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Abstract

Sampling multiple outputs from a Large Language Model (LLM) and selecting
the most frequent (Self-consistency) or highest-scoring (Best-of-N) candidate is a
popular approach to achieve higher accuracy in tasks with discrete final answers.
Best-of-N (BoN) selects the output with the highest reward, and with perfect
rewards, it often achieves near-perfect accuracy. With imperfect rewards from
reward models, however, BoN fails to reliably find the correct answer and its
performance degrades drastically. We consider the distribution of BoN’s outputs
and highlight that, although the correct answer does not usually have a probability
close to one under imperfect rewards, it is often the most likely outcome. This
suggests that the mode of this distribution can be more reliably correct than a sample
from it. Based on this idea, we propose Majority-of-the-Bests (MoB), a novel
selection mechanism that estimates the output distribution of BoN via bootstrapping
and selects its mode. Experimental results across five benchmarks, three different
base LLMs, and two reward models demonstrate consistent improvements over
BoN in 25 out of 30 setups. We also provide theoretical results for the consistency
of the bootstrapping. MoB serves as a simple, yet strong alternative to BoN and
self-consistency, and more broadly, motivates further research in more nuanced
selection mechanisms.2

1 Introduction

Scaling the inference-time computation of language models has led to a significant improvement
of their performance on a variety of tasks (Brown et al., 2024; Snell et al., 2025; Wu et al., 2024;
OpenAI, 2024; DeepSeek-AI, 2025). A growing number of methods have been introduced in this
paradigm, such as generating long chains-of-thought (Wei et al., 2022; Muennighoff et al., 2025),
asking the model to evaluate and improve its own outputs (Madaan et al., 2023), and tree search
(Yao et al., 2023; Hao et al., 2023; Zhang et al., 2024). Another family of such algorithms, termed
sample-and-marginalize by Wang et al. (2022), generate multiple outputs from the model and then
aggregate them into a final answer. Examples include Self-consistency (Wang et al., 2022), Best-of-N
(Lightman et al., 2023), and Weighted Best-of-N (Li et al., 2022). These methods have gained
popularity due to their simplicity and scalability.

∗Work done during internship at Autodesk. Correspondence to: aminr@cs.toronto.edu.
2Code and data available at https://github.com/arakhsha/mob

39th Conference on Neural Information Processing Systems (NeurIPS 2025).
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Figure 1: Majority-of-the-Bests: first, N outputs are generated for the given question. Then, we
create a large number of subsets of size m < N by sampling with replacement from the generated
outputs. From each subset, we choose the output with the highest reward. The most frequent answer
among these chosen outputs is reported as the final answer.

Self-consistency (SC) (Wang et al., 2022), also referred to as “majority voting”, is a widely used
algorithm in this paradigm. It samples multiple outputs from the model and selects the final answer
that appears most frequently among them. SC improves the performance by leveraging a key property
of the model’s output distribution: on difficult problems, the probability of generating the correct
answer is often far from 1, making single-sample predictions unreliable. SC capitalizes on the fact
that, even if the model’s output distribution is imperfect, it may still favor the correct answer and
generate it more frequently than incorrect ones.

Best-of-N (BoN) (Lightman et al., 2023) uses a reward model to evaluate the generated outputs and
chooses the final answer in the highest-scoring output. With an ideal reward model, BoN succeeds
as long as one of the generated outputs is correct. In this paper, we highlight that in the realistic
setting of an imperfect reward model, the success of BoN is no longer (nearly) guaranteed. In such
cases, BoN exhibits stochastic behavior akin to the underlying generative model. While the reward
model improves the likelihood of selecting the correct answer, it often falls short of ensuring certainty.
This is the same property that underlies the effectiveness of SC. Motivated by this observation, we
show that applying a similar principle—aggregating multiple samples to identify the most probable
answer—leads to a better performance over BoN.

We introduce Majority-of-the-Bests (MoB), a method that leverages bootstrapping to improve upon
BoN by approximating the most probable output of BoN. As illustrated in Figure 1, after obtaining
multiple (parallel) solution samples for a given question and computing their rewards, we apply
bootstrapping: we create subsets of size m by sampling with replacement from the generated outputs.
For each subset, we select the sample with the highest reward. This results in a new set of high-reward
samples, over which we perform majority voting to determine the final answer. Just like BoN and SC,
MoB can be applied independent of the output generation procedure. It only modifies the selection of
the final answer with marginally extra computation on the CPU. We provide a procedure to adaptively
select m, eliminating any critical hyperparameters from the algorithm. We show the consistency of
the algorithm theoretically, and empirically show significant improvements over BoN on 25 out of 30
tested setups.

2 Background

In this section, we formulate BoN and bootstrapping and provide some background for the algorithm
and its theoretical grounds. Given a prompt x, in the standard procedure with LLMs, we sample an
output Y ∼ pref from a base model pref. This output yields a corresponding final answer Z = f(Y )
after applying a post-processing or evaluation function f . For example, for a multiple choice problem,
Z is the chosen option and Y is the whole output containing both Z and its justification. We denote
the distribution of the final answer in this procedure as πref, that is, Z ∼ πref. The goal is to find the
correct final answer z∗. We define the success probability for this given problem as the probability
of selecting the correct final answer. If the algorithm’s final answer is Z, the success probability is
defined as P(Z = z∗). Given a dataset of questions, the average of the success probabilities over all
questions is referred to as the accuracy. For the standard procedure, the success probability is equal
to πref(z

∗) and the corresponding accuracy is called the pass@1 accuracy. We assume access to a
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Figure 2: (Left) BoN’s success probability as a function of N for question 647 from MMLU-Pro-Math.
The success probability remains below 80%. (Middle) Distribution of the reward for correct and
incorrect outputs for the same question. A separation between the two distributions is ideal. (Right)
Histogram of Best-of-64 success probabilities over 500 questions.

reward model r that assigns a reward R = r(Y ) to the output Y , reflecting its accuracy, coherence,
or alignment with human preferences (Uesato et al., 2022; Lightman et al., 2023). For a given budget
N , sample-and-marginalize algorithms generate N independent outputs Y1, . . . , YN ∼ pref and select
the final answer reached by one of these outputs. BoN selects the final answer from the output with
the highest reward, that is,

ZBest
N = f

(
argmax

y∈{Y1,...,YN}
r(y)

)
.

Regularized versions of BoN have also been introduced to address its reward hacking issues in
the presence of inaccurate rewards (Jinnai et al., 2024; Ichihara et al., 2025). Alternatively, self-
consistency or majority voting selects the final answer that occurs most frequently among Z1, . . . , ZN ,
where Zi = f(Yi) is the final answer for output Yi. If N is large enough, this most frequent answer
will be the mode of the final answer distribution πref. Li et al. (2022) suggested the Weighted Best-of-
N (WBoN) selection method. For each final answer, WBoN sums the rewards of all outputs that lead
to it. Then, it selects the final answer with the highest total reward.

Bootstrapping. Bootstrapping is a powerful and widely used non-parametric resampling technique
for estimating the distribution of a statistic by repeatedly drawing samples with replacement from
the original dataset (Efron, 1992; Efron and Tibshirani, 1994). The core idea is to generate multiple
“bootstrap samples”, by sampling observations uniformly and with replacement. For each bootstrap
sample, the statistic of interest is computed. The collection of these computed statistics from the
many bootstrap samples forms an empirical approximation of the statistic’s true distribution. We use
this technique to approximate the distribution of BoN’s output.

3 Motivation: Output Distribution of Best-of-N

To motivate our algorithm, we highlight the behavior of BoN’s final answer distribution. We denote
this distribution by πN . It means,

ZBest
N ∼ πN .

Assume among the N sampled outputs, Nc outputs {Y c
1 , . . . , Y

c
Nc

} ⊆ {Yi}Ni=1 yield the correct final
answer: f(Y c

i ) = z∗. Conversely, Nw = N − Nc outputs {Y w
1 , . . . , Y w

Nw
} ⊆ {Yi}Ni=1 lead to an

incorrect solution. Then, BoN’s output is correct if the highest reward among the correct outputs is
larger than the highest reward among the incorrect ones. Formally, we can express this condition as:

max
(
r(Y c

1 ), . . . , r(Y
c
Nc

)
)
> max

(
r(Y w

1 ), . . . , r(Y w
Nw

)
)
. (1)

There are two factors that influence the probability of this event. First, note that each side of (1) is the
maximum of some random variables. As the number of random variables increases, the probability
distribution of their maximum shifts towards higher values. Therefore, larger values of Nc and
smaller values of Nw, make condition (1) more likely. The values of Nc and Nw depend on πref(z

∗),
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the probability of the correct answer z∗ in the base model’s final answer distribution πref. For large
enough n, we will have

Nc ≈ N · πref(z
∗) , Nw ≈ N · (1− πref(z

∗)).

It means that if the base model has a higher chance of solving the problem, BoN is also more likely
to select the correct answer.

The second factor is the distribution of r(Y c
i ) and r(Y w

i ) on each side of (1). The reward of a
correct output follows the conditional distribution Pc ≜ P(r(Y )|f(Y ) = z∗) while the reward of
an incorrect output follows the conditional distribution Pw ≜ P(r(Y )|f(Y ) ̸= z∗). We hope that
the reward model assigns higher rewards to correct outputs, and r(Y c

i ) ∼ Pc on the left side of (1)
generally be larger than r(Y w

i ) ∼ Pw on the right side.

Therefore, the success probability of BoN heavily depends on the separation between Pc and Pw. A
perfect reward model would always assign a higher value to a correct output than to an incorrect one.
In that case, as long as at least one correct output is generated (which is highly likely for large enough
N ), condition (1) is satisfied. The resulting success probability is close to 1, indicating a nearly
deterministic final answer. On the other hand, consider the case where Pc and Pw are identical. In this
case, the reward of an output becomes independent of its correctness, and choosing according to the
reward model will be no better than a random choice. Consequently, the success probability of BoN
will be the same as the base model, i.e. πN (z∗) = πref(z

∗). In practice, our reward models exhibit a
middle ground between these two extremes. They might not be perfect for BoN to succeed with a
single correct output, but they can still be somewhat informative to increase the success probability
of BoN compared to the base model.

In Figure 2, we show an example of these dynamics for Question 647 of the MMLU-Pro-Math
benchmark (Wang et al., 2024b) with base model Qwen2.5-3B (Qwen Team, 2024) and reward model
ArmoRM (Wang et al., 2024a). We approximate the output distribution pref with a large pool of 1400
samples. In Question 647 (Figure 2), the two distributions Pc and Pw are overlapping, and even with
large values of N , the success probability remains below 80%. Nonetheless, BoN still outperforms
the base model, which is equivalent to Best-of-1 and has a success probability of 30% in this case.

We expect the stochasticity of BoN’s output to depend on the difficulty of the question relative to
the base and reward models’ capabilities. For more difficult questions, the base model generates
fewer correct outputs, and the reward model is less likely to distinguish the correct outputs from the
incorrect ones. Through the two factors discussed above, BoN is not able to pick the correct answer
with high certainty. The right plot in Figure 2 shows the histogram of the success probability of
Best-of-64 among 500 randomly selected MMLU-Pro-Math problems. We see that for approximately
175 problems, BoN has a success probability between 0.1 and 0.9. That means, BoN has a significant
chance of returning the correct answer but fails to do so reliably. The idea behind our introduced
method, MoB, is that if we can find the most probable output of the BoN distribution, we may reliably
pick the correct answer even if its probability is well below 1.

4 Majority-of-the-Bests

In Section 3, we showed that BoN’s final answer is stochastic, and this stochasticity might remain
true even with a very large budget N . In this section, we introduce Majority-of-the-Bests (MoB).
MoB can select the correct answer with high probability as long as the correct answer is the most
probable output of BoN, even if its probability is well below 1. We first showcase this idea in the
hypothetical case where BoN’s output distribution πN is given by an oracle. Later, we show how to
estimate this distribution using bootstrapping.

4.1 MoB with Oracle Access to BoN’s Output Distribution

Suppose the distribution of BoN’s final answer πN is known through an oracle. Instead of sampling
from this distribution, which is equivalent to BoN and is a noisy decision, we propose selecting the
mode of this distribution. That is

zOracleMoB
N = argmax

z
πN (z). (1)

4
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Figure 3: Final answer accuracy comparison of BoN, MoB, and Oracle MoB on MMLU-Pro-Math
using Qwen2.5-3B (Left) and Llama3.1-8B (Right) as the base model, and ArmoRM as the reward
model. Results are averaged across all problems and multiple runs. Shaded area indicates the standard
error.

We refer to this algorithm as Oracle MoB as it relies on an oracle. By selecting the mode, if the
correct answer has a higher probability than any of the other answers, it will be selected without any
randomness that would reduce the success probability. Since πref = π1, we can say SC for a large N
is equivalent to Oracle MoB with N = 1. It has been extensively shown that SC improves the LLM’s
original accuracy. As we will also empirically show, MoB similarly increases the accuracy of BoN
by selecting the mode of its output distribution.

In Figure 3, we compare the accuracy of Oracle MoB with BoN on MATH500 (Lightman et al., 2023;
Hendrycks et al., 2021) and math problems of MMLU-Pro (Wang et al., 2024b). We use the same
output pool, base model, and reward model as Figure 2. We can see that depending on the value of N ,
Oracle MoB provides 5 to 10 percentage points improvement in accuracy. Oracle MoB unrealistically
requires an oracle access to πN . Next, we will show how πN can be estimated via bootstrapping and
remove the oracle dependence.

4.2 MoB with Estimated BoN’s Output Distribution

We now discuss how, without the oracle access to the BoN’s output distribution πN , one can
approximately find its most probable output. The most obvious approach is to follow the same
procedure as SC. For some k ≥ 1, we can run k independent BoN procedures, each with m outputs.
Then, out of the k resulting answers, we select the final answer that appears the most number of
times. The answer of the BoN procedures let us approximate πm, and selecting the most frequent
answer among them will approximate Oracle MoB (1) with budget m. We refer to this algorithm as
“BoN+SC” due to its simple combination of BoN and SC. To keep the generation budget fixed at N ,
we are forced to use a smaller budget m for each of the BoN runs. For now, we treat the choice of m
as a hyperparameter, but will return to this choice later. Assume m < N and k = ⌊N/m⌋. Formally,

ZBest,(i)
m = f

(
argmax

y∈{Yim,...,Y(i+1)m−1}
r(y)

)
(i = 1, . . . , k), (2)

ZBoN + SC
m,n = argmax

z

∑
i

I
[
ZBest,(i)
m = z

]
. (3)

The main problem with BoN+SC is that it is too expensive. We would like to have a large value for m
to get the benefits offered by BoN. To have a fairly accurate estimation of πm, we need a reasonably
large value for k. Together, this requires a large budget N ≈ mk.

The deficiency of BoN+SC comes from the fact that each sample Yi only contributes to generating
one BoN output. To address this deficiency, we propose estimating πm not by generating independent
samples from it, but by bootstrapping. To do that, we first note that the distribution πm of ZBest

m is
a function of the unknown distribution pref. Bootstrapping suggests to estimate πm with the BoN’s
output distribution under a known approximation p̂ref ≈ pref. The typical non-parametric approach is
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Figure 4: Comparison of MoB and BoN+SC using Qwen2.5-3B as the reference model and ArmoRM
as the reward model. (Left) πm approximation error in ℓ1-norm for m = 8. (Right) Average accuracy
on MMLU-Pro-Math dataset. Shaded area indicates the standard error.

to set p̂ref to be the empirical distribution of the generated samples {Y1, . . . , YN}. Since p̂ref is known,
we can cheaply sample from it. For any arbitrarily large value B, we generate B approximately
sampled BoN outputs. We first create B datasets of size m from p̂ref. That is

Di = {Ŷi,1, Ŷi,2, . . . , Ŷi,m} ∼ p̂ref, (i = 1, . . . , B).

This is equivalent to sampling m outputs from the original pool {Y1, . . . , Yn} with replacement.
Then, similar to BoN+SC, we can run BoN on each dataset, and then pick the most common outcome.
Formally,

ẐBest,(i)
m = f

(
argmax
y∈Di

r(y)

)
(i = 1, . . . , B), (4)

ZMoB
m,N = argmax

z

B∑
i=1

I
[
ẐBest,(i)
m = z

]
. (5)

This procedure is our MoB algorithm for a given m. We define π̂m,N to be the (random) distribution
of ẐBest,(1)

m given {Yi} at hand. With sufficiently large B (usually B = 10, 000 is sufficient), the
empirical distribution of {ẐBest,(i)

m } will accurately estimate π̂m,N . With this approximation, we can
write

ZMoB
m,N ≈ argmax

z
π̂m,N (z) (6)

Note that this is a light computation that can be carried out on the CPU. Therefore, we can freely
choose a large B. In the supplementary material, we provide an even more efficient way of estimating
π̂m,N with O(N logN) complexity that finds ZMoB

m,N directly and without creating B datasets. It
is worth mentioning that our use of bootstrap samples resembles bagging (Breiman, 1996) and
subagging (Scornet et al., 2015), where a family of models is trained on the subsampled datasets and
then aggregated.

In Figure 4, we compare MoB with BoN+SC in the same setup as Figure 3. In the left plot, we fix
m = 8 and compare the algorithms’ error on estimating πm for a range of values for N . We measure
the distance between the two distributions according to the ℓ1-norm. As we can see, bootstrapping is
consistently the superior approach for this approximation task and offers a more accurate estimation
of πm. In the right plot, we set m = ⌊

√
N⌋ and compare the final accuracy of the algorithms. The

choice of m = ⌊
√
N⌋ ensures that k ≈

√
N and will also increase as N increases. We observe that

the superior accuracy of bootstrapping in the estimation of πm translates to a better final accuracy of
the algorithm, especially when the budget N is more limited.

One might wonder if it is possible to choose m to be much larger than what was possible in BoN+SC,
potentially even m = N . There is no obvious limitation on the size of resampled datasets Di, and
nonetheless, most commonly in bootstrapping, the size of resampled datasets is equal to the original
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Figure 5: Comparing m selection methods using ArmoRM reward model with MMLU-Pro-Math
and Qwen2.5-3B (Left) and MATH500 and Llama3.1-8B (Right). Shaded area indicates the standard
error.

dataset. However, estimating the distribution of values related to the extremes of random samples is a
classic example of failure for the conventional bootstrapping, see for example Athreya and Fukuchi
(1994) and Efron and Tibshirani (1994, Section 7.4). Since BoN selects the output with the highest
reward, it is affected by the same failure. To see this, note that the output with the highest reward
appears in each dataset with the probability of 1− (N−1

N )m, and it will be chosen in any dataset in
which it appears. Therefore, if m = N ,

P
(
ẐBest,(i)
m = ZBest

N

)
≥ 1−

(N − 1

N

)N ≈ 1− e−1 ≈ 0.632.

This means that π̂N,N will always incorrectly assign a probability of at least 0.632 to the conventional
BoN’s answer.

Fortunately, using smaller resampled datasets, as we do in MoB, is one of the remedies for such
failures of bootstrapping and is well-studied in the literature(Athreya and Fukuchi, 1994; Bickel
et al., 2011). This approach is referred to as m-out-of-n bootstrapping. We show that under the usual
conditions of m-out-of-n bootstrapping and mild assumptions on the tail of reward distributions, our
use of bootstrapping to estimate πm is a valid one. Similar to the typical guarantees for bootstrap
estimations, we show that our bootstrap estimation is indeed consistent.

Theorem 1. Under mild assumptions on the distribution of rewards, if there are finite possible values
for Z and as N → ∞, we have m → ∞ and m/N → 0, then the estimated π̂m,N will converge to
the true distribution πm. That is, for any ϵ > 0,

lim
N→∞

P
(
∥π̂m,N − πm∥1 ≥ ϵ

)
= 0.

We defer the exact technical statement and proof to the supplementary material. Theorem 1 shows
that the estimated distribution π̂m,N will match the true BoN output distribution πm. It means that
MoB with bootstrapped distribution in (6) will reach the same accuracy as its oracle version in (1),
but with a larger required budget due to m < N . To achieve this, it suffices to pick m such that
the condition of Theorem 1 holds, which is possible by simply using a fixed schedule of the form
m(n) = nα for some 0 < α < 1. In the next section, we will discuss the choice of m in more detail
and provide a procedure to choose m automatically.

4.3 Adaptive Subsample Size m

The choice of m imposes a trade-off. A larger value of m means that we are running BoN with a
larger number of samples. Since we expect the success probability of BoN to increase with more
samples, this means that the mode of πm will be more likely to be correct. On the other hand, as m
becomes larger and closer to n, our estimate π̂m,N of πm becomes more inaccurate. As we saw in
Section 4.2, bootstrapping might fail to provide a consistent estimate if m = N .

Ideally, we would like to find an m such that our final answer ZMoB
m,N based on the estimated distribution

as in (6) becomes closest to the Oracle MoB (1) of Section 4.1. The natural approach for this goal is
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to find the value of m that minimizes the distance between π̂m,N and πN , that is

M∗
N = argmin

m
∥π̂m,N − πN∥1. (7)

This minimization problem automatically captures both aspects of the trade-off. Large values of m
make πm, which is approximated by π̂m,N closer to πN , but at the same time if m is too large, the
error of this approximation becomes too large and increases the objective ∥π̂m,N − πN∥1.

Unfortunately, the distribution πN in the objective of (7) is unknown, and therefore cannot be used
in practice. The theoretical results by Götze and Račkauskas (2001) show that if Z only takes
two possible values and under some other technical conditions, the distance ∥π̂m,N − π̂m/2,N∥1 is
proportional to the one in (7)3:

∥π̂m,N − π̂m/2,N∥1 ∝ ∥π̂m,N − πN∥1.

Inspired by this result, Bickel and Sakov (2008) provides some optimality results for choosing m
by minimizing the more general loss ∥π̂m,N − π̂qm,N∥1 for some 0 < q < 1 instead of just q = 0.5
considered by Götze and Račkauskas (2001).

Based on the findings of Bickel and Sakov (2008), we propose using the following approach to pick
m. We first consider the candidates of the form ⌊qjN⌋ and pick the value among them that minimizes
∥π̂m,N − π̂qm,N∥1.

mj = ⌊qjN⌋ (j = 0, 1, 2, . . .),

M̂∗
N = argmin

m=mj

∥π̂mj ,N − π̂mj−1,N∥1.

Note that this involves calculating π̂m,N for all values of mj . These will be just O(logN)
distributions and computationally cheap. Finally, output selected by MoB with adaptive m is
ZMoB
N = ZMoB

M̂∗
N ,N

.

The choice of q has been observed not to be critical in most applications. Bickel and Sakov (2008)
observes no significant difference among q = 0.75, 0.65, 0.6, 0.5. In our experiments, we fix
q = 0.75. In Figure 5, we evaluate the efficiency of this procedure to select m. For each N , we
measure the highest accuracy achieved by MoB when choosing m from {Nα} for α ∈ [0.1, 0.9]. We
plot the accuracy of our adaptive m as well as m =

√
N approach against this optimal performance

for two different settings. These figures show both that adaptive m and the simple m =
√
N achieve

performance close to the optimal m variant. This indicates MoB’s performance is not sensitive to the
choice of m and both the adaptive and simple square root choices achieve a near-optimal performance
without hyperparameter tuning. We repeat this comparison in more settings in Appendix E.1.

5 Intuitions and Conditions for Improvement

We now investigate why and when MoB outperforms BoN. To this end, we decompose the algorithmic
changes from BoN to MoB into two steps, allowing us to study their individual impact more easily.
MoB is the result of applying these two changes to BoN:

1. Change from Best-of-N to Best-of-m. To be able to approximate BoN’s output distribution,
MoB is forced to work with πm, the output distribution of Best-of-m, for some m < N .

2. Change from Best-of-m to MoB. The output of Best-of-m is a sample from its output
distribution πm. On the other hand, MoB estimates πm and selects its mode.

Together, the effects of these two steps determine whether MoB outperforms BoN. The impact
of each step varies by question and depends on the base model’s generation distribution and the
reward model’s reward distribution for that question. These distributions—especially the reward
distribution—can be complex. To enable an intuitive analysis, we measure two metrics for each
question: the base model’s success probability and the reward model’s accuracy, defined as the
fraction of incorrect–correct output pairs in which the correct output receives a higher reward. We

3This is a rough interpretation of the results by Götze and Račkauskas (2001), where the ratio of the two
losses is studied. We refer the reader to the original paper for more details.
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Figure 6: Comparison of Best-of-m (m chosen adaptively) vs. Best-of-N (Left), MoB vs. Best-of-m
(Middle), and MoB vs. BoN (Right). Numbers in parentheses are the size of each group.
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Figure 7: Accuracy comparison on different datasets using base model Qwen2.5-3B and GRM reward
model. Standard deviation is shown as the shaded area. (Left): MMLU-Pro-Chem (Right): GSM8k

then categorize questions into 12 groups according to the value of these two metrics and analyze the
effects of our changes in each group.

In Figure 6, we compare the accuracy of Best-of-N , Best-of-m, and MoB across the groups for
MMLU-Pro-Math benchmark with Gemma2-9B base model, ArmoRM reward model, and N = 128.
The left plot compares Best-of-N with Best-of-m to show the impact of the first step. In questions
with accurate rewards but weak base model performance, BoN benefits the most with more outputs.
Therefore, we observe that using m outputs instead of N has the most negative effect on the
performance. The performance of Best-of-m is compared to MoB in the middle plot of Figure 6 to
measure the impact of the second step. In questions where the mode is correct, MoB will outperform
Best-of-m by picking the correct answer with high probability, even if its chance of selection by Best-
of-m is low. On the other hand, if the mode is incorrect, MoB will be wrong with high probability,
but Best-of-m can still solve the problem by chance. The effect of choosing the mode instead of
sampling on the performance depends on the relative number of these two kinds of questions. We
expect the mode to be correct more often in groups with accurate enough rewards and base model
generations. This is verified by our observation where we see the highest improvement by MoB over
Best-of-m for these questions.

Lastly, the right plot in Figure 6 shows the combined effect of the two changes and compares MoB
with BoN in each group. MoB improves upon BoN the most in questions where the reward and base
models are good enough to make the mode correct, but are not good enough to achieve near perfect
accuracy. In Appendix C, we study the success probability of MoB and BoN in a synthetic setup with
N = ∞ and make similar observations.
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6 Experiments

We conducted a series of experiments to compare the performance of our proposed method against
other well-known sample-and-marginalize approaches across a range of datasets, generative models,
and reward models. The datasets include MATH500 (Lightman et al., 2023), GSM8K (Cobbe et al.,
2021b), MMLU-Pro (Wang et al., 2024b) questions in math (MMLU-Pro-Math) and chemistry
(MMLU-Pro-Chem), and CommonSenseQA (Talmor et al., 2018). We have experimented with three
different generative models from different families and different sizes: Qwen2.5-3B-Instruct (Qwen
Team, 2024), Llama-3.1-8B-Instruct (Grattafiori et al., 2024), and Gemma-2-9B-it (Team et al., 2024).
For reward models, we used two widely adopted ORMs: ArmoRM (Wang et al., 2024a) and GRM
(Yang et al., 2024), with 8B and 3B parameters, respectively. These choices result in thirty diverse
experimental setups that rigorously evaluate our method’s performance.

Figure 7 presents the accuracy of different methods on GSM8K and MMLU-Pro-Chem across varying
values of N . Our method consistently outperforms the baselines, showing clear improvements even
at smaller N values. Table 1 presents the accuracy and its standard error for MoB with adaptive m
and m =

√
N alongside SC, BoN, and WBoN for N = 128 across all benchmarks, using Qwen and

GRM models. Algorithms with statistically insignificant difference to the best algorithm according to
a paired one-sided t-test (p-value > 0.05) are also shown in bold. In Table 2, we report the accuracy
on MATH500 for all base and reward model combinations. This table also includes a row showing
the performance improvement of our method over BoN. As shown in both tables, MoB consistently
outperforms BoN in every setting. These results show the potential of MoB as a strong replacement
of BoN in tasks with discrete final answers. Complete results for all thirty experiment configurations
are provided in Appendix E.2.

Table 1: Results for Qwen2.5-3B and GRM as base and reward models (N = 128).
MATH500 MMLU-Pro-Math MMLU-Pro-Chem GSM8K CSQA

BoN 63.95±1.07 66.10±1.06 49.00±1.12 80.95±0.88 77.70±0.93
SC 66.40±1.06 65.60±1.06 52.50±1.12 80.40±0.89 76.20±0.95
WBoN 67.45±1.05 64.35±1.07 53.10±1.12 81.25±0.87 54.90±1.11
MoB-Adaptive (Ours) 69.95±1.03 69.30±1.03 56.45±1.11 82.85±0.84 77.40±0.94
MoB-Poly (Ours) 69.45±1.03 70.15±1.02 56.30±1.11 83.10±0.84 77.45±0.93

↑MoB over BoN 6.00±0.78 3.20±0.79 7.45±0.94 1.90±0.51 -0.30±0.52

Table 2: Results on MATH500 across all base and reward models (N = 128).
ArmoRM GRM

Llama3.1-8B Gemma2-9B Qwen2.5-3B Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 51.55±1.12 52.20±1.12 60.60±1.09 56.65±1.11 54.95±1.11 63.95±1.07
SC 60.65±1.09 52.90±1.12 66.40±1.06 60.65±1.09 52.90±1.12 66.40±1.06
WBoN 62.90±1.08 53.85±1.11 67.10±1.05 63.55±1.08 56.15±1.11 67.45±1.05
MoB-Adaptive (Ours) 62.90±1.08 56.15±1.11 68.50±1.04 64.30±1.07 57.45±1.11 69.95±1.03
MoB-Poly (Ours) 62.40±1.08 57.05±1.11 67.85±1.04 64.00±1.07 58.10±1.10 69.45±1.03

↑MoB over BoN 11.35±0.86 3.95±0.68 7.90±0.78 7.65±0.80 2.50±0.64 6.00±0.78

7 Conclusion and Future Work

In this paper we highlighted that with imperfect rewards, BoN’s chosen answer can be highly
stochastic and fail to pick the correct answer reliably. To address this, we introduced Majority-of-
the-Bests (MoB), which estimates BoN’s output distribution via bootstrapping and chooses the most
probable outcome. MoB achieves superior performance compared to other selection algorithms such
as, BoN, Self-consistency, and Weighted BoN outperforming them in most of our 30 experimental
setups. Our method is scalable, requires no hyperparameter tuning, and adds only negligible CPU
computational overhead. MoB can serve as a strong alternative to BoN and SC in problems with
discrete final answers. Looking forward, we believe MoB’s selection signal could enable early
stopping in parallel LLM generation, or be applied more broadly in any framework that relies on
sampling from an LLM. However, MoB is limited to settings where the task requires producing
a final answer, and like all sampling-based methods, it incurs higher inference costs compared to
zero-shot approaches.
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List of Appendices

We provide a brief description of the material in the appendix of the paper.

• Appendix A provides theoretical results on the asymptotic behavior of BoN’s output distri-
bution and the proof for Theorem 1.

• Appendix B provides a closed-form calculation of bootstrapped BoN’s output distribution
for more efficient calculations.

• Appendix C investigates the effect of reward noise and base model on different algorithms
in a synthetic setup.

• Appendix D provides extra details for the experiments and implementations.
• Appendix E provides additional experimental results.

A Theoretical Results

In this section, we provide the formal theoretical results and the proof of Theorem 1. To do so, we
first need to show the convergence of BoN’s output distribution, which is done in Section A.1 and
Theorem 2. We prove Theorem 1 in Section A.2.

A.1 Asymptotic Behavior of BoN’s Output Distribution

Theorem 2. For final answer z such that πref(z) ∈ (0, 1), let F0 and F1 represent cumulative distri-
bution functions (CDFs) of the conditional distributions P(r(Y )|f(Y ) = z) and P(r(Y )|f(Y ) ̸= z),
respectively. Define x0 and x1 to be their right endpoints,

x0 ≜ sup{x ∈ R : F0(x) < 1}, x1 ≜ sup{x ∈ R : F1(x) < 1}.

As N → ∞,

(i) if x0 < x1, we have πN (z) → 0.

(ii) if x0 > x1, we have πN (z) → 1.

(iii) if x0 = x1 = x∗, F0 and F1 are continuous and strictly increasing, and for some c ∈ [0,∞],

lim
x↑x∗

1− F0(x)

1− F1(x)
= c, (1)

then we have,

πN (z) →
c · πref(z)

1 + (c− 1) · πref(z)
.

Proof. We first define some random variables to better express πN (z). Assume we use F0 and F1 to
generate i.i.d. samples R0

1, R
0
2, . . .

i.i.d.∼ F0 and R1
1, R

1
2, . . .

i.i.d.∼ F1. For n ≥ 1, let S0
n and S1

n be the
maximum of the first n samples from F0 and F1, that is,

S0
n ≜ max

i=1,...,n
R0

i , S1
n ≜ max

i=1,...,n
R1

i .

Also, for outputs Y1, . . . , YN , let Zi = f(Yi), N0 be the number of outputs that reach the final
answer z, and N1 = N −N0 be the number of outputs that do not reach the final answer z.

We can express πN (z) as

πN (z) =
∑
z1:N

P
(
ZBest
N = z|Z1:N = z1:N

)
· P(Z1:N = z1:N )

=
∑
z1:N

P
(
max
zi=z

r(Yi) > max
zi ̸=z

r(Yi)|Z1:N = z1:N

)
· P(Z1:N = z1:N ). (2)
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Now, note that due Y1, . . . , YN being i.i.d., we have

P(r(Y1), . . . , r(YN )|Z1:N = z1:N ) =
∏
i

P(r(Yi)|Zi = zi).

By definition of R0
i and R1

i , we can therefore write (2) as

πN (z) =
∑
z1:N

P
(
S0
N0 > S1

N1 |Z1:N = z1:N
)
· P(Z1:N = z1:N ) = P

(
S0
N0 > S1

N1

)
.

For simplicity, we define S1 ≜ S1
N1 and S0 ≜ S0

N0 . Now, we can express πN (z) as

πN (z) = P
(
S0 > S1

)
.

Note that S0 d→ x0 and S1 d→ x1, which leads to the statement for cases (i) and (ii). We focus on
case (iii). Let F̄0(x) ≜ 1− F0(x) and F̄1(x) ≜ 1− F1(x) be the complementary CDFs of F0 and
F1, respectively. To quantify P

(
S0 > S1

)
, we note that F̄1 is strictly decreasing in a neighborhood

of S1. Thus,

lim
N→∞

πN (z) = lim
N→∞

P
(
S0 > S1

)
= lim

N→∞
P
(
NF̄1(S

0) < NF̄1(S
1)
)
. (3)

Therefore, we turn to study the joint distribution of (NF̄1(S
0), NF̄1(S

1)) as N → ∞. This will be
achieved by quantifying the distribution of (n0F̄1(S

0
n0
), n1F̄1(S

1
n1
)) as n0, n1 → ∞ and relating it

to the distribution of (NF̄1(S
0), NF̄1(S

1)).

Since F1 is continuous, F1(R
1
i ) ∼ U [0, 1] is uniformly distributed for any i. Define Ui = F̄1(R

1
i ) ∼

U [0, 1]. It is well known that

n1 min
i=1,...,n1

Ui
d→ Exp(1) (n1 → ∞),

which due to mini F̄1(R
1
i ) = F̄1(S

1
n1
), translates to

n1F̄1(S
1
n1
)

d→ Exp(1) (n1 → ∞). (4)

Similarly, we can show that n0F̄0(S
0
n0
)

d→ Exp(1) as n0 → ∞. However, our goal is to analyze
the distribution of n0F̄1(S

0
n0
). To do so, we use the tail-equivalence condition (1). We note that

S0
n0

d→ x∗, therefore, F̄0(S
0
n0
)/F̄1(S

0
n0
)

d→ c as n0 → ∞. Together, we get

n0F̄1(S
0
n0
) =

n0F̄0(S
0
n0
)

F̄0(S0
n0
)/F̄1(S0

n0
)

d→ Exp(1)

c
(n0 → ∞). (5)

Due to the independence of S1
n1

and S0
n0

, we can combine (4) and (5) to get(
n0F̄1(S

0
n0
), n1F̄1(S

1
n1
)
) d→ (E/c, F ) (n0, n1 → ∞),

where E,F
i.i.d.∼ Exp(1). As N → ∞, we have N0, N1 p→ ∞, therefore,(

N0F̄1(S
0
N0), N1F̄1(S

1
N1)

) d→ (E/c, F ) (N → ∞).

Finally, we use the fact that N0/N
d→ πref(z) and N1/N

d→ 1− πref(z) to get(
NF̄1(S

0), NF̄1(S
1)
)
=

(
N0F̄1(S

0
N0)

N0/N
,
N1F̄1(S

1
N1)

N1/N

)
d→
(

E

c · πref(z)
,

F

1− πref(z)

)
. (6)

Combined with (3), we conclude that

lim
N→∞

πN (z) = P
(

E

c · πref(z)
<

F

1− πref(z)

)
=

cπref(z)

1− πref(z) + cπref(z)
.
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A.2 Proof of Theorem 1

We restate Theorem 1 with the assumptions not included in the main text.
Theorem 3. Assume that there are finite possible values for Z and for every possible final answer z,
the conditions of Theorem 2 for one the cases hold. If as N → ∞, we have m → ∞ and m/N → 0,
then for any ϵ > 0, the estimated π̂m,N will converge to the true distribution πm. That is,

lim
n→∞

P
(
∥π̂m,N − πm∥1 ≥ ϵ

)
= 0.

Proof. Since there are finite possible values for Z, it suffices to show the convergence in estimated
probability of each possible final answer z. We show that for any z, and ϵ > 0, we have

lim
N→∞

P(|π̂m,N (z)− πm(z)| ≥ ϵ) = 0. (7)

We use the result by Bickel et al. (2011, Equation 3.14) to show this claim. To do so, we first frame
our problem in their notation. For 1 ≤ i ≤ N , let Zi ≜ f(Yi) be (the one-hot encoding of) the final
answer reached by Yi, and Ri ≜ r(Yi) be the numerical reward of Yi. We define

Xi ≜ (Zi, Ri).

We define the bootstrap statistic of X1, . . . , Xm as

Tm = I
[
ZBest
m = z

]
+

D

4
∼ Lm,

where I[·] is the indicator function, D ∼ Bernoulli(0.5) is an independent Bernoulli random variable,
and Lm is defined to be the distribution of Tm. Basically, Tm is the indicator of z being selected by
BoN, plus a small random noise to ensure the non-degeneracy condition as m → ∞. We define the
function h(t) = I[t > 0.5], so that the parameter of interest θm becomes

θm ≜ Eh(Tm) = πm(z),

as intended. Lastly, one can verify that since Tm is invariant of repetitions and permutations of its
inputs X1, . . . , Xm, in our case, we have for any 0 < x < 1,

δm(x) ≜
∣∣π⌊mx⌋(z)− πm(z)

∣∣.
We now show the conditions of Bickel et al. (2011, Theorem 2). First, we need to show that Lm, the
distribution of Tm, is convergent. According to Theorem 2, we have

lim
m→∞

πm(z) ≜ π∞(z)

for some π∞(z) ∈ [0, 1]. Therefore, as m → ∞, we have

Lm
d→ Bernoulli(π∞(z)) +

Bernoulli(0.5)

4
.

For condition Bickel et al. (2011, Equation 3.11) we need to show that for any M < ∞, we have

δm(1− xm−1/2) → 0

uniformly for all 0 < x < M . By definition, it suffices to show that for any 0 < x < M , we have∣∣π⌊m−x
√
m⌋(z)− πm(z)

∣∣ → 0.

This follows from the fact that πm(z) is convergent to π∞(z). For any ε > 0, pick M0 such that for
any m0 ≥ M0, we have

|πm0(z)− π∞(z)| < ε

2
,

and M1 such that for any M1 −M
√
M1 ≥ M0. Then for any m ≥ M1, we have∣∣π⌊m−x

√
m⌋(z)− π∞(z)

∣∣ < ε/2 and |πm(z)− π∞(z)| < ε/2.

Together, we have ∣∣π⌊m−x
√
m⌋(z)− πm(z)

∣∣ < ε

and achieve the uniform convergence condition.

Finally, note that our statistic Tm is not dependent on the sampling distribution pref and Bickel et al.
(2011, Equation 3.13) is satisfied.
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B Closed-Form Calculation of Bootstrapped BoN’s Output Distribution

In Section 4.2, we proposed approximating π̂m,N by running BoN on a large number B of subsets
of size m sampled with replacement from the N generated outputs. In practice, B = 10, 000 is
commonly considered sufficient. This calculation is negligible compared to the generation of outputs
from the LLM and can be carried out on a CPU. Nonetheless, we here show that it can also be done
in O(N logN).

Define Ri = r(Yi) for 1 ≤ i ≤ N , and let i1, i2, . . . , iN be such that

Ri1 < Ri2 < . . . < RiN .

For simplicity, we assume no ties occur among the rewards. The key insight is that for any 1 ≤ k ≤ N ,
the probability of Yik being selected in a randomly sampled subset of m outputs can be calculated in
closed-form. We note that Yik is selected if the subset only includes outputs among Yi1 , . . . , Yik , but
is not limited to Yi1 , . . . , Yik−1

(and therefore contains Yik ). We get

P(Yik is the output of BoN on a resampled subset) =
(

k

N

)m

−
(
k − 1

N

)m

.

Thus, for any final answer z, the probability of it being selected in a subset is

π̂m,N (z) =
∑

k:Zik
=z

(
k

N

)m

−
(
k − 1

N

)m

.

This procedure only requires sorting the outputs according to their rewards and therefore has com-
plexity of O(N logN).

C Effect of Reward Noise and Base Model’s Success Probability
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Figure 8: Success probability of SC, BoN, and MoB with infinite budget (N = ∞) for different
values of the base model’s success probability and reward noise.

In this section, we investigate the effect of the base model and reward noise on the success probability
of SC, BoN, and MoB. We consider a synthetic setup for a TRUE/FALSE question, where the correct
answer is TRUE. Let p be the success probability of the base model, which is the probability that the
base model generates a solution reaching the correct final answer.

Assume roracle is an oracle reward model that always assigns the reward of 1 to solutions that reach
the correct answer, and 0 otherwise:

roracle(Y ) =

{
1, if f(Y ) = TRUE,
0, if f(Y ) = FALSE.

To investigate the effect of an imperfect reward model, we consider a noisy reward model rnoisy that
is equal to the oracle reward plus an exponentially distributed noise:

rnoisy(Y ) = roracle(Y ) + Exp(1/β).
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The parameter β controls the noise level, where a larger β indicates a noisier reward model. To see
this, note that the expected value and the standard deviation of the noise are equal to β. If β is large,
the noise will dominate the signal from the oracle reward, and the noisy reward model will be less
informative.

We visualize the success probability of SC, BoN, and MoB with infinite budget N = ∞ in Figure 8.
SC’s success probability, as shown in the left plot of Figure 8, is independent of the reward noise.
It is either equal to 1 when p > 0.5 (the correct answer is the most probable answer), or equal to 0
otherwise. For BoN, consider two extreme cases for the reward noise. When the reward model is
perfect (β small), BoN’s success probability is 1 regardless of the base model’s success probability.
This is shown in the bottom edge of the middle plot in Figure 8. In this case, BoN is preferable over
SC. On the other hand, when the reward model is completely uninformative (β large), BoN’s success
probability is equal to the base model’s success probability. This is shown in the top edge of the
middle plot in Figure 8. MoB’s success probability is equal to 1 if BoN’s success probability is at
least 0.5, as shown in the right plot of Figure 8. We see that MoB shows a similar behavior to SC
when the reward model is uninformative, and when the reward model is perfect, MoB behaves like
BoN.

In this setup, we can study the success probability of BoN and MoB with an infinite budget N = ∞
theoretically. BoN’s success probability depends on the reward’s noise level. It can be calculated
from Theorem 2 as

BoN success probability with infinite budget =
e1/βp

1− p+ e1/βp
.

Note that if the reward model is perfect (β = 0), both the numerator and denominator go to infinity,
and we reach the success probability of 1. With β = ∞, the noise becomes dominant, and BoN’s
success probability remains equal to the base model p even with infinite budget. Due to Theorem 1,
MoB solves the problem if the correct answer is BoN’s most probable outcome. Therefore,

MoB success probability with infinite budget =

{
1, if e1/βp

1−p+e1/βp
> 0.5,

0, otherwise.

This is favorable over BoN in scenarios where BoN still prefers the correct answer, as it can find the
correct answer reliably without randomness.

D Implementation and Experiment Details

In this section, we provide more details on how the experiments in the paper are conducted.

D.1 Evaluation Experiments

Benchmarks. We run our experiments on five popular benchmarks. MATH500, first introduced by
Lightman et al. (2023), is a randomly sampled subset of 500 math questions with short final answers
from the MATH dataset (Hendrycks et al., 2021). We use the math and chemistry questions from the
MMLU-Pro benchmark (Wang et al., 2024b), which includes multiple-choice questions on a variety
of topics. We also run our experiments on GSM8K (Cobbe et al., 2021a) that contains grade school
math questions in short final answer format. Lastly, we use the CommonsenseQA benchmark (Talmor
et al., 2019) that tests the model’s commonsense reasoning through multiple-choice questions. For all
benchmarks, we randomly select 500 questions for our experiments.

Base and Reward Models. We have used the models Qwen/Qwen2.5-3B-Instruct,
google/gemma-2-9b-it, and meta-llama/Llama-3.1-8B-Instruct from Huggingface as base
generative models. Our reward models are Ray2333/GRM-Llama3.2-3B-rewardmodel-ft and
RLHFlow/ArmoRM-Llama3-8B-v0.1, which are the best performing 3B and 8B reward models
according to Rewardbench (Lambert et al., 2024) in reasoning tasks.

Implementation Details. In the implementation of MoB, we always use the closed-form calculation
of π̂m,N discussed in Appendix B to efficiently perform the bootstrap estimate. Therefore, in the
actual implementation, there is no parameter B and we effectively operate as if B = ∞ was chosen.
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We use Huggingface’s Python library for all the output generations. The generation was carried
on H100 GPUs. The compute cost was not tracked, but we estimate it to be on the order of a few
thousand GPU-hours. We always use temperature 1 for inference and no extra modification of the
next-token sampling procedure. The final answer extraction and evaluation are calculated using the
Language Model Evaluation Harness (Gao et al., 2024). For each question, we generate 512 outputs
and for each budget size N , we run each algorithm ⌊512/N⌋ times. Reported standard errors for the
accuracies are calculated with the assumption of normal errors and from the standard deviation of
500× ⌊512/N⌋ independent runs of the algorithm (500 is the dataset size across all benchmarks).
The numbers reported as the improvement of MoB over BoN are based on the adaptive MoB, and its
standard error is calculated from the standard deviation of paired differences of the algorithms score in
500× ⌊512/N⌋ runs. We use the Scipy library (Virtanen et al., 2020) in python to conduct one-sided
paired t-test to decide statistical significance of the difference between the best performing algorithm
with another algorithm in our tables. Algorithms with insignificant (p-value > 0.05) difference are
also shown in bold.

For GSM8K, we use a 5-shot prompt. For MATH and MMLU-Pro questions, we use the zero-shot
chain-of-thought prompting used in the official Llama3.1 models evaluation (Grattafiori et al., 2024)
on MATH (Hendrycks et al., 2021). This prompt and the prompt used for CommonsenseQA are
given in the following.

Prompt for MATH and MMLU-Pro

Solve the following <topic> problem efficiently and clearly:
- For simple problems (2 steps or fewer): Provide a concise solution
with minimal explanation.
- For complex problems (3 steps or more): Use this step-by-step format:
## Step 1: [Concise description] [Brief explanation and calculations]
## Step 2: [Concise description] [Brief explanation and calculations]
...
Regardless of the approach, always conclude with:
Therefore, the final answer is: $\\boxed{answer}$. I hope it is
correct.
Where [answer] is just the final number or expression that solves the
problem.
Problem: <problem from dataset>

Prompt for CommonsenseQA

Use commonsense to solve the following multiple choice question. First
explain your solution and then give the final answer. Always finish
your answer with "the answer is (X)" where X is the correct letter
choice. Question:: <problem from dataset>

D.2 Details of Other Experiments

In Figure 2, we discussed the success probability of BoN, which requires an estimate of BoN’s output
distribution. We use the same technique as in MoB to estimate this output distribution. To minimize
the error of this approximation, we specifically generate 1,400 outputs for the math problems in
MMLU-Pro with Qwen2.5-3B . Then, we use π̂N,1400, as defined in Section 4.2 as an estimate for
πN . Same technique is used in Figure 3 where the mode of π̂N,1400 is chosen as the output of oracle
MoB, and Figure 4 to where the distribution estimation error is calculated with respect to π̂m,1400

instead of the true πm.

In Figure 5, we consider seven fixed schedules for m, specifically m = ⌊Nα⌋ for α =
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8. At any budget N , we compared the accuracy of MoB with adap-
tive m against the highest accuracy among the seven instantiations of fixed schedule MoB.

In Figure 6, for each question, we measure base model’s success probability and reward model’s
accuracy using 512 outputs. We ignore questions with all-correct or all-incorrect outputs, since the
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reward accuracy is not defined for them, as well as questions with reward accuracy bellow 0.25 due
to all algorithms having zero success probability on them. Also, m is calculated adaptively for each
question.

E Additional Experimental Results

In this section, we provide additional experimental results for all 30 setups.

E.1 Adaptive Subset Size Selection

In Section 4, we compared MoB with adaptive choice of m and m =
√
N with the optimal choice of

m. We provide this comparison in MATH500 (Figure 9), MMLU-Pro-Math (Figure 10), MMLU-Pro-
Chem (Figure 11), GSM8K (Figure 12), and CommonsenseQA (Figure 13). In Table 3, we compare
the performance of MoB with adaptive q for various values of q on all benchmarks Llama3.1-8B base
model and ArmoRM reward model. As also observed in the literature, we observe that the choice of
q is not a sensitive one.

Table 3: Performance of MoB with adaptive m across different choices of q for Llama3.1-8B base
model and ArmoRM reward model.

q 0.40 0.50 0.60 0.70 0.80 0.90
MATH500 61.85% 63.00% 63.15% 62.20% 62.45% 60.70%
MMLU-Pro-Math 66.60% 66.85% 66.75% 66.60% 67.10% 66.35%
MMLU-Pro-Chem 56.75% 57.40% 57.85% 57.15% 56.95% 56.35%
GSM8k 91.60% 91.55% 91.55% 91.85% 91.80% 91.85%
CSQA 77.45% 77.40% 77.30% 77.25% 77.35% 77.30%
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Figure 9: Comparison of MoB with adaptive m and m =
√
N against MoB with optimal m on the

MATH500 dataset with ArmoRM (Up) and GRM (Down) reward models, and Qwen2.5-3B (Left),
Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show standard error.

E.2 Evaluation Experiments

We compare MoB with adaptive m and m =
√
N with baselines in MATH500 (Figure 14, Table 4),

MMLU-Pro-Math (Figure 15, Table 5), MMLU-Pro-Chem (Figure 16, Table 6), GSM8K (Figure 17,
Table 7), and CommonsenseQA (Figure 18, Table 8).
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Figure 10: Comparison of MoB with adaptive m and m =
√
N against MoB with optimal m on the

MMLU-Pro-Math dataset with ArmoRM (Up) and GRM (Down) reward models, and Qwen2.5-3B
(Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show standard
error.
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Figure 11: Comparison of MoB with adaptive m and m =
√
N against MoB with optimal m on the

MMLU-Pro-Chem dataset with ArmoRM (Up) and GRM (Down) reward models, and Qwen2.5-3B
(Left), Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show standard
error.

E.3 Results on Skywork-v2 Reward Model

Additionally, we report the results for Skywork/Skywork-Reward-V2-Llama-3.1-8B (Liu et al.,
2025), a more recent reward model in Tables 9-13.
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Figure 12: Comparison of MoB with adaptive m and m =
√
N against MoB with optimal m on

the GSM8K dataset with ArmoRM (Up) and GRM (Down) reward models, and Qwen2.5-3B (Left),
Llama3.1-8B (Middle), and Gemma2-9B (Right) base models. Shaded areas show standard error.
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Figure 13: Comparison of MoB with adaptive m and m =
√
N against MoB with optimal m on the

CommonsenseQA dataset with ArmoRM (Up) and GRM (Down) reward models, and Qwen2.5-3B
(Middle), and Gemma2-9B (Right) base models. Shaded areas show standard error.

Table 4: Results on MATH500 across all base and reward models (N = 128).
ArmoRM GRM

Llama3.1-8B Gemma2-9B Qwen2.5-3B Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 51.55±1.12 52.20±1.12 60.60±1.09 56.65±1.11 54.95±1.11 63.95±1.07

SC 60.65±1.09 52.90±1.12 66.40±1.06 60.65±1.09 52.90±1.12 66.40±1.06

WBoN 62.90±1.08 53.85±1.11 67.10±1.05 63.55±1.08 56.15±1.11 67.45±1.05

MoB-Adaptive (Ours) 62.90±1.08 56.15±1.11 68.50±1.04 64.30±1.07 57.45±1.11 69.95±1.03

MoB-Poly (Ours) 62.40±1.08 57.05±1.11 67.85±1.04 64.00±1.07 58.10±1.10 69.45±1.03

↑MoB over BoN 11.35±0.86 3.95±0.68 7.90±0.78 7.65±0.80 2.50±0.64 6.00±0.78
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Table 5: Results on MMLU-Pro-Math across all base and reward models (N = 128).
ArmoRM GRM

Llama3.1-8B Gemma2-9B Qwen2.5-3B Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 61.40±1.09 60.45±1.09 65.95±1.06 64.10±1.07 56.15±1.11 66.10±1.06

SC 62.95±1.08 49.95±1.12 65.60±1.06 62.95±1.08 49.95±1.12 65.60±1.06

WBoN 66.45±1.06 52.25±1.12 66.70±1.05 60.05±1.10 56.45±1.11 64.35±1.07

MoB-Adaptive (Ours) 66.70±1.05 61.55±1.09 69.80±1.03 69.05±1.03 59.35±1.10 69.30±1.03

MoB-Poly (Ours) 67.20±1.05 62.05±1.09 70.05±1.02 69.30±1.03 59.45±1.10 70.15±1.02

↑MoB over BoN 5.30±0.81 1.10±0.71 3.85±0.80 4.95±0.82 3.20±0.83 3.20±0.79

Table 6: Results on MMLU-Pro-Chem across all base and reward models (N = 128).
ArmoRM GRM

Llama3.1-8B Gemma2-9B Qwen2.5-3B Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 49.70±1.12 56.60±1.11 48.05±1.12 53.05±1.12 49.25±1.12 49.00±1.12

SC 50.25±1.12 43.40±1.11 52.50±1.12 50.25±1.12 43.40±1.11 52.50±1.12

WBoN 57.65±1.10 45.45±1.11 53.30±1.12 49.75±1.12 57.25±1.11 53.10±1.12

MoB-Adaptive (Ours) 57.40±1.11 58.05±1.10 54.75±1.11 60.75±1.09 54.60±1.11 56.45±1.11

MoB-Poly (Ours) 57.80±1.10 58.80±1.10 54.90±1.11 60.00±1.10 55.00±1.11 56.30±1.11

↑MoB over BoN 7.70±0.92 1.45±0.80 6.70±0.92 7.70±0.93 5.35±0.92 7.45±0.94

Table 7: Results on GSM8K across all base and reward models (N = 128).
ArmoRM GRM

Llama3.1-8B Gemma2-9B Qwen2.5-3B Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 89.00±0.70 84.20±0.82 83.85±0.82 87.15±0.75 81.20±0.87 80.95±0.88

SC 88.15±0.72 80.55±0.89 80.40±0.89 88.15±0.72 80.55±0.89 80.40±0.89

WBoN 88.70±0.71 80.75±0.88 81.10±0.88 77.75±0.93 79.45±0.90 81.25±0.87

MoB-Adaptive (Ours) 91.75±0.62 83.30±0.83 83.85±0.82 90.50±0.66 81.15±0.87 82.85±0.84

MoB-Poly (Ours) 91.80±0.61 83.15±0.84 83.80±0.82 90.05±0.67 80.85±0.88 83.10±0.84

↑MoB over BoN 2.75±0.56 -0.90±0.52 0.00±0.50 3.35±0.56 -0.05±0.47 1.90±0.51

Table 8: Results on CSQA across all base and reward models (N = 128).
ArmoRM GRM

Llama3.1-8B Gemma2-9B Qwen2.5-3B Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 77.80±0.93 81.20±0.87 80.15±0.89 78.05±0.93 80.55±0.89 77.70±0.93

SC 75.75±0.96 79.25±0.91 76.20±0.95 75.75±0.96 79.25±0.91 76.20±0.95

WBoN 76.75±0.94 80.05±0.89 76.60±0.95 36.35±1.08 49.80±1.12 54.90±1.11

MoB-Adaptive (Ours) 77.40±0.94 81.20±0.87 79.40±0.90 78.45±0.92 81.45±0.87 77.40±0.94

MoB-Poly (Ours) 77.30±0.94 81.45±0.87 79.15±0.91 78.65±0.92 81.15±0.87 77.45±0.93

↑MoB over BoN -0.40±0.47 0.00±0.43 -0.75±0.48 0.40±0.54 0.90±0.48 -0.30±0.52
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Figure 14: Comparison of MoB with the baselines on the MATH500 dataset with ArmoRM (Up)
and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B
(Right) base models. Shaded areas show standard error.
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Figure 15: Comparison of MoB with the baselines on the MMLU-Pro-Math dataset with ArmoRM
(Up) and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-
9B (Right) base models. Shaded areas show standard error.
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Figure 16: Comparison of MoB with the baselines on the MMLU-Pro-Chem dataset with ArmoRM
(Up) and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-
9B (Right) base models. Shaded areas show standard error.
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Figure 17: Comparison of MoB with the baselines on the GSM8K dataset with ArmoRM (Up) and
GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-9B
(Right) base models. Shaded areas show standard error.
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Figure 18: Comparison of MoB with the baselines on the CommonsenseQA dataset with ArmoRM
(Up) and GRM (Down) reward models, and Qwen2.5-3B (Left), Llama3.1-8B (Middle), and Gemma2-
9B (Right) base models. Shaded areas show standard error.

Table 9: Results on MATH500 with Skywork reward model across all base models (N = 128).

Skywork
Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 54.50±0.79 55.85±0.79 63.35±0.76

SC 60.65±1.09 52.90±1.12 66.40±1.06

WBoN 65.05±1.07 57.95±1.10 68.80±1.04

MoB-Adaptive (Ours) 63.95±1.07 59.45±1.10 69.70±1.03

MoB-Poly (Ours) 63.65±1.08 59.15±1.10 70.35±1.02

↑MoB over BoN 9.45±0.81 3.60±0.72 6.35±0.78

Table 10: Results on MMLU-Pro-Math with Skywork reward model across all base models (N =
128).

Skywork
Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 60.10±0.77 54.20±0.79 67.80±0.74

SC 62.95±1.08 49.95±1.12 65.60±1.06

WBoN 69.45±1.03 60.00±1.10 69.80±1.03

MoB-Adaptive (Ours) 66.00±1.06 59.10±1.10 72.55±1.00
MoB-Poly (Ours) 66.70±1.05 59.10±1.10 72.85±0.99

↑MoB over BoN 5.90±0.75 4.90±0.88 4.75±0.75
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Table 11: Results on MMLU-Pro-Chem with Skywork reward model across all base models (N =
128).

Skywork
Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 57.23±0.82 53.20±0.79 57.70±0.78

SC 50.60±1.17 43.40±1.11 52.50±1.12

WBoN 62.83±1.13 58.60±1.10 58.65±1.10

MoB-Adaptive (Ours) 60.87±1.14 57.75±1.10 61.50±1.09
MoB-Poly (Ours) 60.92±1.14 57.40±1.11 61.55±1.09

↑MoB over BoN 3.64±0.79 4.55±0.98 3.80±0.82

Table 12: Results on GSM8K with Skywork reward model across all base models (N = 128).

Skywork
Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 85.15±0.56 80.98±0.62 82.37±1.05

SC 88.15±0.72 80.53±0.89 80.85±1.53

WBoN 88.25±0.72 80.13±0.89 82.07±1.50

MoB-Adaptive (Ours) 89.55±0.68 81.23±0.87 84.04±1.43
MoB-Poly (Ours) 89.85±0.68 81.23±0.87 83.89±1.43

↑MoB over BoN 4.40±0.61 0.25±0.46 1.67±0.82

Table 13: Results on CSQA with Skywork reward model across all base models (N = 128).

Skywork
Llama3.1-8B Gemma2-9B Qwen2.5-3B

BoN 77.00±0.67 80.15±0.63 78.85±0.65
SC 75.75±0.96 79.25±0.91 76.20±0.95

WBoN 76.45±0.95 80.20±0.89 76.15±0.95

MoB-Adaptive (Ours) 77.80±0.93 81.00±0.88 77.00±0.94

MoB-Poly (Ours) 78.00±0.93 81.00±0.88 77.25±0.94

↑MoB over BoN 0.80±0.43 0.85±0.41 -1.85±0.49
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The results supporting the claims are reported in the Method and Experiments
section.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Mentioned the limitations in the Conclusions and Future Work section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: To the best of our knowledge, all theorems are correct, and every mathematical
citation is properly used.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the implementation details and the choice of model/dataset/benchmark is
provided in the main text and the appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All of the data that we have used is already public. We will publish the code
upon acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Our model has only one hyperparameter which is automatically tuned by our
method. The generative models and datasets are all well-known and widely used in the
community.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provided confidence intervals in our tables and figures.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, we will provide as many quantifiable and trackable information as possible
to address these questions.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes we have followed the guidelines mentioned on the website during the
course of the project.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: Our method is a general technique for improving inference in generative
models. The societal impacts depend heavily on the specific use cases and deployment
contexts of these models. Therefore, a detailed discussion of societal impacts falls outside
the scope of this work.
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Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: We are not releasing any new dataset or scraped datasets. Every model and
dataset used in this paper is already open-source and public.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [No]

Justification: We have provided proper citation for every model/dataset that we have used.
The reader can find the licensing of those assets in those references, but we have not
mentioned those licenses in our manuscript.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
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• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The code of our method will be public. We are not releasing any new asset
(e.g. model/dataset) except our method’s code.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
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• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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