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Abstract

Learning distributions over permutations is a fundamental problem in machine
learning, with applications in ranking, combinatorial optimization, structured pre-
diction, and data association. Existing methods rely on mixtures of parametric
families or neural networks with expensive variational inference procedures. In this
work, we propose a novel approach that leverages alternative representations for
permutations, including Lehmer codes, Fisher-Yates draws, and Insertion-Vectors.
These representations form a bijection with the symmetric group, allowing for un-
constrained learning using conventional deep learning techniques, and can represent
any probability distribution over permutations. Our approach enables a trade-off
between expressivity of the model family and computational requirements. In the
least expressive and most computationally efficient case, our method subsumes pre-
vious families of well established probabilistic models over permutations, including
Mallow’s and the Repeated Insertion Model. Experiments indicate our method
significantly outperforms current approaches on the jigsaw puzzle benchmark, a
common task for permutation learning. However, we argue this benchmark is
limited in its ability to assess learning probability distributions, as the target is a
delta distribution (i.e., a single correct solution exists). We therefore propose two
additional benchmarks: learning cyclic permutations and re-ranking movies based
on user preference. We show that our method learns non-trivial distributions even
in the least expressive mode, while traditional models fail to even generate valid
permutations in this setting.

1 Introduction

Learning in the space of permutations is a fundamental problem with applications ranging from
ranking for recommendation systems (Feng et al.| 2021)), to combinatorial optimization, learning-
to-rank (Burges}, 2010), and data cleaning (Kamassury et al., [2025). Classical probabilistic models
for permutations include the Plackett-Luce (Plackett, (1975} [Luce et al., [1959) and Mallows (Mal4
lows, [1957) distributions, which can only represent a limited set of probability distributions over
permutations (e.g., Plackett-Luce cannot model a delta distribution). These limitations have been
addressed in existing literature by considering mixtures [Lu and Boutilier| (2014), which require
expensive variational inference procedures for learning and inference. More recently, several works
have proposed methods for learning arbitrary probability distributions over permutations using neural
networks, in the framework of diffusion (Zhang et al., 2024)) and convex relaxations (Mena et al.,
2018) (see Section [2]for an overview).

In this work, we develop models that can represent any probability distribution over permutations and
can be trained with conventional deep learning techniques, including any-order masked language
modelling (MLM) (Uria et al., |2016} |Larochelle and Murray, [2011)), and autoregressive next-token-
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Figure 1: Overview of our method unscrambling the sequence “osftre" autoregressively using one
of the representations we consider in this work: Fisher-Yates draws (Fisher and Yates} |1953). We
condition on a reference/context (green) and the current input (blue) to sample values for the masked
tokens (white). The model samples a permutation that unscrambles to “forest” on the left, and “fortes”
on the right. At any point in generation, the partially-masked sequence corresponds to some valid
permutation.

prediction (AR or NTP) (Shannon, |1948). We leverage alternative representations for permutations
(beyond the usual inline notation) that form a bijection with the symmetric group, allowing for
unconstrained learning. The representations we consider stem from well-established algorithms in
the permutation literature, such as factorial indexing (Lehmer codes (Lehmer, |1960)), generating
random permutations (Fisher-Yates draws (Fisher and Yates|, |1953))), and modelling sub-rankings
(Insertion-Vectors (Doignon et al.,|2004; |Lu and Boutilier, 2014)); which all have varying support for
their sequence-elements that are a function of the position in the sequence (Section [3.1).

To trade off compute and expressivity, MLMs have the capability of sampling multiple permutation
elements independently with one forward pass through the neural network. Aforementioned represen-
tations always produce valid permutations at inference time for any amount of compute spent, even
in the fully-factorized case when all tokens are unmasked in a single forward-pass.

Decoding the inline notation of the permutation from the representation is trivial in the case of
Lehmer and Fisher-Yates (Kunze et al.[(2024a)). In Theorem@] we establish a relationship between
a permutation’s inverse, and its Lehmer and Insertion-Vector representations, which allows us to
develop a fast decoding algorithm for Insertion-Vectors that can be applied in batch, significantly
improving inference time compute.

Our methods establishes new state-of-the-art results on the common benchmark of solving jigsaw
puzzles (Mena et al., 2018 [Zhang et al., |2024)), significantly outperforming previous diffusion
and convex-relaxation based approaches. However, we also argue this benchmark is inadequate
to evaluate learning probability distributions over permutations, as each puzzles contains only one
permutation that unscrambles it (i.e., the target distribution is a delta function). We therefore propose
two new benchmarks, which require learning non-trivial distributions: learning cyclic permutations
(Section[5.2) and re-ranking a set of movies based on observed user preference in the MovieLens
dataset (Section[5.3).

In summary, our contributions are four-fold. We:

* (Section[4.2)) develop new methods for supervised learning of arbitrary probability distri-
butions over permutations that (1) assign zero probability to invalid permutations; (2) can
trade-off expressivity for compute at sampling time, without re-training; (3) can learn non-
trivial, fully-factorized distributions; (4) is trained with conventional language modelling
techniques with a cross-entropy loss; (5) is extremely fast at sampling time;

* (Section[5.T) establish state-of-the-art on the common benchmark of jigsaw puzzles, signifi-
cantly outperforming current baselines;

* (Section[5.2]and Section[5.3) define two new benchmarks: learning cyclic permutations and
re-ranking based on user preference data, that require learning non-trivial distributions;

¢ (Theorem @ establish a new relationship between insertion-vectors, inverse permutations,
and Lehmer codes that result in an efficient decoding scheme for insertion-vectors.
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FY: = 3, swap with 3 further 1 Vo =0, insert 1 at 0
0
=0,i t 2 at
FY, = 1, swap with 1 further b2 ! V1 =0, insert 2 at 0
2 3 1 Vo =1, insert 3 at 1
0 1 2
FY3 = 0, pass .
2 3 1 4 V3 = 3, insert 4 at 3
0 1 2 3
FY, = 0, pass (always) 2 3 5 1 4 V4 = 2, insert 5 at 2
0 1 2 3 4

Figure 2: (Left) Illustration for the Fisher-Yates algorithm for shuffling, defining a bijection with
permutations. In this example, F'Y (X) = [3,1,0,0] = X = [4,3,2,1]. Small numbers in the
bottom-right corner of each box represent the draw value required to swap the current element
with that position. (Right) Illustration of the generative process defined by the insertion vector, for
a reference permutation X, = [1,2,3,4,5]. At each step, the current element of the reference
is inserted immediately to the left of V;, and values to the right are shifted right one position to
accommodate. Small numbers at the bottom-left corner represent the slot index. In this example,
V(X)=10,0,1,3,2] = X =[2,3,5,1,4].

2 Related Work

Generative models and objectives. We utilize generative models parametrized by transformers
Vaswani et al.|(2017), as commonly employed in language modeling. Specifically, we utilize Masked
Language Modeling (MLM) and next-token prediction (NTP or AR). The concept of NTP goes back
as far as|Shannon| (1948) and has been applied with great success in language modeling within the
last decade, see e.g. |[Radford et al.| (2019); Metal (2024) and many more. Popularized through BERT
(Devlin et al.,|2019), MLLM has been identified as a viable tool for language understanding. More
recently, forms of MLM have been derived as a special case of discrete diffusion (Austin et al., [2021
He et al.| 2022} [Kitouni et al.,2024), where the noise distribution is a delta distribution on the masked
state, and have shown promise in generative language modeling (Sahoo et al.,[2024; |Shi et al., 2025}
Nie et al., 2025).

Permutation and Preference Modeling. Notable families of distributions over permutations
include the Plackett-Luce distribution (Plackett, [1975}; [Luce et al.l |[1959) and the (generalized)
Mallows model (Mallows, |1957), both of which have restricted expressivity. [Doignon et al.| (2004);
Lu and Boutilier| (2014) propose the Repeated Insertion Model (RIM) and a generalized version
(GRIM) to learn Mallows models and mixtures thereof, which itself also uses the same insertion
representation used in this paper. These methods are detailed in Section[3.2}

A prominent line of related work approaches permutation learning using differentiable ordering.
One common strategy is to relax the discrete problem into continuous space—either by relaxing
permutation matrices (Grover et al., [2019; |Cuturi et al.| 2019)) or by using differentiable swapping
methods (Petersen et al., 2022; [Kim et al.,[2024). A notable baseline for us is the work of Mena et al.
(2018)), who utilize the continuous Sinkhorn operator to regress to specific permutations, rather than
distributions over possible permutations.

Using Lehmer codes for permutation learning has been considered by Diallo et al.|(2020), but only in
the AR context and with a different architecture than considered in this work; as well asMalagon
et al.|(2025) to sample solutions to certain optimization problems in their framework (see “4.2 Case 2:
The First-Order Marginal Probabilities Model" in their paper). Recently, Zhang et al.| (2024) joined
the concepts of discrete space diffusion and differentiable shuffling methods to propose an expressive
generative method dubbed SymmetricDiffusers, SymDiff for short. Inspired from random walks on
permutations, they identify the riffle shuffle (Gilbert, [1955) as their forward process. To model the
reverse process, the paper introduces a generalized version of the Plackett-Luce distribution. This
work serves as our most relevant and strongest baseline.

3 Background

A short introduction to permutations is given in Section[A.T]
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Notation Sequences of random variables are denoted by capital letters X, L, V', and F'Y . Subscripts
X, L;,V;, and FY; indicate their elements. Contiguous intervals are denoted by [n] = [1,2,...,n]
and [n) = [0,1,...,n — 1]. For some set S with elements s; € [n], let Xg = {X;,,..., X; } be
the set of elements in X restricted to indices in S. For an ordered collection of sets .S;, we denote
unions as S<; = i<i S;. The Lehmer code (Lehmer, [1960), Fisher-Yates (Fisher and Yates, |1953)),
and Insertion-vector (Doignon et al., 2004} Lu and Boutilier, [2014)) representations of a permutation
X will be denoted by L(X), F'Y (X), and V' (X), respectively. We sometimes drop the dependence
on X when clear from context or when defining distributions over these representations directly. All

logarithms are base 2.

3.1 Representations of Permutations

Lehmer Codes (Lehmer, [1960). A Lehmer code is an alternative representation to the inline
notation of a permutation. The Lehmer code L(X) of a permutation X on [n] is a sequence of length
n that counts the number of inversions at each position in the sequence. Inversions can be counted to
the left or right, with one of the following 2 definitions,

Left: L(X)l = |{] <71: Xj > X1}| or nght L(X)l = |{j > Xj < X1}| (1)

An example of a right-Lehmer code is given in Figure[3] The right-Lehmer code is commonly used
to index permutations in the symmetric group, as it is bijective with the factorial number system. The
i-th element L(X); of the right-Lehmer has domain [n — ¢ 4+ 1), and [¢) for the left-Lehmer code.
A necessary and sufficient condition for a Lehmer code to represent a valid permutation is for its
elements to be within their respective domains. The manhattan distance between Lehmer codes relates
to the number of transpositions needed to convert between their respective permutations, establishing
a metric-space interpretation. This is formalized in Theorem [B.T} As a direct consequence, the sum
>, L(X); equals the number of adjacent transpositions required to recover the identity permutation,
known as Kendall’s tau distance (Kendall, |1938)). Code to convert between inline notation and right-
or left-Lehmer codes is given in Section|[D.2]

Fisher-Yates Shuffle (Fisher and Yates, 1953). The Fisher-Yates Shuffle is an algorithm commonly
used to generate uniformly distributed permutations. The procedure is illustrated in Figure 2} At
each step, the element at the current index is swapped with a randomly selected element to the right,
and after n steps is guaranteed to produce a uniformly distributed permutation if the initial sequence
is a valid permutation. The index sampled at each step, F'Y;, are referred to as the “draws”. Each
resulting permutation X can be produced with exactly 1 unique sequence of draws F'Y (X ), implying
the set of possible draw-sequences forms a bijections with the symmetric group (Fisher and Yates|
1953)). During the Fisher-Yates shuffle it possible to sample 0, resulting in no swap (see a “pass”
step in Figure[2|for an example). If sampling is restricted such that F'Y; > 0, then the procedure is
guaranteed to produce a cyclic permutation and is known as Sattolo’s Algorithm (Sattolol [ 1986).

Decoding a batch of Fisher-Yates representations can be parallelized by applying the Fisher-Yates
shuffle to a batch of identity permutations and forcing the draws to equal elements F'Y;. Encoding
requires inverting the Fisher-Yates shuffle by deducing which sequence of draws resulted in the
observed permutation. An algorithm to do so is provided by [Kunze et al.| (2024b)) in Appendix C.1,
which can be easily made to work in batch. Code to run Fisher-Yates and Sattolo’s algorithm is given
in Section

3.2 Generalized Repeated Insertion Model (Doignon et al.,[2004; Lu and Boutilier, [2014)

The repeated insertion model (RIM) (Doignon et al.| [2004)) is a probability distribution over per-
mutations that makes use of an alternative representation to inline, called insertion-vectors. The
insertion-vector V(X)) defines a generative process for X, relative to some reference permutation
Xrer- To generate X given X.r and V' (X), we traverse the reference from left to right and insert the
i-th element of X, at slot V(X); € [i — 1). See Figure 2| for an example.

RIM uses a conditional distribution that is independent of V; to define the joint over the insertion-
vector, i.e., Py, | v, x. = PV, | x.r» While the Generalized RIM (GRIM) (Lu and Boutilier, 2014) uses
a full conditional. GRIM can be used to learn probability distributions over permutations conditioned
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Figure 3: Illustration of the right-Lehmer code for permutation X = [3,5,4,1,2]. (Left) Each
L(X); = L; counts the number of elements to the right of X; that are smaller than it. (Right) Lehmer
code interpreted as sampling without replacement indices.

on an observed sub-permutation. For example, for n = 4 and an observed sub-permutation [2, 1, 4],
we can set Xo¢ = [2,1,4, 3] such that conditional probabilities Py, | Vea, X Can be learned for all
permutations agreeing with the observations, i.e.,

Vi=0 Vi=1 Vi=2 Vi=3
3,2,1,4] 2,3,1,4] 2,1,3,4] 2,1,4,3].

Note this is not possible with inline, Lehmer, or the Fisher-Yates representations. The same can
be achieved if the initial elements in X,.s are permuted, as long as the values for V_; are changed
accordingly, which highlights an invariance a model over insertion-vectors must learn.

In|Lu and Boutilier; (2014) the authors use the insertion-vector representation to model user preference
data, where the observed sub-permutation represents a partial ranking establishing the preference of
some user over a fixed set of items. In Section[5.3] we tackle a similar problem on the MovieLens
dataset (Harper and Konstan, 2015)) where we rank a set of movies according to observed user ratings.

4 Learning Factorized Distributions over Permutations

This section discusses the main methodological contri-
bution of this work. MLMs can trade off compute and
expressivity by sampling multiple permutation elements ..
with one network function evaluation (or forward pass).

In that case, simultaneously sampled elements are condi- | © s | f e T ¢
tionally independent, which corresponds to an effective ™"
loss in modeling capacity. We begin by showing thatper- |o|s ¢ e ||t ‘ 2
mutations modeled in the inline representation suffer most — sw-ez»
from the degradation of model capacity as the number
of function evaluations (NFEs) decreases, and can only
model delta functions when restricted to a single NFE.
We propose learning in the 3 alternative representations
discussed in Section3} Lehmer codes, Fisher-Yates draws,
and Insertion-vectors; which do not suffer the same degra-
dation in capacity . Note that while these alternative
representations also have constraints for the domain of
their elements, these constraints are trivially learned by
the neural network as it only sees valid permutations during training and can infer the domain by
setting the appropriate logits to negative infinity. We show the learned conditional distributions
defined by these representations are highly interpretable and subsume well known families such as
Mallow’s model (Mallows), [1957)) and RIM (Doignon et al., 2004).

¥ 2) apply random permatatio

2

0‘4

,L 4) randomly mask elements in o~

M‘M‘3‘M‘5‘J

¢ 6) compute loss on masked tokens only

lLl

shape: (B, L)

Figure 4: Training our method with
MLM during training with the inline no-
tation. For other representations, only
the blue tokens change.

4.1 Modelling capacity of P)((S) for the inline representation

The masked models considered in this work are of the form,

P}((S) - ]:[PXsi [ Xse; = H H PX.?' [ Xse;o @

i JES;
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where § = (S1,...,S) forms a partitioning of [n], and the number of neural function evaluations
(NFEs) is equal to k. Elements are sampled independently if their indices belong to the same set

S, when conditioned on previous elements Xg_,. The choice of NFEs restrict P)((S) to a different
family of models through different choices of partitioning S. For example, when limited to 1 NFE,
the model is fully-factorized with S; = [n]. AR minimizes at full NFEs (i.e., n = k) with S; = {i},
while MLM places a distribution on the partitionings S resulting in a mixture model.

We consider the problem of learning distributions over valid permutations by minimizing the cross-
entropy,

mFi)nIE [— log P)(f)} subject to P)((S) (z) = 0if z is not a valid permutation, 3)

where the expectation is taken over the data distribution.

Previous works have considered modelling permutations in the inline notation where X; can take on
any value in [n]. To produce only valid permutations, it is necessary and sufficient for the support
of Px,|x 5., tonot overlap with that of another index in S; U S<; = S<;. We can obtain an upper

bound on the entropy of any inline model by considering the case when all indices in j' € S; are
deterministic except for some j # j’, which is uniformly distributed over the remaining candidate
indices. Formally, H(Px , | x,_,) = 0and H(Px; | x,_,) =log(n — [S<;| + 1). This implies the
following for all j € 5,

H(PP) <3 log(n—[S<l +1). 4)

Equation () shows the modelling capacity is severely impacted by the number of NFEs. Most
importantly: any inline model respecting the constraint in Equation can only represent
a delta function in the case of 1 NFE (i.e., S; = [n]), as H(P)((S)) < 0 implies H(P)((S)) =0
(Coverl [1999). In practice, this manifests at sampling time where the model fails to produce valid
permutations as in Section At full NFEs the right-hand side of Equation @) equals log(n!), and

is achievable when P)((‘S) is a uniform distribution.

4.2 Factorized Representations for Permutations

Next, we consider learning distributions over permuta-
tions with the factorized representations discussed in Sec-
tion [3.1] These representations have different supports for
their sequence-elements and allow values to overlap while
still producing valid permutations, implying they don’t
suffer from the representation capacity issue discussed in
Section At full NFEs, these representations can model
arbitrary distributions over permutations, while at a single ...
NFE they can can learn non-trivial distributions such as
the Mallow’s model and RIM; in contrast to inline which
can only represent a delta distribution. For this reason, we
refer to them as factorized representations. o|s e

=]
w
(=
[
—

I E E B
)

2) compute logits at all positions

‘)

3) randomly sample at most L/ NFEs = 2 positions

t‘2 M‘MM 1 M‘
J

shape: (B,1)

=]
w
(=
]
-

-

R [ |
J

Lehmer Codes. We consider models Pés) over the
(right) Lehmer code as defined in Section and illus-
trated in Figure 3] Left-to-right unmasking of a Lehmer | © s f e
code can be interpreted as the sampling without replace- """

ment (SWOR) indices of its corresponding permutation, ' f o r t e | s 8 spply o mscramble
as illustrated in Figures [3] and [[0] In the AR setting, =«

our model subsumes Mallow’s weighted model (Mallows),
1957) over the remaining elements (those that have not yet
been sampled).

shape: (B,L)

-

t‘Z

of4]s]s]1]

Figure 5: Our method during inference
in the inline notation for sequence length
Remark 4.1. The weighted Mallow’s model with weights L = 6 and NFEs = 3. For other repre-
w; and dispersion coefficient ¢ is recovered when sentations, only the blue tokens change.
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P, (4| €ei) oc ¢, forall j € S;. This follows
directly from,

lei) = H Prpo (4| 0<i) o pies: ¥t ®)
JES;

Prg, . (s,

where > jes; Wi £; is the weighted Kendall’s tau distance (Kendall, |1938). In particular, when
fully-factorized, it can recover the weighted Mallow’s model over the full permutation.

Fisher-Yates. We define the Fisher-Yates code F'Y (X)) of some permutation X as the sequence of
draws of the Fisher-Yates shuffle that produces X starting from the identity permutation. For MLM
and AR, unmasking in the Fisher-Yates representation corresponds to applying random transpositions
to the inline notation. Similar to Lehmer, this can also be viewed as SWOR, except that the list of
remaining elements (faded and bright yellow in Figure [J) is kept contiguous by placing the element
at the current pointer (bright yellow in Figure [2) in the gap created from sampling.

Insertion-Vectors. We train using the insertion-vector representation to define conditional dis-
tributions over sub-permutations. Similar to how Lehmer can recover Mallow’s weighted model,
conditionals can define a RIM (Doignon et al.,[2004) over permutations compatible with the currently
observed sub-permutation.

Remark 4.2. RIM is subsumed by our model when the insertion probabilities are independent of
ordering between currently observed elements, i.e., Py | v, X = Pvg. | X

For Lehmer and Fisher-Yates representations there exist efficient algorithms to convert from (encode)
and to (decode) inline, but it is not obvious how to do so for insertion-vectors. The following theorem
allows for an efficient batched algorithm for encoding and decoding, by leveraging known algorithms
for Lehmer codes (see Section[D.2).

Theorem 4.3. Let L(X) be the kth element of the left-Lehmer code, X ~! the inverse permutation,
and V(X)) the kth element of the insertion vector of X. Then,

V(X)) =k — L(X ). (6)
The proof follows from the repeated insertion procedure sampling, without replacement, the positions
in which to insert values in the permutation. A full proof is given in Section[B.2] Code to encode
and decode between inline and the insertion-vector representation is given in Section[D.4] A more
general theorem was proven in|Azpeitia et al.[(2025)

5 Experiments

This section discusses experiments with factorized representations, as well as inline, across different
losses. We explore 3 experimental settings. First, a common baseline of solving jigsaw puzzles
of varying sizes, where the target distribution is a delta function on the permutation that solves
the puzzle. We then propose 2 new settings with more complex target distributions: learning a
uniform distributions over cyclic permutations, as well as re-ranking movies based on observed user
preference. For MLM at low NFEs each set in S is of size n/NFEs (rounded), with the exception of
the last set. Hyper-parameters for all experiments are given in Section[E} An illustration of training
is given in Figure ] and inference in Figure 5]

5.1 Solving Jigsaw Puzzles.

We evaluate our models on the common benchmark of CIFAR-10 jigsaw puzzles using the exact
same setup as in[Zhang et al| (2024). Experimental details are given in Section [E] For MLM, we use
the same architecture (SymDiff) as|Zhang et al.|(2024)), with the CNN backbone conditioning on the
jigsaw tensor. For AR, we modify the architecture to add an additional step that attends to the input
sequence as well as the tensor (see Section[D.5]). All models have roughly 3 million parameters.

Our method significantly outperforms previous diffusion and convex-relaxation baselines, with all
representations and losses. Results are shown in Figure[6| MLM can solve the puzzle with 1 NFE
(i.e., 1 forward-pass) as the target distribution is a delta on the solution, conditioned on the puzzle.
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Figure 6: Percentage of CIFAR-10 jigsaw puzzles (test set) correctly reassembled for varying puzzle
size, methods, and permutation representation (higher is better). SymDiff (Zhang et al,[2024) and
Gumbel-Sinkhorn significantly under-perform as puzzle size increases, while our
methods do not. Numbers over SymDiff and Gumbel-Sinkhorn indicate their values on the y-axis,
which fall below the plotted range. MLM outperforms AR by a wide margin, even while using only 1
NFE.
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3 ) 4 / -%- AR (all repr.)
o _ 12 1
o 0 - " - ="

12 4 5 10 12 4 5 10 12 4 5 10
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Figure 7: Performance on cyclic generating task as a function of NFEs (i.e., forward passes), across
different representations and losses (higher is better). Each point contains information regarding
10k samples. (Left) Percentage of unique output sequences, including invalid permutations. All
representations achieve 100%. (Middle) Percentage of simultaneously unique and valid permutations.
Except for Inline, all representations achieve 100%. (Right) Percentage of unique, valid, and cyclic
permutations. See discussion in Section@

5.2 Learning a Uniform Distribution over Cyclic Permutations

The jigsaw experiment is limited in evaluating the complexity of distributions over permutations, as
the target is a delta function. In this section we propose a new benchmark where the target distribution
is uniform over all (n — 1)! cyclic permutations of length n = 10.

All cyclic permutations of length n are generated with Sattolo’s algorithm [1986)), and a
random set of 20% are taken as the training set, resulting in a train set size of (n — 1)!/5. Results are
shown in Figure[7] where each point represents 10, 000 samples. All models learn to fully generalize
in the following sense: out of the 10,000 samples taken, around 20% are in the training set, while
the rest are not. All factorized representations can produce valid permutations, even as the number
of NFEs decreases, including for the fully-factorized case of 1 NFE. Inline suffers to produce valid
permutations as discussed in Section .1} All methods can fully model the target distribution at
full NFEs, including inline representations (right-most plot). Both Lehmer and Insertion-Vector
representations can still produce some cyclic permutations (above the (n — 1)!/n! = 0.1 baseline)
even at 1 NFE. Fisher-Yates can perfectly model the target distribution for any number of NFEs.
This is expected, as hinted by Sattolo’s algorithm: a necessary and sufficient condition to generate
cyclic permutations in the Fisher-Yates representation is for F'Y; > 0, as these represent a pass in the
draw. The model produces a uniform distribution over a subset of cyclic permutations. For example,
Lehmer at 5 NFEs has non-zero mass on only 46.1% of the (n — 1)!/n! cyclic permutations. Within
those 46.1%, the probabilities are uniformly distributed, while the remaining have 0 mass.
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Figure 8: Results for re-ranking conditioned on user ratings in MovieLens (higher is better) for
varying rank sizes n. See Section @ for a full discussion of the results.

5.3 Re-ranking on MovieLens

Our last experiment is concerned with learning distributions over rankings of size n, conditioned on
existing user preference data in the MovieLens32M dataset (Harper and Konstanl 2015). MovieLens
contains 32 million ratings across 87, 585 movies by 200, 948 users on a 0.5 scale from 0.5 to 5.0.
We first filter to keep only movies rated by at least 1, 000 users, and then randomly sample 1, 000
movies from the remaining. Only users that rated at least n movies out of the 1, 000 sampled movies
are kept. In the smallest setting (n = 50), the dataset totals roughly 18 million ratings across 174
thousand users. The dataset was split on users into 80% train and 20% validation.

Note that the only information available to the models in this paper are rankings of previous liked
items, with no notion of user, user features, or even item features. There is no guarantee of a single
“true ranking” of size n when conditioned on a sub-ranking of size k < n; as there will likely be two
users that have the same preference on a subset of k£ movies, but differ in preference when looking at
the full ranking of size n (i.e., the target is a uniform distribution over these rankings of size n).

During training, we sample n ratings (each for a different movie) from each user. The (shuffled)
sequence of n movie ids make up X.s. The user ratings are then used to compute the true ranking (i.e.,
labels), with ties broken randomly. The input sequence is of size 2n, with the first n corresponding
to the movie labels (i.e., Xet, prefix), and the last n the true user ranking in the insertion-vector
representation (i.e., V(X), labels). We train with MLM and AR to predict the labels conditioned
on the prefix, and the labels generated so far (i.e., conventional cross-entropy training, or “teacher-
forcing”).

To evaluate, we sample n ratings for each user in the test set (as done in training) and condition on
the first few movies V; to predict the remaining V> ;. Note this is possible without training separate
conditional models, because the GRIM representation allows us to learn all conditionals of the form
Py, v, x. when training with the AR and MLM objectives.
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We compare against two baselines: ranking movies by number of users that watched them, and RIM
(Doignon et al.,{2004) with uniform insertion probabilities; conditioned on the observed ranking V<,..
Results are shown in Figure@]for the NDCG @k metric (Jarvelin and Kekildinen, 2002). NDCG @k
measures the agreement to the true user ratings, and has a maximum value of 1.0. Note that NDCG @k
is similar to cross-entropy when the relevance scores are the normalized log-probabilities (which is
our case), which is an appropriate metric for a distribution learning task.

AR ([[,+, Pv;|v.,;) and MLM (1 NEE, [[, Py, |v.,) perform similarly, and outperform both
baselines in all settings. Note » = 1 and r = 0 are equivalent, as V(X ); = 0 with probability 1.
The conditional MLM model at 1 NFE is different from the unconditional MLM model at 1 NFE
(1 j>r Py, ); which is why performance improves as a function of the observed rank size r. In this
setting, the AR baseline is a very strong baseline, which should have very high performance on this
task, given that no semantic content information is available to take advantage of.

6 Discussion and Future Work

We present models capable of learning arbitrary probability distributions over permutations via
alternative representations: Lehmer codes, Fisher-Yates draws, and insertion vectors. These rep-
resentations enable unconstrained learning and ensure that all outputs are valid permutations. We
train our models using auto-regressive and masked language modeling techniques, which allow for
a trade-off between computational cost and model expressivity. Our approaches achieve state-of-
the-art performance on the jigsaw puzzle benchmark. However, we also argue this benchmark is
insufficient to test permutation-distribution modelling as the target is deterministic. Therefore, we
introduce two new benchmarks that require learning non-trivial distributions. Lastly, we establish a
novel connection between Lehmer codes and insertion vectors to enable parallelized decoding from
insertion representations.

The methods in this work explore learning distributions over permutations, where the set of items to
be ranked is already known before-hand. An interesting avenue for future work is to model the set of
items simultaneously, as is the case in real-world recommender systems. Experiments on MovieLens
hint at the scaling capabilities of these factorized representations beyond simple toy settings, as the
size of learned permutations for non-trivial experiments in previous literature has generally been
much smaller than that explored in our largest MovieLens experiment (n = 50). Finally, from a
theoretical standpoint there is room for more characterization of the properties of these families of
distributions in the low NFE setting.
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A Background

A.1 Permutations

A permutation in this context is a sequence X of elements X; € [n] such that |J,{X;} = [n]
with X having no repeating elements. Permutations are often expressed in inline notation, such as
X =15,4,1,2,3]. A permutation can also be seen as a bijection X : [n] — [n], where X (i) = X is
the element in the inline notation at position .

A transposition is a permutation that swaps exactly 2 elements, such as X = [1, 2,4, 3].

A cycle of a permutation is the set of values resulting from repeatedly applying the permutation,
starting from some value. For the previous example, the cycles are (1 — 5 — 3 — 1) and
(2 — 4 — 2). A cyclic permutation is a permutation that has only 1 cycle, an example is given in

Figure[9]
The inverse of X, denoted as X !, is the permutation such that X (X ~1(i)) = (X ~1)(X (7)) = 1.

A sub-permutation of a permutation X of length n, is a sequence of m < n elements Z; = X, that

agrees with X in the ordering of its elements, i.e., i1 < iz < --- < i,,. For example, [5, 1, 3] and
[4,1, 2] are sub-permutations of [5,4, 1,2, 3], but [4, 1, 3, 2] is not.

See Marden| (2014)); |Critchlow et al.|(1991)) for a more complete introduction to permutations and
ranking models.

B Theorems and Proofs

B.1 Neighboring Lehmer Codes Differ by a Transposition

The following theorem gives a metric-space interpretation for Lehmer codes, and how changes in
L(X) affect X.

Theorem B.1. For any two permutations X, X', if |L(X) — L(X")||; = 1 then X and X' are equal
up to a transposition.

The proof follows from analyzing the list of remaining elements at each SWOR step, and can be seen
from a simple example. Consider the following Lehmer codes L, L’ differing only at Ly = L3 + 1,
their SWOR processes, and their resulting permutations X, X’.

In=2]1|2|3|4|5]|xi=3 i=2]1]2]3|4|s5]|x(=
Ly=3|1]2 45| Xo=5 Ih=3|1]2 45| Xb=5
Ly=1 | 1|2 4 X3=2 Ly=2 | 1|2 4 X3=4
Li=0 | 1 4 Xi=1 =0 |1]2 Xj=1
Ls=0 4| xo=a IL=0 2 Xi—2

Note the following facts:

1. transposing 3 and 1 in the initial permutation (first row) and applying the SWOR process of
L results in X';

2. the element chosen at step 3 by L3 is adjacent in the list to the element chosen by L}, as
|L3 — Lé| = 1;

3. steps before 3 are unaffected, as are their respective inline elements;

4. steps after 3 are unaffected, as long as the sampled index does not fall in either of the two
blocks corresponding to L3 and L3 + 1 (where a change occurred).

In general, for an increment at position j, the only affected elements are those at L; and L; + 1,
implying X and X' differ exactly by the transposition of these elements.
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A more general statement can be given for the case of increments beyond 1. Consider L;- =L;+k.
All future steps ¢ > j with elements L; € [L;, L; + k] are affected, requiring a permutation of size
k + 1 to recover X.

Theorem B.2. For any two permutations X, X' such that L(X); = L(X"); for all i # j then X and
X' are equal up to a permutation of |L(X); — L(X");| + 1 elements.

B.2 Theorem

Restating Theorem 4.3| Let L(X) be the kth element of the left-Lehmer code, X~ the inverse
permutation, and V (X)), the kth element of the insertion vector of X. Then,

V(X)) =k— LX)

First, let p;, be the position of the value k in X, i.e. X, = k. By definition of inversion, p;, = X,;l.
Then, note V(X)) = [{j < px|X,; < k}|. In words: The insertion vector element V(X ), counts
the number of elements to the left of the position of value £ in X (i.e. py) that are smaller than
k. This can be seen by the following argument: By definition, an insertion vector element V' (X)
describes in which index to insert an element with the current value k£ (or k£ + 1, depending on
indexing definitions), see Figure 2] (right). Because all previously inserted values are smaller than &
and all values inserted later will be larger, the index at the time of insertion is equal to the count of
smaller elements to the left of the final position of value k in X, which is py.

Recall the definition of the left Lehmer code: L(X ), = [{j < k|X; > X}
Define L'(X), = k — L(X), and notice that

L(X)e =k = LX), =k - [{j <k|X; > X }| = {j <kX; < X}, (D

since [{j < k}| =kand X, # X}, Vj<k.

Insert the inverse permutation X ~!:

L'(X Y= <klIX; ' < X7 =i < klp; < pr}l

Next, perform a change of variable on j in V(X ):

V(X)) =NHJj <pelX; <k} =|{p <pill <k} where |=X; & j=p

Comparing,

k= LX)k = L'(X ™ = {17 < k,py <o}l = Hllpe < pu L < B} = V(X

C Limitations

The most important limitation of this work is scalability to large permutations. A loose bound can
be estimated by realizing that we model the permutations with transformer architectures. Therefore,
the memory and compute required to train on tasks that require large permutations are quadratic.
In particular, common methods in ranking include score functions, which can act on each item
individually to produce a score, rather than needing to condition on all items as we do.

In general, since the search space of permutations grows much quicker with length (n!), the scalability
is often not dominated by memory requirements if search is required, rather by the compute needed
for the search.

An inherent limitation of the method is that n forward passes through the network are needed to
achieve full expressivity over the space of permutations of length n. This is a consequence of MLM
and AR training, resulting in token-wise factorized conditional distributions. This is detailed in
Section 4.l
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si9. D Code
s20 D.1 MLM Pseudocode for training and inference

521 D.2 Lehmer Encode and Decode

s22  In practice, our left-Lehmer encoding maps an inline permutation to L’ from Equation (7), because it
523 interacts more directly with the insertion vector.

g%l def lehmer_encode (perm: Tensor, left: bool = False) -> Tensor:
526 2 lehmer = torch.atleast_2d(perm.clone())

5273 n = lehmer.size(-1)

528 4 if left:

529'5 for i in reversed(range(l, n)):

530 6 lehmer[:, :i] -= (lehmer[:, [i]] <= lehmer[:, :i]).to(int)
5317 else:

532 8 for i in range(1l, n):

5339 lehmer[:, i:] -= (lehmer[:, [i - 1]] < lehmer[:,
534 i:]).to(int)

53510

53611 if len(perm.shape) == 1:

53712 lehmer = lehmer.squeeze ()

53813 elif len(perm.shape) == 2:

53914 lehmer = torch.atleast_2d(lehmer)

54015

54116 return lehmer

54217

54318

54419 def lehmer_decode (lehmer: Tensor, left: bool = False) -> Tensor:
5430 perm = torch.atleast_2d(lehmer.clone())

5461 n = perm.size(-1)

54722 for i in range(1l, n):

5483 if left:

5494 perm[:, :i] += (perm[:, [i]] <= perm[:, :i]).to(int)
555 else:

55126 j=mn-1i -1

55227 perm[:, j + 1 :1 += (perm[:, [jl] <= perm[:, j + 1
553 :1) . to(int)

5548

5559 if len(lehmer.shape) == 1:

55630 perm = perm.squeeze ()

55731 elif len(lehmer.shape) == 2:

5582 perm = torch.atleast_2d(perm)

5583

564 return perm

s62 D.3 Fisher-Yates Encode and Decode

563

564 1| def fisher_yates_encode(perm: torch.Tensor) -> torch.Tensor:
565 2 original_num_dims = len(perm.shape)

566 3 perm = torch.atleast_2d(perm)

567 4 B, n = perm.shape

568 5 perm_base = torch.arange(n).unsqueeze (0) .repeat ((B,

569 1)) .to(perm.device)

570 6 fisher_yates = torch.zeros_like(perm).to(perm.device)

5717 batch_idx = torch.arange(B).to(perm.device)

5728

5739 for i in range(n):

57410 j = torch.nonzero(perm[:, [i]] == perm_base, as_tuple=True) [1]
57511 fisher_yates[batch_idx, il = j - i

57612

57713 idx = torch.stack([torch.full_like(j, i), jl, dim=1)
57814 values = perm_base.gather (1, idx)
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57915
58016
58117
58218
58319
5840
58821
58622
58723
58824
58925
596
59127

59328
5949
5980
59631
597

3882

600

601
602 1

603 2
604 3
605 4
606 5
607 6
608 7
609 8
6109
61110
61211
61312

g1413

616

617
618

619
620
621
622

623
624 1

625 2
626

627 3
628 4
629 5
630 6
6317
632 8
633 9
63410
63511
63612
63713
63814

swapped_values = torch.flip(values, [1])
perm_base.scatter_(1, idx, swapped_values)

if original_num_dims == 1:
fisher_yates = fisher_yates.squeeze ()
elif original_num_dims == 2:
fisher_yates = torch.atleast_2d(fisher_yates)

return fisher_yates

def fisher_yates_decode (fisher_yates: Tensor) -> Tensor:

B, n = fisher_yates.shape
perm = torch.arange(n).unsqueeze (0) .repeat ((B,
1)) .to(fisher_yates.device)
batch_idx = torch.arange(B).to(fisher_yates.device)
for i in range(n):
j = fisher_yates[:, i] + i
perm[batch_idx, jl, perm[:, il = perm[:, i], perm[batch_idx,
jl

return perm

D.4 Insertion-Vector Encode and Decode

def invert_perm(perm: Tensor) -> Tensor:
return torch.argsort (perm)

def insertion_vector_encode_torch(perm: Tensor) -> Tensor:
inv_perm = invert_perm(perm)
insert_v = lehmer_encode_torch(inv_perm, left=True)
return insert_v

def insertion_vector_decode_torch(insert_v: Tensor) -> Tensor:
inv_perm = lehmer_decode_torch(insert_v, left=True)
perm = invert_perm(inv_perm)
return perm

D.5 Modified SymDiff-AR

We modify the following function in https://github.com/DSL-Lab/SymmetricDiffusers/

blob/6eaf9b33e784e72f8b987cf46c97f£56423b74651/models . py#L357C9-L357C26,

The first N elements of embd correspond to the embeddings of the puzzle pieces computed with the
CNN backbone, while the following IV are the token embeddings of the input. The attention mask
(embd_attn_mask) guarantees all tokens attend to the puzzle pieces, but the inputs can be attended

to causally (if perm_attn_mask is causal, AR case) or fully (MLM).

def apply_layers_self(
self, embd, time_embd, attn_mask=None, perm_attn_mask=None,
perm_embd=None

N = embd.size (1)
time_embd = time_embd.unsqueeze (-2)
embd = embd + time_embd

embd_attn_mask = None

if perm_embd is not None:
embd = torch.cat([embd, perm_embd], dim=1)
embd = self.perm_pos_encoder (embd)

if perm_attn_mask is not None:
embd_attn_mask = (
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torch.zeros ((2 * N, 2 *
N)).to(bool).to(perm_attn_mask.device)

)

embd_attn_mask[:, :N] = True
embd_attn_mask[N:, N : 2 x N] = perm_attn_mask
embd_attn_mask = “embd_attn_mask

for layer in self.encoder_layers:
embd = layer (embd, src_mask=embd_attn_mask)

return embd[:, N : 2 * NJ]

E Experiments

E.1 Jigsaw experiments

Each CIFAR-10 image is partitioned into a jigsaw puzzle in grid-like fashion. The pieces are
scrambled by applying a permutation sampled uniformly in the symmetric group. This produces a
tensor of shape (B, N, H/N,W/N), where B is the batch dimension, N the puzzle size (specified
per dimension) and H and W are the original image dimensions (i.e. H = W = 32 for CIFAR-10).
The images are cropped at the edges if H and W are not divisible by NV, as in|Zhang et al | (2024).

Hyperparameters:

1. learning rate = 3 x 10~*
2. batch size = 1024

3. Model configurations  follow those in  https://github.com/DSL-Lab/
SymmetricDiffusers/tree/6eaf9b33e784e72f8b987cf46c97f£5423b74651/
configs/unscramble-CIFAR10

E.2 Cyclic experiments

1. learning rate = 3 x 10~*
2. batch size = 1024
3. DiT model size:

(a) hidden dimension size = 128

(b) number of transformer heads = 8
(c) time embedding dimension =0
(d) dropout =0.05

(e) number of transformer layers = 8

E.3 Reranking MovieLens

1. learning rate = 3 x 10~*
2. batch size = 1024
3. DiT model size:

(a) hidden dimension size = 256

(b) number of transformer heads = 8
(c) time embedding dimension =0
(d) dropout =0.05

(e) number of transformer layers = 10

F Compute
Our experiments were run on nodes with a single NVidia A-100 GPU. Since the models trained are

of small scale, no experiment took longer than 2 days to converge. In total, an estimated 10000 GPU
hours were spent for the research for this paper.
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H Extra Figures

(a) Cyclic: m = [5,3,1,2,4] (b) Non-cyclic: m = [5,1,4, 3, 2]
1-3—=2—=24—-5—=1) (1=-2—=5—>1),3+4)

Figure 9: Illustration of a cyclic vs. a non-cyclic permutation.
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Figure 10: (Left) Decoding a lehmer code from left to right represents sampling without replacement.
Ilustrated on Jigsaw puzzles. (Right) Prediction task on the MovieLens dataset. Insertion-vectors
allow us to define conditionals over sub-rankings corresponding to user preference data.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: Find the summary, and bullet-pointed claims in the introduction.
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Section[Cl

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide all the details for reproduction in the relevant sections for Jigsaws,
Cyclic, MovieLens. We provide exact codes for the encoding and decoding functions, one
of which is a core contribution. We also describe in detail how to modify the architecture
from Zhang et al|(2024) in Section[D.5] and give specific hyperparameters in Section[E] We
plan to open source code at camera-ready.

Guidelines:

» The answer NA means that the paper does not include experiments.

« If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We use existing data sets which are already open source: Jigsaws and Movie-
Lens. The cyclic dataset is a toy and we provide detailed instructions how to recreate
it.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: see reproducibility question
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:
Justification: The comparisons in performance are qualitatively different.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

¢ For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section[H
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: It does.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: There are no particular societal impacts we foresee. We provide an impact
statement in Section

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: not applicable.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We cite all assets used.
Guidelines:
e The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.
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13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are introduced.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: not applicable.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: not applicable.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

24


paperswithcode.com/datasets

999 * We recognize that the procedures for this may vary significantly between institutions

1000 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1001 guidelines for their institution.

1002 * For initial submissions, do not include any information that would break anonymity (if
1003 applicable), such as the institution conducting the review.

1004 16. Declaration of LLM usage

1005 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1006 non-standard component of the core methods in this research? Note that if the LLM is used
1007 only for writing, editing, or formatting purposes and does not impact the core methodology,
1008 scientific rigorousness, or originality of the research, declaration is not required.

1009 Answer: [NA]

1010 Justification: No LLMs have been used beyond checking the writing for consistency and
1011 spelling errors.

1012 Guidelines:

1013 * The answer NA means that the core method development in this research does not
1014 involve LLMs as any important, original, or non-standard components.

1015 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
1016 for what should or should not be described.
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