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ABSTRACT
This paper investigates the problem of modeling long-term dynamical systems,
which are essential for comprehending fluid dynamics, astrophysics and earth
science, etc. Recently, a variety of spatio-temporal forecasting approaches have
emerged, typically leveraging complex architectures like Transformers to capture
spatial and temporal correlations. However, these approaches often fail in long-term
forecasting scenarios due to information loss during semantics exploration and itera-
tive rollouts. Towards this end, we propose a new approach named Spatio-temporal
Twins with a Cache (STAC) for long-term system dynamics modeling. STAC con-
tains a discrete frequency-enhanced spatial module and an ODE-enhanced temporal
module, which investigates spatio-temporal relationships from complementary per-
spectives. Then, we fuse the information between twin modules with channel
attention at different granularities to generate informative feature maps. To enhance
long-term prediction ability, we further introduce a cache-based recurrent propaga-
tor, which stores the previous feature maps in the cache memory during recursive
updating. In addition, we optimize STAC with currently popular teacher forcing
and adversarial learning techniques. We release a new flame flow field benchmark
(FIRE) and conduct comprehensive validations across 14 benchmarks. Experi-
mental results demonstrate that STAC shows superior performance in long-term
spatio-temporal prediction and partial differential equation solving challenges. Our
code avaiable at https://anonymous.4open.science/r/STAC-89A5.

1 INTRODUCTION

Dynamical systems (Thangamuthu et al., 2022) are pervasive in numerous disciplines including
physics (Rao et al., 2023), biology (Li et al., 2022), and robotics (Allen et al., 2023). Modeling of these
complex spatio-temporal system dynamics is a crucial problem in scientific research (Bueso et al.,
2020; Gupta et al., 2022). A potential solution is to explicitly solve these fundamental equations using
computational tools and simulation softwares, which could bring in enormous computational costs.
With the rapid development of artificial intelligence, machine learning has recently demonstrated the
capability of understanding complex dynamics from massive data.

In literature, numerous data-driven approaches are proposed to capture spatio-temporal dynamics (Wu
et al., 2023; Raissi et al., 2019). Typically, these designs employ various neural architectures to model
training data, achieving promising performance in various disciplines. For example, Transformer-
based works (Ye & Bilodeau, 2023; Gao et al., 2022a; Liu et al., 2020) employ the attention
mechanism to comprehend intricate spatio-temporal relationships. Graph neural networks (Sanchez-
Gonzalez et al., 2020; Janny et al., 2023; Han et al., 2022b; Wang et al., 2023a) provide effective
tools for learning from irregular meshes by employing the message passing mechanism.

In real-world scenarios, long-term forecasting of dynamical systems is a more challenging task
with various applications (Sangrody et al., 2018; Nayak et al., 2023). Among them, fire fluid
dynamics (Zhang et al., 2022) remains an underexplored yet crucial area, which usually requires long-
term dynamics forecasting to ensure accurate planning. Towards this end, this work constructs a fire
dynamics benchmark, where 3000kW tunnel fire is simulated using a simulator. However, long-term
dynamics would make the spatio-temporal forecasting more challenging. Firstly, long-term dynamics
usually accompany with highly complicated spatio-temporal signals. Existing approaches (Wu et al.,
2023; Raissi et al., 2019; Gao et al., 2022a) usually learn signals in a discrete manner, which is
incapable of capturing continuous spatio-temporal dynamics in nature. Secondly, long-term dynamics
could contain temporal patterns from extreme local events in the past. How to capture and leverage
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these historical information for effective system dynamics modeling remains an open problem.
Thirdly, due to the difficulty of the task, existing predictors could generate unrealistic long-term
trajectories with insufficient supervision and error accumulation (Zeng et al., 2023).

With the ability of accessing historical information, memory mechanism (Zhou et al., 2023) has a
wide application in time-series forecasting (Chang et al., 2018), one-shot learning (Ni et al., 2019) and
question answering (Sukhbaatar et al., 2015). Initially, memory networks use a memory component
as a knowledge base to facilitate the inference phase of question-answering. The most frequently
accessible data from the memory is stored in a cache, which operates as a buffer to speed up operations.
Cache has been investigated for neural machine translation (Tu et al., 2018) and graph machine
learning (Li & Chen, 2021) due to its efficacy. From this insight, it is highly anticipated to leverage a
cache to facilitate modeling complex long-term system dynamics.

In this paper, we propose a novel framework named Spatio-temporal Twins with a Cache (STAC),
which explores and reuses informative historical information for capturing long-term dynamics. In
particular, STAC involves a frequency-enhanced spatial module and an ODE-enhanced temporal
module to discover complicated spatio-temporal correlations from complementary perspectives. The
frequency-enhanced spatial module combines the spatial and frequency domains, while the ODE-
enhanced temporal module uses a neural ODE (Chen et al., 2018) to investigate continuous dynamics
after fusing temporal and channel information. More importantly, we fuse the knowledge from twin
modules with channel attention at different granularities to generate feature maps with rich semantics.
To capture temporal patterns from historical data, we employ a cache-based recursive propagator
that stores feature maps from prior timestamps. The current feature maps would be utilized by
comparing them to the stored feature maps to perform recursive updating. These updated maps would
be upsampled to produce the intended long-term trajectories. To refine the framework for accurate
predictions, we not only employ a structural similarity metric to investigate the properties of states, but
also generate additional trajectories without supervision, followed by adversarial learning for rational
outcomes. Teacher forcing (Toomarian & Barhen, 1992; Gao et al., 2022b) with Mixup is also utilized
to stabilize the learning process during the iterative updating. Extensive experiments demonstrate
that the proposed STAC outperforms a range of methods across various research domains.

To summarize, this paper makes the following contributions: (1) Fluid Benchmark. We construct a new
benchmark (FIRE) to model fire dynamics for long-term dynamic forecasting. (2) New Perspective.
To the best of our knowledge, we are the first to incorporate cache memory concept into long-term
system modeling. (3) Novel Framework. We propose a novel framework for modeling long-term
system dynamics, which explores sufficient historical information with information fusion, trained
with effective optimization strategies. (4) Multifaceted Experiments. Comprehensive experiments on
various benchmark datasets demonstrate the effectiveness of the proposed STAC.

2 RELATED WORK

Dynamical System Modeling. Modeling dynamical systems (Thangamuthu et al., 2022; Wan et al.,
2023; Chen et al., 2023) has been a long-standing problem in the machine learning community. A
variety of deep learning methods have been devised to address this problem on both regular and
non-regular grids. CNNs are commonly used to capture spatial relationships on regular grids (Fotiadis
et al., 2020; Kim et al., 2019; Tompson et al., 2017; Rao et al., 2023), whereas GNNs can learn
from irregular grids by adopting the message passing mechanism (Sanchez-Gonzalez et al., 2020;
Janny et al., 2023; Han et al., 2022b). Further, a number of operators including the Fourier neural
operator (Li et al., 2020) and their variants (Wen et al., 2022; Zhou et al., 2022) have demonstrated
efficacy for PDE-based system modeling. However, these approaches often struggle to capture
the long-term dynamics of dynamical systems, as they frequently encounter challenges like error
accumulation and a lack of sufficient memory.

Memory Network. Memory networks have been extensively utilized to provide additional informa-
tion for reading and writing (Weston et al., 2014; Shi et al., 2019; Xu et al., 2018). Early attempts of
memory networks typically concentrate on question-answering (Bordes et al., 2015), accompanied
by an attention mechanism for information retrieval. Recent developments in memory network
include knowledge tracing (Zhang et al., 2017), graph neural networks (Xu et al., 2022), few-shot
learning (Zhu & Yang, 2020), and medical image segmentation (Zhou et al., 2023). In this paper,
cache memory is incorporated into iterative rollouts, which updates feature maps with enhanced
long-term semantics for accurately modeling system dynamics.
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3 NEW FLAME FLOW FIELD BENCHMARK FOR FLOW SYSTEM MODELING
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Figure 1: Overall descriptions of this Benchmark.
Data Collection and Processing. In this paper, we focus on complex flow dynamics and long-term
modeling issues in flow fields. We open a new Flame flow field benchmark, FIRE, to assess STAC
ability to overcome the above challenge. Fire is crafted from the well-regarded industrial software,
Fire Dynamics Simulator (FDS) (Wu et al., 2006) for simulations, to create a digital database that
encompasses tunnel fire scenarios under various fire locations, scales, and ventilation conditions.
Throughout the progression of the fire, we record temperature data at multiple points near the top
of the tunnel, emulating the response of thermal sensors in real-world tunnels. Subsequently, we
perform extensive post-processing on the sensor data along with thousands of temperature and smoke
field images, culminating in a vast numerical database.
Statistics of FIRE. As shown in Figure 1, we simulate a road tunnel with dimensions of 50 m × 10
m × 5 m. The fire source is modeled as a propane gas fire with a maximum HRR of 20 MW and
increasing at t2 . The fire source is modeled as a propane gas fire with dimensions of 4.6 m × 1.8 m
× 2.4m. The maximum HRR is 20 MW and increases at a rate of t2. We study four scenarios in
which the HRR reaches 20 MW and stabilizes, requiring 2626s, 1307s, 653s, and 326s, respectively,
to reach this state. The final fire simulation captures temperature and smoke patterns in the tunnel,
including phenomena such as the fire plume and front, totaling 100GB.

4 THE PROPOSED APPROACH

Problem Definition. We aim to utilize a data-driven method to model the spatio-temporal evolution
in dynamical systems. Given a system, x ∈ Ω and t ∈ T denotes the spatial and time coordinates,
u(x, t) ∈ Rd is the state variable defined in the spatio-temporal domain Ω × T . The system is
could be governed by a set of PDEs or other complex rules. In this work, we study the regular mesh
structures where u(x, t) is limited on standard discretized Cartesian grids. Given the states in the
interval [0, T obs], we aim to predict the most probable future state in [T obs + 1, T ] where T is much
larger than T obs. Here, we utilize a tensor u(t) ∈ RC×H×W to denote the state at the time step t.

4.1 FRAMEWORK OVERVIEW

This work investigates the problem of modeling long-term dynamical systems and proposes a novel
approach named STAC to solve the problem. The high-level idea of STAC is to explore and reuse
informative historical feature maps for capturing long-term dynamics. In particular, STAC introduces
a frequency-enhanced spatial module and an ODE-enhanced temporal module to sufficiently discover
spatio-temporal correlations from complementary perspectives. The extracted semantics would
be fused at different granularities to produce informative feature maps. Then, STAC employs a
cache-based recursive propagator that stores feature maps from prior timestamps, which would be
compared with current feature maps for recursive updating. Finally, we utilize a comprehensive
optimization framework including investigating a structural similarity metric and adversarial learning
for reliable long-term predictions. An overview of our STAC can be found in Figure 2.

4.2 TWIN SPATIO-TEMPORAL ENCODER

Previous methods usually utilize Transformer-based architectures and Fourier neural operators to
learn spatio-temporal relationships (Tran et al., 2023a; Pathak et al., 2022; Wang et al., 2023b).
However, these methods usually take discrete neural architectures, which are difficult to capture
continuous spatio-temporal dynamics in nature. Moreover, these discontinuous latent could fail to
learn long-term complicated periodic signals, which results in inferior predictions. Towards this end,
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Figure 2: STAC overview. STAC contains a frequency-enhanced spatial module and an ODE-
enhanced temporal module to learn spatio-temporal relationships. Then, STAC fuses information
from twin modules at different granularities. For long-term dynamics, STAC employ a cache-based
recursive propagator that compare current feature map with the stored ones. We utilize adversarial
learning to enhance the reliability of long-term predictions.

besides a spatio-frequency discrete encoder, we introduce a ODE-based continuous module to learn
continuous temporal dynamics as a complementary.

Frequency-enhanced Spatial Module (FSM). Fourier neural operator (Li et al., 2020) is an effective
way to extract spectral information in Fourier space, which has shown both effectiveness and efficiency
in dynamical system modeling. In short, we not only utilize a vision Transformer (Han et al., 2022a)
to learn semantics in the spatial domain, but also introduce a Fourier neural operator to capture
semantics in the frequency domain.

In particular, the input at every timestamp is denoted as Iin ∈ RC×H×W . We utilize CNNs to
generate query, key and value vectors for a Transformer architecture, followed by a feed-forward
network (FFN) to learn spatial correlations. Moreover, a 2D fast Fourier transform (FFT) is first
leveraged to generate the frequency domain representation. Then, the complex-valued representation
is then split into its real and imaginary parts and concatenated along the channel dimension. To
enhance the integration of feature information, we utilize FFNs for token mixing across different
channels, which allows for richer Fourier mode representations to emerge through greater fusion
of channel-wise signals. Then, the mixed representations are then transformed back to the spatial
domain using the 2D inverse Fourier transform to obtain the output of spectral filter layers. Finally,
we concatenate the output of both Transformer and Fourier neural operator and then use a FFN as the
final output. In formulation,

Iout = FFN([Transformer(Iin),FNO(Iin)]), (1)

where Transformer(·) and FNO(·) denote the Transform-based branch and frequency-based branch,
respectively. Iout ∈ Rl×d, where l = ĥ · ŵ with the shape of output feature map ĥ× ŵ.

ODE-enhanced Temporal Module (OTM). More importantly, we introduce a neural ODE module
to capture continues dynamics in systems. Neural ODE is initially proposed as an approximation of
ResNet (Chen et al., 2018), and has shown superior performance in time-series forecasting (Norcliffe
et al., 2020; Bishnoi et al., 2022). To inject different levels of spatio-temporal relationships, we
also pre-process the input into feature maps and then feed them into our neural ODE module with a
multi-scale CNN, which can allow the capture of long-range correlations naturally with robustness

In particular, we introduce a stem module which first reshape the input tensor with T obs timestamps
Īin ∈ RT obs×C×H×W into RT obsC×H×W and then utilize a CNN to generate feature maps F0 ∈
RT obsc×h×w as follows:

F0 = CNN(Reshape(Īin)). (2)
However, STAC are in short of network depth to learn fine-grained and long-term dynamics. One
solution is to stack a range of residual convolution blocks, which can be formulated as:

Ft = Ft−1 + Pad(MultiCNN(Ft−1)), (3)
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where MultiCNN(·) is a multi-scale-CNN operator for diverse spatio-temporal semantics mining
and Pad is to add zero-padding for residual connection. Although effective, this architecture has two
limitations as follows. To begin, the discrete architecture is hard to capture continuous dynamics
in natural systems. Worse yet, introducing a range of convolution blocks would bring a huge
computational cost. To tackle this, we involve a neural ODE, which takes the F0 as the initial state to
learn continuous dynamics and update states as follow:

FTt = F0 +

∫ Tt

0

Pad(MultiCNN (Ft))dt, (4)

where Tt denotes the predefined terminate time with FTt
∈ RT obs×c×h×w. We can obtain FTt

from
Eqn. 4 using an ODE solver (Chen et al., 2018).

Information Fusion between Twin Modules (IFTM). We introduce an effective module to fuse the
information from twin modules. To begin with, our purpose is to capture global semantics to ensure
the consistency and continuity in long-term predictions. However, the emphasis of global semantics
would inevitablely loss crucial details in local semantics. To balance the trade-off, we propose both
fine-grainted fusion and coarse-grained fusion to tackle feature maps with different granularities.

We aggregate all T obs from the frequency-enhanced spatial module into PS ∈ RT obs×d×ĥ×ŵ, while
the output of our ODE-enhanced temporal module is represented as P T ∈ RT obs×c×h×w. The fusion
is primarily a blend of fine-grainted fusion, which upsamples PS to match the spatial scale of P T ,
and coarse-grained, which downsamples P T to match high-resolution features PS :

Pup
i,j,k = Upsample(Conv(PS

i,j,k)), QS
i,j,k = Pup

i,j,k + P T
i,j,k, (5)

P down
i,j,k = Downsample(Conv(PT

i,j,k)), QT
i,j,k = P down

i,j,k + PS
i,j,k, (6)

with QS ∈ RT obs×K×ĥ×ŵ and QT ∈ RT obs×K×h×w. Given that channels in dynamic systems
often capture diverse physical phenomena, we introduce a channel attention mechanism to aggregate
diverse knowledge. We generate a weight matrix M ∈ RT obs×K as:

M = σ(FFN(GlobalAvgPool(QS)⊕GlobalAvgPool(QT ))), (7)

where ⊕ denotes the element-wise addition and GlobalAvgPool(·) denotes the global average
pooling operator. Then, the contributions from both modules are balanced to generate the final feature
maps X ∈ RT obs×K×h×w:

X = M ⊙ Pad(QS) + (1−M)⊙QT , (8)
where ⊙ denotes the element-wise product. In this way, we can generate informative features maps
with both coarse-grained and fine-grainted semantics.

4.3 CACHE-BASED RECURRENT PROPAGATOR

Previous methods usually output the short-term predictions at one time (Pathak et al., 2022; Wang
et al., 2023b; Lee et al., 2021) and then utilize the rollout strategy by feeding the predicted trajectory
into the model to make long-term prediction, which could perform poor due to the forgetting of past
events. To tackle this, we propose a novel module based on the cache mechanism, which stores the
previous representations in the memory updated with a first-in-first-out (FIFO) manner.

In detail, we first cut the whole [T obs + 1, T ] into several pieces, i.e., [t0, t1], [t1, t2], · · · , [tM−1,
tM ]. We denote the input, feature map and output for the interval [tm−1, tm] as Im, Îm and Xm,
respectively. Rollout-based methods first utilize [0, T obs] to predict the trajectory in the interval [t0,
t1] and feed the prediction Îm back for Îm+1 in a recursive manner. In virtue of last prediction,
recurrent models take the feature maps Xm−1 and updated maps Qm−1 at the last interval. The
update rule in the hidden state can be written as:

Am = f (Qm−1, Xm) , Qm = g(Qm−1, Am), (9)

where f(·) and g(·) can be implemented with any RNN cell including Gated Recurrent Unit
(GRU) (Dey & Salem, 2017) and Long Short-Term Memory (LSTM) (Graves & Graves, 2012).
However, these updating rule could lose crucial long-term temporal dynamics. Towards this end,
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we introduce cached feature maps. In particular, the cacheM contains the most recent R historical
feature maps, i.e., {Xm−R−1, · · · , Xm−2}, where R denotes the cache size. The, the updating rule
can be written as:

Am = f (Qm−1, Xm) ,Wm = g(Qm−1, Am), Qm = αWm + (1− α)

R∑
r=1

ϕ(Wm, Xm−R−2+r), (10)

where ϕ(·) calculates the interaction between current features map and historical feature maps. α is a
parameter to balance two parts. In our implementation, we would pre-allocate the memory for the
cache module to keep the efficiency. Our cache-based propagator makes use of the cache memory to
restore historical feature maps, which can capture long-term dynamics in the hidden space during
recursive updating.

4.4 DECODER AND OPTIMIZATION

Finally, we introduce a decoder with unConvNormReLU blocks and LayerNorm (Tan et al., 2022),
which transforms updated feature maps into predicted trajectories, i.e., Ŷm = Dec(Qm).

Supervised Learning. To begin, we minimize the vanilla MSE loss between the predictions and
the target trajectories, i.e., LMSE =

∑M
m=1 |Ym − Ŷm|. However, the MSE loss is sometimes too

hard to be minimized. To tackle this, we introduce structural similarity metric (SSIM) (Zujovic et al.,
2009) as a complementary, which calculates luminance, contrast and structure between the prediction.
The formal formulation of the SSIM loss LSSIM can be found in Appendix A.2.

Teacher Forcing. Moreover, we introduce the teacher forcing strategy (Toomarian & Barhen, 1992)
with Mixup to stabilize the learning process between the recursive updating. In particular, we mix the
prediction and ground truth before feeding them back to the model:

Ĩm := (1− β)Im + βÎm, (11)

where 0 ≤ β ≤ 1 is a dynamic parameter rising to 1 gradually during the optimization. Through this,
we begin with short-term predictions with ground-truth middle input and end with full long-term
predictions following the idea of curriculum learning (Bengio et al., 2009).

Semi-supervised Adversarial Learning. Another challenge for long-term prediction is that they
could generate unrealistic trajectories. Toward this end, given that we have limited training data, we
generate extra trajectories without supervision and utilize the idea of adversarial learning (Lowd &
Meek, 2005) to make sure that our model can always generate rational results.

To begin, we introduce a discriminator D(·) conditional on the trajectories, which classifies real
observations into positives and the generated observations into negatives. The whole adversarial
learning objective can be formulated as:

min
Θ

max
Ψ

LADV = −
M∑

m=1

logD(Ym)−
M′∑
m=1

logD(Ŷm), (12)

where Θ and Ψ denote the parameters of the discriminator and predictor, respectively. Note that
M ′ > M means that we introduce a range of predicted trajectories without ground truth, which helps
increase the facticity of the predictor in a semi-supervised manner. We minimize LADV with respect
to Θ for a well-trained discriminator. Further, we maximize LADV with respect to Ψ for a more
realistic predictor. The whole objective will summarize all three objectives as:

L = LMSE + LSSIM + LADV . (13)
We summarize our algorithm in Appendix A.3.

5 EXPERIMENT

In this part, we undertake a thorough evaluation of the STAC’s performance across benchmarks
encompassing a broad spectrum of applications. These benchmarks encapsulates both simulated and
real-world physical dynamical systems, which are extensively utilized in spatio-temporal modeling.
We tested fourteen physical dynamical systems to evaluate the effectivenesses of our proposal. For
ease of understanding, we present the five most challenging datasets in the main text, while the
complete results are provided in the Appendix B.
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• FIRE dataset is created using the Fire Dynamics Simulator (FDS) to simulate a 3000kW tunnel
fire. We release this benchmark by collecting velocity and temperature data.

• Turbulence dataset (Khojasteh et al., 2022) analyzes flow patterns downstream of a cylinder
at a Reynolds number of 3900 using Lagrangian and Eulerian methods.

• ERA5 dataset (Rasp et al., 2023) is a high-resolution global atmospheric reanalysis dataset used
to assess the model’s efficiency in modeling highly nonlinear and chaotic dynamical systems for
climate research and weather predictions.

• SEVIR dataset (Veillette et al., 2020)represents a comprehensive storm event imagery collection,
designed specifically for deep learning endeavors in both radar and satellite meteorology.

• KTH dataset (Schuldt et al., 2004) captures human kinematics and stands as a benchmark in the
video prediction realm, it is used to gauge the model’s performance in the visual domain.

Baselines. Our STAC would be compared with a range of state-of-the-art approaches including
FNO (Li et al., 2020), F-FNO (Tran et al., 2023b), E3D-LSTM (Wang et al., 2018), MIM (Wang
et al., 2019), PredRNN-v2 (Wang et al., 2023b), SimVP-V2 (Tan et al., 2022), Earthformer (Gao
et al., 2022b), and FourcastNet (Kurth et al., 2023).
Research Questions (RQ). In this paper, we endeavor to answer the following research questions
through extensive experimentation: (I) How effective is STAC and can it adeptly address long-term
modeling challenges? (II) Can STAC effectively deal with complex system dynamics modeling
problems? (III) Does STAC have the ability to sense extreme local events? (IV) Does STAC have the
potential to become the backbone in the realm of video prediction?

Table 1: The average results from five runs of STAC were compared with the baseline. In this study,
the selected evaluation metrics are MSE (Mean Squared Error) and MAE (Mean Absolute Error). For
both metrics, lower values are preferable. The best results are highlighted in bold.

Backbone STAC FNO (2020) F-FNO (2023a) E3D-LSTM (2018) MIM (2019) PredRNN-V2 (2023b) SimVP-V2 (2022)

MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Learning rate = 0.01; Optimizer = Adam; Attention head in FSM = 4; Hidden layer dimension = 64.
Turbulence 0.5123 0.5345 0.6567 0.7789 0.8124 0.9876 1.1234 1.4567 0.8321 0.9472 1.0163 1.0987 1.2765 1.4321

ERA5 1.9865 1.7791 2.8534 2.2983 8.9853 7.34317 3.0952 2.9854 3.3567 3.2236 2.2731 2.6453 3.0843 3.0743
SEVIR 1.9731 1.4054 3.0833 1.8831 10.9831 5.4432 4.1702 2.5563 3.9842 2.0012 3.9014 1.9757 2.9371 1.7743

Fire 0.5493 0.7217 0.9985 1.0432 2.7412 1.6557 1.0921 0.8731 1.8743 1.5324 0.7789 0.6863 1.7743 1.0321
KTH 28.8321 24.2216 33.1983 29.7421 31.8741 29.8753 86.1743 85.5563 56.5942 54.8426 51.1512 50.6457 40.8421 43.2931

5.1 MAIN RESULTS TO ANSWER (RQ I)
To answer RQ I, we conduct the in-depth comparative analyses involving STAC and various SOTA
models, including PDE modeling, ST prediction, and the application of certain domain-specific
methods to dynamical system modeling tasks. The comparison results appear in the Tab. 1. Further,
we choose the Turbulence as a representative of complex systems for the experiment due to it
irregularity and unpredictability. Figure 3 shows the comparison with FNO and the trend of MSE
with the predicted step size. Based on results, we can summarize the following Observations:
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Figure 3: Visualization of the Turbulence dataset spans various timestamps. We represent the
composite speed, computed as speed =

√
u2 + v2, within the fluid field of the STAC model,

alongside the display of the ground truth for thorough comparison and evaluation.
Obs.1. STAC consistently demonstrates outstanding performance across various datasets in terms
of MSE and MAE metrics. Notably, on the ERA5 dataset, compared to the existing best method,
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PredRNN-V2, STAC achieved nearly 14.4% decline in MSE and an impressive 29.1% decline in
MAE. Whether on Turbulence, SEVIR, or other datasets, STAC consistently showcases its superior
predictive capabilities, underscoring its efficacy.
Obs.2. In Figure 3, we employ a fixed-window strategy where models evaluate within a forecast range
of 100, 200, 300, 400, and 500 time steps, reflecting long-term forecasting challenge. It is observed
that STAC achieves the lowest MSE among the seven models. Furthermore, as the prediction term
increases, STAC consistently exhibits a stronger performance advantage. Even when compared to the
currently best FNO, STAC maintains a lower MSE, indirectly demonstrating STAC’s superiority in
long-term prediction challenges. More detailed results are presented in the Appendix E.

5.2 CAN STAC EFFECTIVELY MODEL COMPLEX SYSTEM DYNAMICS? (RQ II)
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Figure 4: Visualization of the ERA5. On the left is the global temperature field, while on the right
lies the localized velocity field. The line chart depicts the variation in ACC (Anomaly Correlation
Coefficien) for both STAC and the baseline models as the prediction time step lengthens.

To answer RQ II, we chose ERA5 as our primary dataset for analysis. Its rich detail and diverse
data dimensions make it an ideal choice for illustrating and investigating complex climate and
atmospheric dynamics processes. We select representative SOTA models in the field of earth science
as comprehensive assessment, i.e., FourcastNet, Earthformer, and advanced ST sequence forecasting
models like PredRNN-V2. The relevant visualization results and experimental data line graphs are
shown in the Figure 4, in which we can made the following observations and findings:

Obs.3. With the forecast time step increases, FourcastNet shows significant oversmoothing, especially
over the 10-day forecast. In the same circumstance, STAC can preserves local details via IFTM.
FourcastNet performs poorly in short-term prediction of complex systems. Inversely, STAC is better
at modeling dynamic systems from both global and local perspective.

Obs.4. Both in meteorological models and advanced ST predictions settings, STAC consistently
excels in the ACC metric. As prediction steps increased, STAC’s performance degradation is the
slowest. Notably, in predicting the velocity field V, STAC’s decline becomes significant after 8 hours,
yet it still outperforms the second-best model, earthformer, by approximately 11.1%.

5.3 DOES STAC HAVE THE ABILITY TO SENSE EXTREME LOCAL EVENTS? (RQ III)
To answer RQ III, we select the SEVIR and the FLAME FLOW FIELD dataset to focus on the
analysis. We focus on whether SEVIR’s storm details are successfully captured, and examine the rapid
spread of flames, temperature fluctuations, and the movement of smoke in the tunnel environment.
As shown in the Figure 5, we make the following observations:
Obs.5. When we zoom in on the predictive details of SEVIR, it’s clear that STAC presents a sharper
rendition compared to Earthformer’s relative blurriness. Notably, at 240s, STAC precisely forecasts
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Figure 5: Visualization of the SEVIR and FLAME FLOW FIELD datasets in the first row, followed
by line plots illustrating the variation of RMSE with prediction time in the second row.

the overarching trend of the tunnel fire’s temperature and smoke dynamics. In the corresponding line
graph, by the 300s mark, STAC effectively counteracts the noticeable lag exhibited by Earthformer.

5.4 CAN STAC BECOME THE BACKBONE OF VIDEO PREDICTION? (RQ IV)
Input length = 10

output length = 10

Figure 6: The KTH performance visualizations: the second
row is the ground-truth, the third is the STAC prediction
results, the fourth row is the SimVP-V2 prediction results,
and the fifth row is the PredRNN-V2 prediction results.

Datasets (KTH) Output Sequence
Backbone Input Seq (10) → 10 → 15 → 20

PredRNN-V2 SSIM 88.67 86.53 84.22
PSNR 29.98 28.47 25.23

SimVP-V2 SSIM 92.43 91.33 89.89
PSNR 36.31 35.54 33.65

STAC SSIM 93.72 92.83 90.07
PSNR 37.29 36.87 34.32

Table 2: Performance comparison of var-
ious models on the KTH dataset, evalu-
ated using SSIM and PSNR metrics.

In the last, we consider whether STAC serves as a universal framework for video prediction. We study
the KTH video dataset, which is an action recognition library that contains movements of various
subjects in different contexts. As the Figure 6 shows, we find the following:
Obs.6. STAC model significantly outperforms both PredRNN-V2 and SimVP-V2. Specifically, for
20-frame predictions, compared to PredRNN-V2, STAC’s SSIM increased by 6% and its PSNR rose
by 9 units. In contrast to SimVP-V2, SSIM and PSNR respectively improved by 0.2% and 7 units.
This highlights STAC’s advantage in key metrics, showcasing its exceptional predictive accuracy and
image quality. We summarize more ablations in Appendix F for integrity of our studies.

6 CONCLUSION

This paper studies the problem of modeling long-term dynamical systems and proposes a new
paradigm to solve this problem. Our STAC consists of a discrete frequency-enhanced spatial
module and an ODE-enhanced temporal module that investigates spatio-temporal relationships from
contrasting viewpoints. Then, we fuse information between twin modules with different granularities
to generate informative feature maps. To improve the capacity to make long-term predictions, we
introduce a cache-based recurrent propagator that stores the prior feature maps in the cache memory
during recursive updating. We release a new benchmark FIRE and extensive experiments on various
benchmarks validate the superiority of STAC. In future works, we would extend STAC to more
scenarios such as mesh-based physical simulations and pedestrian trajectory prediction.

9



Under review as a conference paper at ICLR 2024

ETHICS STATEMENT

We acknowledge that all co-authors of this work have read and committed to adhering to the ICLR
Code of Ethics.

REPRODUCIBILITY STATEMENT

To increase reproducibility, we have provided all the details of the proposed STAC in Appendix A. Our
code is available at https://anonymous.4open.science/r/STAC-89A5 anonymously.

REFERENCES

Kelsey R Allen, Tatiana Lopez Guevara, Yulia Rubanova, Kim Stachenfeld, Alvaro Sanchez-Gonzalez,
Peter Battaglia, and Tobias Pfaff. Graph network simulators can learn discontinuous, rigid contact
dynamics. In Conference on Robot Learning, pp. 1157–1167. PMLR, 2023.
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order behaviour in augmented neural odes. Advances in neural information processing systems, 33:
5911–5921, 2020.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv preprint arXiv:2202.11214, 2022.

11



Under review as a conference paper at ICLR 2024

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational physics, 378:686–707, 2019.

Chengping Rao, Pu Ren, Qi Wang, Oral Buyukozturk, Hao Sun, and Yang Liu. Encoding physics to
learn reaction–diffusion processes. Nature Machine Intelligence, pp. 1–15, 2023.

Stephan Rasp, Stephan Hoyer, Alexander Merose, Ian Langmore, Peter Battaglia, Tyler Russel,
Alvaro Sanchez-Gonzalez, Vivian Yang, Rob Carver, Shreya Agrawal, et al. Weatherbench
2: A benchmark for the next generation of data-driven global weather models. arXiv preprint
arXiv:2308.15560, 2023.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. pp. 8459–8468, 2020.

Hossein Sangrody, Ning Zhou, Salih Tutun, Benyamin Khorramdel, Mahdi Motalleb, and Morteza
Sarailoo. Long term forecasting using machine learning methods. In 2018 IEEE Power and Energy
Conference at Illinois (PECI), pp. 1–5. IEEE, 2018.

Christian Schuldt, Ivan Laptev, and Barbara Caputo. Recognizing human actions: a local svm
approach. In Proceedings of the 17th International Conference on Pattern Recognition, 2004.
ICPR 2004., volume 3, pp. 32–36. IEEE, 2004.

Zhan Shi, Xiangru Huang, Akanksha Jain, and Calvin Lin. Applying deep learning to the cache
replacement problem. In Proceedings of the 52nd Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 413–425, 2019.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. Advances in
neural information processing systems, 28, 2015.

Cheng Tan, Zhangyang Gao, Siyuan Li, and Stan Z Li. Simvp: Towards simple yet powerful
spatiotemporal predictive learning. arXiv preprint arXiv:2211.12509, 2022.

Abishek Thangamuthu, Gunjan Kumar, Suresh Bishnoi, Ravinder Bhattoo, NM Krishnan, and Sayan
Ranu. Unravelling the performance of physics-informed graph neural networks for dynamical
systems. Advances in Neural Information Processing Systems, 35:3691–3702, 2022.

Jonathan Tompson, Kristofer Schlachter, Pablo Sprechmann, and Ken Perlin. Accelerating eulerian
fluid simulation with convolutional networks. pp. 3424–3433, 2017.

Nikzad Benny Toomarian and Jacob Barhen. Learning a trajectory using adjoint functions and teacher
forcing. Neural networks, 5(3):473–484, 1992.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. 2023a.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. In The Eleventh International Conference on Learning Representations, 2023b.

Zhaopeng Tu, Yang Liu, Shuming Shi, and Tong Zhang. Learning to remember translation history
with a continuous cache. Transactions of the Association for Computational Linguistics, 6:407–420,
2018.

Mark Veillette, Siddharth Samsi, and Chris Mattioli. Sevir: A storm event imagery dataset for
deep learning applications in radar and satellite meteorology. Advances in Neural Information
Processing Systems, 33:22009–22019, 2020.
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A MORE METHODOLOGY DETAILS

A.1 DECODER

The dimension of the feature map is H/16 and W/16. After going through the Decoder operation,
the output dimension becomes H and W , which is the target dimension. The detailed process is as
follows:

X0 ∈ RB×embed dim× H
16×

W
16 (14)

Here, X0 is the tensor input to this module.

X1 = Tanh(ConvTranspose2d(X0)) ∈ RB×out channels×H
8 ×W

8 (15)

In this step, we use a transposed convolution layer followed by a Tanh activation function to obtain
the tensor X1.

X2 = Tanh(ConvTranspose2d(X1)) ∈ RB×out channels×H
4 ×W

4 (16)

Next, we again use a transposed convolution layer and Tanh activation function to get the tensor X2.

X3 = ConvTranspose2d(X2) ∈ RB×out channels×H×W (17)

Finally, we apply another transposed convolution layer to get the output tensor X3 with dimensions
H and W .

A.2 LOSS FUNCTION DETAILS

Our loss function is as follows, inside the main text, we have described LMSE and LADV in detail,
next, we describe LSSIM in detail.

L = LMSE + LSSIM + LADV . (18)

SSIM (Structural Similarity Index) is a metric used to assess the structural similarity of two images.
It is proposed to better reflect the human eye’s subjective perception of image quality, and provides a
more intuitive and accurate assessment of image quality than the traditional mean square error (MSE)
or peak signal-to-noise ratio (PSNR).

Specifically, two four-dimensional tensors of dimension [T ×C ×H ×W ] are given: predicted data
P and real labeled data G, where T stands for the time dimension or batch size, C is the number of
channels, and H and W are the height and width of the tensor, respectively. To compute the SSIM
loss, a window of fixed size w (e.g., a Gaussian window of 11x11) and two constants for stabilizing
the denominator c1 and c2 are first chosen.

For each sample t and each channel c, we define the following calculations:

1. mean value:
µPt,c

= w · Pt,c (19)

µGt,c
= w ·Gt,c (20)

2. variance:
σ2
Pt,c

= w · P 2
t,c − µ2

Pt,c
(21)

σ2
Gt,c

= w ·G2
t,c − µ2

Gt,c
(22)

3. covariance:
σPt,cGt,c

= w · Pt,c ·Gt,c − µPt,c
· µGt,c

(23)
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Then, the SSIM value for each position is calculated using the SSIM formula:

SSIMt,c =
(2µPt,c

µGt,c
+ c1)(2σPt,cGt,c

+ c2)

(µ2
Pt,c

+ µ2
Gt,c

+ c1)( sigma2Pt,c
+ σ2

Gt,c
+ c2)

(24)

Average over all positions to obtain the SSIM value for that channel. Finally, average the SSIM
values over all samples and channels and subtract this value from 1 to get the SSIM loss:

LSSIM = 1−mean(SSIMt,c) (25)

For efficiency, the computation of mean, variance and covariance can be realized by convolution
operation.

A.3 ALGORITHMIC PROCESS

The proposed algorithm, named STAC, offers a novel approach to model the spatio-temporal evolution
in dynamical systems. At its core, the algorithm integrates a twin spatio-temporal encoder, which
captures both spatial and frequency domain semantics, and a cache-based recurrent propagator,
which leverages historical data to enhance long-term dynamics prediction. The encoder consists of a
Frequency-enhanced Spatial Module (FSM) and an ODE-enhanced Temporal Module (OTM), which
are then fused together. The recurrent propagator utilizes a cache mechanism to store and update
previous representations. Finally, a decoder transforms the updated feature maps into predicted
trajectories, which are then optimized using a combination of loss functions. The algorithm aims to
provide accurate and reliable long-term predictions for dynamical systems.

Algorithm 1 The STAC Approach

0: function METHOD(Input: system states in interval [0, T obs]) {Twin Spatio-temporal Encoder}
0: Iin ← Input
0: Iout ← FSM(Iin) {Frequency-enhanced Spatial Module}
0: F0 ← OTM(Iin) {ODE-enhanced Temporal Module}
0: X ← IFTM(Iout, F0) {Information Fusion between Twin Modules}
{Cache-based Recurrent Propagator}

0: Initialize cacheM with size R
0: for m = 1 to M do
0: Qm ← UpdateCache(Qm−1, Xm,M)
0: Add Xm−1 to cacheM
0: end for
{Decoder and Optimization}

0: Yhat ← Decode(Qm)
0: Loss← CalculateLoss(Yhat,GroundTruth)
0: UpdateModelParameters(Loss)
0: return Yhat
0: end function=0

B DETAILED DESCRIPTION OF BENCHMARKS

We summarize the benchmark configurations in Tab. Here are the details of the dataset.

B.1 TURBULENCE DATASET

This dataset (Khojasteh et al., 2022) contains Eulerian velocity fields and pressure fields. An open-
source direct numerical simulation (DNS) flow solver named Incompact3d was used to compute
the Eulerian fields around the cylinder. Following the original thesis setup, highly resolved direct
numerical simulations (DNS) of the flow over a smooth cylinder at a subcritical Reynolds number of
3900 (based on the diameter D of the cylinder and the diameter D of the freestream velocity) were
performed to generate the data. Double-precision Eulerian and Lagrangian fields were collected for
both subdomains as shown in Fig. 7. Due to online cloud storage limitations, every 10 DNS time steps
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were saved every 10 DNS time steps (saving each time step would require about 30 TB of storage
space per vortex shed). The 1000 snapshots are also used for smaller subdomains with dimensions of
4D x 2D x 2D (i.e., per DNS time step). Subdomain 2 is suitable for studies that require the highest
possible temporal resolution. Detailed information on the two subdomains can be found in Table 2.
An Eulerian snapshot of the current tail stream is shown in Fig. 2. For both subdomains, Lagrangian
trajectories are provided for about 200000 synthetic particles. Three main categories are provided in
the data repository: subdomain 1, subdomain 2, and software. Snapshots are in text format (.txt) and
are collected in compressed files (.zip). There are no special requirements for reading and opening
the data. Euler 3D snapshots are saved in vector format. Therefore, they need to be extracted within
three internal loops in the xyz direction.

Figure 7: The flow around a smooth cylinder at a subcritical Reynolds number of 3900, with
dimensions of two computational subdomains. (Khojasteh et al., 2022)

Figure 8: Snapshot Overview of Sub-domain 2: (a) Pressure iso-surface highlighted by the intensity
of the pressure. (b) Lagrangian trajectories of 20,000 particles, visualized after 1,000 DNS time steps,
color-coded by velocity magnitude. (c) Q-criterion representation depicting Eulerian flow structures,
color-graded by the magnitude of vorticity.
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B.2 ERA5 DATASET

ERA5 is the latest global reanalysis product released by the European Centre for Medium-Range
Weather Forecasts (ECMWF). It provides researchers and meteorologists with high-resolution me-
teorological and climatic data from 1979 to the present. The spatial resolution of ERA5 data is
31 kilometers, with a temporal resolution of hourly, representing a significant improvement over
previous reanalysis products. It encompasses observations from the atmosphere, land, and oceans,
offering invaluable data resources for global climate change, weather forecasting, and other related
studies. The data quality and accuracy of ERA5 have been widely recognized by researchers, making
it an essential tool in climate research and meteorological forecasting.

We have selected global temperature field data and local velocity field data as our training set. The
former has a resolution of 1440x720. In our experiments, we downsampled it to a quarter of its
original size, i.e., 360x180. The velocity field has a resolution of 64x64. For the temperature data, we
employed autoregressive training, using 5 days of data as input and 10 days of data as output. For the
velocity field, we chose 8 hours of data as input and another 8 hours of data as output.

B.3 SEVIR DATASET

The Storm EVent ImagRy (SEVIR) dataset presents a meticulously curated set of spatiotemporally
synchronized images, capturing meteorological phenomena via the GOES-16 geostationary satellite
and the NEXRAD weather radar system. Encompassing in excess of 10,000 distinct weather events,
each individual event in this collection showcases an image sequence persisting for a duration of 4
hours, spanning a geographical expanse of 384 km x 384 km. Delving into this dataset can expedite
advancements in the realms of weather sensing, hazard avoidance, near-term forecasting, and other
pertinent meteorological applications.

We follow the same setup as Earthformer, using 13 frames as input and 12 frames as output.

B.4 FLAME FLOW FIELD DATASET

In this study, we select a typical highway tunnel for simulation, with dimensions of 50 meters in
length, 10 meters in width, and 5 meters in height. The fire source has dimensions of 4.6 meters in
length, 1.8 meters in width, and 2.4 meters in height. The top surface of the truck is set as a ”burner”
type. To simulate a realistic scenario, the maximum heat release rate (HRR) of the fire source is set at
20 MW , a value recommended by the standard for the maximum HRR of tunnel fires in the event of
a truck fire. The fire source is modeled as a propane gas fire, with its HRR growing at a t2 rate. Four
operating conditions are designed, In all four scenarios, the power of the fire source is consistently
20 MW . In the first scenario, the fire source growth factor is 0.0029 kW/s2, with the time to reach
steady state being 2626 seconds and another steady state time being 2700 seconds. In the second
scenario, the fire source growth factor is 0.0117 kW/s2, with the times to reach steady state being
1307 seconds and 1400 seconds, respectively. In the third scenario, the fire source growth factor is
0.0469 kW/s2, with the steady state times being 653 seconds and 700 seconds. Lastly, in the fourth
scenario, the fire source growth factor is 0.1876 kW/s2, with the times to reach steady state being
326 seconds and 400 seconds. The choice of actual tunnel dimensions, fire source size, and HRR
values ensures the validity and relevance of the simulation results, providing a solid foundation for
the proposed artificial intelligence fire prediction method.

In this study, the input dimensions are set at [10,2,80,480], while the output dimensions are
[90,2,80,480]. Here, the input duration of 10 seconds represents the observation time, and the
value of 2 corresponds to the temperature field and smoke field, both of which have a resolution
of 80x480. The output duration of 90 seconds is used for extended time-range predictions. To
achieve this long-term forecasting, we employ a rollout strategy. Moreover, the caching mechanism
introduced in this paper plays a pivotal role in enhancing the accuracy and efficiency of long-term
predictions.

B.5 KTH DATASET

The KTH dataset stands as a benchmark in the domain of human activity recognition, stemming from
the esteemed KTH Royal Institute of Technology in Sweden. This collection distinctly captures six
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human activities: walking, jogging, running, boxing, hand waving, and hand clapping. Across diverse
scenarios—ranging from outdoor settings (s1, s4) and scaled outdoor variations (s2, s3) to indoor
environments (s5, s6)—25 participants, donning varied attire, repetitively perform these actions. Each
video in this dataset is recorded at a clarity of 128x128 pixel resolution and maintains a consistent
frame rate of 25 frames per second.

B.6 DYNAMIC SYSTEM DATASETS RECORDED BY VIDEO.

We have provided 9 datasets of dynamic system, recorded in the form of videos. Both the input and
output dimensions are [10,3,128,128], indicating an input length of 10 time steps and an output length
of 10 time steps. Since they are recorded as videos, there are 3 channels, representing RGB, with a
resolution of 128x128 for each image.
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Figure 9: A case study of a dataset of dynamical systems recorded by video

1. Circular motion system. (CMS) An object moves uniformly along a fixed radius. Formula as
follows:

v = rω, (26)

a = rω2, (27)

where v is the linear speed, r is the radius of the circle, ω is the angular speed, and a is the centripetal
acceleration.

2. Reaction diffusion system. (RDS) A system describing how the concentration of substances
changes over time due to reactions and diffusion. Formula as follows:

∂u

∂t
= Du∇2u− uv2 + F (1− u), (28)
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∂v

∂t
= Dv∇2v + uv2 − (F + k)v, (29)

where u and v are concentrations, Du and Dv are their diffusion coefficients, and F and k are system
parameters.

3. Single pendulum system. (SPS) A point mass hung from a fixed point swings due to gravity.
Formula as follows:

d2θ

dt2
= −g

l
sin(θ), (30)

where θ is the pendulum angle, l is the length of the pendulum, and g is gravitational acceleration.

4. Rigid double pendulum system. (RDPS) A complex pendulum system consisting of two
pendulums, with one pendulum attached to the end of another. The equations of a double pendulum
are usually relatively complex and involve multiple variables. But the basic idea is to use the Lagrange
equation. For a simplified description:

d2θ1
dt2

=
g(sin θ2 cos(θ1 − θ2)− sin θ1)− (ℓ2θ̈2 + ℓ1θ̇

2
1 sin(θ1 − θ2)) cos(θ1 − θ2)

ℓ1(cos2(θ1 − θ2)− 1)
, (31)

d2θ2
dt2

=
g sin θ1 cos(θ1 − θ2)− ℓ1θ̇

2
1 sin(θ1 − θ2)− g sin θ2

ℓ2(cos2(θ1 − θ2)− 1)
, (32)

5. Elastic double pendulum system. (EDPS) Similar to the double pendulum, but the connecting
component between the pendulums is elastic. The basic mathematical description of an elastic
pendulum involves Hooke’s law of springs and the motion of a pendulum. A simplified description is:

d2x

dt2
= −kx/m− g sin θ , (33)

d2θ

dt2
= −g/x cos θ , (34)

where x is the displacement from the equilibrium position, k is the spring constant, and m is the
mass.

6. Swing stick system. (SSS) A long stick with a fixed endpoint that swings under the influence of
gravity and other possible external forces. The pendulum system is equivalent to a long pendulum. The
basic description is similar to a simple pendulum, but requires consideration of the mass distribution
and length of the rod. The simplest description is:

d2θ

dt2
= − 3g

2L
sin θ, (35)

where L is half the length of the rod.

7. Air Dancer System. (ADS) For the air dancer, it is crucial to consider the influence of the gas
flow. This can be described by the incompressible Navier-Stokes equation:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u, (36)

∇ · u = 0, (37)

where u is the velocity, p is the pressure, ρ is the density, and ν is the kinematic viscosity.

20



Under review as a conference paper at ICLR 2024

8. Lava Lamp System. (LLS) At the heart of the lava lamp is the fluid flow caused by density
changes due to temperature. This can be described using the Navier-Stokes equation and the
Boussinesq approximation:

∂u

∂t
+ (u · ∇)u = − 1

ρ0
∇p+ ν∇2u− α(T − T0)g, (38)

∇ · u = 0, (39)
∂T

∂t
+ u · ∇T = κ∇2T, (40)

where T is the temperature, α is the thermal expansion coefficient, κ is the thermal diffusivity, and g
is the acceleration due to gravity.

9. Fire System. (FS) The fire system involves chemical reactions, heat transfer, and fluid dynamics.
A common description is:

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u+ source terms due to combustion, (41)

∇ · u = 0, (42)
∂T

∂t
+ u · ∇T = κ∇2T + source terms due to combustion, (43)

∂Yi

∂t
+ u · ∇Yi = D∇2Yi + reaction rate of species i, (44)

where Yi is the mass fraction of the i-th chemical species, and D is the diffusion coefficient.

C EXPERIMENTAL DETAILS

C.1 EVALUATION METRICS

We utilize the following metrics:

Mean Squared Error (MSE) Given the predicted data dimension Ypred ∈ RT×C×H×W and the label
data dimension Ylabel ∈ RT×C×H×W , the MSE is computed as:

MSE(Ypred, Ylabel) =
1

T × C ×H ×W

T∑
t=1

C∑
c=1

H∑
h=1

W∑
w=1

(Y tchw
pred − Y tchw

label )2 (45)

Mean Absolute Error (MAE) The MAE is given by:

MAE(Ypred, Ylabel) =
1

T × C ×H ×W

T∑
t=1

C∑
c=1

H∑
h=1

W∑
w=1

|Y tchw
pred − Y tchw

label | (46)

Anomaly Correlation Coefficient (ACC) The ACC, often used in meteorology, is defined as:

ACC =

∑
(Ypred − ¯Ypred)(Ylabel − ¯Ylabel)√∑

(Ypred − ¯Ypred)2
∑

(Ylabel − ¯Ylabel)2
(47)

where ¯Ypred and ¯Ylabel represent the means of Ypred and Ylabel, respectively.

Structural Similarity Index (SSIM) For each local window or region, the SSIM is calculated as:

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(48)

where x and y are pixel values within two windows or regions, µx and µy are their means, σ2
x and σ2

y
are their variances, and σxy is their covariance. C1 and C2 are small constants to prevent division by
zero.

Peak Signal-to-Noise Ratio (PSNR) The PSNR is given by:

PSNR = 10× log10

(
MAX2

MSE

)
(49)

where MAX represents the maximum possible pixel value. For an 8-bit image, MAX = 255.
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C.2 HYPERPARAMETERS

In the experimental settings, various hyperparameters are set for different datasets. For the attention
head, the Turbulence, KTH, and Video DS datasets are set to 2, while the ERA5, SEVIR, and
FLAME FLOW datasets are set to 4. The Fourier Transform Layers are configured as follows: 6 for
Turbulence, ERA5, and SEVIR; 4 for FLAME FLOW; 10 for KTH; and 12 for Video DS. The hidden
layer dimension in both the Feature Selection Module (FSM) and Other Training Module (OTM)
is set to 64 for Turbulence, ERA5, and KTH, and 128 for SEVIR, FLAME FLOW, and Video DS.
Across all datasets, the learning rate is consistently set at 0.01. In terms of the number of epochs,
Turbulence, ERA5, SEVIR, and KTH have 500 epochs, FLAME FLOW has 300, and Video DS has
100. Lastly, the batch sizes vary: 2 for Turbulence, 6 for ERA5, 10 for both SEVIR and KTH, 4 for
FLAME FLOW, and 20 for Video DS.

Table 3: Hyperparameters for Different Datasets

Hyperparameter TurbulenceERA5 SEVIR FLAME
FLOW

KTH Video
DS

Attention head 2 4 4 4 2 2
Fourier Transform Layers 6 6 6 4 10 12
Hidden layer dimension in FSM 64 64 128 128 64 128
Hidden layer dimension in OTM 64 64 128 128 64 128
Learning rate 0.01 0.01 0.01 0.01 0.01 0.01
Number of epochs 500 500 500 300 500 100
Batch size 2 6 10 4 10 20

D ADDITIONAL EXPERIMENTS

Table 4: Performance of Models on Various Datasets

Datasets
MODEL CMS RDS SPS RDPS EDPS SSS ADS LLS FS

ADFV 87.24 90.93 94.78 93.43 91.32 87.74 88.65 82.41 92.87
STAC 88.64 92.14 96.34 95.26 93.14 88.96 90.12 83.90 94.54

Our dataset is derived from (Chen et al., 2022), nine dynamics system datasets, recorded in video
format. Comparison experiment with the model of the original text, we named the original text
model as ADFV, because it is a video recording, we use SSIM as the evaluation metrics, and the
experimental results are shown in the Table 4.

According to the experimental results, the STAC model performs better on all datasets compared to
the original ADVF model. Specifically, the SSIM scores of the STAC model are higher than those
of the ADVF model both on the CMS, RDS, SPS, RDPS, EDPS, SSS, ADS, LLS, and FS datasets,
which clearly highlights the advantages and efficiency of the STAC model. These results demonstrate
the strong performance and reliability of the STAC model in dealing with dynamic systems of video
recordings.

E LONG-TERM PREDICTION RESULTS OF STAC

In this section, we present the complete visualization results of STAC on the long-term prediction
benchmark. We observe that on the Flame benchmark, our model is capable of excellently recon-
structing the forecast results over an extended time frame, nearly encapsulating detailed contour
information of the fire dynamics as well as the flow velocity. The astonishing consistency between
the ground-truth and prediction at 210 seconds further substantiates our model’s prowess in long-term
forecasting.

22



Under review as a conference paper at ICLR 2024

Initial condition Ground-truth Prediction

30s

60s

90s

120s

150s

180s

210s

Figure 10: Case study of predicting the fire temperature field for the next 210 seconds based on the
dynamic of the past 30 seconds.

F ABLATION STUDY

F.1 DATASET DETIALS

We conduct a comprehensive ablation study on STAC, with the dataset sourced from (Yin et al.,
2022). The dataset is based on the shallow water equation, and our primary focus is on modeling
its velocity field. The dataset has a basic dimensionality of [160, 1, 128, 256], which signifies 160
consecutive time snapshots. The 1 in the dimension stands for the channel variable, representing
velocity. The resolution of the velocity field is captured by the 128x256 dimension. We slice the
dataset into two sections: [20,1,128,256] and [140,1,128,256]. The former serves as the input, while
the latter acts as the ground truth. Subsequently, these slices are fed into various model variants for
ablation experiments. In addition, for the completeness of the ablation experiment, Fire and KTH
datasets are added, and MSE and SSIM are selected as evaluation indicators.

F.2 EXPERMENTAL RESULTS

We have designed the ablation experiments, and the specific model variants are shown below:

1. STAC w/o FNO: Indicates that STAC removed the FNO component.
2. STAC w/o Transformer: Indicates that STAC removed the Transformer component.
3. STAC w/o Transformer: Indicates that STAC removed the Transformer component.
4. STAC w/o FSM: Indicates that STAC removed the FSM component.
5. STAC (OTM→ ConvLSTM): STAC replaces the OTM module with ConvLSTM.
6. STAC (OTM→ PredRNN): STAC replaces the OTM module with PredRNN.
7. STAC w/o OTM: Indicates that STAC removed the OTM component.
8. STAC w/o IFTM: Indicates that STAC removed the IFTM component.
9. STAC (CRP→ Recall gate): STAC replaces the CRP module with Recall gate.

10. STAC w/o IFTM: Indicates that STAC removed the IFTM component.

The results of this experiment show that the original STAC model performs well across different
datasets (e.g. Fire, KTH, SWE), showing high SSIM scores and low MSE, indicating its effectiveness
in the field of physical dynamical systems modeling. The experiment also involved removing or
replacing different components of the STAC model, such as FNO, Transformer, FSM, OTM, IFTM,
and CRP. Removing these components usually results in performance degradation, indicating the
importance of each component to the overall performance of the model. In particular, when replacing
OTM modules, the use of ConvLSTM resulted in significant performance degradation, while the use of
PredRNN resulted in out-of-memory errors, suggesting inapplicability or requiring more optimization
or resources. In addition, different model variants also differ in computation time, showing the
tradeoff between model complexity, computational efficiency, and performance. Overall, the original
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STAC model outperformed its variants in almost every respect, highlighting the importance of each
component and balancing model complexity with efficiency in practical applications.

Table 5: Model Performance Metrics

Model Fire KTH SWE Avg Time
MSE SSIM MSE SSIM MSE SSIM

STAC 0.0487 92.87 0.2983 92.83 0.824 97.68 242s
STAC w/o FNO 0.0756 84.54 0.3021 90.79 2.235 79.43 239s

STAC w/o Transformer 0.0506 91.21 0.4765 83.72 1.093 94.32 192s
STAC w/o FSM 0.0765 85.43 0.4893 82.9 2.352 76.54 187s

STAC (OTM→ ConvLSTM) 0.1723 65.69 1.2043 65.42 1.845 83.43 321s
STAC (OTM→ PredRNN) 0.3922 57.98 OOM OOM OOM OOM 654s

STAC w/o OTM 0.0802 82.33 0.5644 78.43 2.153 79.97 209s
STAC w/o IFTM 0.0596 90.33 0.7321 70.43 1.183 91.23 237s

STAC (CRP→ Recall gate) 0.0998 79.49 0.5145 80.39 5.986 54.32 598s
STAC w/o CRP 0.0543 90.83 0.3343 87.38 6.322 45.65 200s

G STATISTICAL DESCRIPTION OF DATASETS

A complete statistical description of the data set used in this paper is shown in the Table. 6

Table 6: Dataset statistics. N tr and N te denote the number of instances in the training and test sets.
The lengths of the input and prediction sequences are I l and O l, respectively.

Dataset N tr N te (C, H, W) I l O l Interval
Turbulence 5000 1000 (3, 300, 300) 50 50 1 second

ERA5 (Global) 10000 2000 (1, 1440, 720) 10 10 1 day
ERA5 (Local) 5000 1000 (2, 200, 200) 8 8 1 hour

KTH 108717 4086 (1, 128, 128) 10 20 1 step
SEVIR 4158 500 (1, 384, 384) 13 12 5 mins

Fire 6000 1500 (2, 32, 480) 50 350 1 second
SWE 2000 200 (1, 128, 256) 20 140 1 second

dynamics system 6000 1200 (3, 128, 128) 2 2 1 second

H COMPLEXITY ANALYSIS

The complexity of the methods proposed in this paper is compared as follows. As can be seen from
the results, the efficiency of our method is competitive.

Table 7: Complexity analysis

Model Memory (MB) FLOPs (G) Params (M) Training time
FNO 8.41 12.31 7.271 32s / epoch

F-FNO 12.3 13.12 11.21 76s / epoch
E3D-LSTM 2691 288.9 51 172s / epoch

MIM 2331 179.2 38 154s / epoch
PredRNN-V2 1721 117.3 23.9 126s / epoch

SimVP-V2 421 17.2 46.8 25s / epoch
LSM 10.21 14.31 9.002 37 s / epoch
U-NO 92 32.1 136 278 s / epoch
STAC 578 22.81 25.4 98s / epoch
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I IMPACT OF LEARNABLE t

We investigate the question of whether t is learnable or not in the ODE module, and we try the
learnable t and compare its performance as follows. The results, as shown in the Table 8, show that a
learnable t can slightly improve performance and is more flexible than a fixed t.

Table 8: Comparative experiments on learnable t

Model MSE (Fire) SSIM (Fire) MSE(KTH) SSIM (KTH) MSE(SWE) SSIM(SWE)
STAC 0.048 92.87 0.298 92.83 0.824 97.68

STAC (learnable t) 0.046 93.02 0.287 93.11 0.814 98.53
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