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Abstract
Unified Sequence Labeling articulates differ-
ent sequence labeling tasks such as Named
Entity Recognition, Relation Extraction, Se-
mantic Role Labeling, etc. in a generalized
sequence-to-sequence format. Unfortunately,
this requires formatting different tasks into spe-
cialized augmented formats which are unfa-
miliar to the base pretrained language model
(PLMs). This necessitates model fine-tuning
and significantly bounds its usefulness in data-
limited settings where fine-tuning large mod-
els cannot properly generalize to the target for-
mat. To address this challenge and leverage
PLM knowledge effectively, we propose FISH-
DIP, a sample-aware dynamic sparse finetun-
ing strategy. It selectively finetunes a fraction
of parameters informed by highly regressing
examples during the fine-tuning process. By
leveraging the dynamism of sparsity, our ap-
proach mitigates the impact of well-learned
samples and prioritizes underperforming in-
stances for improvement in generalization.
Across five tasks of sequence labeling, we
demonstrate that FISH-DIP can smoothly opti-
mize the model in low-resource settings, offer-
ing up to 40% performance improvements over
full fine-tuning depending on target evaluation
settings. Also, compared to in-context learn-
ing and other parameter-efficient fine-tuning
(PEFT) approaches, FISH-DIP performs com-
parably or better, notably in extreme low-
resource settings. The source code of FISH-
DIP will be available at: https://github.
com/psunlpgroup/FISH-DIP

1 Introduction

Sequence Labeling tasks such as Named Entity
Recognition, Relation Extraction, Semantic Role
Labeling, etc. aim to assign target labels to the
components of a sequence from a set of categor-
ical classes. Accurate sequence labeling requires
learning complex structural dependency, where
even state-of-the-art pretrained LLMs like GPT-3.5-
turbo fail to show acceptable performance (Li et al.,
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Figure 1: Overview of FISH-DIP for Unified Low-
Resource Sequence Labeling. All augmented training
samples (Table 1) are first channeled through PLMs (e.g.
T5-large) to calculate the training loss. Top-n most re-
gressing samples are chosen for calculating parameter
importance, for k% sparsity mask. In backpropagation,
this sparsity mask is applied for sparse finetuning. Pa-
rameter importance is updated dynamically using the
feedback from underperforming samples.

2023). A reasonable way to address this gap is to
linearize these structured prediction tasks into an
augmented lanugage representation (Paolini et al.,
2021; Liu et al., 2022b) that frames all sequence
labeling tasks in a unified sequence-to-sequence
format (See examples in Table 1). This allows us
to capture the structured information while align-
ing the prediction and training objectives of large
language models. Significantly, when paired with
this unified format, the pretrained language models
(PLMs) exhibit an impressive ability to effectively
generalize to different tasks, capitalizing on the
inherent potential for knowledge transfer.

Despite these advantages, fine-tuning PLMs to
accommodate such an “augmented" format for se-
quence labeling in data-limited low-resource envi-
ronments is significantly challenging, which has

https://github.com/psunlpgroup/FISH-DIP
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Task T Input X Transformation FT that produces Augmented NL Target X̄

NER
Over 900 million US dollars of foreign capital was actually utilized,
increasing nearly 40% compared with the same period previous year.

[ Over 900 million US dollars | monetary ] of foreign capital was
actually utilized , increasing [ nearly 40 % | percent ] compared
with the same period [ previous year | date ] .

Relation Extraction
In the Middle Adriatic Basin, there is evidence of Permian volcanism
observed on the Vis island and as volcanic islands of Jabuka and Brusnik.

relationship between [ Jabuka ] and [ Adriatic Basin ] = located
in or next to body of water

Joint ER extraction
In 1831 , the 20th President of the United States, James Garfield, was
born in Orange , Ohio.

In 1831 , the 20th President of the [ United States | location ] ,
[ James Garfield | person | lives in = Orange, Ohio ] , was born
in [ Orange , Ohio | location ] .

DST

[User]: hi, can you help me find a place to stay on the north side?;
[Agent]: I have 13 hotels on the north side of town, do you have any
preferences [User]: yes, are there any expensive ones? I also would
like free parking as well.

[ belief ] hotel area north, hotel book day not given, hotel book
people not given, hotel book stay not given, hotel internet not
given, hotel name not given, hotel parking yes, hotel price range
expensive, hotel stars not given, hotel type hotel [ belief ]

SRL
The lawyers have renewed their arguments in Texas and
eight other states where the defense is [ permitted ] under
state law.

The lawyers have renewed their arguments in [ Texas and
eight other states | AM-LOC ] [ where | R-AM-LOC ]
[ the defense | A1 ] is permitted [ under state law | AM-LOC ].

Table 1: We employ augmented language to unified sequence labeling tasks. Example transformations for Named
Entity Recognition (NER), Relation Extraction, Joint Entity Relation extraction, Dialogue State Tracking (DST),
and Semantic Role Labeling (SRL).

not been thoroughly investigated previously. For
instance, most state-of-the-art Parameter Efficient
Fine-Tuning (PEFT) methods, such as LoRA (Hu
et al., 2021), Adapter (Houlsby et al., 2019), Com-
pactor (Karimi Mahabadi et al., 2021), (IA)3 (Liu
et al., 2022a), etc., introduce new trainable param-
eters for altering the output. Although effective in
sentence classification or generation tasks, we find
these methods often underperform in data-limited
low-resource sequence labeling tasks as shown in
our results, primarily due to the insufficient avail-
able data for training the added parameters to ac-
commodate the new augmented language format.

In the context of data-limited low-resource uni-
versal sequence labeling tasks, we identified fixed
Fisher Information sparsity training (Sung et al.,
2021) as a promising direction. Instead of intro-
ducing new parameters to train from scratch, it
selects and finetunes the most influential parame-
ters from the existing well-trained PLMs, yielding
results on par with full fine-tuning (fine-tuning all
the parameters of the model). However, our in-
vestigations reveal that a sample-aware dynamic
selection of parameter importance can lead to a sig-
nificant performance boost in few-sample settings.
Thus, we propose leveraging FISHer information
for Sparse Fine-tuning with Dynamic Importance
of Parameters (FISH-DIP), a method of sparse fine-
tuning that dynamically chooses and adjusts a small
fraction of the most relevant parameters based on
the feedback from the available samples with the
highest loss, prioritizing those that exhibit highest
deviation from the desired outcome. As shown in
Figure 1, augmented natural language training sam-

ples are channeled through PLMs (e.g. T5-large),
from which we can calculate losses for each of the
samples. Then under-performing samples are cho-
sen for calculating parameter importance, which
in turn is leveraged to determine a sparsity mask
for sparse finetuning. As training progresses,
the importance of parameters is updated to accom-
modate the evolving learning requirements of both
the model parameters and training samples. Conse-
quently, FISH-DIP ensures that the fraction of the
model parameters chosen is primarily influenced
by the most pertinent samples, effectively helping
in smoother optimization (Figure 4) and generaliza-
tion while sustaining the enhancement in few-shot
performance.

We conduct comprehensive testing of FISH-DIP

across a range of tasks, including Named En-
tity Recognition (Sang and De Meulder, 2003;
Weischedel et al., 2013), Relation Extraction (Han
et al., 2018), Joint Entity-Relation Extraction
(Walker et al., 2006), Semantic Role Labeling
(Carreras and Màrquez, 2005), and Dialogue State
Tracking (Eric et al., 2019). Our findings reveal
that across diverse few-shot settings, FISH-DIP sig-
nificantly enhances the few-shot performance of
universal sequence labeling tasks. Besides, unlike
other methods (Lu et al., 2022) that require large-
scale data and pretraining, FISH-DIP only relies on
prudent optimization strategy to augment perfor-
mance. This unique feature makes it particularly
valuable for future applications in low-resource lan-
guage contexts, where external resources may be
extremely scarce. Furthermore, FISH-DIP consis-
tently outperforms other popular Parameter Effi-
cient Finetuning (PEFT) methods, demonstrating



the efficacy of dynamic parameter selection in low
resource settings. Our contributions are as below:

• We broadly explore the field of data-limited
low-resource sequence labeling from a uni-
fied perspective, a domain that has predomi-
nantly remained underexplored in spite of the
inherent challenges it presents in capturing
structural information.

• We propose a sample-aware dynamic sparse
fine-tuning scheme, FISH-DIP, that dynami-
cally updates the parameter importance with
the feedback from the most regressing sam-
ples, subsiding the influence of already trained
samples. This helps in better generalization,
particularly in low-resource settings.

• We rigorously test our proposed method
across five tasks in seven datasets in a
wide range of low-resource settings. In
most cases, FISH-DIP outperforms other ap-
proaches while finetuning only a fraction of
the parameters of the model.

2 FISH-DIP for Unified Low-Resource
Sequence Labeling

In this section, we first discuss how different se-
quence labeling problems can be transformed into
a unified “augmented” format (Section 2.1). Next,
we discuss how Fisher information is leveraged to
calculate parameter importance (Section 2.2). Fi-
nally, we discuss how FISH-DIP leverages sample-
aware dynamism to boost few-sample performance
in sequence labeling (Section 2.3).

2.1 Unified Sequence Labeling by Augmented
Language

Given a sequence labeling task T , and few-shot
training samples (xi, yi) ∈ T where xi denotes
the input sentences, and yi denotes the associated
ground truth predictions (e.g., target entities, rela-
tions, etc.), we can apply transformation function
FT such that FT (xi, yi, S) results in augmented
language text x̄i using special tokens S where
S = {[, ], |,=}. This essentially converts stan-
dard sequence prediction tasks into sequence-to-
sequence format, and the output text can encode all
the structured information required for sequence la-
beling. Some examples of such transformation FT
used in Paolini et al. (2021) are given in Table 1.

After a well-trained model generates an output
sequence, specialized decoding schemes are uti-
lized to properly parse the output. Specifically, all
special tokens are removed, and class-type informa-
tion is extracted to produce a cleaned output. Then,
at the token level, Dynamic Programming-based
Needleman-Wunsch alignment algorithm (Needle-
man and Wunsch, 1970) is used for robust align-
ment of inputs and outputs, even in the case of
noisy generation. Output classes that do not match
any target types are discarded in the process.

2.2 Fisher Information and Sparsity Mask

Fisher information indicates the importance of a
parameter for a particular task. Prior works in ma-
chine learning have leveraged this for pruning and
model compression (Theis et al., 2018; Singh and
Alistarh, 2020). In this regard, Fisher informa-
tion matrix Fθ ∈ R|θ|×|θ| needs to be calculated.
However, with pretrained language models, it is
computationally intractable because of the |θ| × |θ|
scale of computation where θ is the number of
parameters. To get around this computational com-
plexity, Sung et al. (2021) proposed using average
of the squared gradient of the model’s output as ap-
proximate Fisher information. Although it requires
taking expectation over ouput distribution, in su-
pervised setting due to the availability of label yi,
this “Empirical Fisher” can be simply calculated
for “heuristic” paramter importance as below:

F̂θ ≈
1

N

N∑
i=1

(∇θ log pθ(yi|xi))2 (1)

where pθ(yi|xi) denotes the output probability yi
with parameters θ given input xi, N is the number
of samples, and F̂θ ∈ R|θ|. Using the calculated
empirical Fisher information of the parameters, top
k% parameters can be kept for creating a FISH
mask for sparse fine-tuning, while keeping the rest
of the network fixed. Sung et al. (2021) found that
calculating this FISH mask at the start of training
with a small number of randomly selected train-
ing samples (e.g. N ≈ 1024) and keeping the
importance mask fixed during training can provide
a similar performance as full finetuning.

2.3 Dynamic Sample Aware Sparse Tuning :
FISH-DIP

In low-resource settings, employing fixed sparsity
can quickly fit the limited number of training sam-
ples. However, this accelerated learning process



can result in a rapid change of parameter impor-
tance, thereby necessitating the update of the pa-
rameter importance. With fixed sparsity mask, de-
creasing losses for some samples may cause in-
creased losses for others, resulting in an overall
irregular update trend.

To alleviate these issues, we propose dynamic
sample aware sparse fine-tuning, where we period-
ically update parameter importance based on the
feedback from most regressing training samples.
Since samples with lower training errors do not
take part in parameter selection, their associated pa-
rameters remain unperturbed. This approach helps
mitigate overfitting and fosters a smoother training
progression (Figure 4). More specifically,

F̂θ ≈
1

n

∑
{(xi,yi)|Ltr(xi,yi)

∈topn}

(∇θ log pθ(yi|xi))2 (2)

where topn indicates the losses of top-n most re-
gressing training examples. Algorithm 1 demon-
strates how FISH-DIP can be used in finetuning the
model in low-resource sequence labeling.

In short, this dynamic calculation of parameter
importance helps us in two fronts: (i) We recalcu-
late the parameter importance so that new parame-
ters that are chosen for training focus on regressing
examples. Similar to boosting algorithms, they try
to optimize the less performant examples to en-
sure overall smooth optimization across samples
(Figure 4). (ii) Samples that have already been op-
timized do not take part in feedback process for
parameter importance calculation. As a result, they
cannot overfit the model resulting in improved low-
resource performance from finetuning.

3 Experiment Setups

We describe our tasks and datasets, evaluation set-
tings, and different types of baselines.

Tasks and Datsets To evaluate the efficacy of
FISH-DIP, we cover five different tasks across
seven datasets in Named Entity Recognition (Sang
and De Meulder, 2003; Weischedel et al., 2013),
Relation Extraction (Han et al., 2018), Joint Entity
Relation Extraction (Roth and Yih, 2004; Walker
et al., 2006), Dialogue State Tracking (Eric et al.,
2019), and Semantic Role Labeling (Carreras and
Màrquez, 2005) tasks. For evaluation of NER and
SRL, we use entity F1-score, while in joint ER we
use entity and relation F1 scores. Finally, in DST,

Algorithm 1: FISH-DIP

Require :Low-resource training Data Xtr,
Train loss Ltr, Augmentation
function FT , special tokens S,
Pretrained Language Model PLM,
sparsity k%, update steps m,
regressing examples n, total
training steps T

Initialize sparse mask M ∈ R|θ| to zeros
for t in range(0, T ) do

Sample minibatch (X,Y ) ∈ Xtr

X̄ = FT (X,Y, S) //e.g., Table 1
X ′ = PLM(X)
losses = Ltr(X

′, X̄)
if t mod m = 0 then

// Recalculate parameter importance
and sparsity mask

Calculate parameter importance F̂θ

using Eq. 2 with topn most
regressing examples

sort all the parameters using F̂θ and
select top k% parameters

Reset M and set the selected
parameters to 1

end
Backprop and Apply sparsity mask M
Update Parameters

end

we use joint accuracy as evaluation metric. Ta-
ble 2 summarizes different datasets and evaluation
metrics used for each of these tasks.

Low-resource Settings We compare the perfor-
mance of FISH-DIP across different tasks and
datasets in a wide range of few-sample settings.
In CoNLL’03, CoNLL’04, and OntoNotes we eval-
uate the performance with 1%, 5%, and 10% of
the full training dataset. For large datasets e.g.
CoNLL’05 SRL and MultiWoz 2.1 dataset, we com-
pare the performance in 0.5%, 1%, and 5% data
settings. Finally, in FewRel, we evaluate the per-
formance in 5-way 1-shot, 5-way 5-shot, 10-way
1-shot, and 10-way 5-shot settings as standard.

Baselines We compare the efficacy of FISH-DIP

against (i) full finetuning based baselines that in-
clude task-specific state-of-the-art methods, TANL
(Paolini et al., 2021), and constrained generation-
based method ASP (T5-large) (Liu et al., 2022b)
(ii) sparse Finetuning baseline FISH mask (Sung



Task Dataset Low-resource Setting Metric

NER CoNLL’03, OntoNotes 1%, 5%, 10% F1
Relation Extraction FewRel 1.0 5/10 way, 1/5 shot F1
Joint ER CoNLL ’04, ACE2005 1%, 5%, 10% Entity F1, Relation F1
Dialogue State Tracking MultiWoz 2.1 0.5%, 1%, 5% Joint Accuracy
Semantic Role Labeling CoNLL’05 SRL WSJ and Brown 0.5%, 1%, 5% F1

Table 2: Our experiments cover diverse and comprehensive sequence labeling tasks, datasets, and evaluation settings.

et al., 2021) in 1% and 5% sparsity, and (iii) in-
context baseline when applicable. For all methods,
we use T5-large as the backbone PLM. Table
3-7 lists these comparison results in detail across
different tasks, datasets, and settings. We discuss
these tasks, datasets, and baselines in more detail
in Appendix B. Finally, we also test the efficacy
of FISH-DIP against different parameter-efficient
finetuning approaches, such as Adapter (Houlsby
et al., 2019), Compacter (Karimi Mahabadi et al.,
2021), LoRA (Hu et al., 2021), (IA)3 (Liu et al.,
2022a), and prefix tuning (Li and Liang, 2021) as
shown in Figure 2.

4 Results and Analysis

Our results and analysis aim to answer the follow-
ing research questions:
• RQ 1: What is the overall efficacy of FISH-

DIP across low-resource sequence labeling tasks
compared with baselines (Section 4.1)?

• RQ 2: How does FISH-DIP perform when com-
pared with other PEFT approaches (Section
4.2)?

• RQ 3: How does FISH-DIP compare with in-
context learning using LLMs (Section 4.3)?

• RQ 4: What is the effect of dynamically choos-
ing regressing samples for calculating parameter
importance for sparsity mask (Section 4.4)?

• RQ 5: How is performance of FISH-DIP in-
fluenced by the percentage of sparsity (Section
4.5)?

4.1 Overall Results

Table 3 - 7 demonstrates that across different low-
resource settings, FISH-DIP finetuning offers sub-
stantial performance improvement over all other
baselines. In particular, for very low resource set-
tings (e.g. 1% training data) FISH-DIP does not
only offer significant performance uplift but also
shows lower performance variance demonstrating
its robustness. We also find that, while trained in
identical settings, fixed sparse masks (1%/5% spar-

sity) (Sung et al., 2021) often loses performance
against full finetuning counterpart. This particu-
larly demonstrates how importance of parameters
changes over the course of training - which can be
extremely useful in improving performance in low-
resource sequence labeling tasks. In named entity
recognition (CoNLL’03 and OntoNotes dataset),
FISH-DIP shows improved performance over all
the other baselines while updating only a fraction
of the parameters. On the other hand, in dedicated
few-shot relation extraction dataset FewRel that
uses traditional N-way K-shot settings, FISH-DIP

shows substantial performance improvement over
full-finetuning TANL (Paolini et al., 2021). Fixed
FISH mask (Sung et al., 2021) which showed sub-
optimal performance in low-resource NER, also
shows comparable performance in this scenario.

As we shift our focus towards more intricate
tasks such as Joint Entity Relation extraction, FISH-
DIP consistently exhibits superior performance
compared to all baseline models. This task poses
a significant challenge to all baselines operating
in low-resource settings. As we dig deeper, we
find that while some baselines may achieve a good
entity-F1 score, they do so with a significant de-
crease in relation-F1 score. In contrast, FISH-DIP

consistently matches or exceeds the performance
of all other baselines, regardless of low-resource
settings. Interestingly, the baseline model ASP (T5-
large) exhibits comparable performance to FISH-
DIP in higher resource settings, despite struggling
in very low resource settings (e.g. 1% data). This
can potentially be attributed to the task-specific pa-
rameterization of the ASP model. Although FISH-
DIP may lead to even greater performance improve-
ments when applied on ASP, it will compromise the
generalization and multitasking capabilities funda-
mental to unified sequence labeling. Therefore, we
only apply FISH-DIP for augmentation transforma-
tions as outlined in (Paolini et al., 2021).

Finally, in dialogue state tracking (Table 6) and
semantic role labeling (Table 7), we observe a



Method
FT Mask
Sparsity

CoNLL’03 OntoNotes

1% 5% 10% 1% 5% 10%
TANL 100% 81.310.8 90.260.4 90.680.6 77.840.9 83.780.3 85.610.3
ASP (T5-large) 100% 49.700.02 89.130.3 89.240.4 - - -
Fixed FISH 1% 78.743.8 86.981.8 87.400.4 75.001.1 82.750.2 83.301.4
Fixed FISH 5% 81.011.0 87.080.8 88.240.6 76.210.4 83.080.4 84.880.2
FISH-DIP 1% 86.390.4 91.500.6 91.700.6 78.690.4 84.430.3 86.000.4

Table 3: Results for Named Entity Recognition. We report F1 scores in CoNLL’03 and OntoNotes datasets.

Method
FT Mask
Sparsity

FewRel

5-way
1-shot

5-way
5-shot

10-way
1-shot

10-way
5-shot

BERT-EM 100% 88.9 - 82.8 -
BERT-EM+MTB 100% 90.1 - 83.4 -
BERT Pair 100% 85.7 89.5 76.8 81.8
TANL 100% 87.27.8 94.83.6 83.69.2 90.85.2
Fixed FISH 1% 96.03.6 96.84.3 87.65.0 92.64.3
Fixed FISH 5% 94.85.0 98.32.6 86.26.0 94.22.5
FISH-DIP 1% 92.85.6 98.42.6 89.85.6 94.22.1

Table 4: Results for Relation Extraction. We report F1
scores in FewRel dataset.

similar trend where FISH-DIP outperforms other
baselines, particularly in extremely low-resource
settings while matching or exceeding the perfor-
mance of baselines in more resource-rich environ-
ments. In dialogue state tracking, we also evaluate
the performance in more challenging 0.5% data,
where TANL, Fixed FISH(1%), Fixed FISH (5%)
and, FISH-DIP achieve joint accuracy scores of
34.17. 30.0, 30.9, and 35.87 respectively. These
findings provide further evidence of the robustness
of our FISH-DIP model irrespective of available
resources.

4.2 Comparison against other PEFT
approaches

Because of the expanding size of language mod-
els, over the past few years several techniques
have been proposed for parameter-efficient fine-
tuning (Houlsby et al., 2019; Karimi Mahabadi
et al., 2021; Hu et al., 2021; Liu et al., 2022a; Li
and Liang, 2021). Since FISH-DIP achieves no-
table performance improvements by leveraging a
prudent sparse update procedure, we want to com-
pare the performance benefit against other PEFT
approaches. To this end, we compare the perfor-
mance in Joint Entity-Relation CoNLL’04 dataset.
We use Huggingface’s PEFT library for LoRA (Hu
et al., 2021) and Prefix Tuning (Li and Liang, 2021).
We also also show the performance of Adapter
(Houlsby et al., 2019), Compacter (Karimi Ma-

Figure 2: Performance comparison of FISH-DIP against
different PEFT techniques in CoNLL’04 Joint Entity
Relation dataset. FISH-DIP matches or exceeds all
other approaches demonstrating its robustness in all
low-resource settings.

habadi et al., 2021), and (IA)3 (Liu et al., 2022a).
Moreover, we show the performance of FISH-DIP

without sample-awareness (parameter importance
updates don’t reflect regressing samples). All
methodologies use identical hyperparameter config-
urations. The comparative outcomes are illustrated
in Figure 2, indicating that FISH-DIP demonstrates
either comparable or superior performance com-
pared to other baseline approaches. This shows
its robustness across various scenarios. Notably,
under more demanding circumstances with lim-
ited data availability, other techniques experience
performance degradation, whereas FISH-DIP con-
sistently maintains optimal performance.

4.3 Comparison against In-Context Learning
approaches with GPT-3.5-turbo

Recently, GPT-3.5-turbo gained attention for its
high-quality text generation, supposed reasoning
abilities, and impressive in-context learning (ICL)
with minimal few-shot samples. We evaluate the
performance of ICL with OpenAI’s GPT-3.5-turbo



Method
FT Mask
Sparsity

CoNLL’04 ACE’05

1% 5% 10% 1% 5% 10%
Entity

TANL 100% 46.0512.1 74.062.1 79.110.5 72.522.1 81.350.6 83.960.8
DygiePP 100% - - - 59.643.0 74.191.0 77.820.2
ASP (T5-l) 100% 60.360.2 75.020.5 82.340.6 61.551.3 79.580.7 84.680.3
Fixed FISH 1% 37.0815.6 71.273.0 77.272.5 70.561.9 79.570.7 82.260.7
Fixed FISH 5% 51.375.6 73.201.2 79.240.3 73.302.0 80.000.8 82.200.3
FISH-DIP 1% 56.882.8 77.251.2 81.500.9 75.081.3 82.760.7 84.640.8

Relation
TANL 100% 14.130.4 40.633.6 54.371.1 15.622.5 36.791.0 45.221.1
DygiePP 100% - - - 7.002.0 26.701.7 45.740.9
ASP (T5-l) 100% 13.800.2 40.931.9 55.760.9 6.400.1 37.731.9 47.850.3
Fixed FISH 1% 12.299.5 34.354.5 46.325.8 12.411.9 29.072.1 36.851.2
Fixed FISH 5% 19.405.4 40.092.5 53.883.3 16.853.5 33.841.6 42.312.0
FISH-DIP 1% 21.633.6 49.202.8 57.082.4 19.012.7 39.850.8 47.150.3

Table 5: Results for Joint Entity Relation Extraction. We report F1 scores in CoNLL’04 and ACE’05 datasets.

MultiWoz 2.1
Method

FT Mask
Sparsity 1% 5%

TRADE 100% 12.58 31.17
SGPDST 100% 32.11 43.14
DST - BART 100% 28.55 37.71
DS2 - T5 100% 33.76 44.20
TANL 100% 34.96 47.37
IC-DST (GPT-Neo-2.7B) (ICL) 16.70 26.90
IC-DST (CodeGen-2.7B) (ICL) 20.72 29.62
Fixed FISH 1% 34.17 41.70
Fixed FISH 5% 37.50 45.70
FISH-DIP 1% 42.33 47.24

Table 6: Results for Dialog State Tracking. We report
Joint Accuracy in MultiWoz 2.1 dataset. Here (ICL)
denotes in-context learning methods where finetuning
is not involved.

API in CoNLL’04 and ACE2005 Joint Entity Re-
lation datasets. The template used in prompting
GPT-3.5-turbo is shown in Appendix C. We ran-
domly select few-shot samples and demonstrate
them as in-context pairs until reaching the token
limit, leaving space only for the target input sen-
tences. Finally, we give the test input sentence to
generate output. The results are shown in Figure 3.

We find that the ICL performance varies signifi-
cantly based on the chosen evaluation setting and
dataset. In CoNLL’04, the performance of ICL
in 1% data outperforms all other baselines in this
setting. However, in 5% and 10% data, the num-
bers are suboptimal, demonstrating that it cannot
take advantage of the extra data.In ACE’05 GPT-
3.5-turbo shows very poor performance, especially
in relation extraction. The complexity of ACE’05
with more complex entities and relation targets may
have made it more difficult for the models to cap-

CoNLL’05 WSJ
Method

FT Mask
Sparsity 0.5% 1% 5%

TANL 100% 67.341.5 74.500.5 82.100.3
Fixed FISH 1% 61.310.8 65.601.4 78.351.3
Fixed FISH 5% 66.531.5 71.100.5 79.560.7
FISH-DIP 1% 70.370.3 75.490.4 80.900.2

CoNLL’05 Brown
Method

FT Mask
Sparsity 0.5% 1% 5%

TANL 100% 58.711.2 66.530.8 73.690.3
Fixed FISH 1% 51.001.1 55.410.9 68.362.4
Fixed FISH 5% 58.152.7 62.861.3 70.311.2
FISH-DIP 1% 62.101.4 68.070.5 72.420.6

Table 7: Results for Semantic Role Labeling. We report
F1 score in CoNLL’05 WSJ and Brown datasets.

ture structural information for in-context learning.

4.4 Effect of Sample Aware Dynamic Sparse
Tuning in Optimization

Figure 4 shows the trend of samplewise loss opti-
mization for CoNLL’04 1% dataset. We find that
across training steps, FISH-DIP focuses on opti-
mizing samples with the highest losses because of
selecting parameters associated with them. While
doing that, parameters only relevant to the samples
with lower losses are frozen, preventing irrelevant
updates. In comparison, fixed sparsity mask results
in samplewise irregular update trend, decreasing
losses for some samples while increasing others.
This illustrates the importance of dynamic parame-
ter sparsity in few-sample optimization of PLMs.

4.5 Effect of Sparsity Percentage, k

For uniformity across all our experiments, we have
opted for a stable parameter sparsity of k = 1%
In Table 8, we analyze the influence of various



Figure 3: Comparison against in-context learning us-
ing GPT-3.5-turbo in different low resource setting in
CoNLL’04 and ACE’05.

FT Mask
Sparsity

CoNLL’04
1% 5% 10%

Entity
0.5% 56.451.1 76.370.6 80.540.7
1% 58.522.4 78.050.4 81.370.8
5% 55.903.9 76.670.6 79.000.1

Relation
0.5% 22.273.2 49.221.4 56.032.3
1% 20.412.1 49.780.7 57.032.7
5% 21.325.1 46.410.3 52.341.5

Table 8: Effect of different sparsity choice (0.5%, 1%,
5%) in FISH-DIP on CoNLL’04

sparsity levels on the performance of FISH-DIP in
different low-resource settings.

It is evident that the selection of parameter spar-
sity, k has a potential impact on performance.
While we have used 1% sparsity across all tests,
tuning k based on the available data can potentially
yield improved results. This highlights the impor-
tance of carefully choosing the sparsity level in
FISH-DIP. Hence, we recommend conducting ex-
periments with different values of k for achieving
the optimal performance with FISH-DIP.

5 Related Work

Unified Sequence Labeling Paolini et al. (2021)
noted out the issues in discriminative structured pre-
diction tasks and proposed for an augmented Natu-
ral Lanugage format (Athiwaratkun et al., 2020) to
complete all tasks in a sequence-to-sequence for-
mat. Following their success, (Liu et al., 2022b)
has attempted to further improve the performance
of these approaches through constrained generation
which requires explicit constraints tailored towards
each of the tasks effectively taking away the advan-
tage of structured prediction unification. Unfortu-
nately, in low-resource settings, the usefulness of
these techniques have not been explored leaving
them largely suboptimal in those settings.

Figure 4: Illustration of samplewise optimization of loss
between FISH-DIP and 5% Fixed FISH mask sparse
fine-tuning in CoNLL’04 (1% data). Across the times-
tamps, we see that FISH-DIP focuses on optimizing the
samples having higher loss without compromising the
learning of other samples. Compared to fixed sparse
mask resulting in an overall smoother training trend.

Low-Resource Sequence Labeling Different
learning approaches (Vinyals et al., 2016; Snell
et al., 2017; Geng et al., 2019; Bao et al., 2019)
have been leveraged in several NLP tasks to im-
prove performance in few-shot settings. With the
arrival of GPT-3 (Brown et al., 2020), in-context
learning (Chen, 2022; Chen et al., 2023; Hu et al.,
2022; Dong et al., 2022) started to become more
commonplace for few-shot learning. However,
in most previous works, few-shot/low-resource
learning has been largely limited to sentence-level
prediction, whereas sequence labeling tasks re-
quire better-structured prediction capabilities for
improved performance.

Named Entity Recognition (NER) tasks are one
of the first where different task-specific methods
have been applied to improve few-shot NER perfor-
mance (Yang and Katiyar, 2020; Das et al., 2021;
Cui et al., 2021; Tong et al., 2021; Ma et al., 2022;
Huang et al., 2022; Ming et al., 2022; Ji et al.,
2022). In relation extraction, (Han et al., 2018) first
introduced a large-scale benchmark for evaluation
in N-way K-shot settings. This benchmark is later
used by following works to improve few-shot per-
formance in a wide range of domain-centered meth-
ods (Gao et al., 2019; Tong et al., 2021; Ma et al.,
2022; Qu et al., 2020; Han et al., 2021). Other than
that, (Hu et al., 2022; Wu et al., 2020; Lee et al.,
2021; Shin et al., 2022) have applied in-context
learning for dialogue state tracking, where they
found that with in-context learning, gigantic lan-
guage models can show noteworthy performance
improvements over other models. These dedicated
that few-shot techniques demonstrate improved per-
formances but require extensive task-specific mod-



eling, limiting their applicability in a unified set-
ting.

Parameter Efficient Finetuning Different PEFT
methods have been proposed for finetuning large
language models efficiently. Small adapter layers
that are added while keeping the rest of the net-
work fixed was one of the first attempts at this
efficient finetuning that proved to be quite use-
ful (Houlsby et al., 2019). A follow-up approach
(Karimi Mahabadi et al., 2021) leverages matrix
decomposition and low-rank parameterization for
adapter weights. Later (Sung et al., 2021) has in-
troduced FISH methods for selection of parameters
to be finetuned. On the other hand, recently (Hu
et al., 2021) and (Liu et al., 2022a) introduced two
other methods of PEFT where small number of
new parameters are introduced for low-rank adap-
tation and scaled activation respectively. This was
recently made even more efficient by Dettmers et al.
(2023) significantly reducing memory usage. An-
other set of works have shown that it is possible to
get good performance by injecting prompts into in-
put and optimizing the related layers (Li and Liang,
2021). While these techniques have demonstrated
their utility in facilitating efficient fine-tuning, they
might not possess the capability to modify the
output format necessary to accommodate the aug-
mented language, especially the unified sequence
labeling requirement in low-resource settings.

6 Conclusion

Unified sequence labeling poses significant dif-
ficulties, particularly when dealing with limited
resources necessitating the adoption of a non-
conventional augmented format. FISH-DIP tack-
les this challenge through dynamic sparse finetun-
ing. It prioritizes underperforming instances and
reduces the impact of well-learned samples, opti-
mizing only a fraction of the parameters. Across
five sequence labeling tasks, FISH-DIP demon-
strated on-par or consistent improvement over all
other baselines, particularly in more challenging
extremely low-resource scenarios. For future re-
search, exploring the potential of FISH-DIP in other
low-resource/few-shot tasks (e.g. low-resource
languages where external resources are extremely
scarce) holds promise and warrants further investi-
gation.
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Limitations

While we primarily focus on sequence labeling
tasks, due to the broad applicability it would be
interesting to explore the efficacy of FISH-DIP in
other NLU tasks, particularly in low-resource or
few-shot scenarios. Notably our approach is par-
ticularly effective in extreme low-resource settings.
However, it is worth noting that as the scale of
available data increases, most methods show com-
parable performance and room for improvement
becomes narrower.
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A Implementation Details

We’ll primarily use Huggingface with PyTorch
deep learning framework to implement and com-
plete all our experiments. For the choice of PLM,
we choose T5-large due to its better performance
and moderate size (770 million). Our experiments
are conducted on 8x NVIDIA A6000 48GB GPUs.
For FISH-DIP, we choose sparsity k = 1%, steps,
m = 100, regressing examples, n = 15 as the
hyperparameters. Consequently, FISH mask is re-
calculated after every ≈ m

⌈ num_samples
batch_size ⌉

epochs. In low

resource settings, given limited number of training
samples, this recalibration should only introduce a
minimal increment in training. While for simplic-
ity, we fixed m to 100, modulating m dynamically,
updating it more frequently during initial training
phases and less so as the training progresses can
be an interesting future direction towards further
improvement. For fine-tuning hyperparameters
(learning rate and epochs), we followed settings
suggested in (Paolini et al., 2021).

For all other baselines, we used their respective
implementations. For LoRA and Prefix Tuning,
we used Huggingface PEFT with LoRA rank and
prefix# in prefix tuning, chosen from 5, 10, 20, 30,
and 40 (best performance).

B Task, Dataset, and Baseline Details

Named Entity Recognition In named entity
recognition (NER), given a sentence we need to ex-
tract all the relevant entities. In CoNLL’03 dataset,
there are four target classes. and a training set
size of 14k. On the other hand, OntoNotes have
18 classes with over 60k+ training samples. Ta-
ble 3 shows the performance comparison in these
two datasets respectively. We compare the perfor-
mance against TANL full finetuning (Paolini et al.,
2021), Fixed sparse mask finetuning (Sung et al.,
2021). We also compare the performance against
ASP (Liu et al., 2022b) which also models some
structured prediction tasks into an autoregressive
format, however, it also requires designing a task-
specific constrained set of actions which restricts
itself from being used in a unified scheme.

Relation Extraction Given a sentence and head
and tail entities, this task requires classifying the re-
lation between them. In FewRel (Han et al., 2018)
dataset, standard N-way K-shot settings is followed
for few-shot performance evaluation. Following
standard setting in this dataset, we meta-train the

model with 64 relations. During few-shot setting,
we do the testing on 20 disjoint test relations. For
these target relations, each of them have N-way K-
shot support sets with which models are finetuned.
Finally, inference is done on query set to calculate
the Few-Shot performance. Table 4 compares the
performance of FISH-DIP with TANL full finetun-
ing (Paolini et al., 2021), fixed sparse FT (Sung
et al., 2021), and several dedicated relation extrac-
tion methods for few shot relation extraction such
as BERT-EM (+MTB) (Soares et al., 2019), BERT-
PAIR (Gao et al., 2019)

Joint Entity and Relation Extraction In this
task, given a sentence, the target is to extract en-
tities and a set of relations between pairs of enti-
ties. We evaluate the performance of FISH-DIP in
Joint Entity and Relation extraction in CoNLL’04
and ACE2005 Joint ER dataset. While ACE2005
is moderately sized dataset having ∼7500 train-
ing samples, CoNLL’04 is a small dataset having
∼900 training samples. We show the performance
comparison in CoNLL’04 and ACE2005 in Table
5. Like other experiments, we compare primar-
ily against full finetuning TANL, fixed sparsity
mask. Moreover, we also compare against the per-
formance of popular method used in this domain
- DygiePP (Wadden et al., 2019), and autoregres-
sive method ASP (Liu et al., 2022b), both of which
require task-specific modeling/predictions.

Dialogue State Tracking In dialogue state track-
ing, given a history of dialogue turns between a
user and an agent, who is assisting the user, we
have to find the dialogue state, i.e. get the value
for each slot from a predefined list. It has over 10k
dialogue sets over seven distinct domains. We com-
pare against TANL full fine-tuning (Paolini et al.,
2021) and fixed sparsity finetuning (Sung et al.,
2021). Moreover, we compared against dedicated
DST methods (TRADE (Wu et al., 2020), SGPDST
(Lee et al., 2021), DS2 - BART and DS2 - T5 (Shin
et al., 2022)) for few-shot performance evaluation.
For in-context learning-based method IC-DST (Hu
et al., 2022) results are only reported with GPT-
Neo 2.7B and CodeGen 2.7B. We don’t include the
results for Codex-DaVinci (reportedly 250 times
larger than T5-large - 175 billion parameters) since
OpenAI has discontinued support for it, which was
also used for achieving state-of-the-art results in
this task.



Semantic Role Labeling Given an input sen-
tence and predicate, this task aims to predict a
list of arguments and types to get the predicate-
argument structure of a sentence. More specifically,
we need to find all the arguments corresponding to
the given predicate in the input sentence. Table 7
compares the performance of FISH-DIP with TANL
full fine-tuning (Paolini et al., 2021) and fixed spar-
sity finetuning (Sung et al., 2021) in CoNLL’05
WSJ and Brown datasets.

C In-Context Learning

For in-context learning with gpt-3.5-turbo (0301)
for joint entity relation, randomly selected
in-context demonstrations are drawn from the pool
of samples within a low-resource environment,
ensuring their adherence to the token limit of
the model. In this regard, we use the following
template:

# Instruction

Identify and mark all entities in the input
sentence with square brackets [] and assign them
from the following entity list: [list of entities]. If an
entity has relation to another entity, indicate it with
a vertical bar | and the name of the relation after the
type. Relation type should be one from following
list: [list of relations]. Some demonstrations are
shown below:

# Demonstrations

Input: Tolkien wrote The Lord of the Rings.
Output: [ Tolkien | person ] wrote [ The Lord of
the Rings | book | author = Tolkien ]
...
...
...

Input: (Test Sample)
Output:


