning: Recent Advances and
New Challenges (in Conjunction with NeurIPS 2022), 2022.

Hong-Jian Xue, Xinyu Dai, Jianbing Zhang, Shujian Huang, and Jiajun Chen. Deep matrix fac-
torization models for recommender systems. In IJCAI, volume 17, pp. 3203-3209. Melbourne,
Australia, 2017.

Yelp. Yelp dataset. 2015. URL https://www.yelp.com/dataset!|

Xiaolin Zheng, Zhongyu Wang, Chaochao Chen, Jiashu Qian, and Yao Yang. Decentralized
graph neural network for privacy-preserving recommendation. In Proceedings of the 32nd ACM
International Conference on Information and Knowledge Management, pp. 3494-3504, 2023.

14


https://www.yelp.com/dataset

Under review as a conference paper at ICLR 2025

A APPENDIX

A.1 RELATED WORK

A.1.1 CROSS-USER FEDERATED RECOMMENDER SYSTEM

In recent years, federated recommender system (FedRec) trained on individual users has gained grow-
ing interest in research community. FCF|Ammad-Ud-Din et al.|(2019) and FedRec Lin et al.| (2020)
are among the pioneering implementations of federated learning for collaborative filtering based
on matrix factorization. Privacy guarantees are enhanced through the application of cryptographic
methods to the transmitted gradients |Chai et al.| (2020); Mai & Pang|(2023). Difacto|Li et al.|(2016)
introduces a distributed factorization machine algorithm that is scalable to a large number of users
and items. FedNCF Perifanis & Efraimidis|(2022)) is a federated realization of neural collaborative
iltering (NCF), where secure aggregation is leveraged to protect user gradients. FMSS [Lin et al.
(2022) proposes a federated recommendation framework for several recommendation algorithms
based on factorization and deep learning. Rabbani et al.| (2023) and |Xu et al.| (2022) improve the
training efficiency for edge device using locality-sensitive hashing (LSH) techniques |Chen et al.
(2020; 2019). Despite the development of various algorithms for training FedRec systems, there
remains a dearth of research investigating the inference phase.

A.1.2 SECURE AGGREGATION FOR MACHINE LEARNING

Secure Aggregation (SecAgg) computes the summation of private gradients without revealing any
individual values. Bonawitz et al.[(2017) introduces a secure aggregation protocol for FL, leveraging
a combination of pairwise masking, Shamir’s Secret Sharing, and symmetric encryption techniques.
Bell et al.| (2020) reduces the communication and computation overhead to depend logarithmic in
the client size. FastSecAgg|Kadhe et al.| (2020) designs a multi-secret sharing protocol based on
Fast Fourier Transform to save computation cost. SAFELearn [Fereidooni et al.[ (2021) designs
an secure two-party computation protocol for efficient FL implementation. LightSecAgg|So et al.
(2022) reduces the computation complexity via one-shot reconstruction of aggregated mask. The
two-server additive secret sharing (ASS) protocol Xiong et al.[(2020) represents the most efficient
SecAgg approach in terms of computation and communication complexity. Refer to Table ] for the
complexity of existing SecAgg algorithms. However, current SecAgg protocols incur communication
costs that scale linearly with model size, and there is a lack of research on leveraging model update
sparsity for enhanced efficiency.

A.2 COMPLEXITY OF EXISTING SECAGG ALGORITHMS

In Table @ we summarize the computation and communication complexity of existing SecAgg
algorithms. It can be observed that a) two-server ASS represents the most efficient algorithm in
term of both computation and communication complexity, and b) the per-client communication cost
depends linear in the model size { for all protocols.

Table 4: Computation and communication complexity of existing SecAgg algorithms. SecAgg and
SecAgg+ refer to the algorithm proposed by Bonawitz et al.|(2017) and Bell et al.| (2020) respectively.
n and [ denote client size and model size, respectively.

Server Client
Rounds
Computation Communication Computation Communication
SecAgg O(n?l) O(nl +n?) O(nl +n?) O(l+n) 4
SecAgg+ O(nllogn +nlog?n) O(nl+nlogn) O(llogn +log?n) O(l +1logn) 3
FastSecAgg O(llogn) O(nl +n?) O(llogn) O(l+n) 3
LightSecAgg O(nllog®n) O(nl) O(nllog®n) O(nl) 2
SAFELearn O(nl) o(nl) o(l) o) 2
Two-server ASS O(nl) O(nl) o(l) o(l) 1

15



Under review as a conference paper at ICLR 2025

A.3 PRELIMINARIES

A.3.1 ADDITIVE SECRET SHARING

Additive secret sharing (ASS) [Cramer et al.|(2015) divides a secret = € F,, from a finite field into n
shares, such that ZZL:I x; (mod p) = x. Consequently, any n — 1 shares reveal nothing about the
secret s. Furthermore, given two secret shares [z] = (x1, ..., z,) and [y] = (y1, ..., yn) from Fp, it
holds that [z + y] = (21 + y1, ..y Tn + Yn)-

A.3.2 FUNCTION SECRET SHARING

In this section we formally define the correctness and security properties of FSS scheme.

Definition A.1 (FSS Correctness and Security). Let FSS = (FSS.Gen, FSS.Eval) be a FSS scheme
for a function class F, satisfying the following properties:

* Correctness: For every x in the domain of f, it holds that:

2
Pr (Z FSS.Eval(k;,x) = f(z) € F: (k1,k2) < FSS.Gen(l)‘,f)> =1 (10)
i=1

* Security: For any party s € {1, 2}, there exists a PPT algorithm Sim (simulator), such that
for every function f € F, the outputs of the following experiments REAL and IDEAL are
computationally indistinguishable:

- REAL(1*, f) = {k, : (ky, ko) < FSS.Gen(1*, f)}
- IDEAL(1%, f, F) = {ks < Sim(1*, F)}

A.4 STANDARDIZATION OF UPLOADED ITEM SIZE

To conceal m], from the server, a uniform m’ can be applied to all users. An optimal m’ should
be substantially smaller than m to reduce communication overhead, yet not excessively small to
encompass the rated items of a majority of users. To determine a suitable value of m/’, the server can
compute the average number of rated items from all users via a SecAgg protocol and select m' as

follows:
1
'—a- = ¢ 11
m=a-— Eu m., (11)

, where « is a pre-specified multiplier on the average. Note that the SecAgg operation on the number
of rated items is cheap, incurring O(1) communication and computation overheads per user.

Given the unified m’, each user can standardize their non-zero updates for item embedding to be a
m’ x d matrix according to Algorithm[l]

Algorithm 1 PadOrTrunc

Input: m’ and g, € R™u*%,
Output: gf, € R™ *d,
if m;, < m/' then
Create padding matrix of zero elements 0 € R —m,)
Concatenate gg,, and 0 to form g, € R xd
else if m/, > m/ then
Randomly sample m/ rows from g, to form g’Qu e Rm'*d
else
Letgg,, = 8q.
end if
return g,

xd

16



Under review as a conference paper at ICLR 2025

Algorithm 2 Federated Training of GREC

Server s € {1,2}:
Initialize public parameters O.
fort € [1,T] do
Distribute public parameters to users u € A;.
Receive FSS keys {ki,i}ie[m/] and secret shares for dense update vj from users u € A;
Compute the secret shares of the aggregated sparse update via equation [6]
Aggregate the secret shares of the dense update via equation
if i = 1 then
Receive the aggregated secret shares (vg), vg) from server 2
Recover the gradients for public parameters g, g.
Update public parameters ©, = (Q, §) with the gradients.
else
Send the aggregated secret shares (VZ27 v2) to server 1.
end if
end for

User v € [1, PJ:
fort € [1,7] do
if u € A; then
On receiving public parameters from server 1, read (6, {Q; }icz, ) and discard {Q; }igz,,
Calculate gradients locally and update private parameters ©,.
Construct additive secret shares (v ,vj ) for dense gradient g, .
Pad or truncate the sparse gradient into a 7/ x k matrix, g« = PadOrTrunc(m’, g« ).
Encode the sparse gradients with a point function, obtaining { fu,i}ie[m']-
Generate FSS keys for the sparse gradients (k. ,, k2 ;) = FSS.Gen(1%, f,, ;) fori € [m/].

Send (vj ,{k ;}icme)) to server i € {1,2}. S
end if
end for

A.5 SECURE AGGREGATION ON DENSE UPDATE

We employ additive secret sharing for SecAgg on the dense update gg. In particular, user u generates
a pair of additive secret shares for the gradients [gy] = (vj, v2), and send the secret shares to the
corresponding servers. Each server s aggregates the secret shares from all participating users:

vi=> Vi, (12)

Same as step 4 in Section [3.1.2] the two servers can subsequently collaborate to reconstruct the
plaintext aggregated update.

A.6 ALGORITHM TO TRAIN GREC

Algorithm [2]outlines the process to train the FedRec in a communication-efficient way.

A.7 THEORETICAL EFFICIENCY ANALYSIS

Communication cost: In each iteration, the user uploads m’ FSS keys and secret shares of dense
updates to the server. Each key size is (A + 2) logm + bd, where b is number of bits required
to represent a single numerical value Boyle et al.| (2016). Thus total message size for FSS keys
is O(m/(bd + Alogm)). Furthermore, the size of additive shares for the dense updates is O(|¢]).
Therefore, the total communication cost adds up to O (m/(bd + Alogm) + |0]b).

Computation cost: Each user generate m’ FSS keys and secret shares of dense updates. It takes
O(logm - AES) operations to produce a FSS key Boyle et al|(2016), resulting complexity of
O(m/logm - AES) for m’ keys. Additionally, generating additive secret shares takes O(|6]) opera-
tions. Therefore, the total computation cost adds up to O (m’ logm - AES + |6]).

17



Under review as a conference paper at ICLR 2025

A.8 POST-PROCESSING LDP FRAMEWORK
A.8.1 FRAMEWORK DESCRIPTION

In our inference framework, users perturb their user embeddings and user feature representations
under the LDP guarantee. Subsequently, the server performs cloud-based inference on the privatized
user features and transmits the noisy predictions back to the users. Each user then applies local
post-processing through a lightweight denoising model. Following we explain each components in
detail.

Feature extraction and perturbation: User u transforms the user feature x,, into a [, X d matrix
V., using a local feature extractor F,. This matrix is then concatenated with user latent factor p,, to
form a (I, + 1) x d representation matrix H,, = [p,; V4,]. The representation matrix is clipped to a
maximum Frobenius norm of B and noises drawn from normal distribution are added:

_ B ~ _
Hu:Hu-min{l,}; H =H,+7, (13)
[ HullF
, where || - || » denotes the Frobenius norm, and Z/, € R{=+1)* is a noise matrix with each element

independently drawn from N (0, o). Under (e, 6)-LDP, o is set as:

B-/2-log(1.25/4) (14)

€

g =

To improve the performance, we clip the norm of H. ' and store the calibrated noise matrix Z,:

Husz;-min{LfB}; Z,=H! - H, (15)
15N 7

Server inference: On receiving H/, from user u, the server computes the user’s predicted preferences
onitems Z; C 7, returning a set of noisy prediction {z, fu,z‘}iezf to user u.

Local denoise with user input: User hosts a lightweight denoise model for error correction on the
noisy prediction. Given the noisy rating (i, 7, ;), noise matrix Z,,, and clean representation matrix
H,,, the denoise model output a prediction 7, ; with lower expected error. Mathematically, the process
can be formulated as:

fu,i = Fp(iafu,hHu;Zu) (16)

, where F), : (Z, R2(=+1)xd+1) 5 R denotes a user-side denoise model.

A.8.2 TRAINING AND DESIGN OF DENOISE MODEL

The denoise model consists of four modules:

e FP : T — RY that maps the item id i to a d-dimensional embedding vector e; for item-
specific error correction.

o FP: RU=HDxd _ RU+1Xd that transforms the clean representation matrix H,, into a
d-dimensional matrix Ty, .

o FP: RUADxd _ RUA1)Xd that transforms the noise matrix Z,, into a d-dimensional
matrix Tz, .

o FP:RE+3)xd 4 R that takes the embedding vector e;, transformed representation matrix
Ty, , and transformed noise matrix Tz, as input, and outputs the corrected prediction 7, ;.

We find that selecting a denoising dimension d much lower than d suffices to attain accuracy
levels comparable to those of non-private settings, thereby enabling the implementation of a more
lightweight denoising model.

The denoise model is trained in an FL setting subsequent to the training of the recommender system.
The lead server 1 maintains the global denoise model, and users compute the local updates using

18



Under review as a conference paper at ICLR 2025

their own data. In each iteration t the user u samples the noise matrix qu) and generates the

corresponding noisy prediction {z, T, }161 The model is then updated according to the following

objective function:
£= 31 (rus G0 HY, Z10)) (17)
€Ly

, where Fzgt) represents the global denoise model at iteration ¢.

We employ the same SecAgg protocol as that to train the recommender model to aggregate user
gradients in a privacy-preserving manner. The SecAgg algorithm ensures that the server learns no
more than the aggregated gradients. Additionally, given that the update vector size and the number of
training epochs for the denoise model are significantly smaller than those of the recommender model,
it is safe to expect that the denoise model leaks less user information than the recommender model.

A.8.3 PROOF OF THEOREM[3.2]

€

Proof. The process of adding noises from N (O, Dr/2108(1.25/0) W) preserves (¢, d)-LDP |[Dwork
et al.|(2014). The subsequent norm clipping of f{; preserves (¢, §)-LDP based on post-processing
property. Thus, the mechanism M : R(=+1xd _ RU=+1)xd gatisfies (e, §)-LDP. 0O

A.9 SPECIFICATIONS ON EXPERIMENTAL SETTING

All experiments are tested on a server with 4 NVIDIA L40 GPU (CUDA version 11.8). Below we
detail the dataset pre-processing and hyperparameter in our evaluation.

A.9.1 DATASET AND PRE-PROCESSING

For each dataset, we encode the user and item features into binary vectors for model training. The
features we select for binary encoding are given as follows:

* ML100K: movie genre, user gender, user age, and user occupation.

* MLIM: movie genre, user gender, user age, and user occupation.

* ML10M: movie genre.

* ML25M: movie genre.

* Yelp: restaurant state.
The statistics of the datasets are listed in Table

Table 5: Statistics of the datasets. Yelp refers to the subset sampled from the whole dataset.

# Users #Items #Ratings # User Features # Item Features Density

ML100K 943 1,682 100,000 84 19 6.30%
MLIM 6,040 3,883 1,000,209 30 18 4.26%
MLIOM 69,878 10,681 10,000,054 0 20 1.34%
ML25M 162,541 62,423 25,000,095 0 20 0.25%
Yelp 10,000 93,386 1,007,956 0 16 0.11%

A.9.2 HYPERPARAMETERS OF RECOMMENDER AND DENOISE MODEL

Each dataset is divided into 80% training and 20% testing data. For all cases, the recommender
system is trained for 200 epochs, and the corresponding denoise model is trained for 50 epochs. Each
user represents an individual client and 100 clients are selected in each iteration. The parameters are
updated using Adaptive Moment Estimation (Adam) |Kingmal (2014) method. We use the combination
of MSE and the regularization term as the loss function. The security parameter is set to A = 128.

19



Under review as a conference paper at ICLR 2025

Table 6: Hyperparameters for federated training of recommender system.

ML100OK MLIM MLIOM ML25M Yelp

Embedding size 64 64 64 64 64
MF Learning rate 0.025 0.025 0.01 0.01 0.01
Regularization weight 0.01 0.001 0.001 0.001 0.01
Embedding size 16 16 24 24 20
NCF Learning rate 0.001 0.0001 0.001 0.001 0.001
Regularization weight 0.001 0 0 0 0
Embedding size 64 64 64 64 64
FM Learning rate 0.025 0.025 0.005 0.005 0.01
Regularization weight 0.1 0.001 0 0 0.01
Embedding size 64 64 64 64 64
DeepFM  Learning rate 0.025 0.025 0.005 0.005 0.01
Regularization weight 0.1 0.001 0 0 0.001

Each experiment is run for four rounds and the average values are reported. Table [f]lists the specific
hyperparameters for each dataset and model.

For NCF, we fix the the architecture of the neural network layers to 2d — d — d/2. For DeepFM, the
neural network layers are fixed to (I 4+, +2)d — 4d — 2d. We set the number of selected items m’
for ML100K, ML1M, ML10M, ML25M, and yelp as 200, 300, 300, 500, and 500, respectively. Table
presents the size of sparse and dense parameters, corresponding to the item embedding (including
item bias term) and the remaining parameters.

Table 7: Size of dense and sparse parameters. # Sparse, # Non-zero Spr., and # Dense denote,
respectively, the size of sparse update, size of non-zero elements in sparse update, and size of dense
update.

ML100K MLIM ML10M ML25M Yelp
(1.7k Items) ~ (3.9k Items)  (10.7k Items)  (62.4k Items)  (93.4k Items)

# Sparse 109,330 252,395 694,265 4,057,495 6,070,090
MF # Non-zero Spr. 6,893 10,764 9,295 9,945 6,552

# Dense 0 0 0 0 0

# Sparse 55,506 128,139 523,369 3,058,727 3,828,826
NCF # Non-zero Spr. 3,499 5,465 7,007 7,497 4,133

# Dense 688 688 1,512 1,512 1,060

# Sparse 109,330 252,395 694,256 4,057,495 6,070,090
FM # Non-zero Spr. 6,893 10,764 9,295 9,945 6,552

# Dense 6,696 3,121 1,301 1,301 1,041

# Sparse 109,330 252,395 694,256 4,057,495 6,070,090
DeepFM  # Non-zero Spr. 6,893 10,764 9,295 9,945 6,552

# Dense 1,761,065 856,370 395,798 395,798 330,002

The hyperparameter to train the denoise model specific to each model and dataset is presented in
Table 8

A.10 ADDITIONAL EXPERIMENT EVALUATION
A.10.1 COMPARISON WITH EXISTING MESSAGE COMPRESSION METHODS

Given that existing message compression methods degrade the model performance, we evaluate the
utility of GREC against several baselines on the federated training of MF, including: (1) Federated
Matrix Factorization with SVD (FedMF w/ SVD) Nguyen et al.| (2024), (2) Correlated Low-rank
Structure (CoLR) Nguyen et al.| (2024)), (3) Federated Matrix Factorization with Top-K Sparsification
(FedMF w/ Top-K) |Gupta et al.[(2021), and (4) Ternary Quantization (TernQuant)|Wen et al.|(2017).

20



Under review as a conference paper at ICLR 2025

Table 8: Hyperparameters for federated training of denoise model.

ML100OK MLIM MLI1OM ML25M Yelp

Denoise dimension d 8 8 8 8 8
MF Learning rate 0.025 0.01 0.01 0.01 0.01
Regularization weight 0.001 0.001 0.001 0.0001 0.001
Denoise dimension d 5 5 6 6 5
NCF Learning rate 0.025 0.01 0.01 0.01 0.01
Regularization weight 0.001 0.001 0.001 0.0001 0.001
Denoise dimension d 8 8 8 8 8
FM Learning rate 0.025 0.01 0.01 0.01 0.01
Regularization weight 0.01 0.001 0.001 0.0001 0.001
Denoise dimension d 8 8 8 8 8
DeepFM  Learning rate 0.025 0.01 0.01 0.01 0.01

Regularization weight 0.001 0.001 0.001 0.0001  0.0001

The first two methods represent dimension reduction approaches, the third employs the Top-K
sparsification technique, and the fourth employs gradient quantization method.

Table 9 presents the prediction accuracy on ML10M and Yelp dataset. The embedding size is set to
64 for all cases. Noted that for consistency with the baselines, the bias term is not included in the
MF model, leading to slightly different RMSE and Reduction ratio for GREC. It can be observed
that: (1) FedMF w/ SVD and CoLR’s abilities to reduce the communication cost is limited by the
embedding size, while TernQuant’s reduction ratio is limited by the default 32-bit precision. GREC
has an advantage on reducing the communication cost by a large factor under higher value of item
size. (2) Under similar reduction ratio, the performance is degraded on an average by 7.2%, 16.3%,
13.7%, and 29.9% for FedMF w/ SVD, CoLR, FedMF w/ Top-K, and TernQuant, respectively.

Table 9: RMSE and reduction ratio for various message compression methods on ML10M and Yelp.
Reduction ratio refers to the ratio of uplink communication cost before and after the application of
the compression mechanism. The values for RMSE denote the mean =+ standard deviation of four
rounds of experiments.

GREC FedMF w/ SVD CoLR FedMF w/ Top-K ~ TernQuant

MLI10M RMSE 0.894 +0.004 0.903 +0.002 0.931 +0.002 0.906 +0.003 1.631 +0.007
Reduction Ratio 19.25 16.00 16.00 16.00 16

Yel RMSE 1.353 +0.004 1.563 +0.007 1.894 +o0.011 1.829 +0.005 1.587 +0.006
ep Reduction Ratio 91.18 16.00 16.00 16.00 16

A.10.2 INFERENCE OVERHEAD ANALYSIS

In Figure 5] we compared the storage cost for a user during inference in two cases: (1) The user
maintains the entire recommender model for local inference. (2) The post-processing LDP protocol
in our proposed GREC framework. It can by observed that our post processing LDP reduces the
storage cost by over 7x on average compared with full model inference.

A.10.3 TRAINING MEMORY AND STORAGE ANALYSIS

In Figure [6] we present the training memory and storage cost for two cases: (1) GREC where the
user utilizes merely the related item embeddings for model training. (2) Full model training where
user maintain the full model for training. It can be observed that GREC leads to substantial saving in
memory and storage cost when the sparse item embedding matrix dominates the model parameters.
For memory cost, the average savings are 12x, 21x, 101x, and 214x for ML1M, ML10M, ML25M,
and Yelp, respectively. For storage cost, the average savings are 13x, 23x, 111x, and 247x for ML1M,
ML10M, ML25M, and Yelp, respectively.

21



Under review as a conference paper at ICLR 2025

. Post-processing LDP

1000 1000

200 200

600 600

200 400

200 I I 200

, = -0 - .
NCF

NCF DeepFM DeepFv

ML1M ML10M

. Full Model Inference

5000
4500
2000
3500
3000
2500
2000
1500
1000
500
0

NCF

ML25M

DeepF

7000

6000

5000

4000

3000

2000

1000

0

NCF

DeepFM

Yelp

Figure 5: Storage cost (in 103 parameters) per user during inference phase.

0 Grec

. o
. .
7 8
6 7

13
;

.
4 4
3 3
: I I 2
1 1
A n _ , m

e

ME NCF M DeepFM MF

Memory cost (MB)

Storage cost (K)

ML1IM ML10M

. Full Model Training

DeepFi

1000

800 800

600 600

400 400

200 I I 200

0 - n_ 0
MF M

DeepfM

ML25M

- ‘ - I -‘
ME NeF M
MF M

DeepFM

DeepfM

7000

6000

5000

2000

3000

2000

1000

WF M

MF

DeepFM

M

DeepfM

Yelp

Figure 6: Average memory cost (in MB) and storage cost (in 10% parameters) per user during training
phase. The memory cost is computed with batch size of 1.

A.10.4 UTILITY ANALYSIS UNDER HIGH DIMENSIONAL SETTING

To evaluate the robustness and scalability of our user-side post-processing method, we examine the
impact of embedding dimension d on the prediction accuracy. We utilize the same hyperparameters

in Table E to train the denoise model, except that the denoise dimension d follows the specification in

Table [10

Table 10: Hyperparameter for denoise model training under various dimensions.

| MLIM | Yelp
MF Embedding dimensiond | 64 128 512 | 64 128 512
Denoise dimension d 8 10 12 8 10 12
NCF Embedding dimensiond | 16 64 128 | 20 64 128
Denoise dimension d 5 6 8 5 6 8
M Embedding dimensiond | 64 128 512 | 64 128 512
Denoise dimension d 8 10 12 8 10 12
DeepEM Embe.ddln_g dlmfensuzn d| 64 128 512 | 64 128 512
Denoise dimension d 8 10 12 8 10 12

Table [TT] presents the inference accuracy under higher embedding dimensions. The results reveal
that our post-processing LDP can effectively maintain the inference utility for dimension d up to

22



Under review as a conference paper at ICLR 2025

512. In particular, our post-processing LDP outperforms naive LDP by an average of 44% and 47% ,

respectively, for d = 128 and d = 512.

Table 11: Inference accuracy in terms of RMSE under various embedding dimensions. The privacy

budget is fixed to e = 1 and § = 10~%.

| MLIM \ Yelp
Dimension d | 64 128 512 | 64 128 512
MF Non-private | 0903 0906 0908 | 1.050 1.051 1.048
Naive LDP ‘ 1.637  1.643  1.643 ‘ 1580 1532 1533
Post-processing LDP | 0.919 0919 0921 | 1.097 1.079 1.082
Dimension d | 16 64 128 | 20 64 128
NCF Non-private | 0.897 0.896 0909 | 1.035 1.034 1.039
Naive LDP ‘ 1169 1.241  1.380 ‘ 1.857 1563  1.636
Post-processing LDP | 0.915 0922 0921 | 1.083 1.059 1.097
Dimension d | 64 128 512 | 64 128 512
FM Non-private | 0906 0908 0.905 | 1.008 1.010 1.006
Naive LDP ‘ 2350 2313 2335 ‘ 1851 1859 1.856
Post-processing LDP | 0.908 0.908 0.906 | 1.055 1.056 1.056
Dimension d | 64 128 512 | 64 128 512
DeepFM  Non-private | 0903 0901 0901 | 1.011 1019 1.003
Naive LDP ‘ 2275 2342 2345 ‘ 1776 1.850  1.848
Post-processing LDP | 0.905 0905 0.903 | 1.055 1.054 1.056

A.10.5 UTILITY ANALYSIS UNDER VARIOUS PRIVACY BUDGETS

In this section, we study the impact of privacy budget € on the inference utility. We vary the privacy
budget from 0.1 to 10 in Table[I2] Though the accuracy for naive LDP degrades significantly as e
decreases to 0.1, the performance for our post-processing LDP remains robust, with average utility
loss of 2.9% compared to non-private setting for € = 0.1.

Table 12: Inference accuracy in terms of RMSE under various privacy budget e.

| MLIM | Yelp
Privacy budget € | 0.1 1 10 | 01 1 10
Non-private | 0.903 | 1.050
MF Naive LDP 1698 1637 1.105 | 1.632 1580 1.109
Post-processing LDP | 0.922 0919 0917 | 1.097 1.097 1.090
Non-private | 0.897 | 1.035
NCF Naive LDP 1164 1.169 1.138 | 1.862 1.857 1.870
Post-processing LDP | 0.913 0915 0911 | 1.084 1.083 1075
Non-private | 0.906 | 1.008
M Naive LDP 2377 2350 2075 | 2001 1.851 1.076
Post-processing LDP | 0.908 0.908 0905 | 1.059 1.055 1.036
Non-private | 0.903 | 1.011
DeepFM "\ ive LDP 2306 2275 1979 | 1.832 1776 1321
Post-processing LDP | 0.911 0907 0.904 | 1.054 1.055 1.048

A.10.6 COMPARISON WITH SPARSE AGGREGATION PROTOCOL

In this section, we discuss the advantages of our GREC over existing sparse aggregation protocols.
We consider two SOTA frameworks, Secure Aggregation with Mask Sparsification (SecAggMask)

(2023) and Top-k Sparse Secure Aggregation (TopkSecAgg) (2023)). The key

23



Under review as a conference paper at ICLR 2025

problem with the two frameworks is that they fail to ensure that the server learns nothing except the
aggregated gradients. In particular:

* Leakage of rated item index. For SecAggMask, each user transmits the union of gradients
with non-zero updates and masks to the server. For TopkSecAgg, each user is required to
upload the coordinate set of non-zero gradients along with a small portion of perturbed
coordinates. In both methods, the server could narrow down the potential rated items to a
much smaller set.

» Leakage of gradient values. While TopkSecAgg protects the values of non-zero updates
against the server, SecAggMask would reveal the plaintext values to the server. Specifically,
SecAggMask randomly masks a portion of the gradients to reduce communication cost, and
fails to ensure that all non-zero gradients would be masked against any attackers.

In Table [I3] we compare the communication cost of our GREC with the sparse aggregation protocols
under the same training setting. For SecAggMask, we adopt a mask threshold such that 60% non-zero
gradients would be masked in expectation. For TopkSecAgg, we set the purturbation proportion ( to
be 0.1, following (2023). Both approaches result in higher communication cost than GREC
because: (1) Besides the non-zero embedding gradients, SecAggMask requires the user to send a
certain proportion of randomly masked zero updates to the server. (2) To cancel out the mask values,
in TopkSecAgg each user sends the union of rated item embeddings for all participating user, rather
than the those for each single user.

Table 13: Communication cost (in MB) per user for GREC and Sparse SecAgg during upload
transmission in one iteration.

MLI100K MLIM ML10M ML25M Yelp
(1.7k Items) ~ (3.9k Items)  (10.7k Items)  (62.4k Items)  (93.4k Items)

General SecAgg 0.87 2.02 5.55 32.46 48.56

MF SecAggMask 0.27 0.61 1.66 9.60 14.35
TopkSecAgg 0.32 0.66 0.91 1.17 1.95

GREC 0.17 0.27 0.28 0.51 0.52
General SecAgg 0.45 1.03 4.20 24.48 30.64

NCF SecAggMask 0.14 0.31 1.25 7.21 8.98
TopkSecAgg 0.17 0.34 0.69 0.89 1.23

GREC 0.13 0.20 0.26 0.46 0.43

General SecAgg 0.93 2.04 5.56 32.47 48.57

M SecAggMask 0.27 0.61 1.66 9.60 14.35
TopkSecAgg 0.32 0.66 0.91 1.17 1.95

GREC 0.22 0.29 0.29 0.52 0.53

General SecAgg 14.96 8.87 8.72 35.63 51.20

DeepFM SecAggMask 14.30 7.44 4.81 12.76 16.99
TopkSecAgg 14.36 7.49 4.07 4.32 4.58

GREC 14.26 7.12 3.45 3.68 3.16

A.10.7 PERFORMANCE FOR ITEM RECOMMENDATION TASK

Previous experiments focus on the performance in terms of rating prediction, i.e., how close the
predicted rating is to the actual rating. Here we evaluate the model performance in terms of item
recommendation ability. In particular, how many items are selected by the user in the recommendation
list. We utilize Hit Ratio (HR) and Normalized Discounted Cumulative Gain (NDCG)[He et al.| (2015))
to measure the performance. During evaluation, we follow [Koren| to randomly samples 100
unrated items, and rank the test items along with the samples.

Table [T2] shows the recommendation performance in terms of HR@10 and NDCG@10. We can
observe that our post-processing LDP outperforms naive LDP by an average of 43% and 46%,
respectively, for HR@ 10 and NDCG@10. Compared with the non-private setting, the utility loss of
our method is 1.08% and 2.5%, respectively, for HR@ 10 and NDCG@ 10.

24



Under review as a conference paper at ICLR 2025

Table 14: Recommendation accuracy in terms of HR@ 10 and NDCG @ 10 for ML1M dataset. The
privacy budget is fixed to € = 1 and 6 = 10~*. Diff (%) is the percentage difference between naive
LDP and post-processing LDP.

MF NCF M DeepFM

Non-private 0.593 0.591 0.605 0.604
HR@10 Naive LDP 0.345 0.389 0.372 0.241
Post-processing LDP  0.586 0.584  0.598 0.599
Diff (%) 41.13 3339 3779 59.77
Non-private 0.337 0.334 0.347 0.344
NDCG@10 Naive LDP 0.182  0.207 0.209 0.121
Post-processing LDP  0.333  0.313  0.343 0.339
Dift (%) 4535 33.87 39.07 64.31

A.10.8 SERVER COMPUTATION COST

To validate the practicality of GREC, we evaluate the server computation cost under increasing
number of devices during the training stage. Noted that the server computation cost during the
inference stage is the same as that in the centralized setting. Table[I5]compares the computation time
of our framework with homomorphic encryption (HE) approaches with CKKS cryptosystem [Cheon|
(2017). Though both frameworks scales linearly with the number of participating devices,
GREC is approximately 130x faster than the typical HE protocol on average.

Table 15: Server computation cost (in minutes) per iteration for ML 1M dataset.

# of Active Users 100 200 300 400 500

HE (CKKS) 127.26 24451 391.76 519.05 646.38
GREC 0.99 1.92 2.93 3.88 4.90

A.10.9 BREAKPOINT ANALYSIS OF COMMUNICATION COST

In Sectiond.2] we show that GREC offers advantages over the General-purpose SecAgg scheme as
long as m' < mbd/ ((A + 2)logm + bd). The inequality usually holds for recommender system
with sparse update.

Tablepresents the maximum number of m’ for each dataset where the aforementioned inequality
holds. We use security parameter A = 128 and 32-bit precision b = 32. It can be observed that the
breakpoint of m/ is sufficiently large, over 50% of the total item size m. It is highly improbable for a
user to rate such a substantial proportion of items in practical scenarios.

Table 16: Maximum Value of m’ for Communication Cost Advantage over General-purpose SecAgg
under Various Embedding Dimension d.

ML100K MLIM ML10M ML25M Yelp

(1.7k Items) ~ (3.9k Items)  (10.7k Items)  (62.4k Items)  (93.4k Items)
d=64 1001 2210 5775 31038 45418
d =128 1255 2817 6408 37453 56031
d =512 1550 3547 9655 55418 82495

A.11 DISCUSSION

Communication cost during download transmission: Our framework focuses on the overhead
optimization during upload transmission considering its limited bandwidth. During the download
stage, succinct communication cost can be achieved using private information retrieval (PIR)
techinques, where users can retrieve their related item embeddings without revealing the
item index. Existing PIR protocols can achieve communication costs that depend sublinearly on m

25



Under review as a conference paper at ICLR 2025

Chor & Gilboal(1997);|Cachin et al.|(1999)). The use of FSS schemes further enhances communication
efficiency in PIR, reducing overheads to logarithmic dependence on m Boyle et al.| (2015)); (Gilboa &
Ishail (2014).

Private inference for sequential recommendation: Sequential recommendations predict the next
item the user is likely to interact with given their interaction histories. Various models have been
proposed for this recommendation task, based on architectures including Recurrent Neural Network
(RNN), self-attention blocks, and Graph Neural Network (GNN)(Wang et al.|(2020); Kang & McAuley
(2018); Sun et al.|(2019). It’s essential to develop a unified federated training and private inference
for sequential recommendation compatible with a variety of models.

26



	Introduction
	Background and Preliminaries
	Problem Statement
	Functional Secret Sharing
	Differential Privacy

	Methodology
	Training
	Key observation
	Secure Aggregation on Sparse Update
	Complexity and Security Analysis

	Inference
	Motivation
	A Naive LDP Solution
	Post-processing LDP
	Privacy Analysis


	Experiment Evaluation
	Experiment Setting
	Communication Analysis
	Inference Utility Analysis
	Computation Analysis

	Conclusion
	Appendix
	Related Work
	Cross-User Federated Recommender System
	Secure Aggregation for Machine Learning

	Complexity of Existing SecAgg Algorithms
	Preliminaries
	Additive Secret Sharing
	Function Secret Sharing

	Standardization of Uploaded Item Size
	Secure Aggregation on Dense Update
	Algorithm to Train Grec
	Theoretical Efficiency Analysis
	Post-processing LDP Framework
	Framework Description
	Training and Design of Denoise Model
	Proof of Theorem 3.2

	Specifications on Experimental Setting
	Dataset and Pre-processing
	Hyperparameters of Recommender and Denoise model

	Additional Experiment Evaluation
	Comparison with Existing Message Compression Methods
	Inference Overhead Analysis
	Training Memory and Storage Analysis
	Utility Analysis under High Dimensional Setting
	Utility Analysis under Various Privacy Budgets
	Comparison with Sparse Aggregation Protocol
	Performance for Item Recommendation Task
	Server Computation Cost
	Breakpoint Analysis of Communication Cost

	Discussion


