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Abstract

Learning distributions over permutations is a fundamental problem in machine1

learning, with applications in ranking, combinatorial optimization, structured pre-2

diction, and data association. Existing methods rely on mixtures of parametric3

families or neural networks with expensive variational inference procedures. In this4

work, we propose a novel approach that leverages alternative representations for5

permutations, including Lehmer codes, Fisher-Yates draws, and Insertion-Vectors.6

These representations form a bijection with the symmetric group, allowing for un-7

constrained learning using conventional deep learning techniques, and can represent8

any probability distribution over permutations. Our approach enables a trade-off9

between expressivity of the model family and computational requirements. In the10

least expressive and most computationally efficient case, our method subsumes pre-11

vious families of well established probabilistic models over permutations, including12

Mallow’s and the Repeated Insertion Model. Experiments indicate our method13

significantly outperforms current approaches on the jigsaw puzzle benchmark, a14

common task for permutation learning. However, we argue this benchmark is15

limited in its ability to assess learning probability distributions, as the target is a16

delta distribution (i.e., a single correct solution exists). We therefore propose two17

additional benchmarks: learning cyclic permutations and re-ranking movies based18

on user preference. We show that our method learns non-trivial distributions even19

in the least expressive mode, while traditional models fail to even generate valid20

permutations in this setting.21

1 Introduction22

Learning in the space of permutations is a fundamental problem with applications ranging from23

ranking for recommendation systems (Feng et al., 2021), to combinatorial optimization, learning-24

to-rank (Burges, 2010), and data cleaning (Kamassury et al., 2025). Classical probabilistic models25

for permutations include the Plackett-Luce (Plackett, 1975; Luce et al., 1959) and Mallows (Mal-26

lows, 1957) distributions, which can only represent a limited set of probability distributions over27

permutations (e.g., Plackett-Luce cannot model a delta distribution). These limitations have been28

addressed in existing literature by considering mixtures Lu and Boutilier (2014), which require29

expensive variational inference procedures for learning and inference. More recently, several works30

have proposed methods for learning arbitrary probability distributions over permutations using neural31

networks, in the framework of diffusion (Zhang et al., 2024) and convex relaxations (Mena et al.,32

2018) (see Section 2 for an overview).33

In this work, we develop models that can represent any probability distribution over permutations and34

can be trained with conventional deep learning techniques, including any-order masked language35

modelling (MLM) (Uria et al., 2016; Larochelle and Murray, 2011), and autoregressive next-token-36
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Figure 1: Overview of our method unscrambling the sequence “osftre" autoregressively using one
of the representations we consider in this work: Fisher-Yates draws (Fisher and Yates, 1953). We
condition on a reference/context (green) and the current input (blue) to sample values for the masked
tokens (white). The model samples a permutation that unscrambles to “forest” on the left, and “fortes”
on the right. At any point in generation, the partially-masked sequence corresponds to some valid
permutation.

prediction (AR or NTP) (Shannon, 1948). We leverage alternative representations for permutations37

(beyond the usual inline notation) that form a bijection with the symmetric group, allowing for38

unconstrained learning. The representations we consider stem from well-established algorithms in39

the permutation literature, such as factorial indexing (Lehmer codes (Lehmer, 1960)), generating40

random permutations (Fisher-Yates draws (Fisher and Yates, 1953)), and modelling sub-rankings41

(Insertion-Vectors (Doignon et al., 2004; Lu and Boutilier, 2014)); which all have varying support for42

their sequence-elements that are a function of the position in the sequence (Section 3.1).43

To trade off compute and expressivity, MLMs have the capability of sampling multiple permutation44

elements independently with one forward pass through the neural network. Aforementioned represen-45

tations always produce valid permutations at inference time for any amount of compute spent, even46

in the fully-factorized case when all tokens are unmasked in a single forward-pass.47

Decoding the inline notation of the permutation from the representation is trivial in the case of48

Lehmer and Fisher-Yates (Kunze et al. (2024a)). In Theorem 4.3 we establish a relationship between49

a permutation’s inverse, and its Lehmer and Insertion-Vector representations, which allows us to50

develop a fast decoding algorithm for Insertion-Vectors that can be applied in batch, significantly51

improving inference time compute.52

Our methods establishes new state-of-the-art results on the common benchmark of solving jigsaw53

puzzles (Mena et al., 2018; Zhang et al., 2024), significantly outperforming previous diffusion54

and convex-relaxation based approaches. However, we also argue this benchmark is inadequate55

to evaluate learning probability distributions over permutations, as each puzzles contains only one56

permutation that unscrambles it (i.e., the target distribution is a delta function). We therefore propose57

two new benchmarks, which require learning non-trivial distributions: learning cyclic permutations58

(Section 5.2) and re-ranking a set of movies based on observed user preference in the MovieLens59

dataset (Section 5.3).60

In summary, our contributions are four-fold. We:61

• (Section 4.2) develop new methods for supervised learning of arbitrary probability distri-62

butions over permutations that (1) assign zero probability to invalid permutations; (2) can63

trade-off expressivity for compute at sampling time, without re-training; (3) can learn non-64

trivial, fully-factorized distributions; (4) is trained with conventional language modelling65

techniques with a cross-entropy loss; (5) is extremely fast at sampling time;66

• (Section 5.1) establish state-of-the-art on the common benchmark of jigsaw puzzles, signifi-67

cantly outperforming current baselines;68

• (Section 5.2 and Section 5.3) define two new benchmarks: learning cyclic permutations and69

re-ranking based on user preference data, that require learning non-trivial distributions;70

• (Theorem 4.3) establish a new relationship between insertion-vectors, inverse permutations,71

and Lehmer codes that result in an efficient decoding scheme for insertion-vectors.72
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Figure 2: (Left) Illustration for the Fisher-Yates algorithm for shuffling, defining a bijection with
permutations. In this example, FY (X) = [3, 1, 0, 0] ⇒ X = [4, 3, 2, 1]. Small numbers in the
bottom-right corner of each box represent the draw value required to swap the current element
with that position. (Right) Illustration of the generative process defined by the insertion vector, for
a reference permutation Xref = [1, 2, 3, 4, 5]. At each step, the current element of the reference
is inserted immediately to the left of Vi, and values to the right are shifted right one position to
accommodate. Small numbers at the bottom-left corner represent the slot index. In this example,
V (X) = [0, 0, 1, 3, 2] ⇒ X = [2, 3, 5, 1, 4].

2 Related Work73

Generative models and objectives. We utilize generative models parametrized by transformers74

Vaswani et al. (2017), as commonly employed in language modeling. Specifically, we utilize Masked75

Language Modeling (MLM) and next-token prediction (NTP or AR). The concept of NTP goes back76

as far as Shannon (1948) and has been applied with great success in language modeling within the77

last decade, see e.g. Radford et al. (2019); Meta (2024) and many more. Popularized through BERT78

(Devlin et al., 2019), MLM has been identified as a viable tool for language understanding. More79

recently, forms of MLM have been derived as a special case of discrete diffusion (Austin et al., 2021;80

He et al., 2022; Kitouni et al., 2024), where the noise distribution is a delta distribution on the masked81

state, and have shown promise in generative language modeling (Sahoo et al., 2024; Shi et al., 2025;82

Nie et al., 2025).83

Permutation and Preference Modeling. Notable families of distributions over permutations84

include the Plackett-Luce distribution (Plackett, 1975; Luce et al., 1959) and the (generalized)85

Mallows model (Mallows, 1957), both of which have restricted expressivity. Doignon et al. (2004);86

Lu and Boutilier (2014) propose the Repeated Insertion Model (RIM) and a generalized version87

(GRIM) to learn Mallows models and mixtures thereof, which itself also uses the same insertion88

representation used in this paper. These methods are detailed in Section 3.2.89

A prominent line of related work approaches permutation learning using differentiable ordering.90

One common strategy is to relax the discrete problem into continuous space—either by relaxing91

permutation matrices (Grover et al., 2019; Cuturi et al., 2019) or by using differentiable swapping92

methods (Petersen et al., 2022; Kim et al., 2024). A notable baseline for us is the work of Mena et al.93

(2018), who utilize the continuous Sinkhorn operator to regress to specific permutations, rather than94

distributions over possible permutations.95

Using Lehmer codes for permutation learning has been considered by Diallo et al. (2020), but only in96

the AR context and with a different architecture than considered in this work; as well as Malagón97

et al. (2025) to sample solutions to certain optimization problems in their framework (see “4.2 Case 2:98

The First-Order Marginal Probabilities Model" in their paper). Recently, Zhang et al. (2024) joined99

the concepts of discrete space diffusion and differentiable shuffling methods to propose an expressive100

generative method dubbed SymmetricDiffusers, SymDiff for short. Inspired from random walks on101

permutations, they identify the riffle shuffle (Gilbert, 1955) as their forward process. To model the102

reverse process, the paper introduces a generalized version of the Plackett-Luce distribution. This103

work serves as our most relevant and strongest baseline.104

3 Background105

A short introduction to permutations is given in Section A.1.106
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Notation Sequences of random variables are denoted by capital letters X,L, V , and FY . Subscripts107

Xi, Li, Vi, and FYi indicate their elements. Contiguous intervals are denoted by [n] = [1, 2, . . . , n]108

and [n) = [0, 1, . . . , n− 1]. For some set S with elements sj ∈ [n], let XS = {Xs1 , . . . , Xs|S|} be109

the set of elements in X restricted to indices in S. For an ordered collection of sets Si, we denote110

unions as S<i =
⋃

j<i Sj . The Lehmer code (Lehmer, 1960), Fisher-Yates (Fisher and Yates, 1953),111

and Insertion-vector (Doignon et al., 2004; Lu and Boutilier, 2014) representations of a permutation112

X will be denoted by L(X), FY (X), and V (X), respectively. We sometimes drop the dependence113

on X when clear from context or when defining distributions over these representations directly. All114

logarithms are base 2.115

3.1 Representations of Permutations116

Lehmer Codes (Lehmer, 1960). A Lehmer code is an alternative representation to the inline117

notation of a permutation. The Lehmer code L(X) of a permutation X on [n] is a sequence of length118

n that counts the number of inversions at each position in the sequence. Inversions can be counted to119

the left or right, with one of the following 2 definitions,120

Left: L(X)i = |{j < i : Xj > Xi}| or Right: L(X)i = |{j > i : Xj < Xi}|. (1)

An example of a right-Lehmer code is given in Figure 3. The right-Lehmer code is commonly used121

to index permutations in the symmetric group, as it is bijective with the factorial number system. The122

i-th element L(X)i of the right-Lehmer has domain [n − i + 1), and [i) for the left-Lehmer code.123

A necessary and sufficient condition for a Lehmer code to represent a valid permutation is for its124

elements to be within their respective domains. The manhattan distance between Lehmer codes relates125

to the number of transpositions needed to convert between their respective permutations, establishing126

a metric-space interpretation. This is formalized in Theorem B.1. As a direct consequence, the sum127 ∑
i L(X)i equals the number of adjacent transpositions required to recover the identity permutation,128

known as Kendall’s tau distance (Kendall, 1938). Code to convert between inline notation and right-129

or left-Lehmer codes is given in Section D.2.130

Fisher-Yates Shuffle (Fisher and Yates, 1953). The Fisher-Yates Shuffle is an algorithm commonly131

used to generate uniformly distributed permutations. The procedure is illustrated in Figure 2. At132

each step, the element at the current index is swapped with a randomly selected element to the right,133

and after n steps is guaranteed to produce a uniformly distributed permutation if the initial sequence134

is a valid permutation. The index sampled at each step, FYi, are referred to as the “draws”. Each135

resulting permutation X can be produced with exactly 1 unique sequence of draws FY (X), implying136

the set of possible draw-sequences forms a bijections with the symmetric group (Fisher and Yates,137

1953). During the Fisher-Yates shuffle it possible to sample 0, resulting in no swap (see a “pass”138

step in Figure 2 for an example). If sampling is restricted such that FYi > 0, then the procedure is139

guaranteed to produce a cyclic permutation and is known as Sattolo’s Algorithm (Sattolo, 1986).140

Decoding a batch of Fisher-Yates representations can be parallelized by applying the Fisher-Yates141

shuffle to a batch of identity permutations and forcing the draws to equal elements FYi. Encoding142

requires inverting the Fisher-Yates shuffle by deducing which sequence of draws resulted in the143

observed permutation. An algorithm to do so is provided by Kunze et al. (2024b) in Appendix C.1,144

which can be easily made to work in batch. Code to run Fisher-Yates and Sattolo’s algorithm is given145

in Section D.3.146

3.2 Generalized Repeated Insertion Model (Doignon et al., 2004; Lu and Boutilier, 2014)147

The repeated insertion model (RIM) (Doignon et al., 2004) is a probability distribution over per-148

mutations that makes use of an alternative representation to inline, called insertion-vectors. The149

insertion-vector V (X) defines a generative process for X , relative to some reference permutation150

Xref. To generate X given Xref and V (X), we traverse the reference from left to right and insert the151

i-th element of Xref at slot V (X)i ∈ [i− 1). See Figure 2 for an example.152

RIM uses a conditional distribution that is independent of V<i to define the joint over the insertion-153

vector, i.e., PVi |V<i,Xref = PVi |Xref , while the Generalized RIM (GRIM) (Lu and Boutilier, 2014) uses154

a full conditional. GRIM can be used to learn probability distributions over permutations conditioned155
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Figure 3: Illustration of the right-Lehmer code for permutation X = [3, 5, 4, 1, 2]. (Left) Each
L(X)i = Li counts the number of elements to the right of Xi that are smaller than it. (Right) Lehmer
code interpreted as sampling without replacement indices.

on an observed sub-permutation. For example, for n = 4 and an observed sub-permutation [2, 1, 4],156

we can set Xref = [2, 1, 4, 3] such that conditional probabilities PV4 |V<4,Xref can be learned for all157

permutations agreeing with the observations, i.e.,158

V4 = 0 V4 = 1 V4 = 2 V4 = 3

[3, 2, 1, 4] [2,3, 1, 4] [2, 1,3, 4] [2, 1, 4,3].

Note this is not possible with inline, Lehmer, or the Fisher-Yates representations. The same can159

be achieved if the initial elements in Xref are permuted, as long as the values for V<i are changed160

accordingly, which highlights an invariance a model over insertion-vectors must learn.161

In Lu and Boutilier (2014) the authors use the insertion-vector representation to model user preference162

data, where the observed sub-permutation represents a partial ranking establishing the preference of163

some user over a fixed set of items. In Section 5.3 we tackle a similar problem on the MovieLens164

dataset (Harper and Konstan, 2015) where we rank a set of movies according to observed user ratings.165

4 Learning Factorized Distributions over Permutations166

0

Diffusion Transformer

Figure 4: Training our method with
MLM during training with the inline no-
tation. For other representations, only
the blue tokens change.

This section discusses the main methodological contri-167

bution of this work. MLMs can trade off compute and168

expressivity by sampling multiple permutation elements169

with one network function evaluation (or forward pass).170

In that case, simultaneously sampled elements are condi-171

tionally independent, which corresponds to an effective172

loss in modeling capacity. We begin by showing that per-173

mutations modeled in the inline representation suffer most174

from the degradation of model capacity as the number175

of function evaluations (NFEs) decreases, and can only176

model delta functions when restricted to a single NFE.177

We propose learning in the 3 alternative representations178

discussed in Section 3: Lehmer codes, Fisher-Yates draws,179

and Insertion-vectors; which do not suffer the same degra-180

dation in capacity . Note that while these alternative181

representations also have constraints for the domain of182

their elements, these constraints are trivially learned by183

the neural network as it only sees valid permutations during training and can infer the domain by184

setting the appropriate logits to negative infinity. We show the learned conditional distributions185

defined by these representations are highly interpretable and subsume well known families such as186

Mallow’s model (Mallows, 1957) and RIM (Doignon et al., 2004).187

4.1 Modelling capacity of P (S)
X for the inline representation188

The masked models considered in this work are of the form,189

P
(S)
X =

∏
i

PXSi
|XS<i

=
∏
i

∏
j∈Si

PXj |XS<i
, (2)
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where S = (S1, . . . , Sk) forms a partitioning of [n], and the number of neural function evaluations190

(NFEs) is equal to k. Elements are sampled independently if their indices belong to the same set191

Sj , when conditioned on previous elements XS<i
. The choice of NFEs restrict P (S)

X to a different192

family of models through different choices of partitioning S. For example, when limited to 1 NFE,193

the model is fully-factorized with S1 = [n]. AR minimizes at full NFEs (i.e., n = k) with Si = {i},194

while MLM places a distribution on the partitionings S resulting in a mixture model.195

We consider the problem of learning distributions over valid permutations by minimizing the cross-196

entropy,197

min
P

E
[
− logP

(S)
X

]
subject to P

(S)
X (x) = 0 if x is not a valid permutation, (3)

where the expectation is taken over the data distribution.198

Previous works have considered modelling permutations in the inline notation where Xi can take on199

any value in [n]. To produce only valid permutations, it is necessary and sufficient for the support200

of PXj |XS<i
to not overlap with that of another index in Si ∪ S<i = S≤i. We can obtain an upper201

bound on the entropy of any inline model by considering the case when all indices in j′ ∈ Si are202

deterministic except for some j ̸= j′, which is uniformly distributed over the remaining candidate203

indices. Formally, H(PXj′ |XS<i
) = 0 and H(PXj |XS<i

) = log(n− |S≤i|+ 1). This implies the204

following for all j ∈ Si,205

H
(
P

(S)
X

)
≤

∑
i

log (n− |S≤i|+ 1) . (4)

Equation (4) shows the modelling capacity is severely impacted by the number of NFEs. Most206

importantly: any inline model respecting the constraint in Equation (3) can only represent207

a delta function in the case of 1 NFE (i.e., S1 = [n]), as H(P
(S)
X ) ≤ 0 implies H(P

(S)
X ) = 0208

(Cover, 1999). In practice, this manifests at sampling time where the model fails to produce valid209

permutations as in Section 5.2. At full NFEs the right-hand side of Equation (4) equals log(n!), and210

is achievable when P
(S)
X is a uniform distribution.211

4.2 Factorized Representations for Permutations212

Diffusion Transformer

Diffusion Transformer

Diffusion Transformer

Figure 5: Our method during inference
in the inline notation for sequence length
L = 6 and NFEs = 3. For other repre-
sentations, only the blue tokens change.

Next, we consider learning distributions over permuta-213

tions with the factorized representations discussed in Sec-214

tion 3.1. These representations have different supports for215

their sequence-elements and allow values to overlap while216

still producing valid permutations, implying they don’t217

suffer from the representation capacity issue discussed in218

Section 4.1. At full NFEs, these representations can model219

arbitrary distributions over permutations, while at a single220

NFE they can can learn non-trivial distributions such as221

the Mallow’s model and RIM; in contrast to inline which222

can only represent a delta distribution. For this reason, we223

refer to them as factorized representations.224

Lehmer Codes. We consider models P
(S)
L over the225

(right) Lehmer code as defined in Section 3.1 and illus-226

trated in Figure 3. Left-to-right unmasking of a Lehmer227

code can be interpreted as the sampling without replace-228

ment (SWOR) indices of its corresponding permutation,229

as illustrated in Figures 3 and 10. In the AR setting,230

our model subsumes Mallow’s weighted model (Mallows,231

1957) over the remaining elements (those that have not yet232

been sampled).233

Remark 4.1. The weighted Mallow’s model with weights234

wj and dispersion coefficient ϕ is recovered when235
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PLj |L<i
(ℓj | ℓ<i) ∝ ϕωj ·ℓj , for all j ∈ Si. This follows236

directly from,237

PLSi
|L<i

(ℓSi
| ℓ<i) =

∏
j∈Si

PLj |L<i
(ℓj | ℓ<i) ∝ ϕ

∑
j∈Si

ωj ·ℓj , (5)

where
∑

j∈Si
ωj · ℓj is the weighted Kendall’s tau distance (Kendall, 1938). In particular, when238

fully-factorized, it can recover the weighted Mallow’s model over the full permutation.239

Fisher-Yates. We define the Fisher-Yates code FY (X) of some permutation X as the sequence of240

draws of the Fisher-Yates shuffle that produces X starting from the identity permutation. For MLM241

and AR, unmasking in the Fisher-Yates representation corresponds to applying random transpositions242

to the inline notation. Similar to Lehmer, this can also be viewed as SWOR, except that the list of243

remaining elements (faded and bright yellow in Figure 2) is kept contiguous by placing the element244

at the current pointer (bright yellow in Figure 2) in the gap created from sampling.245

Insertion-Vectors. We train using the insertion-vector representation to define conditional dis-246

tributions over sub-permutations. Similar to how Lehmer can recover Mallow’s weighted model,247

conditionals can define a RIM (Doignon et al., 2004) over permutations compatible with the currently248

observed sub-permutation.249

Remark 4.2. RIM is subsumed by our model when the insertion probabilities are independent of250

ordering between currently observed elements, i.e., PVSi
|V<i,Xref = PVSi

|Xref .251

For Lehmer and Fisher-Yates representations there exist efficient algorithms to convert from (encode)252

and to (decode) inline, but it is not obvious how to do so for insertion-vectors. The following theorem253

allows for an efficient batched algorithm for encoding and decoding, by leveraging known algorithms254

for Lehmer codes (see Section D.2).255

Theorem 4.3. Let L(X) be the kth element of the left-Lehmer code, X−1 the inverse permutation,256

and V (X)k the kth element of the insertion vector of X . Then,257

V (X)k = k − L(X−1)k. (6)
The proof follows from the repeated insertion procedure sampling, without replacement, the positions258

in which to insert values in the permutation. A full proof is given in Section B.2. Code to encode259

and decode between inline and the insertion-vector representation is given in Section D.4. A more260

general theorem was proven in Azpeitia et al. (2025)261

5 Experiments262

This section discusses experiments with factorized representations, as well as inline, across different263

losses. We explore 3 experimental settings. First, a common baseline of solving jigsaw puzzles264

of varying sizes, where the target distribution is a delta function on the permutation that solves265

the puzzle. We then propose 2 new settings with more complex target distributions: learning a266

uniform distributions over cyclic permutations, as well as re-ranking movies based on observed user267

preference. For MLM at low NFEs each set in S is of size n/NFEs (rounded), with the exception of268

the last set. Hyper-parameters for all experiments are given in Section E. An illustration of training269

is given in Figure 4 and inference in Figure 5.270

5.1 Solving Jigsaw Puzzles.271

We evaluate our models on the common benchmark of CIFAR-10 jigsaw puzzles using the exact272

same setup as in Zhang et al. (2024). Experimental details are given in Section E. For MLM, we use273

the same architecture (SymDiff) as Zhang et al. (2024), with the CNN backbone conditioning on the274

jigsaw tensor. For AR, we modify the architecture to add an additional step that attends to the input275

sequence as well as the tensor (see Section D.5). All models have roughly 3 million parameters.276

Our method significantly outperforms previous diffusion and convex-relaxation baselines, with all277

representations and losses. Results are shown in Figure 6. MLM can solve the puzzle with 1 NFE278

(i.e., 1 forward-pass) as the target distribution is a delta on the solution, conditioned on the puzzle.279

7



AR MLM (1 NFE) SymDiff Gumbel
82

84

86

88

90

92

94

AR MLM (1 NFE) SymDiff Gumbel AR MLM (1 NFE) SymDiff Gumbel

Fisher-Yates Inline Insertion Lehmer

%
 C

or
re

ct

2x2 3x3 4x4

43.59 34.69 25.31

Figure 6: Percentage of CIFAR-10 jigsaw puzzles (test set) correctly reassembled for varying puzzle
size, methods, and permutation representation (higher is better). SymDiff (Zhang et al., 2024) and
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NFE.
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10k samples. (Left) Percentage of unique output sequences, including invalid permutations. All
representations achieve 100%. (Middle) Percentage of simultaneously unique and valid permutations.
Except for Inline, all representations achieve 100%. (Right) Percentage of unique, valid, and cyclic
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5.2 Learning a Uniform Distribution over Cyclic Permutations280

The jigsaw experiment is limited in evaluating the complexity of distributions over permutations, as281

the target is a delta function. In this section we propose a new benchmark where the target distribution282

is uniform over all (n− 1)! cyclic permutations of length n = 10.283

All cyclic permutations of length n are generated with Sattolo’s algorithm (Sattolo, 1986), and a284

random set of 20% are taken as the training set, resulting in a train set size of (n− 1)!/5. Results are285

shown in Figure 7 where each point represents 10, 000 samples. All models learn to fully generalize286

in the following sense: out of the 10, 000 samples taken, around 20% are in the training set, while287

the rest are not. All factorized representations can produce valid permutations, even as the number288

of NFEs decreases, including for the fully-factorized case of 1 NFE. Inline suffers to produce valid289

permutations as discussed in Section 4.1. All methods can fully model the target distribution at290

full NFEs, including inline representations (right-most plot). Both Lehmer and Insertion-Vector291

representations can still produce some cyclic permutations (above the (n− 1)!/n! = 0.1 baseline)292

even at 1 NFE. Fisher-Yates can perfectly model the target distribution for any number of NFEs.293

This is expected, as hinted by Sattolo’s algorithm: a necessary and sufficient condition to generate294

cyclic permutations in the Fisher-Yates representation is for FYi > 0, as these represent a pass in the295

draw. The model produces a uniform distribution over a subset of cyclic permutations. For example,296

Lehmer at 5 NFEs has non-zero mass on only 46.1% of the (n− 1)!/n! cyclic permutations. Within297

those 46.1%, the probabilities are uniformly distributed, while the remaining have 0 mass.298
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Figure 8: Results for re-ranking conditioned on user ratings in MovieLens (higher is better) for
varying rank sizes n. See Section 5.3 for a full discussion of the results.

5.3 Re-ranking on MovieLens299

Our last experiment is concerned with learning distributions over rankings of size n, conditioned on300

existing user preference data in the MovieLens32M dataset (Harper and Konstan, 2015). MovieLens301

contains 32 million ratings across 87, 585 movies by 200, 948 users on a 0.5 scale from 0.5 to 5.0.302

We first filter to keep only movies rated by at least 1, 000 users, and then randomly sample 1, 000303

movies from the remaining. Only users that rated at least n movies out of the 1, 000 sampled movies304

are kept. In the smallest setting (n = 50), the dataset totals roughly 18 million ratings across 174305

thousand users. The dataset was split on users into 80% train and 20% validation.306

Note that the only information available to the models in this paper are rankings of previous liked307

items, with no notion of user, user features, or even item features. There is no guarantee of a single308

“true ranking” of size n when conditioned on a sub-ranking of size k < n; as there will likely be two309

users that have the same preference on a subset of k movies, but differ in preference when looking at310

the full ranking of size n (i.e., the target is a uniform distribution over these rankings of size n).311

During training, we sample n ratings (each for a different movie) from each user. The (shuffled)312

sequence of n movie ids make up Xref. The user ratings are then used to compute the true ranking (i.e.,313

labels), with ties broken randomly. The input sequence is of size 2n, with the first n corresponding314

to the movie labels (i.e., Xref, prefix), and the last n the true user ranking in the insertion-vector315

representation (i.e., V (X), labels). We train with MLM and AR to predict the labels conditioned316

on the prefix, and the labels generated so far (i.e., conventional cross-entropy training, or “teacher-317

forcing”).318

To evaluate, we sample n ratings for each user in the test set (as done in training) and condition on319

the first few movies V<i to predict the remaining V≥i. Note this is possible without training separate320

conditional models, because the GRIM representation allows us to learn all conditionals of the form321

PVi |V<i,Xref when training with the AR and MLM objectives.322
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We compare against two baselines: ranking movies by number of users that watched them, and RIM323

(Doignon et al., 2004) with uniform insertion probabilities; conditioned on the observed ranking V≤r.324

Results are shown in Figure 8 for the NDCG@k metric (Järvelin and Kekäläinen, 2002). NDCG@k325

measures the agreement to the true user ratings, and has a maximum value of 1.0. Note that NDCG@k326

is similar to cross-entropy when the relevance scores are the normalized log-probabilities (which is327

our case), which is an appropriate metric for a distribution learning task.328

AR (
∏

j>r PVj |V<j
) and MLM (1 NFE,

∏
j>r PVj |V≤r

) perform similarly, and outperform both329

baselines in all settings. Note r = 1 and r = 0 are equivalent, as V (X)1 = 0 with probability 1.330

The conditional MLM model at 1 NFE is different from the unconditional MLM model at 1 NFE331

(
∏

j>r PVj
); which is why performance improves as a function of the observed rank size r. In this332

setting, the AR baseline is a very strong baseline, which should have very high performance on this333

task, given that no semantic content information is available to take advantage of.334

6 Discussion and Future Work335

We present models capable of learning arbitrary probability distributions over permutations via336

alternative representations: Lehmer codes, Fisher-Yates draws, and insertion vectors. These rep-337

resentations enable unconstrained learning and ensure that all outputs are valid permutations. We338

train our models using auto-regressive and masked language modeling techniques, which allow for339

a trade-off between computational cost and model expressivity. Our approaches achieve state-of-340

the-art performance on the jigsaw puzzle benchmark. However, we also argue this benchmark is341

insufficient to test permutation-distribution modelling as the target is deterministic. Therefore, we342

introduce two new benchmarks that require learning non-trivial distributions. Lastly, we establish a343

novel connection between Lehmer codes and insertion vectors to enable parallelized decoding from344

insertion representations.345

The methods in this work explore learning distributions over permutations, where the set of items to346

be ranked is already known before-hand. An interesting avenue for future work is to model the set of347

items simultaneously, as is the case in real-world recommender systems. Experiments on MovieLens348

hint at the scaling capabilities of these factorized representations beyond simple toy settings, as the349

size of learned permutations for non-trivial experiments in previous literature has generally been350

much smaller than that explored in our largest MovieLens experiment (n = 50). Finally, from a351

theoretical standpoint there is room for more characterization of the properties of these families of352

distributions in the low NFE setting.353
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A Background448

A.1 Permutations449

A permutation in this context is a sequence X of elements Xi ∈ [n] such that
⋃

i{Xi} = [n]450

with X having no repeating elements. Permutations are often expressed in inline notation, such as451

X = [5, 4, 1, 2, 3]. A permutation can also be seen as a bijection X : [n] → [n], where X(i) = Xi is452

the element in the inline notation at position i.453

A transposition is a permutation that swaps exactly 2 elements, such as X = [1, 2, 4, 3].454

A cycle of a permutation is the set of values resulting from repeatedly applying the permutation,455

starting from some value. For the previous example, the cycles are (1 → 5 → 3 → 1) and456

(2 → 4 → 2). A cyclic permutation is a permutation that has only 1 cycle, an example is given in457

Figure 9.458

The inverse of X , denoted as X−1, is the permutation such that X(X−1(i)) = (X−1)(X(i)) = i.459

A sub-permutation of a permutation X of length n, is a sequence of m ≤ n elements Zj = Xij that460

agrees with X in the ordering of its elements, i.e., i1 < i2 < · · · < im. For example, [5, 1, 3] and461

[4, 1, 2] are sub-permutations of [5, 4, 1, 2, 3], but [4, 1, 3, 2] is not.462

See Marden (2014); Critchlow et al. (1991) for a more complete introduction to permutations and463

ranking models.464

B Theorems and Proofs465

B.1 Neighboring Lehmer Codes Differ by a Transposition466

The following theorem gives a metric-space interpretation for Lehmer codes, and how changes in467

L(X) affect X .468

Theorem B.1. For any two permutations X,X ′, if ∥L(X)− L(X ′)∥1 = 1 then X and X ′ are equal469

up to a transposition.470

The proof follows from analyzing the list of remaining elements at each SWOR step, and can be seen471

from a simple example. Consider the following Lehmer codes L,L′ differing only at L′
3 = L3 + 1,472

their SWOR processes, and their resulting permutations X,X ′.

L1 = 2 X1 = 31 2 3 4 5

L2 = 3 X2 = 51 2 4 5

L3 = 1 X3 = 21 2 4

L4 = 0 X4 = 11 4

L5 = 0 X5 = 44

L′
1 = 2 X ′

1 = 31 2 3 4 5

L′
2 = 3 X ′

2 = 51 2 4 5

L′
3 = 2 X ′

3 = 41 2 4

L′
4 = 0 X ′

4 = 11 2

L′
5 = 0 X ′

5 = 22

473

Note the following facts:474

1. transposing 3 and 1 in the initial permutation (first row) and applying the SWOR process of475

L results in X ′;476

2. the element chosen at step 3 by L3 is adjacent in the list to the element chosen by L′
3, as477

|L3 − L′
3| = 1;478

3. steps before 3 are unaffected, as are their respective inline elements;479

4. steps after 3 are unaffected, as long as the sampled index does not fall in either of the two480

blocks corresponding to L3 and L3 + 1 (where a change occurred).481

In general, for an increment at position j, the only affected elements are those at Lj and Lj + 1,482

implying X and X ′ differ exactly by the transposition of these elements.483
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A more general statement can be given for the case of increments beyond 1. Consider L′
j = Lj + k.484

All future steps i > j with elements Li ∈ [Li, Li + k] are affected, requiring a permutation of size485

k + 1 to recover X .486

Theorem B.2. For any two permutations X,X ′ such that L(X)i = L(X ′)i for all i ̸= j then X and487

X ′ are equal up to a permutation of |L(X)j − L(X ′)j |+ 1 elements.488

B.2 Theorem 4.3489

Restating Theorem 4.3 Let L(X) be the kth element of the left-Lehmer code, X−1 the inverse490

permutation, and V (X)k the kth element of the insertion vector of X . Then,491

V (X)k = k − L(X−1)k.

First, let pk be the position of the value k in X , i.e. Xpk
= k. By definition of inversion, pk = X−1

k .492

Then, note V (X)k = |{j < pk|Xj < k}|. In words: The insertion vector element V (X)k counts493

the number of elements to the left of the position of value k in X (i.e. pk) that are smaller than494

k. This can be seen by the following argument: By definition, an insertion vector element V (X)k495

describes in which index to insert an element with the current value k (or k + 1, depending on496

indexing definitions), see Figure 2 (right). Because all previously inserted values are smaller than k497

and all values inserted later will be larger, the index at the time of insertion is equal to the count of498

smaller elements to the left of the final position of value k in X , which is pk.499

Recall the definition of the left Lehmer code: L(X)k = |{j < k|Xj > Xk}|.500

Define L′(X)k = k − L(X)k and notice that501

L′(X)k = k − L(X)k = k − |{j < k|Xj > Xk}| = |{j < k|Xj < Xk}|, (7)

since |{j < k}| = k and Xj ̸= Xk ∀j < k.502

Insert the inverse permutation X−1:503

L′(X−1)k = |{j < k|X−1
j < X−1

k }| = |{j < k|pj < pk}|

Next, perform a change of variable on j in V (X)k:504

V (X)k = |{j < pk|Xj < k}| = |{pl < pk|l < k}| where l = Xj ⇔ j = pl

Comparing,505

k − L(X−1)k = L′(X−1)k = |{j|j < k, pj < pk}| = |{l|pl < pk, l < k}| = V (X)k.

C Limitations506

The most important limitation of this work is scalability to large permutations. A loose bound can507

be estimated by realizing that we model the permutations with transformer architectures. Therefore,508

the memory and compute required to train on tasks that require large permutations are quadratic.509

In particular, common methods in ranking include score functions, which can act on each item510

individually to produce a score, rather than needing to condition on all items as we do.511

In general, since the search space of permutations grows much quicker with length (n!), the scalability512

is often not dominated by memory requirements if search is required, rather by the compute needed513

for the search.514

An inherent limitation of the method is that n forward passes through the network are needed to515

achieve full expressivity over the space of permutations of length n. This is a consequence of MLM516

and AR training, resulting in token-wise factorized conditional distributions. This is detailed in517

Section 4.1.518
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D Code519

D.1 MLM Pseudocode for training and inference520

D.2 Lehmer Encode and Decode521

In practice, our left-Lehmer encoding maps an inline permutation to L′ from Equation (7), because it522

interacts more directly with the insertion vector.523

524
1 def lehmer_encode(perm: Tensor , left: bool = False) -> Tensor:525

2 lehmer = torch.atleast_2d(perm.clone())526

3 n = lehmer.size(-1)527

4 if left:528

5 for i in reversed(range(1, n)):529

6 lehmer[:, :i] -= (lehmer[:, [i]] <= lehmer[:, :i]).to(int)530

7 else:531

8 for i in range(1, n):532

9 lehmer[:, i:] -= (lehmer[:, [i - 1]] < lehmer[:,533

i:]).to(int)534

10535

11 if len(perm.shape) == 1:536

12 lehmer = lehmer.squeeze ()537

13 elif len(perm.shape) == 2:538

14 lehmer = torch.atleast_2d(lehmer)539

15540

16 return lehmer541

17542

18543

19 def lehmer_decode(lehmer: Tensor , left: bool = False) -> Tensor:544

20 perm = torch.atleast_2d(lehmer.clone())545

21 n = perm.size(-1)546

22 for i in range(1, n):547

23 if left:548

24 perm[:, :i] += (perm[:, [i]] <= perm[:, :i]).to(int)549

25 else:550

26 j = n - i - 1551

27 perm[:, j + 1 :] += (perm[:, [j]] <= perm[:, j + 1552

:]).to(int)553

28554

29 if len(lehmer.shape) == 1:555

30 perm = perm.squeeze ()556

31 elif len(lehmer.shape) == 2:557

32 perm = torch.atleast_2d(perm)558

33559

34 return perm560561

D.3 Fisher-Yates Encode and Decode562

563
1 def fisher_yates_encode(perm: torch.Tensor) -> torch.Tensor:564

2 original_num_dims = len(perm.shape)565

3 perm = torch.atleast_2d(perm)566

4 B, n = perm.shape567

5 perm_base = torch.arange(n).unsqueeze (0).repeat ((B,568

1)).to(perm.device)569

6 fisher_yates = torch.zeros_like(perm).to(perm.device)570

7 batch_idx = torch.arange(B).to(perm.device)571

8572

9 for i in range(n):573

10 j = torch.nonzero(perm[:, [i]] == perm_base , as_tuple=True)[1]574

11 fisher_yates[batch_idx , i] = j - i575

12576

13 idx = torch.stack([ torch.full_like(j, i), j], dim=1)577

14 values = perm_base.gather(1, idx)578
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15 swapped_values = torch.flip(values , [1])579

16 perm_base.scatter_(1, idx , swapped_values)580

17581

18 if original_num_dims == 1:582

19 fisher_yates = fisher_yates.squeeze ()583

20 elif original_num_dims == 2:584

21 fisher_yates = torch.atleast_2d(fisher_yates)585

22586

23 return fisher_yates587

24588

25 def fisher_yates_decode(fisher_yates: Tensor) -> Tensor:589

26 B, n = fisher_yates.shape590

27 perm = torch.arange(n).unsqueeze (0).repeat ((B,591

1)).to(fisher_yates.device)592

28 batch_idx = torch.arange(B).to(fisher_yates.device)593

29 for i in range(n):594

30 j = fisher_yates [:, i] + i595

31 perm[batch_idx , j], perm[:, i] = perm[:, i], perm[batch_idx ,596

j]597

32 return perm598599

D.4 Insertion-Vector Encode and Decode600

601
1 def invert_perm(perm: Tensor) -> Tensor:602

2 return torch.argsort(perm)603

3604

4 def insertion_vector_encode_torch(perm: Tensor) -> Tensor:605

5 inv_perm = invert_perm(perm)606

6 insert_v = lehmer_encode_torch(inv_perm , left=True)607

7 return insert_v608

8609

9610

10 def insertion_vector_decode_torch(insert_v: Tensor) -> Tensor:611

11 inv_perm = lehmer_decode_torch(insert_v , left=True)612

12 perm = invert_perm(inv_perm)613

13 return perm614615

D.5 Modified SymDiff-AR616

We modify the following function in https://github.com/DSL-Lab/SymmetricDiffusers/617

blob/6eaf9b33e784e72f8b987cf46c97ff5423b74651/models.py#L357C9-L357C26.618

The first N elements of embd correspond to the embeddings of the puzzle pieces computed with the619

CNN backbone, while the following N are the token embeddings of the input. The attention mask620

(embd_attn_mask) guarantees all tokens attend to the puzzle pieces, but the inputs can be attended621

to causally (if perm_attn_mask is causal, AR case) or fully (MLM).622

623
1 def apply_layers_self(624

2 self , embd , time_embd , attn_mask=None , perm_attn_mask=None ,625

perm_embd=None626

3 ):627

4 N = embd.size (1)628

5 time_embd = time_embd.unsqueeze (-2)629

6 embd = embd + time_embd630

7631

8 embd_attn_mask = None632

9 if perm_embd is not None:633

10 embd = torch.cat([embd , perm_embd], dim =1)634

11 embd = self.perm_pos_encoder(embd)635

12636

13 if perm_attn_mask is not None:637

14 embd_attn_mask = (638
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15 torch.zeros ((2 * N, 2 *639

N)).to(bool).to(perm_attn_mask.device)640

16 )641

17 embd_attn_mask [:, :N] = True642

18 embd_attn_mask[N:, N : 2 * N] = perm_attn_mask643

19 embd_attn_mask = ~embd_attn_mask644

20645

21 for layer in self.encoder_layers:646

22 embd = layer(embd , src_mask=embd_attn_mask)647

23648

24 return embd[:, N : 2 * N]649650

E Experiments651

E.1 Jigsaw experiments652

Each CIFAR-10 image is partitioned into a jigsaw puzzle in grid-like fashion. The pieces are653

scrambled by applying a permutation sampled uniformly in the symmetric group. This produces a654

tensor of shape (B,N2, H/N,W/N), where B is the batch dimension, N the puzzle size (specified655

per dimension) and H and W are the original image dimensions (i.e. H = W = 32 for CIFAR-10).656

The images are cropped at the edges if H and W are not divisible by N , as in Zhang et al. (2024).657

Hyperparameters:658

1. learning rate = 3× 10−4659

2. batch size = 1024660

3. Model configurations follow those in https://github.com/DSL-Lab/661

SymmetricDiffusers/tree/6eaf9b33e784e72f8b987cf46c97ff5423b74651/662

configs/unscramble-CIFAR10663

E.2 Cyclic experiments664

1. learning rate = 3× 10−4665

2. batch size = 1024666

3. DiT model size:667

(a) hidden dimension size = 128668

(b) number of transformer heads = 8669

(c) time embedding dimension = 0670

(d) dropout = 0.05671

(e) number of transformer layers = 8672

E.3 Reranking MovieLens673

1. learning rate = 3× 10−4674

2. batch size = 1024675

3. DiT model size:676

(a) hidden dimension size = 256677

(b) number of transformer heads = 8678

(c) time embedding dimension = 0679

(d) dropout = 0.05680

(e) number of transformer layers = 10681

F Compute682

Our experiments were run on nodes with a single NVidia A-100 GPU. Since the models trained are683

of small scale, no experiment took longer than 2 days to converge. In total, an estimated 10000 GPU684

hours were spent for the research for this paper.685
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G Impact statement686

This paper presents work whose goal is to advance the field of Machine Learning. There are many687

potential societal consequences of our work, none which we feel must be specifically highlighted688

here.689

H Extra Figures690
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(a) Cyclic: π = [5, 3, 1, 2, 4]
(1 → 3 → 2 → 4 → 5 → 1)

1

2

3

4

5

(b) Non-cyclic: π = [5, 1, 4, 3, 2]
(1 → 2 → 5 → 1), (3 ↔ 4)

Figure 9: Illustration of a cyclic vs. a non-cyclic permutation.

Figure 10: (Left) Decoding a lehmer code from left to right represents sampling without replacement.
Illustrated on Jigsaw puzzles. (Right) Prediction task on the MovieLens dataset. Insertion-vectors
allow us to define conditionals over sub-rankings corresponding to user preference data.
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NeurIPS Paper Checklist691

1. Claims692

Question: Do the main claims made in the abstract and introduction accurately reflect the693

paper’s contributions and scope?694

Answer: [Yes]695

Justification: Find the summary, and bullet-pointed claims in the introduction.696

Guidelines:697

• The answer NA means that the abstract and introduction do not include the claims698

made in the paper.699

• The abstract and/or introduction should clearly state the claims made, including the700

contributions made in the paper and important assumptions and limitations. A No or701

NA answer to this question will not be perceived well by the reviewers.702

• The claims made should match theoretical and experimental results, and reflect how703

much the results can be expected to generalize to other settings.704

• It is fine to include aspirational goals as motivation as long as it is clear that these goals705

are not attained by the paper.706

2. Limitations707

Question: Does the paper discuss the limitations of the work performed by the authors?708

Answer: [Yes]709

Justification: See Section C.710

Guidelines:711

• The answer NA means that the paper has no limitation while the answer No means that712

the paper has limitations, but those are not discussed in the paper.713

• The authors are encouraged to create a separate "Limitations" section in their paper.714

• The paper should point out any strong assumptions and how robust the results are to715

violations of these assumptions (e.g., independence assumptions, noiseless settings,716

model well-specification, asymptotic approximations only holding locally). The authors717

should reflect on how these assumptions might be violated in practice and what the718

implications would be.719

• The authors should reflect on the scope of the claims made, e.g., if the approach was720

only tested on a few datasets or with a few runs. In general, empirical results often721

depend on implicit assumptions, which should be articulated.722

• The authors should reflect on the factors that influence the performance of the approach.723

For example, a facial recognition algorithm may perform poorly when image resolution724

is low or images are taken in low lighting. Or a speech-to-text system might not be725

used reliably to provide closed captions for online lectures because it fails to handle726

technical jargon.727

• The authors should discuss the computational efficiency of the proposed algorithms728

and how they scale with dataset size.729

• If applicable, the authors should discuss possible limitations of their approach to730

address problems of privacy and fairness.731

• While the authors might fear that complete honesty about limitations might be used by732

reviewers as grounds for rejection, a worse outcome might be that reviewers discover733

limitations that aren’t acknowledged in the paper. The authors should use their best734

judgment and recognize that individual actions in favor of transparency play an impor-735

tant role in developing norms that preserve the integrity of the community. Reviewers736

will be specifically instructed to not penalize honesty concerning limitations.737

3. Theory assumptions and proofs738

Question: For each theoretical result, does the paper provide the full set of assumptions and739

a complete (and correct) proof?740

Answer: [Yes]741
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Justification: See Section B742

Guidelines:743

• The answer NA means that the paper does not include theoretical results.744

• All the theorems, formulas, and proofs in the paper should be numbered and cross-745

referenced.746

• All assumptions should be clearly stated or referenced in the statement of any theorems.747

• The proofs can either appear in the main paper or the supplemental material, but if748

they appear in the supplemental material, the authors are encouraged to provide a short749

proof sketch to provide intuition.750

• Inversely, any informal proof provided in the core of the paper should be complemented751

by formal proofs provided in appendix or supplemental material.752

• Theorems and Lemmas that the proof relies upon should be properly referenced.753

4. Experimental result reproducibility754

Question: Does the paper fully disclose all the information needed to reproduce the main ex-755

perimental results of the paper to the extent that it affects the main claims and/or conclusions756

of the paper (regardless of whether the code and data are provided or not)?757

Answer: [Yes]758

Justification: We provide all the details for reproduction in the relevant sections for Jigsaws,759

Cyclic, MovieLens. We provide exact codes for the encoding and decoding functions, one760

of which is a core contribution. We also describe in detail how to modify the architecture761

from Zhang et al. (2024) in Section D.5, and give specific hyperparameters in Section E. We762

plan to open source code at camera-ready.763

Guidelines:764

• The answer NA means that the paper does not include experiments.765

• If the paper includes experiments, a No answer to this question will not be perceived766

well by the reviewers: Making the paper reproducible is important, regardless of767

whether the code and data are provided or not.768

• If the contribution is a dataset and/or model, the authors should describe the steps taken769

to make their results reproducible or verifiable.770

• Depending on the contribution, reproducibility can be accomplished in various ways.771

For example, if the contribution is a novel architecture, describing the architecture fully772

might suffice, or if the contribution is a specific model and empirical evaluation, it may773

be necessary to either make it possible for others to replicate the model with the same774

dataset, or provide access to the model. In general. releasing code and data is often775

one good way to accomplish this, but reproducibility can also be provided via detailed776

instructions for how to replicate the results, access to a hosted model (e.g., in the case777

of a large language model), releasing of a model checkpoint, or other means that are778

appropriate to the research performed.779

• While NeurIPS does not require releasing code, the conference does require all submis-780

sions to provide some reasonable avenue for reproducibility, which may depend on the781

nature of the contribution. For example782

(a) If the contribution is primarily a new algorithm, the paper should make it clear how783

to reproduce that algorithm.784

(b) If the contribution is primarily a new model architecture, the paper should describe785

the architecture clearly and fully.786

(c) If the contribution is a new model (e.g., a large language model), then there should787

either be a way to access this model for reproducing the results or a way to reproduce788

the model (e.g., with an open-source dataset or instructions for how to construct789

the dataset).790

(d) We recognize that reproducibility may be tricky in some cases, in which case791

authors are welcome to describe the particular way they provide for reproducibility.792

In the case of closed-source models, it may be that access to the model is limited in793

some way (e.g., to registered users), but it should be possible for other researchers794

to have some path to reproducing or verifying the results.795
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5. Open access to data and code796

Question: Does the paper provide open access to the data and code, with sufficient instruc-797

tions to faithfully reproduce the main experimental results, as described in supplemental798

material?799

Answer: [Yes]800

Justification: We use existing data sets which are already open source: Jigsaws and Movie-801

Lens. The cyclic dataset is a toy and we provide detailed instructions how to recreate802

it.803

Guidelines:804

• The answer NA means that paper does not include experiments requiring code.805

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/806

public/guides/CodeSubmissionPolicy) for more details.807

• While we encourage the release of code and data, we understand that this might not be808

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not809

including code, unless this is central to the contribution (e.g., for a new open-source810

benchmark).811

• The instructions should contain the exact command and environment needed to run to812

reproduce the results. See the NeurIPS code and data submission guidelines (https:813

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.814

• The authors should provide instructions on data access and preparation, including how815

to access the raw data, preprocessed data, intermediate data, and generated data, etc.816

• The authors should provide scripts to reproduce all experimental results for the new817

proposed method and baselines. If only a subset of experiments are reproducible, they818

should state which ones are omitted from the script and why.819

• At submission time, to preserve anonymity, the authors should release anonymized820

versions (if applicable).821

• Providing as much information as possible in supplemental material (appended to the822

paper) is recommended, but including URLs to data and code is permitted.823

6. Experimental setting/details824

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-825

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the826

results?827

Answer: [Yes]828

Justification: see reproducibility question829

Guidelines:830

• The answer NA means that the paper does not include experiments.831

• The experimental setting should be presented in the core of the paper to a level of detail832

that is necessary to appreciate the results and make sense of them.833

• The full details can be provided either with the code, in appendix, or as supplemental834

material.835

7. Experiment statistical significance836

Question: Does the paper report error bars suitably and correctly defined or other appropriate837

information about the statistical significance of the experiments?838

Answer: [No]839

Justification: The comparisons in performance are qualitatively different.840

Guidelines:841

• The answer NA means that the paper does not include experiments.842

• The authors should answer "Yes" if the results are accompanied by error bars, confi-843

dence intervals, or statistical significance tests, at least for the experiments that support844

the main claims of the paper.845
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• The factors of variability that the error bars are capturing should be clearly stated (for846

example, train/test split, initialization, random drawing of some parameter, or overall847

run with given experimental conditions).848

• The method for calculating the error bars should be explained (closed form formula,849

call to a library function, bootstrap, etc.)850

• The assumptions made should be given (e.g., Normally distributed errors).851

• It should be clear whether the error bar is the standard deviation or the standard error852

of the mean.853

• It is OK to report 1-sigma error bars, but one should state it. The authors should854

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis855

of Normality of errors is not verified.856

• For asymmetric distributions, the authors should be careful not to show in tables or857

figures symmetric error bars that would yield results that are out of range (e.g. negative858

error rates).859

• If error bars are reported in tables or plots, The authors should explain in the text how860

they were calculated and reference the corresponding figures or tables in the text.861

8. Experiments compute resources862

Question: For each experiment, does the paper provide sufficient information on the com-863

puter resources (type of compute workers, memory, time of execution) needed to reproduce864

the experiments?865

Answer: [Yes]866

Justification: See Section F.867

Guidelines:868

• The answer NA means that the paper does not include experiments.869

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,870

or cloud provider, including relevant memory and storage.871

• The paper should provide the amount of compute required for each of the individual872

experimental runs as well as estimate the total compute.873

• The paper should disclose whether the full research project required more compute874

than the experiments reported in the paper (e.g., preliminary or failed experiments that875

didn’t make it into the paper).876

9. Code of ethics877

Question: Does the research conducted in the paper conform, in every respect, with the878

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?879

Answer: [Yes]880

Justification: It does.881

Guidelines:882

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.883

• If the authors answer No, they should explain the special circumstances that require a884

deviation from the Code of Ethics.885

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-886

eration due to laws or regulations in their jurisdiction).887

10. Broader impacts888

Question: Does the paper discuss both potential positive societal impacts and negative889

societal impacts of the work performed?890

Answer: [Yes]891

Justification: There are no particular societal impacts we foresee. We provide an impact892

statement in Section G.893

Guidelines:894

• The answer NA means that there is no societal impact of the work performed.895
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• If the authors answer NA or No, they should explain why their work has no societal896

impact or why the paper does not address societal impact.897

• Examples of negative societal impacts include potential malicious or unintended uses898

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations899

(e.g., deployment of technologies that could make decisions that unfairly impact specific900

groups), privacy considerations, and security considerations.901

• The conference expects that many papers will be foundational research and not tied902

to particular applications, let alone deployments. However, if there is a direct path to903

any negative applications, the authors should point it out. For example, it is legitimate904

to point out that an improvement in the quality of generative models could be used to905

generate deepfakes for disinformation. On the other hand, it is not needed to point out906

that a generic algorithm for optimizing neural networks could enable people to train907

models that generate Deepfakes faster.908

• The authors should consider possible harms that could arise when the technology is909

being used as intended and functioning correctly, harms that could arise when the910

technology is being used as intended but gives incorrect results, and harms following911

from (intentional or unintentional) misuse of the technology.912

• If there are negative societal impacts, the authors could also discuss possible mitigation913

strategies (e.g., gated release of models, providing defenses in addition to attacks,914

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from915

feedback over time, improving the efficiency and accessibility of ML).916

11. Safeguards917

Question: Does the paper describe safeguards that have been put in place for responsible918

release of data or models that have a high risk for misuse (e.g., pretrained language models,919

image generators, or scraped datasets)?920

Answer: [NA]921

Justification: not applicable.922

Guidelines:923

• The answer NA means that the paper poses no such risks.924

• Released models that have a high risk for misuse or dual-use should be released with925

necessary safeguards to allow for controlled use of the model, for example by requiring926

that users adhere to usage guidelines or restrictions to access the model or implementing927

safety filters.928

• Datasets that have been scraped from the Internet could pose safety risks. The authors929

should describe how they avoided releasing unsafe images.930

• We recognize that providing effective safeguards is challenging, and many papers do931

not require this, but we encourage authors to take this into account and make a best932

faith effort.933

12. Licenses for existing assets934

Question: Are the creators or original owners of assets (e.g., code, data, models), used in935

the paper, properly credited and are the license and terms of use explicitly mentioned and936

properly respected?937

Answer: [Yes]938

Justification: We cite all assets used.939

Guidelines:940

• The answer NA means that the paper does not use existing assets.941

• The authors should cite the original paper that produced the code package or dataset.942

• The authors should state which version of the asset is used and, if possible, include a943

URL.944

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.945

• For scraped data from a particular source (e.g., website), the copyright and terms of946

service of that source should be provided.947
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• If assets are released, the license, copyright information, and terms of use in the948

package should be provided. For popular datasets, paperswithcode.com/datasets949

has curated licenses for some datasets. Their licensing guide can help determine the950

license of a dataset.951

• For existing datasets that are re-packaged, both the original license and the license of952

the derived asset (if it has changed) should be provided.953

• If this information is not available online, the authors are encouraged to reach out to954

the asset’s creators.955

13. New assets956

Question: Are new assets introduced in the paper well documented and is the documentation957

provided alongside the assets?958

Answer: [NA]959

Justification: No new assets are introduced.960

Guidelines:961

• The answer NA means that the paper does not release new assets.962

• Researchers should communicate the details of the dataset/code/model as part of their963

submissions via structured templates. This includes details about training, license,964

limitations, etc.965

• The paper should discuss whether and how consent was obtained from people whose966

asset is used.967

• At submission time, remember to anonymize your assets (if applicable). You can either968

create an anonymized URL or include an anonymized zip file.969

14. Crowdsourcing and research with human subjects970

Question: For crowdsourcing experiments and research with human subjects, does the paper971

include the full text of instructions given to participants and screenshots, if applicable, as972

well as details about compensation (if any)?973

Answer: [NA]974

Justification: not applicable.975

Guidelines:976

• The answer NA means that the paper does not involve crowdsourcing nor research with977

human subjects.978

• Including this information in the supplemental material is fine, but if the main contribu-979

tion of the paper involves human subjects, then as much detail as possible should be980

included in the main paper.981

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,982

or other labor should be paid at least the minimum wage in the country of the data983

collector.984

15. Institutional review board (IRB) approvals or equivalent for research with human985

subjects986

Question: Does the paper describe potential risks incurred by study participants, whether987

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)988

approvals (or an equivalent approval/review based on the requirements of your country or989

institution) were obtained?990

Answer: [NA]991

Justification: not applicable.992

Guidelines:993

• The answer NA means that the paper does not involve crowdsourcing nor research with994

human subjects.995

• Depending on the country in which research is conducted, IRB approval (or equivalent)996

may be required for any human subjects research. If you obtained IRB approval, you997

should clearly state this in the paper.998
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• We recognize that the procedures for this may vary significantly between institutions999

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1000

guidelines for their institution.1001

• For initial submissions, do not include any information that would break anonymity (if1002

applicable), such as the institution conducting the review.1003

16. Declaration of LLM usage1004

Question: Does the paper describe the usage of LLMs if it is an important, original, or1005

non-standard component of the core methods in this research? Note that if the LLM is used1006

only for writing, editing, or formatting purposes and does not impact the core methodology,1007

scientific rigorousness, or originality of the research, declaration is not required.1008

Answer: [NA]1009

Justification: No LLMs have been used beyond checking the writing for consistency and1010

spelling errors.1011

Guidelines:1012

• The answer NA means that the core method development in this research does not1013

involve LLMs as any important, original, or non-standard components.1014

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1015

for what should or should not be described.1016
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