
Learning Distributions over Permutations and Rankings with Factorized Representations

Anonymous Author(s)

Affiliation

Address

email

Abstract

1 Learning distributions over permutations is a fundamental problem in machine
2 learning, with applications in ranking, combinatorial optimization, structured pre-
3 diction, and data association. Existing methods rely on mixtures of parametric
4 families or neural networks with expensive variational inference procedures. In this
5 work, we propose a novel approach that leverages alternative representations for
6 permutations, including Lehmer codes, Fisher-Yates draws, and Insertion-Vectors.
7 These representations form a bijection with the symmetric group, allowing for un-
8 constrained learning using conventional deep learning techniques, and can represent
9 any probability distribution over permutations. Our approach enables a trade-off
10 between expressivity of the model family and computational requirements. In the
11 least expressive and most computationally efficient case, our method subsumes pre-
12 vious families of well established probabilistic models over permutations, including
13 Mallow’s and the Repeated Insertion Model. Experiments indicate our method
14 significantly outperforms current approaches on the jigsaw puzzle benchmark, a
15 common task for permutation learning. However, we argue this benchmark is
16 limited in its ability to assess learning probability distributions, as the target is a
17 delta distribution (i.e., a single correct solution exists). We therefore propose two
18 additional benchmarks: learning cyclic permutations and re-ranking movies based
19 on user preference. We show that our method learns non-trivial distributions even
20 in the least expressive mode, while traditional models fail to even generate valid
21 permutations in this setting.

22 **1 Introduction**

23 Learning in the space of permutations is a fundamental problem with applications ranging from
24 ranking for recommendation systems (Feng et al., 2021), to combinatorial optimization, learning-
25 to-rank (Burges, 2010), and data cleaning (Kamassury et al., 2025). Classical probabilistic models
26 for permutations include the Plackett-Luce (Plackett, 1975; Luce et al., 1959) and Mallows (Mal-
27 lows, 1957) distributions, which can only represent a limited set of probability distributions over
28 permutations (e.g., Plackett-Luce cannot model a delta distribution). These limitations have been
29 addressed in existing literature by considering mixtures Lu and Boutilier (2014), which require
30 expensive variational inference procedures for learning and inference. More recently, several works
31 have proposed methods for learning arbitrary probability distributions over permutations using neural
32 networks, in the framework of diffusion (Zhang et al., 2024) and convex relaxations (Mena et al.,
33 2018) (see Section 2 for an overview).

34 In this work, we develop models that can represent any probability distribution over permutations and
35 can be trained with conventional deep learning techniques, including any-order masked language
36 modelling (MLM) (Uria et al., 2016; Larochelle and Murray, 2011), and autoregressive next-token-

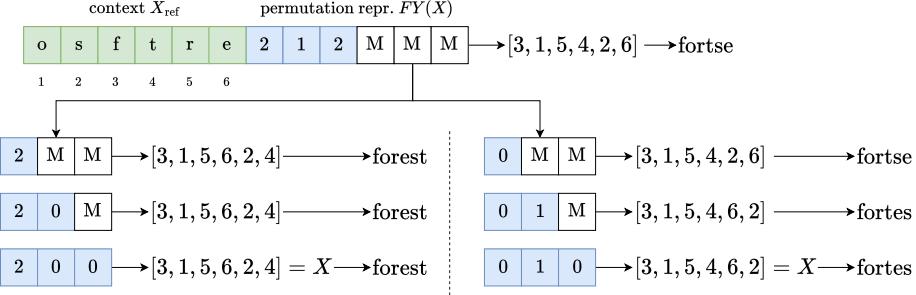


Figure 1: Overview of our method unscrambling the sequence “osfotre” autoregressively using one of the representations we consider in this work: Fisher-Yates draws (Fisher and Yates, 1953). We condition on a reference/context (green) and the current input (blue) to sample values for the masked tokens (white). The model samples a permutation that unscrambles to “forest” on the left, and “fortes” on the right. At any point in generation, the partially-masked sequence corresponds to some valid permutation.

37 prediction (AR or NTP) (Shannon, 1948). We leverage alternative representations for permutations
 38 (beyond the usual inline notation) that form a bijection with the symmetric group, allowing for
 39 unconstrained learning. The representations we consider stem from well-established algorithms in
 40 the permutation literature, such as factorial indexing (Lehmer codes (Lehmer, 1960)), generating
 41 random permutations (Fisher-Yates draws (Fisher and Yates, 1953)), and modelling sub-rankings
 42 (Insertion-Vectors (Doignon et al., 2004; Lu and Boutilier, 2014)); which all have varying support for
 43 their sequence-elements that are a function of the position in the sequence (Section 3.1).

44 To trade off compute and expressivity, MLMs have the capability of sampling multiple permutation
 45 elements independently with one forward pass through the neural network. Aforementioned representations
 46 always produce valid permutations at inference time for any amount of compute spent, even
 47 in the fully-factorized case when all tokens are unmasked in a single forward-pass.

48 Decoding the inline notation of the permutation from the representation is trivial in the case of
 49 Lehmer and Fisher-Yates (Kunze et al. (2024a)). In Theorem 4.3 we establish a relationship between
 50 a permutation’s inverse, and its Lehmer and Insertion-Vector representations, which allows us to
 51 develop a fast decoding algorithm for Insertion-Vectors that can be applied in batch, significantly
 52 improving inference time compute.

53 Our methods establishes new state-of-the-art results on the common benchmark of solving jigsaw
 54 puzzles (Mena et al., 2018; Zhang et al., 2024), significantly outperforming previous diffusion
 55 and convex-relaxation based approaches. However, we also argue this benchmark is inadequate
 56 to evaluate learning probability distributions over permutations, as each puzzles contains only one
 57 permutation that unscrambles it (i.e., the target distribution is a delta function). We therefore propose
 58 two new benchmarks, which require learning non-trivial distributions: learning cyclic permutations
 59 (Section 5.2) and re-ranking a set of movies based on observed user preference in the MovieLens
 60 dataset (Section 5.3).

61 In summary, our contributions are four-fold. We:

- 62 • (Section 4.2) develop new methods for supervised learning of arbitrary probability distri-
 63 butions over permutations that (1) assign zero probability to invalid permutations; (2) can
 64 trade-off expressivity for compute at sampling time, without re-training; (3) can learn non-
 65 trivial, fully-factorized distributions; (4) is trained with conventional language modelling
 66 techniques with a cross-entropy loss; (5) is extremely fast at sampling time;
- 67 • (Section 5.1) establish state-of-the-art on the common benchmark of jigsaw puzzles, signifi-
 68 cantly outperforming current baselines;
- 69 • (Section 5.2 and Section 5.3) define two new benchmarks: learning cyclic permutations and
 70 re-ranking based on user preference data, that require learning non-trivial distributions;
- 71 • (Theorem 4.3) establish a new relationship between insertion-vectors, inverse permutations,
 72 and Lehmer codes that result in an efficient decoding scheme for insertion-vectors.

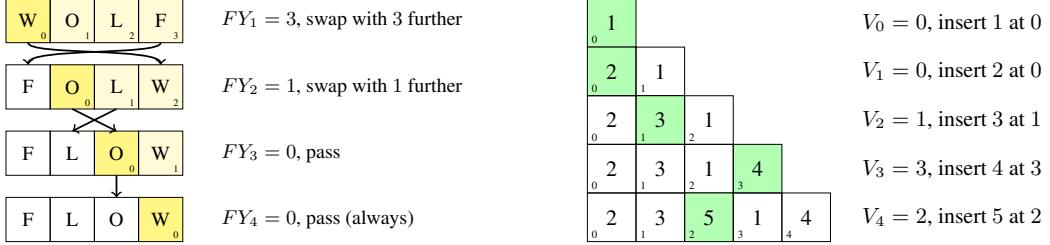


Figure 2: (Left) Illustration for the Fisher-Yates algorithm for shuffling, defining a bijection with permutations. In this example, $FY(X) = [3, 1, 0, 0] \Rightarrow X = [4, 3, 2, 1]$. Small numbers in the bottom-right corner of each box represent the draw value required to swap the current element with that position. (Right) Illustration of the generative process defined by the insertion vector, for a reference permutation $X_{\text{ref}} = [1, 2, 3, 4, 5]$. At each step, the current element of the reference is inserted immediately to the left of V_i , and values to the right are shifted right one position to accommodate. Small numbers at the bottom-left corner represent the slot index. In this example, $V(X) = [0, 0, 1, 3, 2] \Rightarrow X = [2, 3, 5, 1, 4]$.

73 2 Related Work

74 **Generative models and objectives.** We utilize generative models parametrized by transformers
 75 Vaswani et al. (2017), as commonly employed in language modeling. Specifically, we utilize Masked
 76 Language Modeling (MLM) and next-token prediction (NTP or AR). The concept of NTP goes back
 77 as far as Shannon (1948) and has been applied with great success in language modeling within the
 78 last decade, see e.g. Radford et al. (2019); Meta (2024) and many more. Popularized through BERT
 79 (Devlin et al., 2019), MLM has been identified as a viable tool for language understanding. More
 80 recently, forms of MLM have been derived as a special case of discrete diffusion (Austin et al., 2021;
 81 He et al., 2022; Kitouni et al., 2024), where the noise distribution is a delta distribution on the masked
 82 state, and have shown promise in generative language modeling (Sahoo et al., 2024; Shi et al., 2025;
 83 Nie et al., 2025).

84 **Permutation and Preference Modeling.** Notable families of distributions over permutations
 85 include the Plackett-Luce distribution (Plackett, 1975; Luce et al., 1959) and the (generalized)
 86 Mallows model (Mallows, 1957), both of which have restricted expressivity. Doignon et al. (2004);
 87 Lu and Boutilier (2014) propose the Repeated Insertion Model (RIM) and a generalized version
 88 (GRIM) to learn Mallows models and mixtures thereof, [which itself also uses the same insertion
 89 representation used in this paper](#). These methods are detailed in Section 3.2.

90 A prominent line of related work approaches permutation learning using differentiable ordering.
 91 One common strategy is to relax the discrete problem into continuous space—either by relaxing
 92 permutation matrices (Grover et al., 2019; Cuturi et al., 2019) or by using differentiable swapping
 93 methods (Petersen et al., 2022; Kim et al., 2024). A notable baseline for us is the work of Mena et al.
 94 (2018), who utilize the continuous Sinkhorn operator to regress to specific permutations, rather than
 95 distributions over possible permutations.

96 [Using Lehmer codes for permutation learning has been considered by Diallo et al. \(2020\), but only in
 97 the AR context and with a different architecture than considered in this work; as well as Malagón
 98 et al. \(2025\) to sample solutions to certain optimization problems in their framework \(see “4.2 Case 2:
 99 The First-Order Marginal Probabilities Model” in their paper\).](#) Recently, Zhang et al. (2024) joined
 100 the concepts of discrete space diffusion and differentiable shuffling methods to propose an expressive
 101 generative method dubbed SymmetricDiffusers, SymDiff for short. Inspired from random walks on
 102 permutations, they identify the riffle shuffle (Gilbert, 1955) as their forward process. To model the
 103 reverse process, the paper introduces a generalized version of the Plackett-Luce distribution. This
 104 work serves as our most relevant and strongest baseline.

105 3 Background

106 A short introduction to permutations is given in Section A.1.

107 **Notation** Sequences of random variables are denoted by capital letters X, L, V , and FY . Subscripts
 108 X_i, L_i, V_i , and FY_i indicate their elements. Contiguous intervals are denoted by $[n] = [1, 2, \dots, n]$
 109 and $[n] = [0, 1, \dots, n - 1]$. For some set S with elements $s_j \in [n]$, let $X_S = \{X_{s_1}, \dots, X_{s_{|S|}}\}$ be
 110 the set of elements in X restricted to indices in S . For an ordered collection of sets S_i , we denote
 111 unions as $S_{<i} = \bigcup_{j < i} S_j$. The Lehmer code (Lehmer, 1960), Fisher-Yates (Fisher and Yates, 1953),
 112 and Insertion-vector (Doignon et al., 2004; Lu and Boutilier, 2014) representations of a permutation
 113 X will be denoted by $L(X), FY(X)$, and $V(X)$, respectively. We sometimes drop the dependence
 114 on X when clear from context or when defining distributions over these representations directly. All
 115 logarithms are base 2.

116 **3.1 Representations of Permutations**

117 **Lehmer Codes (Lehmer, 1960).** A Lehmer code is an alternative representation to the inline
 118 notation of a permutation. The Lehmer code $L(X)$ of a permutation X on $[n]$ is a sequence of length
 119 n that counts the number of inversions at each position in the sequence. Inversions can be counted to
 120 the left or right, with one of the following 2 definitions,

$$\text{Left: } L(X)_i = |\{j < i : X_j > X_i\}| \quad \text{or} \quad \text{Right: } L(X)_i = |\{j > i : X_j < X_i\}|. \quad (1)$$

121 An example of a right-Lehmer code is given in Figure 3. The right-Lehmer code is commonly used
 122 to index permutations in the symmetric group, as it is bijective with the factorial number system. The
 123 i -th element $L(X)_i$ of the right-Lehmer has domain $[n - i + 1]$, and $[i]$ for the left-Lehmer code.
 124 A necessary and sufficient condition for a Lehmer code to represent a valid permutation is for its
 125 elements to be within their respective domains. The manhattan distance between Lehmer codes relates
 126 to the number of transpositions needed to convert between their respective permutations, establishing
 127 a metric-space interpretation. This is formalized in Theorem B.1. As a direct consequence, the sum
 128 $\sum_i L(X)_i$ equals the number of adjacent transpositions required to recover the identity permutation,
 129 known as Kendall’s tau distance (Kendall, 1938). Code to convert between inline notation and right-
 130 or left-Lehmer codes is given in Section D.2.

131 **Fisher-Yates Shuffle (Fisher and Yates, 1953).** The Fisher-Yates Shuffle is an algorithm commonly
 132 used to generate uniformly distributed permutations. The procedure is illustrated in Figure 2. At
 133 each step, the element at the current index is swapped with a randomly selected element to the right,
 134 and after n steps is guaranteed to produce a uniformly distributed permutation if the initial sequence
 135 is a valid permutation. The index sampled at each step, FY_i , are referred to as the “draws”. Each
 136 resulting permutation X can be produced with exactly 1 unique sequence of draws $FY(X)$, implying
 137 the set of possible draw-sequences forms a bijections with the symmetric group (Fisher and Yates,
 138 1953). During the Fisher-Yates shuffle it possible to sample 0, resulting in no swap (see a “pass”
 139 step in Figure 2 for an example). If sampling is restricted such that $FY_i > 0$, then the procedure is
 140 guaranteed to produce a cyclic permutation and is known as Sattolo’s Algorithm (Sattolo, 1986).

141 Decoding a batch of Fisher-Yates representations can be parallelized by applying the Fisher-Yates
 142 shuffle to a batch of identity permutations and forcing the draws to equal elements FY_i . Encoding
 143 requires inverting the Fisher-Yates shuffle by deducing which sequence of draws resulted in the
 144 observed permutation. An algorithm to do so is provided by Kunze et al. (2024b) in Appendix C.1,
 145 which can be easily made to work in batch. Code to run Fisher-Yates and Sattolo’s algorithm is given
 146 in Section D.3.

147 **3.2 Generalized Repeated Insertion Model (Doignon et al., 2004; Lu and Boutilier, 2014)**

148 The repeated insertion model (RIM) (Doignon et al., 2004) is a probability distribution over per-
 149 mutations that makes use of an alternative representation to inline, called *insertion-vectors*. The
 150 insertion-vector $V(X)$ defines a generative process for X , relative to some reference permutation
 151 X_{ref} . To generate X given X_{ref} and $V(X)$, we traverse the reference from left to right and insert the
 152 i -th element of X_{ref} at slot $V(X)_i \in [i - 1]$. See Figure 2 for an example.

153 RIM uses a conditional distribution that is independent of $V_{<i}$ to define the joint over the insertion-
 154 vector, i.e., $P_{V_i | V_{<i}, X_{\text{ref}}} = P_{V_i | X_{\text{ref}}}$, while the Generalized RIM (GRIM) (Lu and Boutilier, 2014) uses
 155 a full conditional. GRIM can be used to learn probability distributions over permutations conditioned

Figure 3: Illustration of the right-Lehmer code for permutation $X = [3, 5, 4, 1, 2]$. (Left) Each $L(X)_i = L_i$ counts the number of elements to the right of X_i that are smaller than it. (Right) Lehmer code interpreted as sampling without replacement indices.

156 on an observed sub-permutation. For example, for $n = 4$ and an observed sub-permutation $[2, 1, 4]$,
157 we can set $X_{\text{ref}} = [2, 1, 4, 3]$ such that conditional probabilities $P_{V_4 \mid V_{<4}, X_{\text{ref}}}$ can be learned for all
158 permutations agreeing with the observations, i.e.,

$$\begin{array}{llll} V_4 = 0 & V_4 = 1 & V_4 = 2 & V_4 = 3 \\ [\mathbf{3}, 2, 1, 4] & [2, \mathbf{3}, 1, 4] & [2, 1, \mathbf{3}, 4] & [2, 1, 4, \mathbf{3}]. \end{array}$$

159 Note this is not possible with inline, Lehmer, or the Fisher-Yates representations. The same can
160 be achieved if the initial elements in X_{ref} are permuted, as long as the values for $V_{<i}$ are changed
161 accordingly, which highlights an invariance a model over insertion-vectors must learn.

162 In Lu and Boutilier (2014) the authors use the insertion-vector representation to model user preference
163 data, where the observed sub-permutation represents a partial ranking establishing the preference of
164 some user over a fixed set of items. In Section 5.3 we tackle a similar problem on the MovieLens
165 dataset (Harper and Konstan, 2015) where we rank a set of movies according to observed user ratings.

166 4 Learning Factorized Distributions over Permutations

167 This section discusses the main methodological contribution of this work. MLMs can trade off compute and
168 expressivity by sampling multiple permutation elements with one network function evaluation (or forward pass).
169 In that case, simultaneously sampled elements are conditionally independent, which corresponds to an effective
170 loss in modeling capacity. We begin by showing that permutations modeled in the inline representation suffer most
171 from the degradation of model capacity as the number of function evaluations (NFEs) decreases, and can only
172 model delta functions when restricted to a single NFE.
173 We propose learning in the 3 alternative representations
174 discussed in Section 3: Lehmer codes, Fisher-Yates draws,
175 and Insertion-vectors; which do not suffer the same degradation in capacity. Note that while these alternative
176 representations also have constraints for the domain of
177 their elements, these constraints are trivially learned by
178 the neural network as it only sees valid permutations during training and can infer the domain by
179 setting the appropriate logits to negative infinity. We show the learned conditional distributions
180 defined by these representations are highly interpretable and subsume well known families such as
181 Mallow’s model (Mallows, 1957) and RIM (Doignon et al., 2004).

188 4.1 Modelling capacity of $P_X^{(\mathcal{S})}$ for the inline representation

189 The masked models considered in this work are of the form,

$$P_X^{(\mathcal{S})} = \prod_i P_{X_{S_i} \mid X_{S_{<i}}} = \prod_i \prod_{j \in S_i} P_{X_j \mid X_{S_{<i}}}, \quad (2)$$

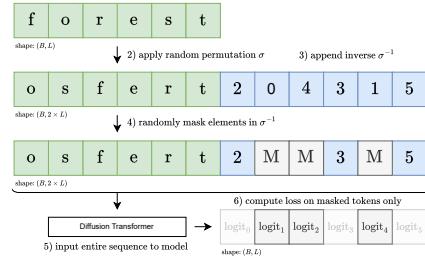


Figure 4: Training our method with MLM during training with the inline notation. For other representations, only the blue tokens change.

190 where $\mathcal{S} = (S_1, \dots, S_k)$ forms a partitioning of $[n]$, and the number of neural function evaluations
 191 (NFEs) is equal to k . Elements are sampled independently if their indices belong to the same set
 192 S_j , when conditioned on previous elements $X_{S_{<i}}$. The choice of NFEs restrict $P_X^{(\mathcal{S})}$ to a different
 193 family of models through different choices of partitioning \mathcal{S} . For example, when limited to 1 NFE,
 194 the model is fully-factorized with $S_1 = [n]$. AR minimizes at full NFEs (i.e., $n = k$) with $S_i = \{i\}$,
 195 while MLM places a distribution on the partitionings \mathcal{S} resulting in a mixture model.

196 We consider the problem of *learning distributions over valid permutations* by minimizing the cross-
 197 entropy,

$$\min_P \mathbb{E} \left[-\log P_X^{(\mathcal{S})} \right] \text{ subject to } P_X^{(\mathcal{S})}(x) = 0 \text{ if } x \text{ is not a valid permutation,} \quad (3)$$

198 where the expectation is taken over the data distribution.

199 Previous works have considered modelling permutations in the inline notation where X_i can take on
 200 any value in $[n]$. To produce *only* valid permutations, it is necessary and sufficient for the support
 201 of $P_{X_j \mid X_{S_{<i}}}$ to not overlap with that of another index in $S_i \cup S_{<i} = S_{\leq i}$. We can obtain an upper
 202 bound on the entropy of *any* inline model by considering the case when all indices in $j' \in S_i$ are
 203 deterministic except for some $j \neq j'$, which is uniformly distributed over the remaining candidate
 204 indices. Formally, $H(P_{X_{j'} \mid X_{S_{<i}}}) = 0$ and $H(P_{X_j \mid X_{S_{<i}}}) = \log(n - |S_{\leq i}| + 1)$. This implies the
 205 following for all $j \in S_i$,

$$H \left(P_X^{(\mathcal{S})} \right) \leq \sum_i \log(n - |S_{\leq i}| + 1). \quad (4)$$

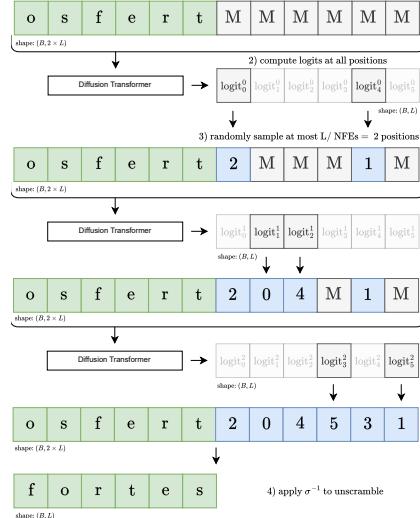
206 Equation (4) shows the modelling capacity is severely impacted by the number of NFEs. Most
 207 importantly: **any inline model respecting the constraint in Equation (3) can only represent**
 208 **a delta function in the case of 1 NFE** (i.e., $S_1 = [n]$), as $H(P_X^{(\mathcal{S})}) \leq 0$ implies $H(P_X^{(\mathcal{S})}) = 0$
 209 (Cover, 1999). In practice, this manifests at sampling time where the model fails to produce valid
 210 permutations as in Section 5.2. At full NFEs the right-hand side of Equation (4) equals $\log(n!)$, and
 211 is achievable when $P_X^{(\mathcal{S})}$ is a uniform distribution.

212 4.2 Factorized Representations for Permutations

213 Next, we consider learning distributions over permutations with the factorized representations discussed in Section 3.1. These representations have different supports for
 214 their sequence-elements and allow values to overlap while
 215 still producing valid permutations, implying they don't
 216 suffer from the representation capacity issue discussed in
 217 Section 4.1. At full NFEs, these representations can model
 218 arbitrary distributions over permutations, while at a single
 219 NFE they can learn non-trivial distributions such as
 220 the Mallow's model and RIM; in contrast to inline which
 221 can only represent a delta distribution. For this reason, we
 222 refer to them as *factorized representations*.

223 **Lehmer Codes.** We consider models $P_L^{(\mathcal{S})}$ over the
 224 (right) Lehmer code as defined in Section 3.1 and illustrated in Figure 3. Left-to-right unmasking of a Lehmer
 225 code can be interpreted as the sampling without replacement (SWOR) indices of its corresponding permutation,
 226 as illustrated in Figures 3 and 10. In the AR setting,
 227 our model subsumes Mallow's weighted model (Mallows,
 228 1957) over the remaining elements (those that have not yet
 229 been sampled).

230 **Remark 4.1.** The weighted Mallow's model with weights
 231 w_j and dispersion coefficient ϕ is recovered when



232 Figure 5: Our method during inference
 233 in the inline notation for sequence length
 234 $L = 6$ and NFEs = 3. For other representations, only the blue tokens change.

236 $P_{L_j | L_{<i}}(\ell_j | \ell_{<i}) \propto \phi^{\omega_j \cdot \ell_j}$, for all $j \in S_i$. This follows
 237 directly from,

$$P_{L_{S_i} | L_{<i}}(\ell_{S_i} | \ell_{<i}) = \prod_{j \in S_i} P_{L_j | L_{<i}}(\ell_j | \ell_{<i}) \propto \phi^{\sum_{j \in S_i} \omega_j \cdot \ell_j}, \quad (5)$$

238 where $\sum_{j \in S_i} \omega_j \cdot \ell_j$ is the weighted Kendall's tau distance (Kendall, 1938). In particular, when
 239 fully-factorized, it can recover the weighted Mallow's model over the full permutation.

240 **Fisher-Yates.** We define the Fisher-Yates code $FY(X)$ of some permutation X as the sequence of
 241 draws of the Fisher-Yates shuffle that produces X starting from the identity permutation. For MLM
 242 and AR, unmasking in the Fisher-Yates representation corresponds to applying random transpositions
 243 to the inline notation. Similar to Lehmer, this can also be viewed as SWOR, except that the list of
 244 remaining elements (faded and bright yellow in Figure 2) is kept contiguous by placing the element
 245 at the current pointer (bright yellow in Figure 2) in the gap created from sampling.

246 **Insertion-Vectors.** We train using the insertion-vector representation to define conditional dis-
 247 tributions over sub-permutations. Similar to how Lehmer can recover Mallow's weighted model,
 248 conditionals can define a RIM (Doignon et al., 2004) over permutations compatible with the currently
 249 observed sub-permutation.

250 **Remark 4.2.** RIM is subsumed by our model when the insertion probabilities are independent of
 251 ordering between currently observed elements, i.e., $P_{V_{S_i} | V_{<i}, X_{\text{ref}}} = P_{V_{S_i} | X_{\text{ref}}}$.

252 For Lehmer and Fisher-Yates representations there exist efficient algorithms to convert from (encode)
 253 and to (decode) inline, but it is not obvious how to do so for insertion-vectors. The following theorem
 254 allows for an efficient batched algorithm for encoding and decoding, by leveraging known algorithms
 255 for Lehmer codes (see Section D.2).

256 **Theorem 4.3.** Let $L(X)$ be the k th element of the left-Lehmer code, X^{-1} the inverse permutation,
 257 and $V(X)_k$ the k th element of the insertion vector of X . Then,

$$V(X)_k = k - L(X^{-1})_k. \quad (6)$$

258 The proof follows from the repeated insertion procedure sampling, without replacement, the positions
 259 in which to insert values in the permutation. A full proof is given in Section B.2. Code to encode
 260 and decode between inline and the insertion-vector representation is given in Section D.4. [A more
 261 general theorem was proven in Azpeitia et al. \(2025\)](#)

262 5 Experiments

263 This section discusses experiments with factorized representations, as well as inline, across different
 264 losses. We explore 3 experimental settings. First, a common baseline of solving jigsaw puzzles
 265 of varying sizes, where the target distribution is a delta function on the permutation that solves
 266 the puzzle. We then propose 2 new settings with more complex target distributions: learning a
 267 uniform distributions over cyclic permutations, as well as re-ranking movies based on observed user
 268 preference. For MLM at low NFEs each set in S is of size n/NFEs (rounded), with the exception of
 269 the last set. Hyper-parameters for all experiments are given in Section E. [An illustration of training
 270 is given in Figure 4 and inference in Figure 5](#).

271 5.1 Solving Jigsaw Puzzles.

272 We evaluate our models on the common benchmark of CIFAR-10 jigsaw puzzles using the exact
 273 same setup as in Zhang et al. (2024). Experimental details are given in Section E. For MLM, we use
 274 the same architecture (SymDiff) as Zhang et al. (2024), with the CNN backbone conditioning on the
 275 jigsaw tensor. For AR, we modify the architecture to add an additional step that attends to the input
 276 sequence as well as the tensor (see Section D.5). All models have roughly 3 million parameters.

277 Our method significantly outperforms previous diffusion and convex-relaxation baselines, with all
 278 representations and losses. Results are shown in Figure 6. MLM can solve the puzzle with 1 NFE
 279 (i.e., 1 forward-pass) as the target distribution is a delta on the solution, conditioned on the puzzle.

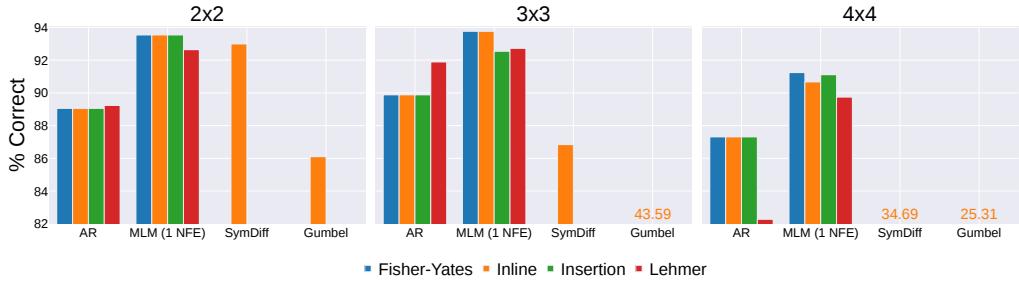


Figure 6: Percentage of CIFAR-10 jigsaw puzzles (test set) correctly reassembled for varying puzzle size, methods, and permutation representation (higher is better). SymDiff (Zhang et al., 2024) and Gumbel-Sinkhorn (Mena et al., 2018) significantly under-perform as puzzle size increases, while our methods do not. Numbers over SymDiff and Gumbel-Sinkhorn indicate their values on the y-axis, which fall below the plotted range. MLM outperforms AR by a wide margin, even while using only 1 NFE.

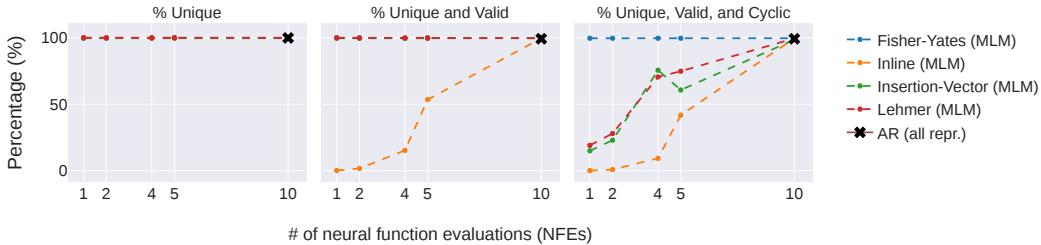


Figure 7: Performance on cyclic generating task as a function of NFEs (i.e., forward passes), across different representations and losses (higher is better). Each point contains information regarding 10k samples. (Left) Percentage of unique output sequences, including invalid permutations. All representations achieve 100%. (Middle) Percentage of simultaneously unique and valid permutations. Except for Inline, all representations achieve 100%. (Right) Percentage of unique, valid, and cyclic permutations. See discussion in Section 5.2.

280 5.2 Learning a Uniform Distribution over Cyclic Permutations

281 The jigsaw experiment is limited in evaluating the complexity of distributions over permutations, as
 282 the target is a delta function. In this section we propose a new benchmark where the target distribution
 283 is uniform over all $(n - 1)!$ cyclic permutations of length $n = 10$.

284 All cyclic permutations of length n are generated with Sattolo’s algorithm (Sattolo, 1986), and a
 285 random set of 20% are taken as the training set, resulting in a train set size of $(n - 1)!/5$. Results are
 286 shown in Figure 7 where each point represents 10,000 samples. All models learn to fully generalize
 287 in the following sense: out of the 10,000 samples taken, around 20% are in the training set, while
 288 the rest are not. All factorized representations can produce valid permutations, even as the number
 289 of NFEs decreases, including for the fully-factorized case of 1 NFE. Inline suffers to produce valid
 290 permutations as discussed in Section 4.1. All methods can fully model the target distribution at
 291 full NFEs, including inline representations (right-most plot). Both Lehmer and Insertion-Vector
 292 representations can still produce some cyclic permutations (above the $(n - 1)!/n! = 0.1$ baseline)
 293 even at 1 NFE. *Fisher-Yates can perfectly model the target distribution for any number of NFEs.*
 294 This is expected, as hinted by Sattolo’s algorithm: a necessary and sufficient condition to generate
 295 cyclic permutations in the Fisher-Yates representation is for $FY_i > 0$, as these represent a pass in the
 296 draw. *The model produces a uniform distribution over a subset of cyclic permutations. For example,*
 297 *Lehmer at 5 NFEs has non-zero mass on only 46.1% of the $(n - 1)!/n!$ cyclic permutations. Within*
 298 *those 46.1%, the probabilities are uniformly distributed, while the remaining have 0 mass.*

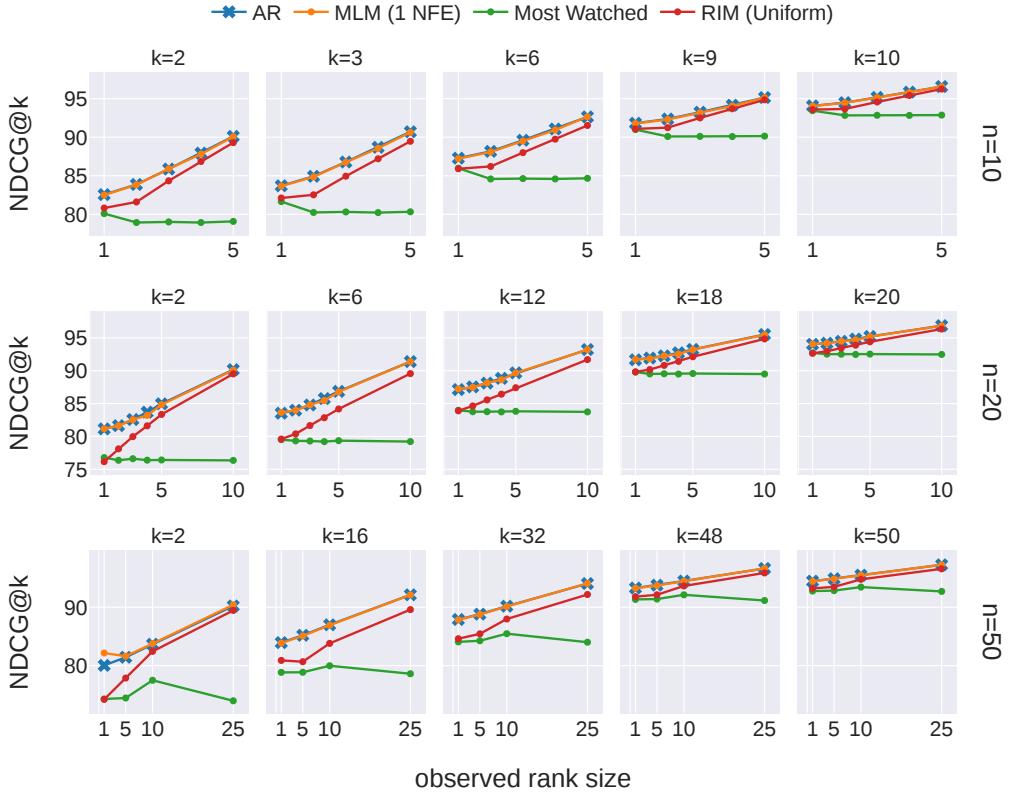


Figure 8: Results for re-ranking conditioned on user ratings in MovieLens (higher is better) for varying rank sizes n . See Section 5.3 for a full discussion of the results.

299 **5.3 Re-ranking on MovieLens**

300 Our last experiment is concerned with learning distributions over rankings of size n , conditioned on
 301 existing user preference data in the MovieLens32M dataset (Harper and Konstan, 2015). MovieLens
 302 contains 32 million ratings across 87,585 movies by 200,948 users on a 0.5 scale from 0.5 to 5.0.
 303 We first filter to keep only movies rated by at least 1,000 users, and then randomly sample 1,000
 304 movies from the remaining. Only users that rated at least n movies out of the 1,000 sampled movies
 305 are kept. In the smallest setting ($n = 50$), the dataset totals roughly 18 million ratings across 174
 306 thousand users. The dataset was split on users into 80% train and 20% validation.

307 Note that the only information available to the models in this paper are rankings of previous liked
 308 items, with no notion of user, user features, or even item features. There is no guarantee of a single
 309 “true ranking” of size n when conditioned on a sub-ranking of size $k < n$; as there will likely be two
 310 users that have the same preference on a subset of k movies, but differ in preference when looking at
 311 the full ranking of size n (i.e., the target is a uniform distribution over these rankings of size n).

312 During training, we sample n ratings (each for a different movie) from each user. The (shuffled)
 313 sequence of n movie ids make up X_{ref} . The user ratings are then used to compute the true ranking (i.e.,
 314 labels), with ties broken randomly. The input sequence is of size $2n$, with the first n corresponding
 315 to the movie labels (i.e., X_{ref} , prefix), and the last n the true user ranking in the insertion-vector
 316 representation (i.e., $V(X)$, labels). We train with MLM and AR to predict the labels conditioned
 317 on the prefix, and the labels generated so far (i.e., conventional cross-entropy training, or “teacher-
 318 forcing”).

319 To evaluate, we sample n ratings for each user in the test set (as done in training) and condition on
 320 the first few movies $V_{<i}$ to predict the remaining $V_{\geq i}$. Note this is possible without training separate
 321 conditional models, because the GRIM representation allows us to learn all conditionals of the form
 322 $P_{V_i | V_{<i}, X_{\text{ref}}}$ when training with the AR and MLM objectives.

323 We compare against two baselines: ranking movies by number of users that watched them, and RIM
 324 (Doignon et al., 2004) with uniform insertion probabilities; conditioned on the observed ranking $V_{\leq r}$.
 325 Results are shown in Figure 8 for the NDCG@k metric (Järvelin and Kekäläinen, 2002). **NDCG@k**
 326 **measures the agreement to the true user ratings, and has a maximum value of 1.0. Note that NDCG@k**
 327 **is similar to cross-entropy when the relevance scores are the normalized log-probabilities (which is**
 328 **our case), which is an appropriate metric for a distribution learning task.**
 329 AR ($\prod_{j>r} P_{V_j | V_{\leq j}}$) and MLM (1 NFE, $\prod_{j>r} P_{V_j | V_{\leq r}}$) perform similarly, and outperform both
 330 baselines in all settings. Note $r = 1$ and $r = 0$ are equivalent, as $V(X)_1 = 0$ with probability 1.
 331 The conditional MLM model at 1 NFE is different from the *unconditional* MLM model at 1 NFE
 332 ($\prod_{j>r} P_{V_j}$); which is why performance improves as a function of the observed rank size r . **In this**
 333 **setting, the AR baseline is a very strong baseline, which should have very high performance on this**
 334 **task, given that no semantic content information is available to take advantage of.**

335 6 Discussion and Future Work

336 We present models capable of learning arbitrary probability distributions over permutations via
 337 alternative representations: Lehmer codes, Fisher-Yates draws, and insertion vectors. These rep-
 338 resentations enable unconstrained learning and ensure that all outputs are valid permutations. We
 339 train our models using auto-regressive and masked language modeling techniques, which allow for
 340 a trade-off between computational cost and model expressivity. Our approaches achieve state-of-
 341 the-art performance on the jigsaw puzzle benchmark. However, we also argue this benchmark is
 342 insufficient to test permutation-distribution modelling as the target is deterministic. Therefore, we
 343 introduce two new benchmarks that require learning non-trivial distributions. Lastly, we establish a
 344 novel connection between Lehmer codes and insertion vectors to enable parallelized decoding from
 345 insertion representations.

346 The methods in this work explore learning distributions over permutations, where the set of items to
 347 be ranked is already known before-hand. An interesting avenue for future work is to model the set of
 348 items simultaneously, as is the case in real-world recommender systems. Experiments on MovieLens
 349 hint at the scaling capabilities of these factorized representations beyond simple toy settings, as the
 350 size of learned permutations for non-trivial experiments in previous literature has generally been
 351 much smaller than that explored in our largest MovieLens experiment ($n = 50$). Finally, from a
 352 theoretical standpoint there is room for more characterization of the properties of these families of
 353 distributions in the low NFE setting.

354 References

355 Jacob Austin, Daniel D. Johnson, Jonathan Ho, Daniel Tarlow, and Rianne van den Berg. Structured
 356 denoising diffusion models in discrete state-spaces, 2021. <https://arxiv.org/abs/2107.03006>.

358 Mikel Malagón Azpeitia, Aimar Barrena, Hugo Federico Íñigo Arroyo, Josu Ceberio Uribe, Ekhine
 359 Irurozki, and José Antonio Lozano Alonso. Una visión unificada de transformaciones biyectivas
 360 en la optimización de problemas de permutaciones. In *Actas del XVI Congreso Español de Meta-
 361 heurísticas, Algoritmos Evolutivos y Bioinspirados:(MAEB 2025) 28-30 de mayo, Donostia/San
 362 Sebastián*, pages 169–178. Servicio Editorial= Argitalpen Zerbitzua, 2025.

363 Christopher JC Burges. From ranknet to lambdarank to lambdamart: An overview. *Learning*, 11
 364 (23-581):81, 2010.

365 Thomas M Cover. *Elements of information theory*. John Wiley & Sons, 1999.

366 Douglas E Critchlow, Michael A Fligner, and Joseph S Verducci. Probability models on rankings.
 367 *Journal of mathematical psychology*, 35(3):294–318, 1991.

368 Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable ranks and sorting using optimal
 369 transport, 2019. <https://arxiv.org/abs/1905.11885>.

370 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
 371 bidirectional transformers for language understanding, 2019. <https://arxiv.org/abs/1810.04805>.

373 Aïssatou Diallo, Markus Zopf, and Johannes Fürnkranz. Permutation learning via lehmer codes. In
 374 *ECAI 2020*, pages 1095–1102. IOS Press, 2020.

375 Jean-Paul Doignon, Aleksandar Pekeč, and Michel Regenwetter. The repeated insertion model for
 376 rankings: Missing link between two subset choice models. *Psychometrika*, 69(1):33–54, 2004.

377 Yufei Feng, Yu Gong, Fei Sun, Junfeng Ge, and Wenwu Ou. Revisit recommender system in the
 378 permutation prospective. *arXiv preprint arXiv:2102.12057*, 2021.

379 Ronald Aylmer Fisher and Frank Yates. *Statistical tables for biological, agricultural and medical*
 380 *research*. Hafner Publishing Company, 1953.

381 E. N. Gilbert. Theory of shuffling. Technical memorandum, Bell Laboratories, 1955.

382 Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. Stochastic optimization of sorting
 383 networks via continuous relaxations, 2019. <https://arxiv.org/abs/1903.08850>.

384 F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. *Acm*
 385 *transactions on interactive intelligent systems (tiis)*, 5(4):1–19, 2015.

386 Zhengfu He, Tianxiang Sun, Kuanning Wang, Xuanjing Huang, and Xipeng Qiu. Diffusionbert:
 387 Improving generative masked language models with diffusion models, 2022. <https://arxiv.org/abs/2211.15029>.

388

389 Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. *ACM*
 390 *Transactions on Information Systems (TOIS)*, 20(4):422–446, 2002.

391 Jorge K. S. Kamassury, Henrique Pickler, Filipe R. Cordeiro, and Danilo Silva. Cct: A cyclic co-
 392 teaching approach to train deep neural networks with noisy labels. *IEEE Access*, 13:43843–43860,
 393 2025. doi: 10.1109/ACCESS.2025.3548510.

394 Maurice G Kendall. A new measure of rank correlation. *Biometrika*, 30(1-2):81–93, 1938.

395 Jungtaek Kim, Jeongbeen Yoon, and Minsu Cho. Generalized neural sorting networks with error-free
 396 differentiable swap functions, 2024. <https://arxiv.org/abs/2310.07174>.

397 Ouail Kitouni, Niklas Nolte, James Hensman, and Bhaskar Mitra. Disk: A diffusion model for
 398 structured knowledge, 2024. <https://arxiv.org/abs/2312.05253>.

399 Julius Kunze, Daniel Severo, Jan-Willem van de Meent, and James Townsend. Practical shuffle
 400 coding. In *The Thirty-eighth Annual Conference on Neural Information Processing Systems*, 2024a.
 401 <https://openreview.net/forum?id=m2DaXpCoIi>.

402 Julius Kunze, Daniel Severo, Giulio Zani, Jan-Willem van de Meent, and James Townsend. En-
 403 tropy coding of unordered data structures. In *The Twelfth International Conference on Learning*
 404 *Representations*, 2024b. <https://openreview.net/forum?id=afQuNt3Ruh>.

405 Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In *Proceedings*
 406 *of the fourteenth international conference on artificial intelligence and statistics*, pages 29–37.
 407 JMLR Workshop and Conference Proceedings, 2011.

408 Derrick H Lehmer. Teaching combinatorial tricks to a computer. *Combinatorial Analysis*, pages
 409 179–193, 1960.

410 Tyler Lu and Craig Boutilier. Effective sampling and learning for mallows models with pairwise-
 411 preference data. *J. Mach. Learn. Res.*, 15(1):3783–3829, 2014.

412 R Duncan Luce et al. *Individual choice behavior*, volume 4. Wiley New York, 1959.

413 Mikel Malagón, Ekhine Irurozki, and Josu Ceberio. A combinatorial optimization framework for
 414 probability-based algorithms by means of generative models. *ACM Transactions on Evolutionary*
 415 *Learning*, 4(3):1–28, 2025.

416 Colin L Mallows. Non-null ranking models. i. *Biometrika*, 44(1/2):114–130, 1957.

417 John Marden. *Analyzing and Modeling Rank Data*. 01 2014. ISBN 9780429192494. doi: 10.1201/b16552.

419 Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent permutations
420 with gumbel-sinkhorn networks. *arXiv preprint arXiv:1802.08665*, 2018.

421 Meta. The llama 3 herd of models, 2024. <https://arxiv.org/abs/2407.21783>.

422 Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai Lin,
423 Ji-Rong Wen, and Chongxuan Li. Large language diffusion models, 2025. <https://arxiv.org/abs/2502.09992>.

425 Felix Petersen, Christian Borgelt, Hilde Kuehne, and Oliver Deussen. Monotonic differentiable
426 sorting networks, 2022. <https://arxiv.org/abs/2203.09630>.

427 Robin L Plackett. The analysis of permutations. *Journal of the Royal Statistical Society Series C: Applied Statistics*, 24(2):193–202, 1975.

429 Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
430 models are unsupervised multitask learners. 2019.

431 Subham Sekhar Sahoo, Marianne Arriola, Yair Schiff, Aaron Gokaslan, Edgar Marroquin, Justin T
432 Chiu, Alexander Rush, and Volodymyr Kuleshov. Simple and effective masked diffusion language
433 models, 2024. <https://arxiv.org/abs/2406.07524>.

434 Sandra Sattolo. An algorithm to generate a random cyclic permutation. *Information processing letters*, 27
435 22(6):315–317, 1986.

436 Claude E Shannon. A mathematical theory of communication. *The Bell system technical journal*, 27
437 (3):379–423, 1948.

438 Jiaxin Shi, Kehang Han, Zhe Wang, Arnaud Doucet, and Michalis K. Titsias. Simplified and
439 generalized masked diffusion for discrete data, 2025. <https://arxiv.org/abs/2406.04329>.

440 Benigno Uria, Marc-Alexandre Côté, Karol Gregor, Iain Murray, and Hugo Larochelle. Neural
441 autoregressive distribution estimation. *Journal of Machine Learning Research*, 17(205):1–37,
442 2016.

443 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
444 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *CoRR*, abs/1706.03762, 2017.
445 <http://arxiv.org/abs/1706.03762>.

446 Yongxing Zhang, Donglin Yang, and Renjie Liao. Symmetricdiffusers: Learning discrete diffusion
447 on finite symmetric groups. *arXiv preprint arXiv:2410.02942*, 2024.

448 **A Background**

449 **A.1 Permutations**

450 A permutation in this context is a sequence X of elements $X_i \in [n]$ such that $\bigcup_i \{X_i\} = [n]$
 451 with X having no repeating elements. Permutations are often expressed in inline notation, such as
 452 $X = [5, 4, 1, 2, 3]$. A permutation can also be seen as a bijection $X : [n] \rightarrow [n]$, where $X(i) = X_i$ is
 453 the element in the inline notation at position i .

454 A *transposition* is a permutation that swaps exactly 2 elements, such as $X = [1, 2, 4, 3]$.

455 A *cycle* of a permutation is the set of values resulting from repeatedly applying the permutation,
 456 starting from some value. For the previous example, the cycles are $(1 \rightarrow 5 \rightarrow 3 \rightarrow 1)$ and
 457 $(2 \rightarrow 4 \rightarrow 2)$. A *cyclic permutation* is a permutation that has only 1 cycle, an example is given in
 458 Figure 9.

459 The inverse of X , denoted as X^{-1} , is the permutation such that $X(X^{-1}(i)) = (X^{-1})(X(i)) = i$.

460 A *sub-permutation* of a permutation X of length n , is a sequence of $m \leq n$ elements $Z_j = X_{i_j}$ that
 461 agrees with X in the ordering of its elements, i.e., $i_1 < i_2 < \dots < i_m$. For example, $[5, 1, 3]$ and
 462 $[4, 1, 2]$ are sub-permutations of $[5, 4, 1, 2, 3]$, but $[4, 1, 3, 2]$ is not.

463 See Marden (2014); Critchlow et al. (1991) for a more complete introduction to permutations and
 464 ranking models.

465 **B Theorems and Proofs**

466 **B.1 Neighboring Lehmer Codes Differ by a Transposition**

467 The following theorem gives a metric-space interpretation for Lehmer codes, and how changes in
 468 $L(X)$ affect X .

469 **Theorem B.1.** *For any two permutations X, X' , if $\|L(X) - L(X')\|_1 = 1$ then X and X' are equal
 470 up to a transposition.*

471 The proof follows from analyzing the list of remaining elements at each SWOR step, and can be seen
 472 from a simple example. Consider the following Lehmer codes L, L' differing only at $L'_3 = L_3 + 1$,
 their SWOR processes, and their resulting permutations X, X' .

$L_1 = 2$	1	2	3	4	5	$X_1 = 3$	$L'_1 = 2$	1	2	3	4	5	$X'_1 = 3$
$L_2 = 3$	1	2		4	5	$X_2 = 5$	$L'_2 = 3$	1	2		4	5	$X'_2 = 5$
$L_3 = 1$	1	2		4		$X_3 = 2$	$L'_3 = 2$	1	2		4		$X'_3 = 4$
$L_4 = 0$	1			4		$X_4 = 1$	$L'_4 = 0$	1	2				$X'_4 = 1$
$L_5 = 0$				4		$X_5 = 4$	$L'_5 = 0$		2				$X'_5 = 2$

473

474 Note the following facts:

1. transposing 3 and 1 in the initial permutation (first row) and applying the SWOR process of L results in X' ;
2. the element chosen at step 3 by L_3 is adjacent in the list to the element chosen by L'_3 , as $|L_3 - L'_3| = 1$;
3. steps before 3 are unaffected, as are their respective inline elements;
4. steps after 3 are unaffected, as long as the sampled index does not fall in either of the two blocks corresponding to L_3 and $L_3 + 1$ (where a change occurred).

482 In general, for an increment at position j , the only affected elements are those at L_j and $L_j + 1$,
 483 implying X and X' differ exactly by the transposition of these elements.

484 A more general statement can be given for the case of increments beyond 1. Consider $L'_j = L_j + k$.
 485 All future steps $i > j$ with elements $L_i \in [L_i, L_i + k]$ are affected, requiring a permutation of size
 486 $k + 1$ to recover X .

487 **Theorem B.2.** *For any two permutations X, X' such that $L(X)_i = L(X')_i$ for all $i \neq j$ then X and
 488 X' are equal up to a permutation of $|L(X)_j - L(X')_j| + 1$ elements.*

489 **B.2 Theorem 4.3**

490 **Restating Theorem 4.3** *Let $L(X)$ be the k th element of the left-Lehmer code, X^{-1} the inverse
 491 permutation, and $V(X)_k$ the k th element of the insertion vector of X . Then,*

$$V(X)_k = k - L(X^{-1})_k.$$

492 First, let p_k be the position of the value k in X , i.e. $X_{p_k} = k$. By definition of inversion, $p_k = X_k^{-1}$.
 493 Then, note $V(X)_k = |\{j < p_k | X_j < k\}|$. In words: The insertion vector element $V(X)_k$ counts
 494 the number of elements to the left of the position of value k in X (i.e. p_k) that are smaller than
 495 k . This can be seen by the following argument: By definition, an insertion vector element $V(X)_k$
 496 describes in which index to insert an element with the current value k (or $k + 1$, depending on
 497 indexing definitions), see Figure 2 (right). Because all previously inserted values are smaller than k
 498 and all values inserted later will be larger, the index at the time of insertion is equal to the count of
 499 smaller elements to the left of the final position of value k in X , which is p_k .

500 Recall the definition of the left Lehmer code: $L(X)_k = |\{j < k | X_j > X_k\}|$.

501 Define $L'(X)_k = k - L(X)_k$ and notice that

$$L'(X)_k = k - L(X)_k = k - |\{j < k | X_j > X_k\}| = |\{j < k | X_j < X_k\}|, \quad (7)$$

502 since $|\{j < k\}| = k$ and $X_j \neq X_k \quad \forall j < k$.

503 Insert the inverse permutation X^{-1} :

$$L'(X^{-1})_k = |\{j < k | X_j^{-1} < X_k^{-1}\}| = |\{j < k | p_j < p_k\}|$$

504 Next, perform a change of variable on j in $V(X)_k$:

$$V(X)_k = |\{j < p_k | X_j < k\}| = |\{p_l < p_k | l < k\}| \quad \text{where } l = X_j \Leftrightarrow j = p_l$$

505 Comparing,

$$k - L(X^{-1})_k = L'(X^{-1})_k = |\{j | j < k, p_j < p_k\}| = |\{l | p_l < p_k, l < k\}| = V(X)_k.$$

506 **C Limitations**

507 The most important limitation of this work is scalability to large permutations. A loose bound can
 508 be estimated by realizing that we model the permutations with transformer architectures. Therefore,
 509 the memory and compute required to train on tasks that require large permutations are quadratic.
 510 In particular, common methods in ranking include score functions, which can act on each item
 511 individually to produce a score, rather than needing to condition on all items as we do.

512 In general, since the search space of permutations grows much quicker with length ($n!$), the scalability
 513 is often not dominated by memory requirements if search is required, rather by the compute needed
 514 for the search.

515 An inherent limitation of the method is that n forward passes through the network are needed to
 516 achieve full expressivity over the space of permutations of length n . This is a consequence of MLM
 517 and AR training, resulting in token-wise factorized conditional distributions. This is detailed in
 518 Section 4.1.

519 **D Code**

520 **D.1 MLM Pseudocode for training and inference**

521 **D.2 Lehmer Encode and Decode**

522 In practice, our left-Lehmer encoding maps an inline permutation to L' from Equation (7), because it
 523 interacts more directly with the insertion vector.

```

524
525 1 def lehmer_encode(perm: Tensor, left: bool = False) -> Tensor:
526 2     lehmer = torch.atleast_2d(perm.clone())
527 3     n = lehmer.size(-1)
528 4     if left:
529 5         for i in reversed(range(1, n)):
530 6             lehmer[:, :i] -= (lehmer[:, [i]] <= lehmer[:, :i]).to(int)
531 7     else:
532 8         for i in range(1, n):
533 9             lehmer[:, i:] -= (lehmer[:, [i - 1]] < lehmer[:, i:]).to(int)
534
535 10
536 11     if len(perm.shape) == 1:
537 12         lehmer = lehmer.squeeze()
538 13     elif len(perm.shape) == 2:
539 14         lehmer = torch.atleast_2d(lehmer)
540
541 15
542 16     return lehmer
543
544
545 17 def lehmer_decode(lehmer: Tensor, left: bool = False) -> Tensor:
546 18     perm = torch.atleast_2d(lehmer.clone())
547 19     n = perm.size(-1)
548 20     for i in range(1, n):
549 21         if left:
550 22             perm[:, :i] += (perm[:, [i]] <= perm[:, :i]).to(int)
551 23         else:
552 24             j = n - i - 1
553 25             perm[:, j + 1 :] += (perm[:, [j]] <= perm[:, j + 1 :]).to(int)
554
555 26
556 27     if len(lehmer.shape) == 1:
557 28         perm = perm.squeeze()
558 29     elif len(lehmer.shape) == 2:
559 30         perm = torch.atleast_2d(perm)
560
561 31
562 32     return perm
  
```

562 **D.3 Fisher-Yates Encode and Decode**

```

563
564 1 def fisher_yates_encode(perm: torch.Tensor) -> torch.Tensor:
565 2     original_num_dims = len(perm.shape)
566 3     perm = torch.atleast_2d(perm)
567 4     B, n = perm.shape
568 5     perm_base = torch.arange(n).unsqueeze(0).repeat((B,
569 6         1)).to(perm.device)
570 7     fisher_yates = torch.zeros_like(perm).to(perm.device)
571 8     batch_idx = torch.arange(B).to(perm.device)
572
573 9     for i in range(n):
574 10         j = torch.nonzero(perm[:, [i]] == perm_base, as_tuple=True)[1]
575 11         fisher_yates[batch_idx, i] = j - i
576
577 12
578 13         idx = torch.stack([torch.full_like(j, i), j], dim=1)
579 14         values = perm_base.gather(1, idx)
  
```

```

57915     swapped_values = torch.flip(values, [1])
58016     perm_base.scatter_(1, idx, swapped_values)
58117
58218     if original_num_dims == 1:
58319         fisher_yates = fisher_yates.squeeze()
58420     elif original_num_dims == 2:
58521         fisher_yates = torch.atleast_2d(fisher_yates)
58622
58723     return fisher_yates
58824
58925 def fisher_yates_decode(fisher_yates: Tensor) -> Tensor:
59026     B, n = fisher_yates.shape
59127     perm = torch.arange(n).unsqueeze(0).repeat((B,
592         1)).to(fisher_yates.device)
59328     batch_idx = torch.arange(B).to(fisher_yates.device)
59429     for i in range(n):
59530         j = fisher_yates[:, i] + i
59631         perm[batch_idx, j], perm[:, i] = perm[:, i], perm[batch_idx,
597             j]
59832     return perm
59933

```

600 D.4 Insertion-Vector Encode and Decode

```

601 def invert_perm(perm: Tensor) -> Tensor:
6021     return torch.argsort(perm)
6033
6044 def insertion_vector_encode_torch(perm: Tensor) -> Tensor:
6055     inv_perm = invert_perm(perm)
6066     insert_v = lehmer_encode_torch(inv_perm, left=True)
6077     return insert_v
6088
6099
6110 def insertion_vector_decode_torch(insert_v: Tensor) -> Tensor:
6121     inv_perm = lehmer_decode_torch(insert_v, left=True)
61312     perm = invert_perm(inv_perm)
61413     return perm

```

616 D.5 Modified SymDiff-AR

617 We modify the following function in <https://github.com/DSL-Lab/SymmetricDiffusers/blob/6eaf9b33e784e72f8b987cf46c97ff5423b74651/models.py#L357C9-L357C26>.

619 The first N elements of `embd` correspond to the embeddings of the puzzle pieces computed with the
620 CNN backbone, while the following N are the token embeddings of the input. The attention mask
621 (`embd_attn_mask`) guarantees all tokens attend to the puzzle pieces, but the inputs can be attended
622 to causally (if `perm_attn_mask` is causal, AR case) or fully (MLM).

```

623
6241 def apply_layers_self(
6252     self, embd, time_embd, attn_mask=None, perm_attn_mask=None,
626     perm_embd=None
6273 ):
6284     N = embd.size(1)
6295     time_embd = time_embd.unsqueeze(-2)
6306     embd = embd + time_embd
6317
6328     embd_attn_mask = None
6339     if perm_embd is not None:
63410         embd = torch.cat([embd, perm_embd], dim=1)
63511         embd = self.perm_pos_encoder(embd)
63612
63713     if perm_attn_mask is not None:
63814         embd_attn_mask = (

```

```

63915         torch.zeros((2 * N, 2 *
640             N)).to(bool).to(perm_attn_mask.device)
64116     )
64217     embd_attn_mask[:, :N] = True
64318     embd_attn_mask[N:, N : 2 * N] = perm_attn_mask
64419     embd_attn_mask = ~embd_attn_mask
64520
64621     for layer in self.encoder_layers:
64722         embd = layer(embd, src_mask=embd_attn_mask)
64823
64924     return embd[:, N : 2 * N]

```

651 E Experiments

652 E.1 Jigsaw experiments

653 Each CIFAR-10 image is partitioned into a jigsaw puzzle in grid-like fashion. The pieces are
 654 scrambled by applying a permutation sampled uniformly in the symmetric group. This produces a
 655 tensor of shape $(B, N^2, H/N, W/N)$, where B is the batch dimension, N the puzzle size (specified
 656 per dimension) and H and W are the original image dimensions (i.e. $H = W = 32$ for CIFAR-10).
 657 The images are cropped at the edges if H and W are not divisible by N , as in Zhang et al. (2024).

658 Hyperparameters:

- 659 1. learning rate = 3×10^{-4}
- 660 2. batch size = 1024
- 661 3. Model configurations follow those in <https://github.com/DSL-Lab/SymmetricDiffusers/tree/6eaf9b33e784e72f8b987cf46c97ff5423b74651/configs/unscramble-CIFAR10>

664 E.2 Cyclic experiments

- 665 1. learning rate = 3×10^{-4}
- 666 2. batch size = 1024
- 667 3. DiT model size:
 - 668 (a) hidden dimension size = 128
 - 669 (b) number of transformer heads = 8
 - 670 (c) time embedding dimension = 0
 - 671 (d) dropout = 0.05
 - 672 (e) number of transformer layers = 8

673 E.3 Reranking MovieLens

- 674 1. learning rate = 3×10^{-4}
- 675 2. batch size = 1024
- 676 3. DiT model size:
 - 677 (a) hidden dimension size = 256
 - 678 (b) number of transformer heads = 8
 - 679 (c) time embedding dimension = 0
 - 680 (d) dropout = 0.05
 - 681 (e) number of transformer layers = 10

682 F Compute

683 Our experiments were run on nodes with a single NVidia A-100 GPU. Since the models trained are
 684 of small scale, no experiment took longer than 2 days to converge. In total, an estimated 10000 GPU
 685 hours were spent for the research for this paper.

686 **G Impact statement**

687 This paper presents work whose goal is to advance the field of Machine Learning. There are many
 688 potential societal consequences of our work, none which we feel must be specifically highlighted
 689 here.

690 **H Extra Figures**

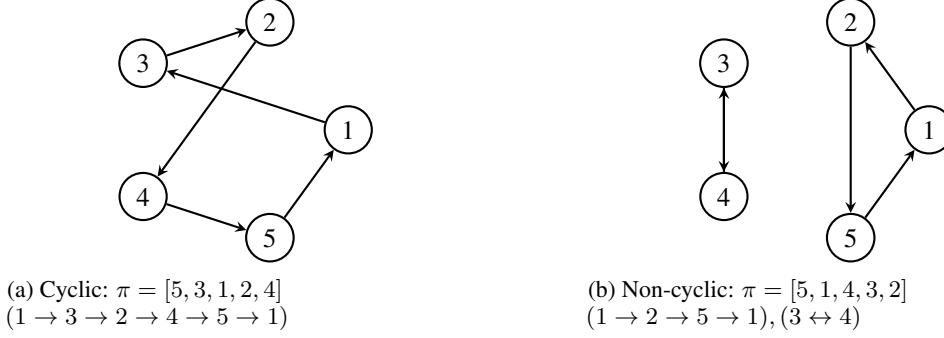


Figure 9: Illustration of a cyclic vs. a non-cyclic permutation.

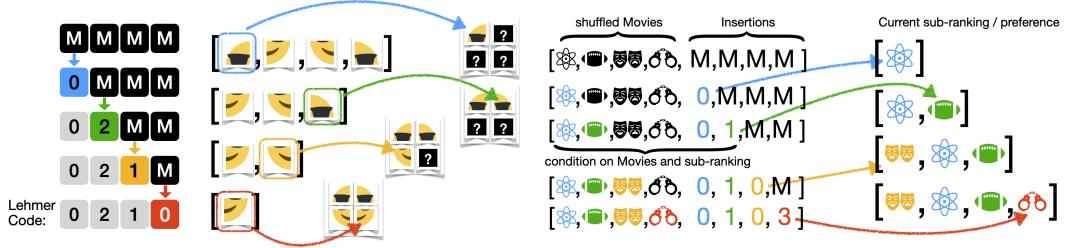


Figure 10: (Left) Decoding a lehmer code from left to right represents sampling without replacement. Illustrated on Jigsaw puzzles. (Right) Prediction task on the MovieLens dataset. Insertion-vectors allow us to define conditionals over sub-rankings corresponding to user preference data.

691 **NeurIPS Paper Checklist**

692 **1. Claims**

693 Question: Do the main claims made in the abstract and introduction accurately reflect the
694 paper's contributions and scope?

695 Answer: [\[Yes\]](#)

696 Justification: Find the summary, and bullet-pointed claims in the introduction.

697 Guidelines:

- 698 • The answer NA means that the abstract and introduction do not include the claims
699 made in the paper.
- 700 • The abstract and/or introduction should clearly state the claims made, including the
701 contributions made in the paper and important assumptions and limitations. A No or
702 NA answer to this question will not be perceived well by the reviewers.
- 703 • The claims made should match theoretical and experimental results, and reflect how
704 much the results can be expected to generalize to other settings.
- 705 • It is fine to include aspirational goals as motivation as long as it is clear that these goals
706 are not attained by the paper.

707 **2. Limitations**

708 Question: Does the paper discuss the limitations of the work performed by the authors?

709 Answer: [\[Yes\]](#)

710 Justification: See Section C.

711 Guidelines:

- 712 • The answer NA means that the paper has no limitation while the answer No means that
713 the paper has limitations, but those are not discussed in the paper.
- 714 • The authors are encouraged to create a separate "Limitations" section in their paper.
- 715 • The paper should point out any strong assumptions and how robust the results are to
716 violations of these assumptions (e.g., independence assumptions, noiseless settings,
717 model well-specification, asymptotic approximations only holding locally). The authors
718 should reflect on how these assumptions might be violated in practice and what the
719 implications would be.
- 720 • The authors should reflect on the scope of the claims made, e.g., if the approach was
721 only tested on a few datasets or with a few runs. In general, empirical results often
722 depend on implicit assumptions, which should be articulated.
- 723 • The authors should reflect on the factors that influence the performance of the approach.
724 For example, a facial recognition algorithm may perform poorly when image resolution
725 is low or images are taken in low lighting. Or a speech-to-text system might not be
726 used reliably to provide closed captions for online lectures because it fails to handle
727 technical jargon.
- 728 • The authors should discuss the computational efficiency of the proposed algorithms
729 and how they scale with dataset size.
- 730 • If applicable, the authors should discuss possible limitations of their approach to
731 address problems of privacy and fairness.
- 732 • While the authors might fear that complete honesty about limitations might be used by
733 reviewers as grounds for rejection, a worse outcome might be that reviewers discover
734 limitations that aren't acknowledged in the paper. The authors should use their best
735 judgment and recognize that individual actions in favor of transparency play an impor-
736 tant role in developing norms that preserve the integrity of the community. Reviewers
737 will be specifically instructed to not penalize honesty concerning limitations.

738 **3. Theory assumptions and proofs**

739 Question: For each theoretical result, does the paper provide the full set of assumptions and
740 a complete (and correct) proof?

741 Answer: [\[Yes\]](#)

742 Justification: See Section B

743 Guidelines:

- 744 • The answer NA means that the paper does not include theoretical results.
- 745 • All the theorems, formulas, and proofs in the paper should be numbered and cross-
746 referenced.
- 747 • All assumptions should be clearly stated or referenced in the statement of any theorems.
- 748 • The proofs can either appear in the main paper or the supplemental material, but if
749 they appear in the supplemental material, the authors are encouraged to provide a short
750 proof sketch to provide intuition.
- 751 • Inversely, any informal proof provided in the core of the paper should be complemented
752 by formal proofs provided in appendix or supplemental material.
- 753 • Theorems and Lemmas that the proof relies upon should be properly referenced.

754 4. Experimental result reproducibility

755 Question: Does the paper fully disclose all the information needed to reproduce the main ex-
756 perimental results of the paper to the extent that it affects the main claims and/or conclusions
757 of the paper (regardless of whether the code and data are provided or not)?

758 Answer: [\[Yes\]](#)

759 Justification: We provide all the details for reproduction in the relevant sections for Jigsaws,
760 Cyclic, MovieLens. We provide exact codes for the encoding and decoding functions, one
761 of which is a core contribution. We also describe in detail how to modify the architecture
762 from Zhang et al. (2024) in Section D.5, and give specific hyperparameters in Section E. We
763 plan to open source code at camera-ready.

764 Guidelines:

- 765 • The answer NA means that the paper does not include experiments.
- 766 • If the paper includes experiments, a No answer to this question will not be perceived
767 well by the reviewers: Making the paper reproducible is important, regardless of
768 whether the code and data are provided or not.
- 769 • If the contribution is a dataset and/or model, the authors should describe the steps taken
770 to make their results reproducible or verifiable.
- 771 • Depending on the contribution, reproducibility can be accomplished in various ways.
772 For example, if the contribution is a novel architecture, describing the architecture fully
773 might suffice, or if the contribution is a specific model and empirical evaluation, it may
774 be necessary to either make it possible for others to replicate the model with the same
775 dataset, or provide access to the model. In general, releasing code and data is often
776 one good way to accomplish this, but reproducibility can also be provided via detailed
777 instructions for how to replicate the results, access to a hosted model (e.g., in the case
778 of a large language model), releasing of a model checkpoint, or other means that are
779 appropriate to the research performed.
- 780 • While NeurIPS does not require releasing code, the conference does require all submis-
781 sions to provide some reasonable avenue for reproducibility, which may depend on the
782 nature of the contribution. For example
 - 783 (a) If the contribution is primarily a new algorithm, the paper should make it clear how
784 to reproduce that algorithm.
 - 785 (b) If the contribution is primarily a new model architecture, the paper should describe
786 the architecture clearly and fully.
 - 787 (c) If the contribution is a new model (e.g., a large language model), then there should
788 either be a way to access this model for reproducing the results or a way to reproduce
789 the model (e.g., with an open-source dataset or instructions for how to construct
790 the dataset).
 - 791 (d) We recognize that reproducibility may be tricky in some cases, in which case
792 authors are welcome to describe the particular way they provide for reproducibility.
793 In the case of closed-source models, it may be that access to the model is limited in
794 some way (e.g., to registered users), but it should be possible for other researchers
795 to have some path to reproducing or verifying the results.

796 **5. Open access to data and code**

797 Question: Does the paper provide open access to the data and code, with sufficient instruc-
798 tions to faithfully reproduce the main experimental results, as described in supplemental
799 material?

800 Answer: **[Yes]**

801 Justification: We use existing data sets which are already open source: Jigsaws and Movie-
802 Lens. The cyclic dataset is a toy and we provide detailed instructions how to recreate
803 it.

804 Guidelines:

- 805 • The answer NA means that paper does not include experiments requiring code.
- 806 • Please see the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 807 • While we encourage the release of code and data, we understand that this might not be
808 possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
809 including code, unless this is central to the contribution (e.g., for a new open-source
810 benchmark).
- 811 • The instructions should contain the exact command and environment needed to run to
812 reproduce the results. See the NeurIPS code and data submission guidelines (<https://nips.cc/public/guides/CodeSubmissionPolicy>) for more details.
- 813 • The authors should provide instructions on data access and preparation, including how
814 to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- 815 • The authors should provide scripts to reproduce all experimental results for the new
816 proposed method and baselines. If only a subset of experiments are reproducible, they
817 should state which ones are omitted from the script and why.
- 818 • At submission time, to preserve anonymity, the authors should release anonymized
819 versions (if applicable).
- 820 • Providing as much information as possible in supplemental material (appended to the
821 paper) is recommended, but including URLs to data and code is permitted.

824 **6. Experimental setting/details**

825 Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
826 parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
827 results?

828 Answer: **[Yes]**

829 Justification: see reproducibility question

830 Guidelines:

- 831 • The answer NA means that the paper does not include experiments.
- 832 • The experimental setting should be presented in the core of the paper to a level of detail
833 that is necessary to appreciate the results and make sense of them.
- 834 • The full details can be provided either with the code, in appendix, or as supplemental
835 material.

836 **7. Experiment statistical significance**

837 Question: Does the paper report error bars suitably and correctly defined or other appropriate
838 information about the statistical significance of the experiments?

839 Answer: **[No]**

840 Justification: The comparisons in performance are qualitatively different.

841 Guidelines:

- 842 • The answer NA means that the paper does not include experiments.
- 843 • The authors should answer “Yes” if the results are accompanied by error bars, confi-
844 dence intervals, or statistical significance tests, at least for the experiments that support
845 the main claims of the paper.

846 • The factors of variability that the error bars are capturing should be clearly stated (for
 847 example, train/test split, initialization, random drawing of some parameter, or overall
 848 run with given experimental conditions).
 849 • The method for calculating the error bars should be explained (closed form formula,
 850 call to a library function, bootstrap, etc.)
 851 • The assumptions made should be given (e.g., Normally distributed errors).
 852 • It should be clear whether the error bar is the standard deviation or the standard error
 853 of the mean.
 854 • It is OK to report 1-sigma error bars, but one should state it. The authors should
 855 preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
 856 of Normality of errors is not verified.
 857 • For asymmetric distributions, the authors should be careful not to show in tables or
 858 figures symmetric error bars that would yield results that are out of range (e.g. negative
 859 error rates).
 860 • If error bars are reported in tables or plots, The authors should explain in the text how
 861 they were calculated and reference the corresponding figures or tables in the text.

862 **8. Experiments compute resources**

863 Question: For each experiment, does the paper provide sufficient information on the com-
 864 puter resources (type of compute workers, memory, time of execution) needed to reproduce
 865 the experiments?

866 Answer: [\[Yes\]](#)

867 Justification: See Section F.

868 Guidelines:

869 • The answer NA means that the paper does not include experiments.
 870 • The paper should indicate the type of compute workers CPU or GPU, internal cluster,
 871 or cloud provider, including relevant memory and storage.
 872 • The paper should provide the amount of compute required for each of the individual
 873 experimental runs as well as estimate the total compute.
 874 • The paper should disclose whether the full research project required more compute
 875 than the experiments reported in the paper (e.g., preliminary or failed experiments that
 876 didn't make it into the paper).

877 **9. Code of ethics**

878 Question: Does the research conducted in the paper conform, in every respect, with the
 879 NeurIPS Code of Ethics <https://neurips.cc/public/EthicsGuidelines>?

880 Answer: [\[Yes\]](#)

881 Justification: It does.

882 Guidelines:

883 • The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
 884 • If the authors answer No, they should explain the special circumstances that require a
 885 deviation from the Code of Ethics.
 886 • The authors should make sure to preserve anonymity (e.g., if there is a special consid-
 887 eration due to laws or regulations in their jurisdiction).

888 **10. Broader impacts**

889 Question: Does the paper discuss both potential positive societal impacts and negative
 890 societal impacts of the work performed?

891 Answer: [\[Yes\]](#)

892 Justification: There are no particular societal impacts we foresee. We provide an impact
 893 statement in Section G.

894 Guidelines:

895 • The answer NA means that there is no societal impact of the work performed.

- 896 • If the authors answer NA or No, they should explain why their work has no societal
897 impact or why the paper does not address societal impact.
- 898 • Examples of negative societal impacts include potential malicious or unintended uses
899 (e.g., disinformation, generating fake profiles, surveillance), fairness considerations
900 (e.g., deployment of technologies that could make decisions that unfairly impact specific
901 groups), privacy considerations, and security considerations.
- 902 • The conference expects that many papers will be foundational research and not tied
903 to particular applications, let alone deployments. However, if there is a direct path to
904 any negative applications, the authors should point it out. For example, it is legitimate
905 to point out that an improvement in the quality of generative models could be used to
906 generate deepfakes for disinformation. On the other hand, it is not needed to point out
907 that a generic algorithm for optimizing neural networks could enable people to train
908 models that generate Deepfakes faster.
- 909 • The authors should consider possible harms that could arise when the technology is
910 being used as intended and functioning correctly, harms that could arise when the
911 technology is being used as intended but gives incorrect results, and harms following
912 from (intentional or unintentional) misuse of the technology.
- 913 • If there are negative societal impacts, the authors could also discuss possible mitigation
914 strategies (e.g., gated release of models, providing defenses in addition to attacks,
915 mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
916 feedback over time, improving the efficiency and accessibility of ML).

917 11. Safeguards

918 Question: Does the paper describe safeguards that have been put in place for responsible
919 release of data or models that have a high risk for misuse (e.g., pretrained language models,
920 image generators, or scraped datasets)?

921 Answer: [NA]

922 Justification: not applicable.

923 Guidelines:

- 924 • The answer NA means that the paper poses no such risks.
- 925 • Released models that have a high risk for misuse or dual-use should be released with
926 necessary safeguards to allow for controlled use of the model, for example by requiring
927 that users adhere to usage guidelines or restrictions to access the model or implementing
928 safety filters.
- 929 • Datasets that have been scraped from the Internet could pose safety risks. The authors
930 should describe how they avoided releasing unsafe images.
- 931 • We recognize that providing effective safeguards is challenging, and many papers do
932 not require this, but we encourage authors to take this into account and make a best
933 faith effort.

934 12. Licenses for existing assets

935 Question: Are the creators or original owners of assets (e.g., code, data, models), used in
936 the paper, properly credited and are the license and terms of use explicitly mentioned and
937 properly respected?

938 Answer: [Yes]

939 Justification: We cite all assets used.

940 Guidelines:

- 941 • The answer NA means that the paper does not use existing assets.
- 942 • The authors should cite the original paper that produced the code package or dataset.
- 943 • The authors should state which version of the asset is used and, if possible, include a
944 URL.
- 945 • The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- 946 • For scraped data from a particular source (e.g., website), the copyright and terms of
947 service of that source should be provided.

948 • If assets are released, the license, copyright information, and terms of use in the
949 package should be provided. For popular datasets, paperswithcode.com/datasets
950 has curated licenses for some datasets. Their licensing guide can help determine the
951 license of a dataset.
952 • For existing datasets that are re-packaged, both the original license and the license of
953 the derived asset (if it has changed) should be provided.
954 • If this information is not available online, the authors are encouraged to reach out to
955 the asset's creators.

956 **13. New assets**

957 Question: Are new assets introduced in the paper well documented and is the documentation
958 provided alongside the assets?

959 Answer: [NA]

960 Justification: No new assets are introduced.

961 Guidelines:

962 • The answer NA means that the paper does not release new assets.
963 • Researchers should communicate the details of the dataset/code/model as part of their
964 submissions via structured templates. This includes details about training, license,
965 limitations, etc.
966 • The paper should discuss whether and how consent was obtained from people whose
967 asset is used.
968 • At submission time, remember to anonymize your assets (if applicable). You can either
969 create an anonymized URL or include an anonymized zip file.

970 **14. Crowdsourcing and research with human subjects**

971 Question: For crowdsourcing experiments and research with human subjects, does the paper
972 include the full text of instructions given to participants and screenshots, if applicable, as
973 well as details about compensation (if any)?

974 Answer: [NA]

975 Justification: not applicable.

976 Guidelines:

977 • The answer NA means that the paper does not involve crowdsourcing nor research with
978 human subjects.
979 • Including this information in the supplemental material is fine, but if the main contribu-
980 tion of the paper involves human subjects, then as much detail as possible should be
981 included in the main paper.
982 • According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
983 or other labor should be paid at least the minimum wage in the country of the data
984 collector.

985 **15. Institutional review board (IRB) approvals or equivalent for research with human
986 subjects**

987 Question: Does the paper describe potential risks incurred by study participants, whether
988 such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
989 approvals (or an equivalent approval/review based on the requirements of your country or
990 institution) were obtained?

991 Answer: [NA]

992 Justification: not applicable.

993 Guidelines:

994 • The answer NA means that the paper does not involve crowdsourcing nor research with
995 human subjects.
996 • Depending on the country in which research is conducted, IRB approval (or equivalent)
997 may be required for any human subjects research. If you obtained IRB approval, you
998 should clearly state this in the paper.

999 • We recognize that the procedures for this may vary significantly between institutions
1000 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
1001 guidelines for their institution.
1002 • For initial submissions, do not include any information that would break anonymity (if
1003 applicable), such as the institution conducting the review.

1004 **16. Declaration of LLM usage**

1005 Question: Does the paper describe the usage of LLMs if it is an important, original, or
1006 non-standard component of the core methods in this research? Note that if the LLM is used
1007 only for writing, editing, or formatting purposes and does not impact the core methodology,
1008 scientific rigorousness, or originality of the research, declaration is not required.

1009 Answer: [NA]

1010 Justification: No LLMs have been used beyond checking the writing for consistency and
1011 spelling errors.

1012 Guidelines:

1013 • The answer NA means that the core method development in this research does not
1014 involve LLMs as any important, original, or non-standard components.
1015 • Please refer to our LLM policy (<https://neurips.cc/Conferences/2025/LLM>)
1016 for what should or should not be described.