

000 HIVID: LLM-GUIDED VIDEO SALIENCY FOR 001 CONTENT-AWARE VOD AND LIVE STREAMING 002 003 004

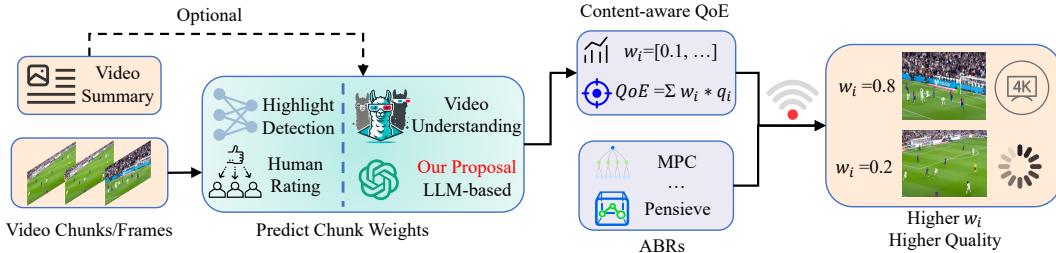
005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

011 Content-aware streaming requires dynamic, chunk-level importance weights to
012 optimize subjective quality of experience (QoE). However, direct human annotation
013 is prohibitively expensive while vision-saliency models generalize poorly. We
014 introduce HiVid, the first framework to leverage Large Language Models (LLMs)
015 as a scalable human proxy to generate high-fidelity weights for both Video-on-
016 Demand (VOD) and live streaming. We address 3 non-trivial challenges: (1)
017 To extend LLMs’ limited modality and circumvent token limits, we propose a
018 perception module to assess frames in a local context window, autoregressively
019 building a coherent understanding of the video. (2) For VOD with rating inconsis-
020 tency across local windows, we propose a ranking module to perform global
021 re-ranking with a novel LLM-guided merge-sort algorithm. (3) For live streaming
022 which requires low-latency, online inference without future knowledge, we
023 propose a prediction module to predict future weights with a multi-modal time
024 series model, which comprises a content-aware attention and adaptive horizon to
025 accommodate asynchronous LLM inference. Extensive experiments show HiVid
026 improves weight prediction accuracy by up to 11.5% for VOD and 26% for live
027 streaming over SOTA baselines. Real-world user study validates HiVid boosts
028 streaming QoE correlation by 14.7%.

029 1 INTRODUCTION



041 Figure 1: Overview of content-aware streaming. The estimated chunk weights w_i are incorporated
042 into QoE and optimized by ABRs. Higher weights would render better viewing experience.

044 Content-aware video streaming improves quality of experience (QoE) by allocating higher bitrates
045 to more important video chunks guided by user-perceived priority weights Zhang et al. (2021).
046 As shown in Figure 1, with available video chunks and optional text description, we can estimate
047 the saliency score and incorporate it into existing QoE model. **Following past work on highlight**
048 **detection Moon et al. (2023); Xiao et al. (2024), here we denote the saliency as the overall content**
049 **importance score for each video chunk. We distinguish it from visually salient regions within a**
050 **frame in classic video saliency prediction tasks.**

051 The adaptive bitrate (ABR) algorithms Chen et al. (2024a) then optimize the bitrates with preference
052 priority such that higher weights incur higher quality and less rebuffering, thus rendering better
053 subjective experience. However, such human-centric and content-dependent saliency task brings
new challenges to existing paradigms.

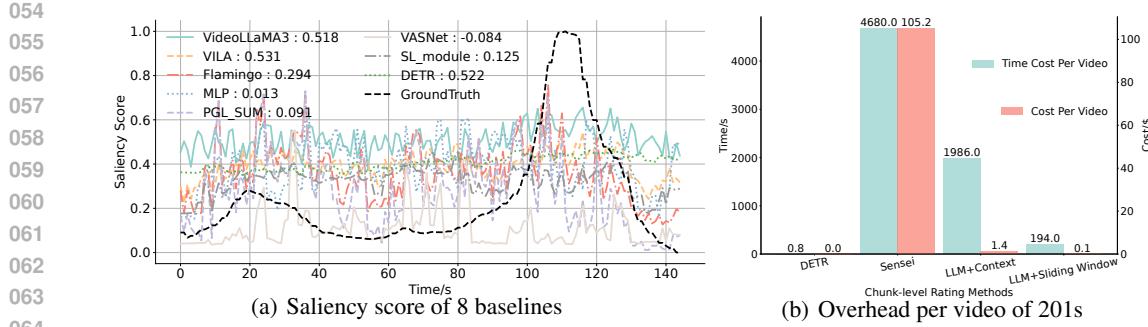


Figure 2: Inaccurate saliency of previous work and significant overhead of human ratings.

Challenge 1: Why LLM and Its Constraints. The most intuitive solution is computer vision (CV) based highlight detection like DETR Moon et al. (2023), which learns to identify per-chunk temporal saliency scores from training videos. However, these models are too small to capture the complex semantic content and generalize across diverse video categories. Alternatively, large video understanding models like VideoLLaMA3 Zhang et al. (2025) excel in objective question answering and captioning tasks, but they often yield invalid and inaccurate responses when it comes to zero-shot subjective rating. We present a case study in Fig. 2 (a) (refer to experimental setup). We can find that neither paradigm can fit the ground truth with high PLCC correlation (legend value). On the contrary, SENSEI Zhang et al. (2021) conducts offline crowdsourcing ratings with human involvement, which is accurate but expensive and time consuming (78 minutes and 100\$ per video). Therefore it's impractical for large-scale deployment, especially for live streaming, as shown in Fig. 2(b).

To enable both accuracy and efficiency, we can harness LLMs for zero-shot subjective reasoning as human proxy. However, video modality is unavailable for most SOTA LLMs like GPT-4o, which motivates us to assess only anchor frames from each chunk. Moreover, the limited input tokens (e.g., 128k) prohibit memorizing all historical context when dealing with long videos (LLM+Context in Fig. 2(b)). Therefore, we can break down the frames via local sliding window to enable fine-grained rating and global summarization with minimal overhead (LLM+Window in Fig. 2(b)).

Challenge 2: Rating Discrepancies in video-on-demand (VOD). Due to the lack of global context across frames in Challenge 1, the LLM rating distribution may vary significantly across different local windows. We present an example in Fig. 3 with sliding window length $m = 10$. During frames 79-80, the scoring scene receives the most attention (the highest ground truth) but the rating only reaches 65-70, while the less intense celebration during frames 108-109 is rated 75-85. This is because the results from one window only manifest local importance without global reference. To enable consistency, an appropriate re-ranking across chunks can eliminate context bias and rating discrepancy.

(65 & 70) VS (75 & 85) : Inconsistent Rating Without Enough Context

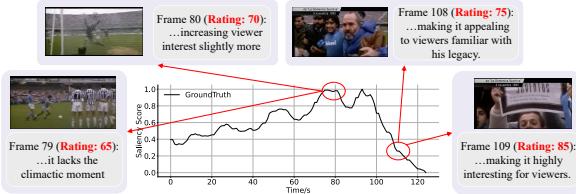


Figure 3: Inconsistent rating distribution.

Challenge 3: Uncertainty in Live Streaming. Different from VOD, live streaming requires real time decision without future chunks' knowledge. To this end, we can only predict the future weights based on historical ratings via forecasting models. However, the LLM inference latency is variable and dependent on the input tokens (see Table 2). Therefore, a robust prediction must adjust the future horizon to cover the time interval gap for chunks that are not yet rated. Only then can ABRs optimize the future chunks' weighted QoE to decide the optimal bitrate. In addition, the inherent multi-modal time series also calls for a new content-aware forecasting model to further boost accuracy.

In response, we propose HiVid, the first systematic framework that harnesses the power of LLMs as judge for content-aware streaming with 3 tailored modules. To address challenge 1, we propose a perception module to derive overall video description and chunk-level saliency scores. We leverage LLMs to assess sampled anchor frames from each chunk via a local sliding window. The response

108 comprises frame group ratings with periodical video summary as a compact historical context for
 109 subsequent windows. In this way, HiVid is adaptive to arbitrary video length without token limits.
 110

111 To address challenge 2, we propose a ranking module on top of the previous perception. With the
 112 global video summary and group ratings, we propose to re-rank the groups with a novel variant of
 113 merge sort algorithm, which encompasses an LLM-guided comparison capable of sorting multiple
 114 frames. In this way, we obtain a globally consistent saliency map without distribution discrepancy,
 115 while the overall summarization from perception module also guides the LLM reasoning.
 116

117 To address challenge 3, we propose a prediction module in parallel with perception module. Upon
 118 each response of previous group rating, we leverage a novel multi-modal time series forecasting
 119 model to predict the future chunk weights that are yet to arrive. We align frames and periodical text
 120 summary with CLIP Radford et al. (2021), and then we propose a content-aware attention to capture
 121 the impact of multi-modal video statistics on time series evolution. To further meet the strict latency,
 122 we dynamically adjust the prediction dimension asynchronously depending on LLM and forecasting
 123 latency. In this way, we achieve real-time streaming by pre-generating the future weights.
 124

125 We conduct extensive experiments on 3 well-known highlight detection datasets. Regarding VOD,
 126 HiVid surpasses 8 SOTA highlight detection and video understanding models by 11.5%, 6% and
 127 14.7% in terms of correlation, mean average precision (mAP) and mean opinion score (MOS) accu-
 128 racy. Regarding live streaming, HiVid also outperforms 9 SOTA forecasting by 26% while guaran-
 129 teeing real-time latency. We summarize our contributions as follows:
 130

- 131 • We present HiVid, the first coherent LLM-guided pipeline for content-aware VOD and live stream-
 132 ing. We identify 3 key challenges: (1) Constrained LLM modality and context length; (2) Rating
 133 distribution discrepancy in VOD; (3) Unavailable future chunks and strict latency requirement in
 134 live streaming.
- 135 • We address the issues with 3 modules: (1) Perception module that assesses sampled frames via
 136 context windows to iteratively generate video summary and saliency scores; (2) Ranking module that
 137 leverages LLM-guided merge sort algorithm to re-rank all the frames with global video summary.
 138 (3) Prediction module that leverages a multi-modal time series model to predict future weights,
 139 compounded by a novel content attention mechanism and adaptive forecasting dimension.
- 140 • HiVid achieves the SOTA across 17 baselines in extensive experiments on public datasets. Real
 141 world user study in streaming QoE also validates the effectiveness.

142 2 RELATED WORK

143 2.1 CONTENT-AWARE STREAMING

144 Traditional video streaming leverages ABRs like heuristic MPC Yin et al. (2015) to decide bitrates
 145 of chunks to maximize objective QoE metrics Duanmu et al. (2019), i.e. higher visual quality, lower
 146 rebuffering, etc. Content-aware streaming Zhang et al. (2021) improves upon additive chunk-level
 147 QoE Mao et al. (2017) by incorporating the subjective content preferences as:

$$148 \quad 149 \quad 150 \quad QoE = \sum_i^N w_i * q_i \quad (1)$$

151 where w_i and q_i denote the chunk weight and objective metrics above. To derive w_i , SENSEI Zhang
 152 et al. (2021) leverages crowdsourcing ratings on videos with different low-quality chunks and then
 153 infers the optimal weights. However, such human rating process amounts to expensive cost with
 154 significant delay, which is not scalable for VOD and live streaming.

155 As an alternative, highlight detection Xu et al. (2021) like DETR Moon et al. (2023) tends to predict
 156 the chunk saliency score from video features by training neural networks like transformers. Video
 157 summarization Apostolidis et al. (2021) like VASNet Fajtl et al. (2019) achieves a similar goal by
 158 inferring chunk importance to the whole video. However, these small models exhibit poor semantic
 159 understanding and generalization ability, especially for unseen videos. Recently, large video models
 160 like VILA Lin et al. (2024) have enhanced the performance of various understanding tasks. How-
 161 ever, they suffer from hallucination and often yield invalid and inaccurate responses when dealing
 162 with subjective but quantitative rating task.

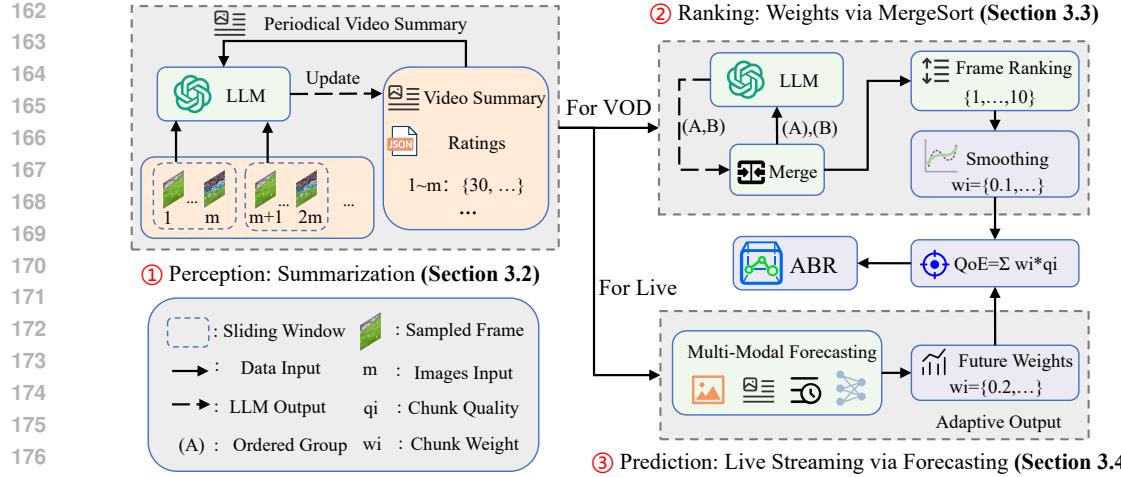


Figure 4: Overview of HiVid. The perception module generates a video summary with group ratings. The ranking module yields a ranking list via a variant merge sort algorithm for VOD streaming. The prediction module predicts future weights via adaptive forecasting for live streaming. The final weights w_i are incorporated into the QoE model.

2.2 LLMs FOR SUBJECTIVE REASONING

On the contrary, LLMs Achiam et al. (2023) have exhibited better semantic reasoning compared with video understanding models. LLMs have been adapted as an agent Ge et al. (2023) to perform various understanding Jin et al. (2024) and scheduling tasks Lai et al. (2023), while several studies Park et al. (2023); Hussain et al. (2024) also demonstrate the correlation between LLMs and human behavior regarding subjective perception assessment. However, it has not been explored how LLMs empower video-level highlights rating because video modality is not directly supported, and the limited context prohibits an entire video input, presenting a significant gap.

3 PROPOSED METHOD

3.1 OVERVIEW OF HIVID

Built upon previous insights, we present our novel framework HiVid which comprises 3 modules in Fig. 4. The perception module quickly iterates through the video and generates a summary with group ratings via sliding window. To adapt to VOD and eliminate rating discrepancies, the ranking module leverages an LLM-guided merge sort algorithm to rank all the frames, with guidance from previous summary. The final smoothing further refines the oscillating ratings. To adapt to live streaming with latency constraints, the prediction module utilizes adaptive multi-modal forecasting to predict future weights in an asynchronous manner. Together the 3 modules enable efficient and effective content-aware video streaming.

3.2 (BASIC) PERCEPTION MODULE

In response to **Challenge 1**, we propose to leverage LLM to understand and rate the video chunks via sliding window. To align with image modality in LLMs, we directly sample the anchor frame as the first frame of each chunk to reduce redundancy and computation overhead, while other sampling like the last frame also suffice (see Appendix F). Unless specified, we estimate the chunk weight with the sampled frame rating. For a video of D chunks and window of m length, we upload the m frames along with periodical summary to the LLM. The prompt instructs (see Appendix J) the LLM to rate the m images based on existing context and then update the summary:

$$R_{(k-1)m+1}^{km}, S_{km} = \text{LLM}(F_{(k-1)m+1}^{km}, S_{(k-1)m}), k \in [1, \left\lceil \frac{D}{m} \right\rceil] \quad (2)$$

216 where R_i^j, F_i^j, S_i denote rating and frame group from i to j and periodical summary before i frames,
 217 $j = \min(j, D)$. The initial summary S_0 is the basic title and background of each video. In this way,
 218 we iteratively derive the overall summarization and all the frame ratings, with only $\lceil \frac{D}{m} \rceil$ LLM calls.
 219

220 3.3 (VOD) RANKING MODULE 221

222 In response to **Challenge 2**, we propose to re-rank the grouped chunks to eliminate context discrepancies.
 223 To this end, we leverage a variant merge sort algorithm but with LLMs as the comparison
 224 function, which is capable of sorting m frames in $O(m)$ time.

225 **Merging Two Groups.** Built upon perception module, to merge two sorted group frames, $A =$
 226 $SF_1^{n_1}$ and $B = SF_1^{n_2}$, we pick $\frac{m}{2}$ frames from each group to form a new m list for sorting. We then
 227 extract the first $\frac{m}{2}$ sorted frames and put the rest back to the original group, which can be formulated
 228 as:

$$229 (SF_{k_1}^{k \frac{m}{2}}, SF_{k \frac{m}{2}}^{k_m}) = LLM(SF_1^{\frac{m}{2}}, SF_1^{\frac{m}{2}}, S_D) \quad (3)$$

231 where SF_i^j denotes sorted frames from i to j , S_D is the overall summary from Equ. 2. When either
 232 group is exhausted, we directly append the remaining sorted frames to the final list. By repeating
 233 Equ. 3 until groups A and B are both exhausted, we derive the final sorted $n_1 + n_2$ frames.
 234

235 **Sorting All Groups.** For a video of D chunks and $\lceil \frac{D}{m} \rceil$ groups of no more than m frames, we
 236 first obtain the SF from sorting R in perception module. Then we follow typical binary recursion
 237 algorithm to iteratively merge groups to obtain sorted D frames, which represent overall content
 238 preferences with global context from both frames and text summary. To evaluate the worst merging
 239 overhead, we derive the following formula:

$$240 T(k) = T\left(\left\lfloor \frac{k}{2} \right\rfloor\right) + T\left(\left\lceil \frac{k}{2} \right\rceil\right) + 2k - 1, k = \left\lceil \frac{D}{m} \right\rceil \quad (4)$$

243 where $T(k)$ is the number of LLM calls for sorting k groups and $T(1) = 1$. After obtaining the
 244 two sorted halves of D frames, we need to merge them into the final list. While the worst scenario
 245 is when neither half is exhausted faster than the other during Equ. 3. Therefore each LLM sorting
 246 extracts $\frac{m}{2}$, rendering $\left\lceil \frac{D}{\frac{m}{2}} \right\rceil = 2 \lceil \frac{D}{m} \rceil = 2k$ calls, except that for the last time, we can directly sort
 247 the remaining $\leq m$ frames without putting the second half back.
 248

249 The $T(k)$ complexity of Equ. 4 is $O(k \log k)$, rendering total complexity of ranking module
 250 $O(k \log k) + O(k)$, where $O(k)$ is the overhead of sliding window from perception module.

251 **Gaussian Smoothing.** With the final ranking SF_1^D , we normalize the index to $[0, 1]$ as chunk
 252 weights w_i . To better fit the smooth ground truth distribution, e.g., in Fig. 3, we further apply
 253 Gaussian smoothing to alleviate the oscillation as $w_i = GS(s, \sigma, w_i)$, where kernel size $s = D$ and
 254 σ is the standard deviation. We present the final algorithm in Appendix B.

255 3.4 (LIVE) PREDICTION MODULE 256

258 In response to **Challenge 3**, we propose to
 259 leverage time series forecasting to predict fu-
 260 ture weights in parallel with perception module.
 261 We illustrate the scenario in Fig. 5. Upon each
 262 frame upload, the LLM response may arrive
 263 later after a token-related interval. Therefore, to
 264 predict future N weights from previously rated
 265 m chunks, the output dimension should cover
 266 the time gap for previous $n - m$ chunks with-
 267 out ratings and N future chunks. Only then can
 268 ABRs optimize Equ. 1 to decide the bitrate of
 269 chunk $n + 1$. In this way, we eliminate the sig-
 270 nificant delay by asynchronous prediction and
 271 achieve real-time streaming.

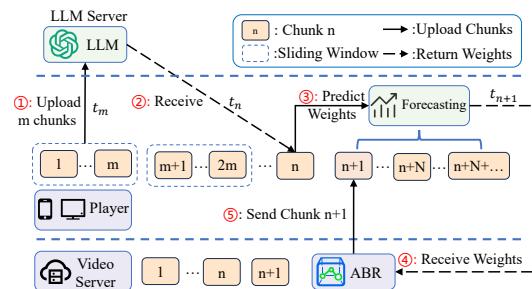


Figure 5: We predict future weights upon LLM response. The future horizon is latency-adaptive.

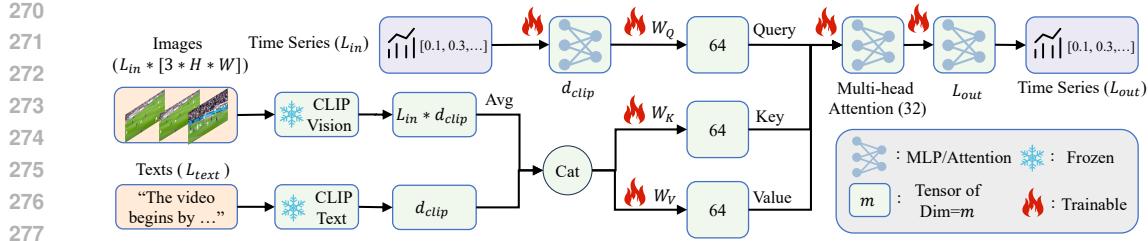


Figure 6: Multi-modal forecasting with content attention.

Forecasting Model. Different from traditional forecasting, we have as input not only the series data $x_w \in R^{L_{in}}$, but also historical frames $x_i \in R^{L_{in} \times 3 \times H \times W}$ and video summary $x_t \in R^{L_{text}}$. To incorporate 3 modalities, we leverage a well-known CLIP Radford et al. (2021) to align the image and text features. To capture the complex interdependent relationships, we further propose a novel content-aware attention mechanism. We project the time series features as Query (Q), and the concatenated image and text content features are projected as Key (K) and Value (V):

$$Attn(F(x_w), F(x_{cat}), F(x_{cat})) = \text{softmax}\left(\frac{Q_w K_{cat}^T}{\sqrt{d}}\right) \cdot V_{cat} \quad (5)$$

where $F(x_w)$ denotes time series features and $F(x_{cat}) = \text{Cat}(\text{CLIP}_v(x_i), \text{CLIP}_t(x_t))$. In this way, we motivate the model to learn an attention pattern that specifically answers: *Given the historical video content, what context is most relevant if the time series weights evolve as such?* The detailed network architecture is in Fig. 6. Each previous frame is coupled with a rating as time series with length L_{in} , while the general video summary has constant length L_{text} . We leverage a frozen CLIP to derive the latent features and then average the image to align the dimension. Then we project the 3 modality features into Q, K, V in Equ. 5. The multi-head attention is followed by a linear layer and finally predicts the future weights with length L_{out} .

To enhance the prediction performance, typical mean squared error (MSE) loss does not suffice, because the weights distribution represents relative preference. Therefore we propose a novel correlation loss to guide the model as follows:

$$loss = MSE(x, x_{gt}) + \lambda * (1 - \frac{\sum(x - \mu_x)(x_{gt} - \mu_{x_{gt}})}{\sigma_x \sigma_{x_{gt}}}) \quad (6)$$

where x and x_{gt} are the predicted and ground truth weights, μ_x and σ_x are the mean and standard deviation.

Algorithm 1: Forecasting with adaptive output

Input: constant parameters d, m, N , current chunk number i , global variable future weights W

Output: Future weights w_{i+1}^{i+N}

- 1 **if** $i \% m == 0$ **then** submit m frames to LLM ▷ Equ. 2 ;
- 2 **if** LLM response is updated **then**
- 3 | determine $L_{out}(d, m, N)$ by Equ. 7;
- 4 | submit m time series to Forecasting($L_{in} = m, L_{out}$)
- 5 **end**
- 6 **if** forecasting results w is updated **then** update w into W ;
- 7 **if** w_{i+1}^{i+N} in W **then** return w_{i+1}^{i+N} ▷ weighted QoE in Equ.1 ;
- 8 **else** return $[1] * N$ ▷ original QoE without w_i in Equ. 1 ;

Adaptive Prediction. The core idea is to predict longer future weights that include the model inference time, as shown in Fig. 5. Therefore, the prediction dimension is adaptive to the LLM and forecasting latency. Assume each chunk is of duration d , we submit m frames (as chunks) to LLM at $t = t_m$ in Equ. 2 but receive at time $t = t_n$, we have LLM interval $\Delta t = t_n - t_m$ and forecasting latency δ , rendering elapsed chunks without rating $\lceil \frac{\Delta t + \delta}{d} \rceil$.

324 Table 1: Saliency accuracy of 2 method diagrams. and denote the best and worst.
325

326 Dataset	327 Metrics	328 Large Model-based				329 Vision Saliency-based				
		330 HiVid	331 VideoLLaMA3	332 VILA	333 Flamingo	334 MLP	335 PGL-SUM	336 VASNet	337 SL-module	338 DETR
329 Youtube-8M	PLCC↑	0.66	0.54	0.52	0.41	0.59	0.52	0.55	0.59	0.57
	SRCC↑	0.67	0.55	0.54	0.41	0.60	0.54	0.56	0.60	0.58
	mAP50↑	0.86	0.77	0.73	0.56	0.81	0.80	0.80	0.81	0.81
	mAP15↑	0.53	0.45	0.44	0.33	0.49	0.46	0.46	0.49	0.45
332 TVSum	PLCC↑	0.50	0.41	0.37	0.32	0.44	0.39	0.45	0.43	0.42
	SRCC↑	0.52	0.41	0.37	0.30	0.43	0.40	0.45	0.43	0.44
	mAP50↑	0.67	0.52	0.53	0.47	0.62	0.59	0.66	0.57	0.63
	mAP15↑	0.40	0.29	0.31	0.25	0.38	0.37	0.34	0.33	0.33
334 SumMe	PLCC↑	0.47	0.35	0.35	0.31	0.37	0.33	0.37	0.39	0.38
	SRCC↑	0.47	0.35	0.36	0.30	0.37	0.34	0.37	0.39	0.39
	mAP50↑	0.62	0.49	0.55	0.39	0.52	0.53	0.57	0.53	0.61
	mAP15↑	0.37	0.24	0.33	0.23	0.31	0.35	0.33	0.30	0.32

337
338 Moreover, since LLMs are called every m frames at $t = t_{km}$, the response also arrives periodically
339 rather than at per frame frequency. Hence we need to secure the future weights for those without
340 LLM call or response, i.e. chunk number m . Finally, ABR algorithm typically requires N future
341 chunk weights to optimize the QoE model, which incurs the final prediction dimension as follows:

$$343 \quad L_{out} = \left\lceil \frac{\Delta t + \delta}{d} \right\rceil + m + N \quad (7)$$

345
346 **Live Streaming Pipeline.** The detailed process is in Algorithm 1. Since $\Delta t + \delta$ may vary dynamically,
347 we first train several models with randomized different L_{out} . During inference, for the initial
348 chunks $\lceil \frac{\Delta t + \delta}{d} \rceil + m$ without LLM response, we pad the chunk weights with default 1 (line 8). For
349 current chunk i , we upload to the LLM if a group of window length m is complete (line 1). This
350 rating process is executed asynchronously from current video playback. Then we perform rating
351 forecasting when the latest LLM response is available, which equals time interval of Δt . Given
352 this LLM latency and estimated prediction time δ , we can derive the required adaptive output by
353 Equ. 7. Then we pick a trained model with minimum output dimension satisfying L_{out} to ensure
354 the highest accuracy (line 3). This forecasting process is also executed locally and asynchronously
355 (line 4). Upon new future weights w (from last forecasting submission), we cache the result in a
356 global weight pool W for future reference (line 6). Finally we check the latest future N weights for
357 content-aware QoE model (line 7) if available.

358 4 EXPERIMENT

360 **Datasets and Metrics.** We conduct experiments on Mr.Hisum from Youtube-8M Sul et al. (2023),
361 TVSum Song et al. (2015) and SumMe Gygli et al. (2014) which includes 1953, 50, 25 videos
362 respectively. We sample 7:1.5:1.5 for training, validation, and testing, respectively. For saliency
363 scores, we leverage correlation-based Pearson’s linear correlation coefficient (PLCC) and Spear-
364 man’s rank correlation coefficient (SRCC), and we also include highlight detection metrics mAP50
365 and mAP15 for comprehensive comparison. For forecasting, we leverage typical mean absolute
366 error (MAE), root mean square error (RMSE) and also PLCC and SRCC.

367 **Parameter Setting.** The default LLM used for HiVid is GPT-4o unless specified. Video chunks D
368 depends on the test video length, window length $m = 10$ unless specified, chunk duration $d = 1s$,
369 Gaussian smoothing kernel size $s = D$, $\sigma = 5$, forecasting loss $\lambda = 1$, $L_{in} = m$, pretrained models
370 with $L_{out} = \{1, 2, 3\} * L_{in}$, ABRs’ decision horizon $N = 5$. We also fix the ABR as RobustMPC
371 Yin et al. (2015) since the QoE can be dynamically adjusted by w_i during each optimization. The
372 QoE model is the same as Pensieve Mao et al. (2017) unless specified. The network trace dataset is
373 FCC Commission (2016) and 3G/HSDPA Riiser et al. (2013) for later user study.

374 **8 Saliency Baselines.** We select 2 highlight detection methods SL-module Xu et al. (2021) and
375 DETR Moon et al. (2023), 2 video summarization based PGL-SUM Apostolidis et al. (2021) and
376 VASNet Fajtl et al. (2019) and an MLP based network. We modify the loss function to MSE to learn
377 the exact saliency score, and we also concatenate the same Gaussian smoothing after each model for
fairness. We also include 3 SOTA video understanding models, VideoLLaMA3 Zhang et al. (2025),

378 VILA Lin et al. (2024) and Flamingo Alayrac et al. (2022). We leverage sliding window like HiVid
 379 due to invalid response on entire video rating.
 380

381 **9 Time Series Forecasting Baselines.** For uni-modal baselines, we compare HiVid-U (built on only
 382 MLPs without image and text modalities) with 6 SOTA methods, iTransformer Liu et al. (2023),
 383 TimeMixer Wang et al. (2024), TimesNet Wu et al. (2022), Crossformer Zhang & Yan (2023),
 384 PatchTST Nie et al. (2022) and FiLM Zhou et al. (2022). We also include two efficient architectures
 385 RNN Sherstinsky (2020) and LSTM Zhao et al. (2017). For multi-modal baselines, there are no
 386 methods that incorporate image modality. Therefore we compare HiVid-M (with 3 modalities) with
 387 LLM-based method, where we input all the series data, historical frames and text summary with a
 388 prompt instruction for forecasting.
 389

390 4.1 VOD: SALIENCY SCORE EVALUATION

391 **Saliency Score Accuracy.** To demonstrate our
 392 perception and ranking modules, we first eval-
 393 uate saliency score and present the results in
 394 Table 1. We can find that HiVid outperforms
 395 with 11.5% and 6% improvement on average
 396 PLCC and mAP50 compared with the second
 397 SL-module respectively, thanks to our video
 398 summary and robust ranking. The latest model
 399 DETR Moon et al. (2023) ranks only the mid-
 400 dle, which demonstrates that even the SOTA
 401 saliency method cannot fully capture video semantic content due to model scaling. In addition,
 402 video models like VILA also exhibit lower accuracy due to inferior reasoning compared with large-
 403 scale LLMs. For a more illustrative case study,
 404 we present a saliency distribution in Appendix C.

405 **Overhead Analysis.** We present time and mon-
 406 etary costs for different window lengths m in
 407 Table 2. Per API call, higher m means more
 408 input tokens and hence higher score and higher
 409 latency. However, higher m also performs bet-
 410 ter which renders much fewer API calls as val-
 411 idated by Equ. 2 and Equ. 4. Therefore, the
 412 total cost per video of 201s is generally lower.

413 **User Study.** To demonstrate real world stream-
 414 ing performance, we evaluate the QoE when
 415 combining saliency score from 10 different baselines including ground truth. We leverage Ro-
 416 bustMPC ABR to optimize a dynamic QoE model from Mao et al. (2017) with the saliency weights.
 417 We sample 10 category-varying test videos from Youtube-8M encoded at $\{300, 750, 1200, 1850,$
 418 $2850, 4300\}$ kbps. Note that we extract only 10s clips around the highest score for viewers. We run
 419 ABRs with 4 random network traces from FCC Commission (2016) and 3G/HSDPA Riiser et al.
 420 (2013). For each viewer, we have 320 10-seconds clips.

421 We recruit 10 volunteers to evaluate
 422 the above clips and rate each from
 423 1 to 100. We randomly shuffle all
 424 the clips with the same video to en-
 425 sure fair rating without prejudice. Fi-
 426 nally, we compute the correlation be-
 427 tween weighted QoE model and aver-
 428 aged MOS. The results are in Fig. 7.
 429 We can find that HiVid outperforms
 430 with 0.1-0.19 higher PLCC than SL-
 431 module and Flamingo, which val-
 432 idates the high PLCC in Table 1. In summary, HiVid achieves the SOTA in both weight correlation
 433 and user experience.

Table 2: Overhead comparison of different m . 2
 (mini) denotes GPT-4o-mini.

Metrics \ m	2(mini)	2	4	6	8	10
Per API	Token Score↓	15	278	292	314	321
	Average latency/s.↓	3.01	3.14	4.2	6.4	8.14
	Latency Std/s.↓	1.46	1.52	1.8	0.65	0.54
Per Video	Perception Calls↓	100	100	50	34	25
	Ranking Calls↓	1358	1358	581	350	242
	Total Cost/↓	0.44	8.12	3.68	2.41	1.71
		Total Time Cost/h.↓	1.21	1.26	0.73	0.67
			0.60	0.60	0.54	

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

432 Table 3: **Time series forecasting w/o LLM output.** The results are averaged on 3 datasets among
 433 $L_{in} = \{8, 10\}$ and for each L_{in} , $L_{out} = \{1, 2, 3\} * L_{in}$. For RNN and LSTM, $L_{out} = \{1\} * L_{in}$.
 434

Metrics	Models	Uni-Modal								Multi-Modal		
		iTransformer	TimeMixer	TimesNet	Crossformer	PatchTST	FiLM	RNN	LSTM	HiVid-U	LLM	HiVid-M
w/ PLCC loss	MAE \downarrow	0.08	0.08	0.08	0.09	0.09	0.09	0.18	0.18	0.08	0.13	0.08
	RMSE \downarrow	0.13	0.13	0.14	0.12	0.14	0.14	0.22	0.22	0.12	0.17	0.12
	PLCC \uparrow	0.15	0.14	0.15	0.23	0.15	0.15	0.09	0.09	0.24	0.17	0.29
	SRCC \uparrow	0.11	0.13	0.13	0.22	0.12	0.11	0.08	0.10	0.22	0.18	0.27
w/o PLCC loss	MAE \downarrow	0.08	0.08	0.09	0.09	0.08	0.09	0.19	0.18	0.08	0.13	0.08
	RMSE \downarrow	0.14	0.14	0.14	0.12	0.14	0.14	0.22	0.22	0.14	0.27	0.13
	PLCC \uparrow	0.09	0.08	0.09	0.14	0.09	0.09	0.05	0.06	0.16	0.17	0.21
	SRCC \uparrow	0.08	0.08	0.08	0.13	0.09	0.08	0.04	0.06	0.16	0.18	0.20
Time/ms \downarrow		22	26	48	16	24	22	4	5	3	8134	1350

435 Table 4: Saliency accuracy of HiVid w/ open-source multi-modal LLMs.
 436

Metric	HiVid w/ GPT-4o	Llama-3.2-11B-Vision-Instruct	Qwen3-VL-8B-Instruct	InternVL3-14B	gemma-3-12b-it
PLCC \uparrow	0.66	0.58	0.60	0.64	0.61
SRCC \uparrow	0.67	0.60	0.61	0.64	0.62
mAP50 \uparrow	0.86	0.80	0.81	0.84	0.82
mAP15 \uparrow	0.53	0.45	0.50	0.52	0.50

437

4.2 LIVE: FORECASTING EVALUATION

438 **Forecasting Metrics.** We present the time series performance in Table 3. HiVid-M outperforms
 439 all the SOTA baselines with the highest PLCC=0.29 and also the lowest MAE=0.08, thanks to
 440 our novel content-aware attention. Even in uni-modality scenario, HiVid-U also achieves the best
 441 performance with PLCC=0.24 and MAE=0.08. This demonstrates that more complex models do not
 442 necessarily lead to better performance without tailored design. In addition, the improved accuracy
 443 when combined with correlation loss in Equ. 6 has also validated our novel design.

444 LLM-based method performs worse because such task would require sufficient training data, rather
 445 than subjective reasoning. As for the time overhead, HiVid-U is the fastest due to simple MLP
 446 concatenation, HiVid-M may exhibit more cost but it can be circumvented by the asynchronous
 447 pipeline in Equ. 7.

448 **Streaming Metrics.** To demonstrate HiVid’s application, we present the forecasting utility (ratio of
 449 chunks with available future weights) and overall correlation (forecasting with LLM rating as input)
 450 in Fig. 8. We can find that for higher m , the utility decreases due to longer initial LLM response
 451 interval in Equ. 7, while parallel calls also decrease which minimizes the risk of response blocking,
 452 i.e. early calls arriving later.

453 As for the overall PLCC/SRCC, they are bottlenecked by the forecasting accuracy, even with accu-
 454 rate historical weights. Therefore the performance is better with higher m , but with the upper bound
 455 from forecasting PLCC=0.29 (for HiVid-M).

456 For end-to-end latency in real ABR streaming, we present the time overhead in Appendix D. Overall
 457 HiVid imposes near-zero latency on original ABR, thanks to our asynchronous LLM and forecasting
 458 inference. In general, HiVid also outperforms all the baselines in forecasting accuracy and latency.

459

4.3 ABLATION STUDY

460 **To demonstrate the generalization of**
 461 **HiVid, we also apply the ranking**
 462 **module on open-source multi-modal**
 463 **LLMs (mllm) Dubey et al. (2024);**
 464 **Chen et al. (2024b); Yang et al.**
 465 **(2025); Team et al. (2025) in Table**
 466 **4. It is as expected that GPT-4o**
 467 **still outperforms with up to 13.7%**
 468 **PLCC improvement. However, lo-**
 469 **cal mllm can guarantee consistency**

470 Table 5: Ablation of HiVid modules in VOD.

Model	Performance				Per Video	
	PLCC \uparrow	SRCC \uparrow	mAP50 \uparrow	mAP15 \uparrow	Cost/\$ \downarrow	Time Cost/h \downarrow
HiVid	0.660	0.674	0.860	0.526	1.35	0.54
HiVid w/ m=2 (mini)	0.645	0.651	0.848	0.511	0.44	1.21
Gemini-2-flash	0.604	0.592	0.812	0.503	0.03	0.63
Grok2	0.616	0.613	0.824	0.506	1.69	0.69
Claude-3-haiku	0.53	0.55	0.807	0.477	0.41	0.83
HiVid w/o Perception	0.632	0.653	0.852	0.520	1.22	0.49
HiVid w/o Ranking	0.611	0.617	0.820	0.498	0.13	0.054
HiVid w/o GS	0.619	0.621	0.835	0.514	1.35	0.54

486 across runs and can be further fine-tuned for specific tasks, though it requires significant local computation.
 487

488 To demonstrate the effectiveness of each module, we conduct ablation study in Table 5. Note that all LLM backbones adopt window length $m = 10$ for fair comparison. We can find that HiVid (with GPT-4o, $m = 10$) outperforms with the best performance and lowest time overhead, while Gemini achieves the lowest cost, exhibiting different advantages.
 489

490 By removing the perception module, HiVid 491 cannot capture the global text summary which 492 hinders some improvement. However, without 493 the ranking module, there are significant rating 494 discrepancies as shown in Fig. 3, which leads 495 to much lower performance. Finally, the Gaussian 496 smoothing also refines the coarse saliency 497 score distribution to some extent.
 498

499 To demonstrate our adaptive prediction, we 500 leverage constant L_{out} and append the rest with 501 1 when necessary as required in Equ. 7. The results in Table 6 show that neither baseline can reach 502 our accuracy. Because dummy future weights 503 directly degrade the correlation, while longer L_{out} 504 also means inferior model performance, given that L_{in} is constant for each m .
 505

506 To demonstrate the generalization of HiVid, 507 we conduct additional user study with different 508 QoE models in Fig. 9, i.e. KSQI Duanmu et al. 509 (2019) and Comyco Huang et al. (2019). HiVid 510 still outperforms with 0.1 and 0.09 improvement 511 on PLCC, which stems from our content- 512 only saliency assessment. We also present more 513 comparisons with different ABRs and parameters 514 in Appendix E and F.
 515

516 To validate the robustness against hallucination, we average the rating of 3 LLMs (GPT-4o, Gemini 517 and Claude) on ambiguous videos. The results in Table 7 show that even sensitive categories yield 518 stable accuracy with low deviation, thanks to our robust ranking. In general, all the modules in 519 HiVid contribute to the overall accuracy and efficiency.
 520

521 To demonstrate the large-scale application of 522 HiVid in live streaming, we present detailed 523 cost and PLCC of an example video of 2 hours 524 in Table 8. Since HiVid applies sliding window 525 for live streaming without future chunks, 526 the cost increases linearly with video length, i.e. 527 LLM rating and forecasting once per m video 528 chunks. For longer window lengths $m = 10$, the performance is better but with higher cost (57.74\$ 529 per 24 hours), yielding a controllable tradeoff. However, we argue that we only need to process the 530 source video in real-world one-to-many streaming, therefore the cost is actually negligible.
 531

532 5 CONCLUSION

533 We introduced HiVid, the first systematic framework to leverage LLMs for content-aware streaming. 534 We identify the critical trade-off between the inaccuracy of vision-based models and the prohibitive 535 cost of human annotation. We addressed 3 core challenges: (1) a perception module that updates 536 summary and ratings via a sliding window to extend modality and context limitations; (2) an LLM- 537 guided ranking module that ensures globally consistent saliency scores for VOD; (3) a prediction 538 module with content-aware model based on adaptive dimension to meet the strict real-time live 539 streaming. Extensive experiments on public datasets and user study demonstrate our effectiveness.
 540

Table 6: Overall PLCC↑ (w/ LLM rating as input) for adaptive and constant L_{out} .

PLCC↑ \ m	2(mini)	2	4	6	8	10
HiVid-M	0.11	0.12	0.15	0.15	0.18	0.20
$L_{out} = m$	0.05	0.05	0.07	0.08	0.08	0.10
$L_{out} = 2m$	0.08	0.09	0.10	0.12	0.15	0.17
$L_{out} = 3m$	0.09	0.09	0.12	0.15	0.17	0.18

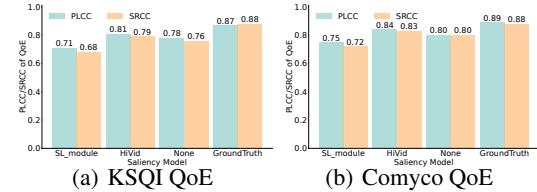


Figure 9: MOS correlation↑ of other QoE models.

Table 7: LLM robustness for ambiguous videos.

Category	PLCC		SRCC		mAP50		mAP15	
	Mean ↑	Std ↓						
Politics	0.73	0.05	0.74	0.05	0.92	0.03	0.63	0.04
People	0.69	0.03	0.69	0.04	0.88	0.03	0.60	0.02
Education	0.63	0.04	0.62	0.06	0.83	0.02	0.55	0.02

Table 8: Performance of longer live streaming.

Window Length	Metric	2 min	30 min	2 hour	6 hour	24 hour
m=10	Cost\$/↓	0.08	1.20	4.81	14.43	57.74
	PLCC↑	0.21	0.26	0.24	/	/
m=2 (mini)	Cost\$/↓	0.02	0.27	1.09	3.26	13.03
	PLCC↑	0.13	0.16	0.15	/	/

540 **6 ETHICS STATEMENT**
541542 This paper does not raise any ethical issues regarding human subject or dataset usage.
543544 **7 REPRODUCIBILITY STATEMENT**
545546 We have provided a code example of our basic ranking module in the Supplementary Material in
547 OpenReview. It includes how to combine merge sort with LLMs and how to compute the total API
548 calls for overhead analysis. The attached json file is an example of how to store the response of each
549 sliding window. In this way, we can cache the previous results and resume the ranking in case of
550 API disconnection. While the periodical video summary can also be updated by querying the last
551 json results and uploading as LLM input.
552553 **REFERENCES**
554555 Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
556 man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
557 report. *arXiv preprint arXiv:2303.08774*, 2023.558 Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
559 Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
560 model for few-shot learning. *Advances in neural information processing systems*, 35:23716–
561 23736, 2022.562 Evlampios Apostolidis, Georgios Balaouras, Vasileios Mezaris, and Ioannis Patras. Combining
563 global and local attention with positional encoding for video summarization. In *2021 IEEE inter-
564 national symposium on multimedia (ISM)*, pp. 226–234. IEEE, 2021.565 Tianyu Chen, Yiheng Lin, Nicolas Christianson, Zahaib Akhtar, Sharath Dharmaji, Mohammad
566 Hajiesmaili, Adam Wierman, and Ramesh K Sitaraman. Soda: An adaptive bitrate controller for
567 consistent high-quality video streaming. In *Proceedings of the ACM SIGCOMM 2024 Conference*,
568 2024a.569 Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qinglong
570 Zhang, Xizhou Zhu, Lewei Lu, et al. Internvl: Scaling up vision foundation models and aligning
571 for generic visual-linguistic tasks. In *Proceedings of the IEEE/CVF conference on computer
572 vision and pattern recognition*, pp. 24185–24198, 2024b.573 Federal Communications Commission. Raw data - measuring broadband america. 2016. URL
574 <https://www.fcc.gov/reports-research/reports/>.575 Zhengfang Duanmu, Wentao Liu, Diqi Chen, Zhuoran Li, Zhou Wang, Yizhou Wang, and Wen Gao.
576 A knowledge-driven quality-of-experience model for adaptive streaming videos. *arXiv preprint
577 arXiv:1911.07944*, 2019.578 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
579 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
580 *arXiv e-prints*, pp. arXiv–2407, 2024.581 Jiri Fajtl, Hajar Sadeghi Sokeh, Vasileios Argyriou, Dorothy Monekosso, and Paolo Remagnino.
582 Summarizing videos with attention. In *Computer Vision–ACCV 2018 Workshops: 14th Asian
583 Conference on Computer Vision, Perth, Australia, December 2–6, 2018, Revised Selected Papers
14*, pp. 39–54. Springer, 2019.584 Hao Fei, Shengqiong Wu, Hanwang Zhang, Tat-Seng Chua, and Shuicheng Yan. Vitron: A uni-
585 fied pixel-level vision llm for understanding, generating, segmenting, editing. *arXiv preprint
586 arXiv:2412.19806*, 2024.587 Yingqiang Ge, Wenyue Hua, Kai Mei, Juntao Tan, Shuyuan Xu, Zelong Li, Yongfeng Zhang, et al.
588 Openagi: When llm meets domain experts. *Advances in Neural Information Processing Systems*,
589 36:5539–5568, 2023.

594 Google. Overview of gemini. 2025. URL <https://ai.google.dev/gemini-api/docs/vision?lang=python&hl=en>.

595

596

597 Michael Gygli, Helmut Grabner, Hayko Riemenschneider, and Luc Van Gool. Creating summaries

598 from user videos. In *European conference on computer vision*, pp. 505–520. Springer, 2014.

599

600 Tianchi Huang, Chao Zhou, Rui-Xiao Zhang, Chenglei Wu, Xin Yao, and Lifeng Sun. Comyco:

601 Quality-aware adaptive video streaming via imitation learning. In *Proceedings of the 27th ACM*

602 *international conference on multimedia*, pp. 429–437, 2019.

603

604 Zak Hussain, Marcel Binz, Rui Mata, and Dirk U Wulff. A tutorial on open-source large language

605 models for behavioral science. *Behavior Research Methods*, 56(8):8214–8237, 2024.

606

607 Peng Jin, Ryuichi Takanobu, Wancai Zhang, Xiaochun Cao, and Li Yuan. Chat-univ: Unified visual

608 representation empowers large language models with image and video understanding. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 13700–

609 13710, 2024.

610

611 Terry K Koo and Mae Y Li. A guideline of selecting and reporting intraclass correlation coefficients

612 for reliability research. *Journal of chiropractic medicine*, 15(2):155–163, 2016.

613

614 Siqi Lai, Zhao Xu, Weijia Zhang, Hao Liu, and Hui Xiong. Llmlight: Large language models as

615 traffic signal control agents. *arXiv preprint arXiv:2312.16044*, 2023.

616

617 Ji Lin, Hongxu Yin, Wei Ping, Pavlo Molchanov, Mohammad Shoeybi, and Song Han. Vila: On

618 pre-training for visual language models. In *Proceedings of the IEEE/CVF conference on computer*

619 *vision and pattern recognition*, pp. 26689–26699, 2024.

620

621 Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long.

622 itriformer: Inverted transformers are effective for time series forecasting. *arXiv preprint*

623 *arXiv:2310.06625*, 2023.

624

625 Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural adaptive video streaming with pen-

626 sieve. In *Proceedings of the conference of the ACM special interest group on data communication*,

627 pp. 197–210, 2017.

628

629 Meta. Overview of llama. 2025. URL <https://www.llama.com/>.

630

631 WonJun Moon, Sangeek Hyun, SangUk Park, Dongchan Park, and Jae-Pil Heo. Query-dependent

632 video representation for moment retrieval and highlight detection. In *Proceedings of the*

633 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 23023–23033, 2023.

634

635 Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64

636 words: Long-term forecasting with transformers. *arXiv preprint arXiv:2211.14730*, 2022.

637

638 Openai. Overview of chatgpt. 2025. URL <https://openai.com/chatgpt/overview/>.

639

640 Joon Sung Park, Joseph O’Brien, Carrie Jun Cai, Meredith Ringel Morris, Percy Liang, and

641 Michael S Bernstein. Generative agents: Interactive simulacra of human behavior. In *Proceedings*

642 *of the 36th annual acm symposium on user interface software and technology*, pp. 1–22, 2023.

643

644 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,

645 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual

646 models from natural language supervision. In *International conference on machine learning*, pp.

647 8748–8763. PMLR, 2021.

648

649 Haakon Riiser, Paul Vigmostad, Carsten Griwodz, and Pål Halvorsen. Commute path bandwidth

650 traces from 3g networks: analysis and applications. In *Proceedings of the 4th ACM Multimedia*

651 *Systems Conference*, pp. 114–118, 2013.

652

653 Alex Sherstinsky. Fundamentals of recurrent neural network (rnn) and long short-term memory

654 (lstm) network. *Physica D: Nonlinear Phenomena*, 404:132306, 2020.

648 Yale Song, Jordi Vallmitjana, Amanda Stent, and Alejandro Jaimes. Tvsun: Summarizing web
 649 videos using titles. In *Proceedings of the IEEE conference on computer vision and pattern recog-*
 650 *nition*, pp. 5179–5187, 2015.

651

652 Jinhwan Sul, Jihoon Han, and Joonseok Lee. Mr. hisum: A large-scale dataset for video highlight
 653 detection and summarization. *Advances in Neural Information Processing Systems*, 36:40542–
 654 40555, 2023.

655

656 Gemma Team, Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej,
 657 Sarah Perrin, Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical
 658 report. *arXiv preprint arXiv:2503.19786*, 2025.

659

660 Shiyu Wang, Haixu Wu, Xiaoming Shi, Tengge Hu, Huakun Luo, Lintao Ma, James Y Zhang,
 661 and Jun Zhou. Timemixer: Decomposable multiscale mixing for time series forecasting. *arXiv*
 662 *preprint arXiv:2405.14616*, 2024.

663

664 Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Tem-
 665 poral 2d-variation modeling for general time series analysis. *arXiv preprint arXiv:2210.02186*,
 666 2022.

667

668 Yicheng Xiao, Zhuoyan Luo, Yong Liu, Yue Ma, Hengwei Bian, Yatai Ji, Yujiu Yang, and Xiu Li.
 669 Bridging the gap: A unified video comprehension framework for moment retrieval and highlight
 670 detection. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recogni-*
 671 *tion*, pp. 18709–18719, 2024.

672

673 Minghao Xu, Hang Wang, Bingbing Ni, Riheng Zhu, Zhenbang Sun, and Changhu Wang. Cross-
 674 category video highlight detection via set-based learning. In *Proceedings of the IEEE/CVF Inter-*
 675 *national Conference on Computer Vision*, pp. 7970–7979, 2021.

676

677 An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
 678 Chang Gao, Chengan Huang, Chenxu Lv, et al. Qwen3 technical report. *arXiv preprint*
 679 *arXiv:2505.09388*, 2025.

680

681 Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A control-theoretic approach for
 682 dynamic adaptive video streaming over http. In *Proceedings of the 2015 ACM Conference on*
 683 *Special Interest Group on Data Communication*, pp. 325–338, 2015.

684

685 Boqiang Zhang, Kehan Li, Zesen Cheng, Zhiqiang Hu, Yuqian Yuan, Guanzheng Chen, Sicong
 686 Leng, Yuming Jiang, Hang Zhang, Xin Li, et al. Videollama 3: Frontier multimodal foundation
 687 models for image and video understanding. *arXiv preprint arXiv:2501.13106*, 2025.

688

689 Xu Zhang, Yiyang Ou, Siddhartha Sen, and Junchen Jiang. {SENSEI}: Aligning video streaming
 690 quality with dynamic user sensitivity. In *18th USENIX Symposium on Networked Systems Design*
 691 *and Implementation (NSDI 21)*, pp. 303–320, 2021.

692

693 Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency
 694 for multivariate time series forecasting. In *The eleventh international conference on learning*
 695 *representations*, 2023.

696

697 Zheng Zhao, Weihai Chen, Xingming Wu, Peter CY Chen, and Jingmeng Liu. Lstm network: a
 698 deep learning approach for short-term traffic forecast. *IET intelligent transport systems*, 11(2):
 699 68–75, 2017.

700

701 Tian Zhou, Ziqing Ma, Qingsong Wen, Liang Sun, Tao Yao, Wotao Yin, Rong Jin, et al. Film:
 702 Frequency improved legendre memory model for long-term time series forecasting. *Advances in*
 703 *neural information processing systems*, 35:12677–12690, 2022.

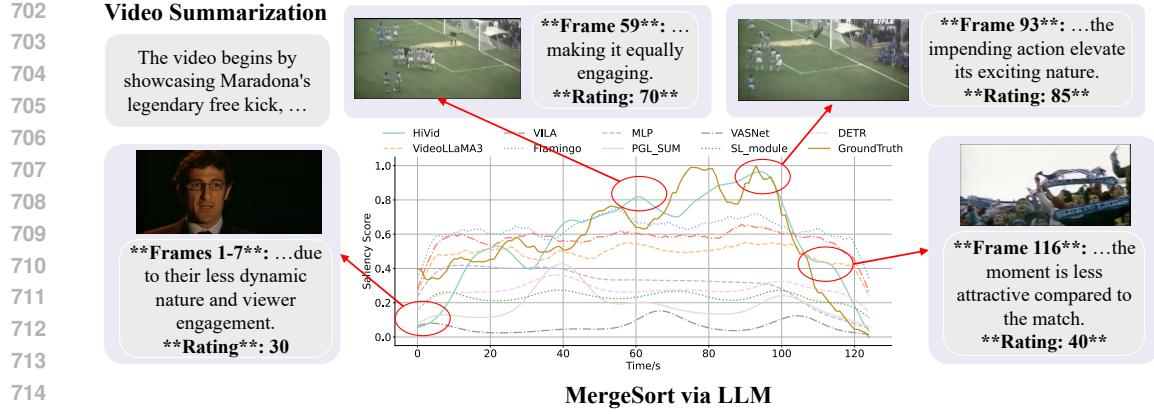


Figure 10: Example of saliency score distribution.

A LLM USAGE STATEMENT

We clarify that this paper does not use LLMs for research ideation or paper writing.

B DETAILED ALGORITHMS

Algorithm 2: MergeSort

Input: sorted frame groups $SF_{(k-1)m+1}^{km}$, $k \in [1, \lceil \frac{D}{m} \rceil]$, video summary S_D

Output: sorted frames SF_1^D

```

1 mid =  $\lceil \frac{D}{2m} \rceil$ , Sorted = [] ;
2  $A = SF_1^{\lceil \frac{D}{2} \rceil} = \text{MergeSort}(1, \text{mid})$  ;                                ▷ Binary recursion
3  $B = SF_{\lceil \frac{D}{2} \rceil + 1}^D = \text{MergeSort}(\text{mid} + 1, \lceil \frac{D}{m} \rceil)$  ;
4 while  $A$  and  $B$  are not exhausted do
5    $C_1^{\frac{m}{2}}, C_{k \frac{m}{2}}^{k_m} = \text{LLM}(A_1^{\frac{m}{2}}, B_1^{\frac{m}{2}}, S_D)$  ;                                ▷ Equ. 3
6   if  $\text{len}(A + B) \leq m$  then Sorted.append( $C_1^m$ ) ;
7   else Sorted.append( $C_1^{\frac{m}{2}}$ ) ;
8   Put  $C_{k \frac{m}{2}}^{k_m}$  back to  $A$  and  $B$  ;
9 end
10 Sorted.append(Remaining  $SF$ );
11 return Sorted

```

The detailed ranking process is in Algorithm 2. We leverage the typical binary recursion to iterate the frames. To merge two sorted groups, we first select $m/2$ frames from each group, and then we query the LLM to update the total m frames. Following typical merge-sort, we only save the first half of the sorted m frames to enable subsequent LLM comparison.

C CASE STUDY OF SALIENCY SCORE

We present an example of the estimated score in a soccer game in Fig. 10. We can find that all the baselines fail to fit the actual distribution. The plain curve indicates that saliency models only overfit the training videos without truly learning from semantic content, while video understanding models also overlook the most appealing parts. On the contrary, HiVid generally understands the video content with excellent video summary and frame analysis, e.g., low rating (30) during interview and high score (85) during shooting.

Table 9: Time overhead for ABRs w/ different module delays when end-to-end latency $T = 5s$.

Baselines	Raw ABR	HiVid	w/ LLM	w/ prediction	w/ both
ABR Time/s ↓	0.486	0.494	10.316	1.836	11.616
Proportion of T ↓	9.72%	9.88%	206.32%	36.72%	232.32%

Table 11: Ablation study of HiVid w/ different settings and parameters. Blue and Red denote the best and worst for each metric across the HiVid variants. The default standard deviation $\sigma = 5$.

Method	Metric	Youtube-8M				TVSum				SumMe			
		PLCC	SRCC	mAP50	mAP15	PLCC	SRCC	mAP50	mAP15	PLCC	SRCC	mAP50	mAP15
HiVid		0.66	0.67	0.86	0.53	0.50	0.52	0.67	0.40	0.47	0.47	0.62	0.37
HiVid w/ last frame		0.66	0.68	0.86	0.52	0.51	0.51	0.66	0.40	0.47	0.48	0.62	0.37
HiVid w/ middle frame		0.65	0.66	0.84	0.50	0.51	0.52	0.68	0.41	0.47	0.47	0.61	0.36
HiVid w/ 2σ		0.68	0.69	0.89	0.55	0.52	0.55	0.70	0.41	0.49	0.49	0.64	0.38
HiVid w/ $\frac{\sigma}{2}$		0.62	0.62	0.81	0.50	0.47	0.48	0.65	0.38	0.45	0.44	0.59	0.35

D END-TO-END LATENCY

To demonstrate our adaptive prediction for real time requirement, we present the time overhead in Table 9. We can find that HiVid only imposes additional 8ms which stems from asynchronous rating and prediction. Therefore HiVid achieves the same latency as the original ABR. However, without our adaptive prediction, we would have to await the significant delay to prepare all the historical input for forecasting, which leads to much higher latency (11.616s). For an example of latency $T = 5s$, the decision time of HiVid+ABR does not impact overall experience, while the delay waiting would completely block the ABR decision.

E MORE ABLATION STUDY: DIFFERENT ABRSS

Fig. 7 in our main paper has shown that HiVid (w/ MPC) surpasses various saliency model baselines with higher PLCC in mean opinion score (MOS) correlation. We also apply HiVid on RL-based Pensieve Mao et al. (2017), IL-based Comyco Huang et al. (2019) and compare with traditional QoE-free buffer-based (BB) and rate-based (RB) ABRs. For RL and IL-based, we incorporate the future N chunk weights as input and train the model to capture the content-aware preference in QoE. We also modify the reward into weighted QoE to guide the ABR exploration. The MOS correla-

Table 10: MOS correlation \uparrow w/ different ABR algorithms.

ABR		PLCC↑	SRCC↑
w/ QoE model	w/o QoE model		
HiVid+Pensieve		0.78	0.79
Pensieve	/	0.76	0.76
HiVid+Comyco		0.85	0.85
Comyco		0.81	0.81
/	BB	0.68	0.69
	RB	0.73	0.72

Note that RB and BB do not incorporate a QoE model and thus cannot be combined with our QoE weights from HiVid. We can find that ABRs with HiVid enhancement outperform those without our method. HiVid with Comyco performs the best because the ABR itself achieves the SOTA traditional QoE optimization Huang et al. (2019). BB is the worst because it only applies buffer to monitor and predict future evolution based on a heuristic parameter.

F MORE ABLATION STUDY: DIFFERENT PARAMETERS

We also conduct experiments for different anchor frame choices and Gaussian smoothing parameters in Table 11. The results demonstrate that frame sampling method only introduces limited performance deviation, because a video chunk of 1 second often comprises many semantic-similar frames, regardless of the specific position. While the Gaussian smoothing can present significant impact. Overall, higher deviation σ means smoother curve and more stable ratings and hence better performance. However, a significantly high σ can also eliminate the original information of our

Table 12: Accuracy consistency across runs.

Metric	HiVid w/ GPT-4o	HiVid w/ Gemini-2-flash	HiVid w/ Grok2	HiVid w/ Claude-3-haiku
PLCC \uparrow	0.66 \pm 0.03	0.60 \pm 0.03	0.62 \pm 0.02	0.53 \pm 0.05
SRCC \uparrow	0.67 \pm 0.03	0.59 \pm 0.04	0.61 \pm 0.02	0.55 \pm 0.04
mAP50 \uparrow	0.86 \pm 0.02	0.81 \pm 0.05	0.82 \pm 0.02	0.81 \pm 0.03
mAP15 \uparrow	0.53 \pm 0.01	0.50 \pm 0.02	0.51 \pm 0.01	0.48 \pm 0.01

ranking module and thus render a plain curve. We choose $\sigma = 5$ for more stable performance without losing the fine-grained details of our ranking.

G MORE ABLATION STUDY: RANKING CONSISTENCY

We have demonstrated that HiVid can be combined with local mllm in Table 4, which ensures consistency across runs by setting *do_sample* = *False* and seeds. We evaluate the robustness of HiVid with proprietary LLMs across 5 runs in Table 12. The low standard variance proves the stable correlation and detection accuracy within each model. This means that LLMs generate most of the chunk-level scores via confident zero-shot subjective reasoning rather than random guess, e.g. the justified rating for each frame in Fig. 10.

While Table 13 further evaluates the accuracy between models, where Gemini and Grok exhibit similar results with $PLCC=0.91$. However, this does not necessarily imply better performance on video saliency score, i.e. GPT-4o outperforms other LLMs in Table 5.

H MORE ABLATION STUDY: DETAILED PERFORMANCE FOR LIVE STREAMING

We have demonstrated the clean forecasting performance in Table 3. We also present the prediction with actual LLM rating against the second SOTA Crossformer in Table 14. It shows that inaccurate LLM output (as forecasting input) degrades the overall accuracy compared with clean GroundTruth input, especially for correlation PLCC. This is expected since we trained the models with clean data, because using LLM output requires significant offline rating generation.

We also present the forecasting accuracy with module ablation in Table 15. We find that the our content attention effectively learns the interdependent relationships from the various modalities (PLCC accuracy gains of 0.03), while the only uni-modal model performs the worst without specific guidance from video content.

Table 13: Accuracy consistency across models.

Metric	GPT-4o & Gemini2	Gemini2 & Grok2	GPT-4o & Grok2
PLCC	0.87±0.06	0.91±0.04	0.89±0.04
SRCC	0.89±0.05	0.90±0.04	0.90±0.02

Table 14: Forecasting ablation with LLM output.

Metric	Forecast-only		Forecast w/ LLM output	
	HiVid-M	Crossformer	HiVid-M	Crossformer
MAE \downarrow	0.08	0.09	0.13	0.16
RMSE \downarrow	0.12	0.12	0.18	0.22
PLCC \uparrow	0.29	0.23	0.20	0.15
SRCC \uparrow	0.27	0.22	0.19	0.13

Table 15: Forecasting module ablation.

Metric	HiVid-M	HiVid-M w/o Attention	HiVid-U
MAE \downarrow	0.08	0.08	0.08
RMSE \downarrow	0.12	0.12	0.12
PLCC \uparrow	0.29	0.26	0.24
SRCC \uparrow	0.27	0.25	0.22

Table 17: Statistical Significance of MOS correlation from 30 participants.

Metric	GT	HiVid	DETR	VideoLLaMA3
PLCC	Value \uparrow	0.88	0.76	0.61
	p value \downarrow	10^{-38}	10^{-25}	10^{-14}
	CI	[0.83,0.92]	[0.67,0.82]	[0.48,0.73]
SRCC	Value \uparrow	0.91	0.77	0.65
	p value \downarrow	10^{-46}	10^{-31}	10^{-18}

Table 16: Inter-rater consistency of 30 participants.

Metric	Coefficient of Variation \downarrow	ICC(2,k) \uparrow	ICC(A,k) \uparrow
Result	19.76%	0.82	0.73

To demonstrate the robustness of user study, we recruit more volunteers and conduct inter-rater consistency check in Table 16. Coefficient of Variation (CV) equals to $(\text{std}/\text{mean}) * 100$, and we derive CV for each video and then compute the averaged CV. We also leverage Intraclass Correlation Coefficient (ICC) to analyze the robustness. ICC(2,k) evaluates the relative rating consistency while ICC(A,k) is more strict that includes the inter-rater variance. We can find that $< 20\%$ CV and $0.82 > 0.75$ are considered "good" according to Koo & Li (2016). While ICC(A,k) is also "moderately" good, demonstrating valid user study.

In addition, we also present the PLCC and significance for MOS correlation in Table 17. We can find that the results are similar to that in Fig. 7, and our p values for both PLCC and SRCC across different baselines are near zero, demonstrating convincing user rating and our model QoE.

J PROMPT INSTRUCTIONS

We present the prompts used during perception module for basic periodical summary and group ratings.

Prompt:

I have uploaded $\{\text{len}(\text{image_path})\}$ frames, each representing a video chunk of 1 second. You first extract the frame number attached below the image content. These frames exhibit a continuous $\{\text{len}(\text{image_path})\}$ seconds video clip. The original video background for title and category are $\{\text{info}\}$. Before this video clip, the periodical video summary is: $\{\text{story_last}\}$.

Your task is as follows:

1. Based on the frames, periodical summary and background, summarize what story this video has conveyed so far and output your answer as "story_total". (No more than 100 words)
2. Based on the summary and frames, on a scale of integer (0,100), rate all the $\{\text{len}(\text{image_path})\}$ frames such that higher score exhibits higher interestingness score. Different frames can yield the same scores.

Your answer must be a json format like this:

```
json
[
  ("story_partial": "xxx"),
  ("story_total": "xxx"),
  json
  [
    ("frame": xxx, "rating": xxx),
    ("frame": xxx, "rating": xxx),
    ...
  ]
]
```

```

918 ("frame": xxx, "rating": xxx)
919 ]
920 ]
921 ]
922 ]
923

```

924 K DISCUSSIONS

926 We present some clarification for HiVid regarding design and evaluations.

928 1. The usage of LLMs simulates human ratings regarding QoE model.

929 As explained in Related Work in Section 2.2, LLMs have been widely leveraged for subjective
930 tasks. For example, Fei et al. (2024) propose Vitron to perform image editing based on prompt
931 understanding and image analysis. It has also been demonstrated in Hussain et al. (2024) how LLMs
932 correlate to human behavior regarding subjective perception, including the overall understanding of
933 real world information like images and texts.

934 Therefore, our proposal to leverage LLMs for subjective video rating also makes sense regarding
935 human-centric QoE modeling

936 2. We leverage existing SOTA LLMs instead of training from scratch.

938 As explained in Section 2.2, proprietary SOTA LLMs such as GPT-4o Openai (2025) and Gemini
939 Google (2025) have dominated the text generation domain. Training open-source models like Llama
940 Meta (2025) also suffices but would require tremendous time and computation overhead. More
941 importantly, we focus on real world application where ABRs are deployed at the client side. These
942 devices possess limited CPU/GPU resources and cannot afford local LLMs inference.

943 Nonetheless, it remains a promising direction to fine-tune a new LLM specifically on various
944 datasets like Youtube-8M Sul et al. (2023) in future work.

946 L LIMITATION AND FUTURE WORK

948 Despite the SOTA results of our HiVid on multiple datasets, HiVid comprises 2 limitations: (1) The
949 overall inference time overhead for VOD is slightly longer than sliding window iteration, because the
950 ranking module adopts binary recursion to enable sufficient comparisons among different frames to
951 ensure accuracy. One future direction is deriving better LLM-guided sorting algorithm that achieves
952 $O(n)$ time complexity at the cost of more storage like Bucket Sort.

953 (2) We only test HiVid in the video streaming scenario. However, the preference weights in a video
954 can also benefit other vision-language-action applications where human judgment also plays a vital
955 role. Therefore, another future direction is applying our core idea of LLM-guided rating and ranking
956 in video compression. For example, we can derive frame-level saliency score to apply different R-
957 $D-\lambda$ parameters. In this way, we reallocate the bitrates in regions that are appealing to humans.

```

958
959
960
961
962
963
964
965
966
967
968
969
970
971

```