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ABSTRACT

Recent studies in interpretability have explored the inner workings of transformer
models trained on tasks across various domains, often discovering that these net-
works naturally develop surprisingly structured representations. When such repre-
sentations comprehensively reflect the task domain’s structure, they are commonly
referred to as “World Models” (WMs). In this work, we discover such WMs
in transformers trained on maze tasks. In particular, by employing Sparse Au-
toencoders (SAEs) and analysing attention patterns, we examine the construction
of WMs and demonstrate consistency between the circuit analysis and the SAE
feature-based analysis. We intervene upon the isolated features to confirm their
causal role and, in doing so, find asymmetries between certain types of interven-
tions. Surprisingly, we find that models are able to reason with respect to a greater
number of active features than they see during training, even if attempting to spec-
ify these in the input token sequence would lead the model to fail. Futhermore,
we observe that varying positional encodings can alter how WMs are encoded in
a model’s residual stream. By analyzing the causal role of these WMs in a toy
domain we hope to make progress toward an understanding of emergent structure
in the representations acquired by Transformers, leading to the development of
more interpretable and controllable AI systems.

1 INTRODUCTION

The study of world models (WMs) in AI systems has gained significant traction of late, yet much
interpretability research focuses on large language models trained on diverse, complex datasets (Bel-
rose et al., 2023; Lieberum et al., 2023; Olsson et al., 2022). In an attempt to seek a more compre-
hensive understanding, our work examines WMs acquired by Transformers (Vaswani, 2017) in a
controlled, synthetic environment. In particular, we use Maze-solving tasks (Subsection 2.1) as
an ideal testbed for understanding learned WMs due to their human-understandable structure, con-
trollable complexity, and relevance to spatial reasoning. Using this constrained domain, we can
rigorously analyze how transformers trained (Subsection 2.2) to solve mazes construct and utilize
internal representations of their environment.

Our methodology leverages Sparse Autoencoders (SAEs) (Bricken et al., 2023) to overcome the
limitations of linear probes in detecting WM features. While linear probes can and have been used
to identify latent directions associated with features defined in an imposed ontology, SAEs are found
to discover features actually used by our models to make decisions (Section 3). By manipulating
specific features identified by the SAEs and observing the impact on our models’ maze-solving be-
havior, we provide strong evidence that these features are causally involved in the model’s decision-
making process (Section 4). This stands in contrast to prior work analyzing the formation of WMs
in maze settings where no causal features were able to be isolated (Ivanitskiy et al., 2024).

Our findings provide important considerations for AI interpretability and alignment. By investigat-
ing how transformers form causal WMs even in relatively simple tasks, we hope to provide new
avenues for understanding representations and potentially steering behavior in more complex AI
systems. This work lays the groundwork for future research into how we might intervene on WMs
to better align transformer-based AI systems to desired constraints.
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Figure 1: Overview of our methodology for discovering and validating world models in transformer-
based maze solvers. (A) We analyze attention patterns in early layers, finding heads that consolidate
maze connectivity information at semicolon tokens. (B) We train sparse autoencoders on the residual
stream immediately following the first block, identifying interpretable features that encode maze
connectivity. (C) We demonstrate the causal role of the world models in our transformers comparing
the features extracted through both methods and validating them through causal interventions.

We outline our methodology in Figure 1. In short, we begin in Subsection 3.1, identifying attention
heads that appear to construct world model features by examining their attention patterns across
maze coordinate tokens (A). We validate these findings in Subsection 3.3 by training sparse autoen-
coders on the residual stream and demonstrating that the extracted features match those identified
through attention analysis (B). Lastly, in Subsection 3.3 we establish the causal nature of these
representations through targeted interventions, showing that perturbing specific features produces
predictable changes in the model’s maze-solving behavior (C).

Contributions

• Empirical Findings: We show that transformers form WMs when solving mazes and that
these WMs are causal: they can be intervened upon in the latent space of SAEs. Sur-
prisingly, we find that interventions that activate features are more effective than those
that remove them, suggesting an asymmetry in how transformers utilize WM features. In
performing these interventions we also uncovered our models’ abilities to reason in the
presence of a out-of-distribution number of activated features than would naturally arise
for a given token sequence length.

• Methodological Insights: By effectively utilizing decision trees to isolate WMs features
in SAEs, we demonstrate that transformers utilizing different encodings schemes may use
varyingly compositional codes to represent their WMs. More generally, our analyses sug-
gest that SAEs are generally better suited than linear probes to isolate WMs, even in the
absence of feature splitting.

2 PRELIMINARIES

2.1 ENVIRONMENT

Though it remains a matter of debate whether Large Language Models (LLMs) construct structured
internal models of the real world, we can begin to understand the representations acquired by such
models by focusing on “toy” tasks with clear spatial or temporal structure (Brinkmann et al., 2024;
Momennejad et al., 2024; Jenner et al., 2024; McGrath et al., 2022). Previous works along these lines
(Li et al., 2022; Ivanitskiy et al., 2024; Nanda, 2023; Karvonen, 2024; He et al., 2024) have found
a variety of both correlational and causal evidence for internal models of the environment within
trained transformers. In this work, we utilize maze-dataset (Ivanitskiy et al., 2023), a package
providing maze-solving tasks as well as ways of turning these tasks into text representations. In
particular, we use a dataset of mazes consisting of up to 7 × 7 grids, generated via constrained
randomized depth first search (see Subsection 2.2) (which produces mazes that are acyclic and thus
have a unique solution).
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To train autoregressive transformers to solve such mazes, we employed a tokenization scheme pro-
vided by maze-dataset, shown in Figure 2. This scheme is designed to present the maze struc-
ture, start and end points, and solution path in a format amenable to transformer processing whilst
remaining straight-forward to analyse with standard tools from the mechanistic interpretability liter-
ature - primarily due to the existence of a unique token for every position in the maze (aka “lattice”).

<ADJLIST START> (0,0) <--> (1,0) ; (2,0) <--> (3,0) ; (4,1) <-->

(4,0) ; (2,0) <--> (2,1) ; (1,0) <--> (1,1) ; (3,4) <--> (2,4)

; (3,1) <--> (3,2) ; · · · (1,3) <--> (1,4) ; <ADJLIST END>

<ORIGIN START> (1,3) <ORIGIN END> <TARGET START> (2,3) <TARGET END>

<PATH START> (1,3) (0,3) (0,2) (1,2) (2,2) (2,1) (2,0) (3,0)

(4,0) (4,1) (4,2) (4,3) (4,4) (3,4) (2,4) (2,3) <PATH END>

(a) An example of a tokenized maze. 1: The adjacency list describes the con-
nectivity of the maze, with the semicolon token ; delimiting consecutive con-
nections. The order of connections is randomized, ellipses represent omitted
connection pairs. 2,3: The origin and target specify where the path should be-
gin and end, respectively. 4: The path itself a sequence of coordinate tokens
representing the shortest path from the origin to the target. For a “rollout,” we
provide everything up to (and including) the <PATH START> token and au-
toregressively sample with argmax until a <PATH END> token is produced.
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(b) Visual representation of
the same maze as in the
tokenized representation on
the left. The origin is indi-
cated in green, the target in
red, and the path in blue.

Figure 2: Tokenization scheme and visualization of a shortest-path maze task generated using Ivan-
itskiy et al. (2023).

2.2 MAZE SOLVING TRANSFORMERS

Utilizing the tokenized representations of mazes provide by the maze-dataset library, a suite of
transformer models implemented using TransformerLens ((Nanda & Bloom, 2022)) were trained to
predict solution paths in acylic mazes. We performed extensive hyperparameter sweeps (Figure 10)
over several variants of the transformer architecture, yielding models with stronger generalization
performance than those found by prior work Ivanitskiy et al. (2024).

To allow the testing of generalization to large maze size, the models were trained on 5 × 5 fully-
connected and 6 × 6 sparsely connected mazes, embedded in a 7 × 7 lattice. This ensured that all
coordinate tokens in the 7×7 vocabulary had been seen during training time, such that generalization
to 7 × 7 mazes was conceivable but out-of-distribution during inference. For our experiments, we
investigated the two best performing models for each positional embedding (Su et al., 2024) scheme,
as shown in Table 1. Note that whilst these models had different numbers of heads, their parameter
counts varied only slightly - on account of Stan’s use of learned positional embeddings.

3 DISCOVERING WORLD MODELS

Broadly speaking there are two ways to go about trying to identify internal world models: 1) Assum-
ing the form of the world model and inspecting the transformer with e.g. supervised probes to see if
this world model is present ((Nanda, 2023) SELF CITE Workshop proceeding), or 2) Exploring the
model internals and investigating any structure which may be present in the representations to see if
something akin to a world model exists. In our work we take both approaches.

Model Nickname Positional Embeddings dmodel nlayers nheads Num. Params Maze Solving Accuracy

Stan standard learned 512 6 8 19,225,660 96.6%
Terry rotary 512 6 4 18,963,516 94.3%

Table 1: Models chosen for mechanistic investigation (most performant in the sweep, given their
respective position embedding schemes). The number of parameters varies as Stan learns position
encodings (Wpos ∈ R512×512)
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First, in Subsection 3.1 we investigate attention heads in the earliest layer of our models and find
heads specialising in the construction of representations akin to a world model. On the basis of this,
we use SAEs (an unsupervised method) alongside supervised classifiers to identify latent features
corresponding to the world model. Finally, we use patching experiments and interventions to show
that both investigations yield consistent features, and that these form a causal world model with
some interesting properties.

3.1 WORLD MODEL CONSTRUCTION: CONNECTIVITY ATTENTION HEADS

We began by examining the attention patterns of the maze-solving transformer models and uncov-
ered a notable pattern: in both models, some or all of the attention heads at the first layer (“layer
0”) appear to consolidate information about maze connections into the ; context positions. In
particular, for all 4ith context-positions tokens (the semicolon separation tokens ; ), these heads
attend back 1 or 3 tokens - that is, to one of the two coordinate tokens corresponding to the given
connection preceeding the ; token. This pattern is observable for 3/8 L0 heads in Stan (Figure 3)
and 4/4 L0 heads in Terry (Figure 14). This observation suggests the hypothesis that these heads
are in essence constructing a world model for the maze task, for use by later layers.

If this were the case, then we should expect that the output of these heads, mediated by the “OV-
Circuit” (Elhage et al., 2021), should consist of combinations of the coordinates captured in a given
connection. This can be measured by taking the WOV matrix for each head and measuring the cosine
distance between its elements and the model’s token embeddings (where coordinate directions are
directly given)1. With this in mind, we investigated the structure of these vectors more closely. We
find an intriguing pattern in the magnitudes of these vectors in the Stan model (Figure 4), while the
patterns in Terry were less clear cut (Figure 5).
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Figure 3: Attention values for heads L0H3, L0H5, and L0H7 in Stan. We use a rather nonstandard
representation, looking only at a fixed window into the past of which tokens are attended to by
semicolon ; tokens. Every 4th position, up to 140, is shown along the x-axis. Color shows
attention to positions 1, 3, 5, and 7 earlier in the context (shown along the y-axis), for an example
6x6 maze input. This sort of pattern is typical across all inputs examined. Up until context position
100, the heads are attending 1 and 3 positions back; after this the pattern shifts to 5 and 7 back. Note
the complementary attention patterns of L0H3 and L0H7. Closer examination shows that L0H3
prefers to direct its attention to ‘even-parity’ maze cells, with L0H7 preferring ‘odd-parity’ cells.
L0H5 more frequently splits its attention between 1 and 3 back, but sometimes ‘fills in’ for L0H7.
The origins of this pattern are explored further in appendix E; note also the similarities to Figure 4.
The other five heads in L0 show no similar pattern. Full patterns are shown in Figure 13

1As we analyze the first attention layer we can ignore potential “residual drift” in the representations of a
given maze coordinate between early and later layers in our transformers (Belrose et al., 2023).
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Figure 4: Magnitudes of vectors resulting from applying the WOV matrices of heads L0H3, L0H5
and L0H7 of Stan to maze-cell token embeddings, projected onto the maze grid. The pattern here
mirrors the way that the heads divide their attention between the 1-back and 3-back context positions
(exemplified in Figure 3) with L0H3 focused on ‘even-parity’ cells, and L0H7 and LH05 focused
primarily on ‘odd-parity’ cells. This pattern also recurs in the overlaps between query and key
vectors of token embeddings, explored in detail in Appendix E.
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Figure 5: Magnitudes of vectors resulting from applying the WOV matrices of layer-0 heads of
Terry to maze-cell token embeddings, projected onto the maze grid. The pattern here is much less
striking than that for Stan (shown in Figure 4) although it does suggest that the heads specialise in
even/odd-parity cells in localised regions of the maze.

3.2 WORLD MODEL REPRESENTATION: SPARSE AUTOENCODERS

As previous work (Ivanitskiy et al., 2024) struggled to intervene on WM features identified via lin-
ear probing (Alain & Bengio, 2016), we trained Sparse Autoencoders to attempt to find disentangled
features in our models (Cunningham et al., 2023; Bricken et al., 2023). Sparse Autoencoders are
motivated by the notion of superposition (Elhage et al., 2022) which posits that artificial neural
networks store more features than an orthogonal representation would allow. By training an autoen-
coder with a higher-dimensional latent space than that of the transformer, tasked with reconstructing
a residual stream vector under a sparsity penalty, the hope is that the SAE will recover interpretable
features which the transformer was forced to superimpose. Similar approaches have previously seen
success on other toy tasks (He et al., 2024; Karvonen et al., 2024).

To prevent “neuron death” in the SAE latent space, resulting from high sparsity penalties, we apply
the method of “Ghost Gradients” proposed by Jermyn & Templeton (2024). The resulting trained
SAEs faithfully reconstructed the activations (in our case, the residual stream after L0), and re-
placing these activations with their SAE reconstructed counterparts did not affect model behaviour
(Figure 8), giving confidence in the completeness of their representation.

Initial attempts to isolate SAE features corresponding to connections in the maze attempted to use
differences in the features present in mazes with or without certain connections. This approach
worked well in some cases, but not in others, as not all relevant features varied in magnitude by the
same amount, and many features were co-active to a given connection (i.e. those implicated in the
path representation, which itself might change when connections are added/removed). To address
this, we instead trained decision trees to isolate the relevant features in our transformers (akin to
Spies et al. (2022)), as shown in Figure 6.

This analysis yielded our first unexpected finding: Stan’s WM consisted of two features for each
connection - a somewhat generic “semicolon” feature, as well as a connection specific feature. We
visualize highly activating examples of these features in Figure 17, and show that Stan’s representa-
tion was stable for an additionally trained SAE in Figure 18.
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We speculate that this “compositional code” arises in Stan as a result of the transformer imperfectly
separating positional information from its WM. This representation also explains why previous ef-
forts to intervene on models with learned positional encodings by using linear probes were unsuc-
cessful - as intervening with a single direction yielded from supervised decoding would also affect
the semicolon feature.

It is also interesting to note that Terry encoded connection information very cleanly into single
features for each connection - i.e., a single direction in the residual stream. This is in-spite of the
fact that Terry’s attention heads appeared to operate in a more entangled fashion than those of Stan.
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Figure 6: Decision tree decoding accuracies and relevant features (in parentheses) for each con-
nection in the maze. Upper right triangles correspond to right connections, and lower left triangles
correspond to down connections. The decision trees were trained to predict the presence, or absence,
of a connection from the SAE feature vector at the semicolon immediately following the definition
of that connection. See Figure 17 for more details.

3.3 COMPARING SAES AND CIRCUITS

In Subsection 3.1 we advanced the claim that certain L0 heads construct features representing maze
edges at the ; context positions, specifically by attending to earlier positions containing maze-cell
token embeddings, and rewriting those embeddings by application of their WOV matrices. Subsec-
tion 3.2 identified features representing maze edges via an independent line of reasoning, by training
SAEs, and identifying which of their features were indicative of the presence of a maze edge.

To verify whether these approaches yielded consistent features for the WM, we first calculated the
cosine similarity between the features written by isolated attention heads, and those encoded in the
SAE (Figure 7a). These showed excellent agreement for Stan, where the attention patterns were
clear, but only once the compositional code was taken into account (see Appendix G for details).

Though these results were promising, we carried out a further comparison (Figure 7b) to minimize
the assumptions required, and to account for two potential effects: 1) There may be “wiggle room”
between feature directions in the model’s residual stream, and the circuits that construct them (which
would lead to low cosine similarities, even for the same features), 2) As our SAEs are trained after
an entire block of computation, it is possible that the MLPs, applied after attention, also played a
role in forming the representations. In this second experiment we patched attention head values in
the presence of a connection to the mean of a maze set without that connection.By looking at the
effect of patching the attention heads on the resulting SAE Latent vectors, we were able to observe
that the features considered relevant for any given connection were indeed sensitive to the heads
implicated in constructing those features.

In particular, we consider the effect on the SAE features identified in Subsection 3.2 when each
attention head is patched at the semicolon position for with its average non-connection value across
500 examples (i.e. removing the contribution a given head toward encoding that connection).
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This captures the extent to which a given head contributes towards the “creation” of a maze-
connection’s representation in the residual stream. These plots not only confirm the link between
the attention circuits and the SAE features, but even show the same spatial partitioning of different
parts of the maze between different heads. The same plots for Terry, and Stan’s down connection,
are shown in Appendix F.
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Figure 7: Comparison of SAE features and attention head analysis.

4 INTERVENING ON WORLD MODELS

Though a universally agreed upon definition does not exist, we shall consider world Models to be
“structure preserving [...] causally efficacious representations” (Millière & Buckner, 2024) of an
environment; i.e. representations which preserve the causal structure of the environment as far as
is necessitated by the tasks an agent needs to perform. As such, we are interested in understanding
how the WMs we have discovered are leveraged by our models to facilitate generation of valid
solution sequences. In Figure 8, we give an example of perturbing a feature to “fool” the model
into behaving as though it is in a different maze. When patching in the SAE-reconstructed residual
stream without perturbations we still see the same behavior as in the original model; when patching
in with a modified feature, we see a change in the path. We perform such interventions across 200
examples for each connection feature, and show the resulting intervention efficacies in Figure 9.

The intervention process involves toggling a feature on (to the maximal value observed for that
feature in a small dataset) or turning it off (setting it to 0) at all semicolon positions2. We measure
the impact of these interventions on the model’s maze-solving accuracy, with a particular focus
on how activating versus removing features affects performance. Our results reveal an intriguing
asymmetry that constitutes our second finding: interventions that activate features tend to be more
effective in altering the model’s behavior compared to those that remove features.

2For the case of adding a connection, this is necessary as there is no semicolon in the sequence which
“belongs” to the connection that doesn’t exist. We also experimented with toggling to a fixed maximal value in
Figure 19, but this was generally less effective. In the case of removal, it made little difference if the feature
was disabled everywhere, as it is almost always exactly 0 for a non-matching connection semicolon
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This suggests that the transformer may rely more heavily on the presence of certain connectivity
cues rather than their absence when constructing its internal world model.

Our final finding relates to the toggling of features in Stan. Though Stan utilized a compositional
code, activating the connection-specific features at unrelated semicolons worked in 35% of cases.
Conversely, we saw that all removal interventions failed for Stan, for the simple reason that Stan
was unable to generalize to sequences containing more connections than it had seen during training
- thus failing when shown examples containing the additional connection to be removed (this failure
was a result of Stan using learned positional embeddings (Table 1), as shown in Figure 10). The fact
that activating connections in the space of the SAE worked at all means that Stan’s maze-solving
behaviour was at least partially able to generalize in the latent space, where it was decoupled from
the positional embeddings.
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Figure 8: An example of an intervention on Terry where a connection is added by enabling the
relevant feature in the SAE’s latent space (in this case, feature 250 for (1,2) <--> (1,3)
). From left to right: 1) input maze with ground truth 2) model’s prediction with the unperturbed
SAE reconstruction patched in 3) perturbed ground truth 4) model’s prediction with the perturbed
SAE reconstruction in its residual stream at layer 0.
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Figure 9: Aggregated accuracy of interventions for examples on which the original prediction was
correct. An accurate intervention is one in which the toggling of a connection in the SAE feature
space leads the model to act accordingly. Note that Stan removal interventions fail as the inputs in
these cases have more connections than the model is able to handle (see length generalization failure
in Figure 10).

5 RELATED WORK

Our work builds on existing literature in interpretability (Räuker et al., 2023), particularly how trans-
formers develop structured internal representations, often called world models. World Models, as
defined by Millière & Buckner (2024), are “structure-preserving, causally efficacious representa-
tions of properties of [a model’s] input domain.”
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Here, structure-preserving means that the representations reflect the causal structure of the observa-
tion space and causally efficacious means that the model leverages these representations to enable
relevant interactions with its environment.

Research into world models has gained traction across various domains, with transformers trained
to play complex games like chess being prime examples. For instance, McGrath et al. (2022) trained
linear probes to extract various features in AlphaZero’s chess model, showing how different aspects
of the game, such as piece positioning and potential future moves, are captured within the model’s
layers. Similarly, Karvonen (2024) investigates the internal representations of a chess model us-
ing linear probes and contrastive activations, revealing structured representations of the game state.
Jenner et al. (2024) explores the emergence of learned look-ahead capabilities in Leela Chess Zero,
where the model encodes an internal representation of future optimal moves.

Another task used to study internal representations in transformers is Othello. Several works have
explored the emergence of causal linear world models in this domain Li et al. (2022); Nanda (2023),
with recent advancements leveraging SAEs (see Subsection 3.2 to uncover these world models He
et al. (2024).

Beyond game-playing tasks, the study of learned world models in transformers extends to other
domains, such as natural language processing, where Hewitt & Manning (2019) used probing tech-
niques to uncover the syntactic structure encoded by BERT. This line of research demonstrates that
transformer models can implicitly learn hierarchical structures in their residual streams, as explored
by Manning et al. (2020). Further supporting this, Pal et al. (2023) demonstrated that the residual
stream corresponding to individual input tokens encodes information to predict the correct token
several positions ahead, highlighting the model’s capacity for structured, anticipatory reasoning.

Additionally, graph traversal as multi-step reasoning has been investigated both from a model capa-
bilities perspective Momennejad et al. (2024) and through mechanistic interpretability Brinkmann
et al. (2024); Ivanitskiy et al. (2024), providing further evidence of transformers’ ability to encode
and utilize structured representations in complex tasks.

6 CONCLUSIONS AND FUTURE WORK

In this work, we demonstrated that transformers trained to solve maze navigation tasks form highly
structured internal representations that capture the connectivity of the maze and thus act as world
models. Through exploratory analysis of attention patterns, we found that connection information
was consolidated into semicolon tokens by a subset of attention heads. By using Decision Trees
to analyze the latent space of Sparse Autoencoders on these semicolons, we were able to identify
sparse features that encoded the position in the maze. We showed that these world models were con-
structed differently in transformers leveraging learned vs. rotary positional encodings, suggesting
that simpler methods such as activation steering or probing would have been insufficient to extract
causal world models in at least some cases. More interesting still, we showed that interventions to
add connections by toggling features were consistently more effective than interventions that sought
to remove connections by zeroing the corresponding features. Furthermore, we found that models
with learned position encodings, which were unable to generalize to longer input sequences (i.e.,
mazes with more connections), were able to behave consistently if additional connection features
were enabled via SAE interventions, even if the corresponding token sequence would have caused
the model to fail.

These findings shed light on the inner workings of transformers trained on sequential planning tasks
and suggest that maze-solving tasks are a rich testbed for understanding the formation of world
models in transformers. Future work should aim to uncover whether our findings on intervention
asymmetries and steerability are universal - and if not, which conditions give rise to each. An
empirical understanding of the reliability of SAE feature discovery and steerability is crucial for AI
Safety efforts that attempt to constrain or coerce model behavior through interventions or monitoring
based on such methods.
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Appendices

A GENERALIZATION AS A FUNCTION OF INPUT SEQUENCE LENGTH
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Figure 10: Accuracies of all transformers trained in our sweep on a generalization task. “Train Val”
shows the accuracy on the held out in-length-distribution mazes from train time, and “Full Maze”
features mazes with more connections (longer input sequences) than those seen at train time. Only
rotary models are able to generalize at all

B SAE TRAINING DETAILS

To choose optimal hyperparameters for our SAEs we ran a sweep over SAEs at layers 2 to 4 on
Terry, finding consistent trends across layers. The results of this sweep are shown in Figure 11, and
the final details of the SAE analyzed in the main paper are given in Table 2. We also provide feature
density histograms for the SAEs analyzed in the main paper in Figure 12 noting that these look good,
in that many features are sparse, but also rather distinct from is typically observed in LLMs. This
is not surprising, as our token and features distributions will be very distinct from those of natural
language, as most mazes have many active connections, and connections are similarly likely to be
present in any given maze.

Sparsity Dataset Optimizer
Expansion Factor Ghost Threshold (L0) Sparsity Weight Batch Size Training Steps Learning Rate Linear Warm Up Steps

4 100 0.01 1024 ∼ 106 10−4 1000

Table 2: Hyperparameter values for the final SAEs analyzed in the main paper.
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SAE Feature Metrics Average Token Reconstruction Errors
Residual Reconstruction Error (L2) Sparsity (L1) L0 Unperturbed Zero Patched SAE Patched

Terry 2.87× 10−4 10.7 20.9 8.18 8.52 8.18
Stan 6.35× 10−4 9.53 28.4 6.35 8.61 6.35

Table 3: SAE Metrics for the final SAEs trained on Stan and Terry. We see that replacing the residual
stream with the SAE reconstructions has very little impact on the sequence produced by the model,
providing confidence that the SAEs are encoding all the relevant information in the model’s residual
stream.
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Figure 11: Results of an SAE sweep carried out on Terry.
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Figure 12: Feature density histograms for the SAEs analyzed in the main paper.
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Figure 13: Attention patterns for head L0H3 in Stan and Terry, for a specific example maze. At every
fourth context position from 4 through to 140 (the ; positions in the adjacency-list) attention is
directed very strongly back to one or two positions, typically 1 or 3 positions earlier in the context
(though for Stan, after context position 100, this shifts to 5 or 7 positions earlier in the context). This
pattern is qualitatively repeated across all examples examined, for heads L0H3, L0H5 and L0H7 in
Stan, and for all four L0 heads in Terry.
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Figure 14: Attention values for layer 0 heads in Terry, from context positions holding the ; token
(shown along the x-axis) to positions 1 and 3 earlier in the context (shown along the y-axis), for an
example maze input. This pattern is typical across all inputs examined. The pattern is less clear-cut
than for Stan (Figure 3), but note that at every fourth context position, there is at least one head
attending strongly to positions 1 and 3 earlier in the context.14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

D HOW SAE REPRESENTATIONS DIFFER

Decision Tree Feature Importances for (4, 4, 'right') in Terry

samples = 803
value = [803, 0]

class = Connection absent

samples = 797
value = [0, 797]

class = Connection present

feature_1773 <= 1.42
samples = 1600

value = [803, 797]
class = Connection absent

(a) Terry model: A single feature almost perfectly
encodes the existence of a specific connection in the
maze. This demonstrates the direct encoding of maze
connectivity in Terry’s SAE latent space.

Decision Tree Feature Importances for (4, 4, 'right') in Stan

samples = 834
value = [795, 39]

class = Connection absent

samples = 218
value = [8, 210]

class = Connection present

feature_1422 <= 0.346
samples = 1052

value = [803, 249]
class = Connection absent

samples = 548
value = [0, 548]

class = Connection present

feature_1999 <= 4.972
samples = 1600

value = [803, 797]
class = Connection absent

(b) Stan model: Two features (Feature 1422 and an-
other) work together to encode maze connectivity.
Feature 1422 appears consistently across all connec-
tions, aligning with the decision tree decoding results
presented Figure 6.

Figure 15: Decision trees trained on SAE latents for Terry and Stan models, predicting the existence
of specific connections in the maze. These examples illustrate how maze connectivity is encoded
in the residual stream at layer 0 on the corresponding semicolon position. The decision trees were
trained as supervised classifiers whose target was to predict the presence of a given connection,
given an SAE feature vector from the corresponding semicolon position. These SAEs were trained
with 10,000 examples per connection (equally balanced between the presence / non-presence of a
connection).

(a) Terry model: A single SAE
feature directly encodes a spe-
cific maze connection, demon-
strating Terry’s straightforward
representation of maze connec-
tivity.

(b) Stan model: The connection-
specific feature activates at the
semicolon corresponding to the
encoded connection, similar to
Terry’s encoding strategy (see
Figure 17b).

(c) Stan model: Feature 1422,
in conjunction with another fea-
ture, encodes maze connectivity.
This feature appears consistently
across all connections, corrobo-
rating the decision tree decoding
results in Figure 6.

Figure 16: Maximally activating examples, displayed using a modified version of McDougall (2024)
for SAE features encoding the connection (4,4) <--> (4,5) , as identified by decision
tree decoding. Underlines correspond to loss contribution (blue for positive, red for negative) and
highlighting indicates feature activation at a given token position. Connection-specific features in
both models (Figure 17b and Figure 17a) show clear activation patterns, while Stan’s generic semi-
colon feature (Figure 16c) exhibits a less obvious trend. Produced using a modified version of
McDougall (2024)

D.1 MAGNITUDE OF INTERVENTIONS

To complement the intervention results presented in the main text, we also conducted fixed-value
interventions on both the Stan and Terry models. In these interventions, instead of calculating new
activations based on the modified input, we directly set the activations of the targeted features to
fixed values. This approach allows us to examine how the models respond to more controlled ma-
nipulations of their internal representations.

The fixed-value intervention results shown in Figure 19 reveal interesting patterns that both comple-
ment and contrast with the calculated intervention results presented in the main text.
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(a) Representative SAE features for Terry.

(b) Representative SAE features for Stan.

Figure 17: We provide examples for the types of features observed in Stan and Terry, beyond the
connection features which form the primary focus of the main paper. We observe the same kinds
of features between both transformers, and in both cases the predominant features are of the form
observed in the top-left (Feature 32 in Terry and 2 in Stan) - These features are more distributed and
harder to interpret than the others, and may be suppressed by higher sparsity penalties.

E INVESTIGATION OF QK-CIRCUIT IN STAN MODEL

In an effort to better understand the notable “1- and 3-back” attention patterns appearing in heads
L0H3, L0H5 and L0H7 of Stan, described in Subsection 3.1, we investigated the query and key
vectors for token and positional embeddings, and their overlaps. The scalar products between queries
and keys of token embeddings for L0H3 are shown in figure 20. The most striking feature of this
plot is the row corresponding to the query vector of the ; token, and in particular its overlap
with the maze cell tokens. Plotting these scalar products on the maze cell grid (figure 21) a clear
pattern emerges, analogous to that shown in figure 4, accounting for LH03’s tendency to attend to
even-parity cells, and LH05’s and LH07’s tendencies to attend to odd-parity cells. Examining the
scalar products among query and key vectors for positional embeddings (figure 22) reveals a pattern
that likely accounts for the focusing of attention from ; context positions to positions 1 and/or 3
earlier in the context.
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Figure 18: Another SAE trained on Stan gives rise to the same compositional code.
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Figure 19: Aggregated accuracy of fixed-value interventions for examples on which the original
prediction was correct. As opposed to Figure 9, the addition interventions were performed with a
fixed value of 10 (removal interventions were the same, with a fixed value of 0). Here we see that
the fixed-value interventions are mostly less effective than the calculated interventions, suggesting
magnitude sensitivity for feature magnitudes in the transformer’s use of the World Model.
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Figure 20: Scalar products of Stan LH03 of query (rows) and key (columns) vectors for token
embeddings. Note that the most pronounced pattern is found on the row corresponding to the query
vector of the ; token, reflecting the importance of this head in establishing the attention pattern
from context positions containing the ; token.

0 2 4 6

6

5

4

3

2

1

0

0 2 4 6

6

5

4

3

2

1

0

0 2 4 6

6

5

4

3

2

1

0

−0.015

−0.01

−0.005

0

0.005

0.01

Head 0.3 Head 0.5 Head 0.7

Figure 21: Stan scalar products of query vector for ; token and key vectors for maze-cell tokens,
arranged on maze grid. Note the clear correspondence with Figure 4. These patterns account for
why LH03 directs its attention to even-parity cells, while odd-parity cells are attended to by LH07
or LH05.
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Figure 22: Scalar products of Stan LH03 of query (rows) and key (columns) vectors for position
embeddings. Note the approximately diagonal band of pairs of strong positive overlaps every fourth
row. This is likely the origin of the ‘1- or 3-back from ; ‘ attention pattern.
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Figure 23: Stan OV projections across position embeddings for all heads.
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Figure 24: Stan OV-SAE feature similarity for all heads. Complimenting Figure 7a.
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F COMPARING SAES FEATURES AND CONNECTIVITY ATTENTION HEADS
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Figure 25: Effect of patching attention heads on SAE features for each down-connection Stan. These
again provide agreement with the OV analyses performed in the main text.

0

1

2

3

0% 100%

4

0
0% 100%

1
0% 100%

2
0% 100%

3
0% 100%

4

Maze X

M
az

e 
Y

Heads
head_0
head_1
head_2
head_3

(a) Effect of attention patching on right-connection
features.
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(b) Effect of attention patching on down-connection
features

Figure 26: Effect of patching attention heads on SAE features for Terry. Whilst we observe notable
effects, it is difficult to see a clear pattern - as revealed by the attention analyses, the role of each
head in constructing a single connection feature in Terry is harder to understand.
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G COMPUTING SAE AND OV EDGE FEATURE SIMILARITY

In Figure 7a we compute the cosine similarity between SAE edge features and OV circuit edge
features.

SAE edge features are formed from a linear combination of the specific edge feature and a “generic
edge” feature, with the generic feature coefficient of −0.6 being chosen to maximise cosine similar-
ity.

OV edge features are formed from a weighted sum:∑
h,c

ahcW
h
OV tc

Here, h indexes heads L0H3, L0H5 and L0H7, with W L0H3
OV , for example, giving the OV matrix of

L0H3. c indexes the two cells present in the edge of interest, and tc is the token embedding of a cell
c. The coefficients ahc are given by the attention directed by head h to cell c from the ; context
position following the specification of the edge of interest. Data was averaged averaged over 100
examples (see Figure 3 for one such example).
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