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Abstract

Solid amine-based sorbents are a leading approach for direct air capture (DAC)
of CO,, owing to their energy efficiency and scalability. To enable data-driven
discovery of improved sorbents, we developed a computational framework that
integrates fragment-based polymer generation with Density Functional Theory
(DFT), molecular dynamics (MD) relaxations, and grand canonical Monte Carlo
(GCMC) sampling. This workflow provides accurate yet efficient estimates of CO,
uptake while capturing key structure-property relationships across a diverse library
of polymers assembled from well-characterized polyamines for DAC. Leveraging
such adsorption data, we investigated the application of the Bayesian optimization
(BO) strategy in accelerating the discovery process of high-performing polymer
candidates with our developed simulation workflow. Computational experimental
results demonstrated the sensitivity of this discovery process to the choice of
molecular representation in the surrogate models of BO, especially in a small
computational budget scenario, where polymer-specific pre-training provided an
early advantage over models trained for general chemical space.

1 Introduction

Mitigating the adverse impact of rising atmospheric CO, [1} 2] necessitates the deployment of Carbon
Capture and Storage (CCS) technologies, among which direct air capture (DAC) has emerged as
a principal strategy. Because of the low atmospheric concentration of CO,, considerable research
has been devoted to the development of highly selective DAC sorbents. Conventional liquid-phase
systems, although effective, are hindered by high thermal regeneration requirements[3 4]]. In contrast,
solid adsorption [5H7]] offers a more energy-efficient and scalable pathway. Within this domain,
branched polyamines represent a particularly promising class [8l 9]. Their strong chemical affinity
for CO,, driven by the accessibility of amine functional groups, positions them as key candidates for
next-generation sorbents capable of operating under ultradilute CO, conditions [10]. However, given
the current stage of experimental work, further systematic studies will be important to clarify their
behavior and guide the development of improved amine-based sorbents.
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Machine learning-assisted design workflows have seen diverse applications in material discovery
— ranging from inverse design paradigm [11] to self-driving laboratories (SDLs) [12] — enabling
efficient exploration for materials meeting the design expectations. The field of polymer engineering
is no exception to this; especially due to the high-impact application areas such as gas separation
membranes, energy storage, fuel cells etc., there has been an increasing trend [13]] to leverage
machine learning techniques to accelerate the computational design workflow for polymer design.
For instance, this includes efforts on molecular representation learning [[14H16] for the reliable
prediction of polymer characteristics (e.g., glass transition temperature, band gap etc.) as well as
generative design approaches like [[17] for polymer membranes in post-combustion carbon capture.
Our work represents an effort toward incorporating the atomistic simulation, which is currently
employed for gaining molecular-level insights behind the sorption mechanism [18]], into the polymer
sorbent design workflows for direct air capture of CO,. Specifically, we developed an efficient
simulation of the polymer’s CO, adsorption mechanism, and generated adsorption data for a library
of hypothetical (amine-based) polymers, enabling machine learning models of structure-property
relationships required for accelerated identification of high-performing polymers. The key aspects of
our work are as follows:

* We generated a dataset of 1,000 polymers and estimated their CO, adsorption capacity
with our computationally efficient simulation — combining fast MD relaxations with grand
canonical Monte Carlo (GCMC).

* We assessed the impact of molecular representation and surrogate models in Bayesian
optimization for screening of polymers with high adsorption capacity.

2 Methodology

2.1 Dataset Generation

Our study began with nine well-characterized polyamines (e.g., polyethyleneimine (PEI), polypropy-
leneimine (PPI) etc.) commonly investigated for direct CO, capture due to high amine density and
adsorption performance. These reference polymers were fragmented into chemically meaningful
building blocks using BRICS[19]] and RECAP[20]] methods in RDKit[21]], ensuring synthetically
relevant bonds were cleaved while preserving functional group integrity. Building blocks were then
recombined into a large ensemble of hypothetical linear polyamine structures, tailored to emulate
realistic polymer backbones with varied chain lengths and terminal functionalities. All generated
molecules underwent rigorous validity screening using RDKit. Improper sequences, structures or
terminal atoms were discarded. Canonicalization and deduplication ensured that the final database
comprised only chemically plausible and unique SMILES strings. This process resulted in a struc-
turally diverse library poised for adsorption modeling.

Each valid polymer was converted into a 3D geometry, energy-minimized, and formatted for batch
simulation in molecular dynamics (MD) and grand canonical Monte Carlo (GCMC) workflows
(Appendix [A.2). Fast MD was applied to relax polymer conformations and approximate packing
behavior, while subsequent GCMC simulations in LAMMPS provided CO, uptake estimates un-
der defined pressure and temperature conditions. Note that we refined the force field parameters
(Appendix for accurate modeling of polymer-CO,-H,O interactions. The outputs of this com-
putational pipeline (illustrated in Fig. ) formed the foundational dataset of 1,000 polymers with
estimated CO, adsorption capacity for downstream Bayesian optimization-based candidate screening.

2.2 Accelerating Discovery with Bayesian optimization

Our developed simulation pipeline for CO, adsorption capacity measurement (Appendix[A.2)) has
an improved throughput via the combination of Fast MD and GCMC simulation. However, a naive
approach to identifying the high-performing polymers by exhaustively simulating all polymer samples
in a large pool leads to inefficient usage of computational resources. This work adopted the Bayesian
optimization (BO) [22, 23] strategy to prioritize the polymer samples for simulation to accelerate the
discovery process, i.e., to find the high-performing polymer samples within a fixed computational
budget for simulations of CO, adsorption.

We initialize the BO-assisted discovery process with a small number (Ny) of polymer samples z ()
and their simulated adsorption capacity y(i) = fsim(cc(i)), where fgn denotes the simulation process.



Our goal is to utilize such labeled data Dyypeeq = { (¥, y(i))}f\fl to identify the polymer sample

pool

with high adsorption from a pool of unlabeled data, Dygiaperea = { (2 }ZI\LI with Npygger number of
simulations where Npydget < Npool-

Using the labeled data Dispeied, We first train a surrogate model fourogate : X — P(Y) that predicts a
distribution over the simulated CO, adsorption for the polymer sample = € X'. We next obtain the
predictive distribution for the samples in Dypjapeled Using the trained surrogate model, and compute
the utility of each unlabeled sample using an acquisition function. We perform the simulation for
the unlabeled sample with the highest utility, and update our labeled data with this new sample
and its observation, and remove the sample from the unlabeled data. This BO iteration — training
of a surrogate with the labeled dataset, selection of an unlabeled sample to simulate, followed by
updating the labeled and unlabeled dataset — is repeated for Npugge times. AlgorithmEldescribes this
iteration in detail. We have discussed the details of surrogate models and the acquisition functions in

Appendices[A.3]and [A. 4 respectively.
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Figure 1: (a) A model system of polyimine and a silica-based support material (MCM-41) loaded
with CO, for GCMC and MD simulation. (b) Histogram of simulated adsorption capacity of
1000 polymer samples.

3 Results and Discussion

3.1 Simulation Pipeline and Dataset

We refined the Lennard-Jones (LJ) parameters of CO,-H,0O-amines interactions (Appendix E[),
resulting in accurate approximation of experimental energies (Fig. [5). We performed GCMC simula-
tions (Fig.[la] Appendix to estimate the CO, adsorption for polymer conformations generated
by MD relaxation. Fig. ﬁws the histogram of the adsorption capacity of polymer samples.

3.2 Discovery of polymers with high CO, adsorption capacity

We investigated the Bayesian optimization-assisted accelerated discovery pipeline (Algorithm[T) with
our generated dataset of 1000 polymer samples. Specifically, we analyzed the impact of different
molecular representations in the surrogate models in different hypothetical scenarios of the initial
labeled dataset. We considered 5 pre-trained models (polymer-specific: PolyNC [15], polyBERT [14]
and general chemical space: MoLFormer [24]], MolGen-large [23] and MiniMol [26]) and 3 choices
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Figure 2: Optimization traces for surrogate models: GP (a), GP-DKL (b), and MLP+LA
(¢) for v = 0.5. Each optimization traces show the progression of average (and £1 standard
deviation over 20 trials) of the maximum adsorption capacity found by sequentially acquiring labels
of unlabeled samples (in the x-axis). Along with 5 pre-trained models’ embeddings, we have the
random acquisition strategy as baseline. Upper limit denotes the maximum value in our dataset, yx.
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of surrogate models: Gaussian process (GP with and without deep kernel learning) [27, 28] and
Bayesian neural network (BNN) using Laplace approximation (LA) [29, [30]. For assessing the
impact of initial Diypeled, €.8., “What if we start from samples with very low adsorption capacity?”,
we randomly selected the initial set of labeled samples such that (") < ~yyu.. for v € {0.5,0.3}
where ymax denotes the maximum adsorption capacity value in our dataset of 1000 samples. Each
BO-assisted discovery process (repeated for 20 trials, with Thompson sampling [31]] as acquisition
function) starts with Ny = 10 initial labeled data, and tries to find the sample with the best adsorption
capacity from the remaining 990 unlabeled samples using Nyugger = 30 simulations.

3.2.1 Impact of initial labeled data of moderate quality (v = 0.5)

In Figs. 2a]to [2c} we have showed the optimization result with v = 0.5 for the GP, GP-DKL and
MLP+LA-based surrogates with embedding from five pre-trained models. While the embedding
from the PolyNC model showed slightly better discovery in early iterations (fewer than 15 query
samples), there was overall minimal gain by using GP-based acquisition over the random strategy.
With GP-DKL, we observed a significant improvement in acquiring high-performing polymer samples
quickly compared to the random baseline. Furthermore, this surrogate showed lower sensitivity to
embeddings from different pre-trained models, in contrast to the choice of MLP+LA-based surrogate
(Fig.[2c). Specifically for the latter case, embeddings from PolyNC and MolFormer showed superior
efficiency, i.e., acquiring samples with maximum adsorption capacity exceeding 160 (on average)
within the first 5 queries of unlabeled polymer samples. However, the performance with embedding
from MiniMol was marginally better than the random strategy. Since we have used same set of
hyperparameters in training the surrogate (MLP+LA), such discrepancy may be attributed to the
sensitivity of BNN-based surrogate model to its design choices [32].
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Figure 3: Optimization traces for surrogate models: GP-DKL (a) and MLP+LA (b) for v = 0.3.
The other settings of the experiments are same as in Fig. E}

3.2.2 Impact of initial labeled data of poor quality (v = 0.3)

With v = 0.3, we effectively constrained the initial labeled dataset to contain samples with adsorption
capacity lower than 53. In this scenario, both GP-DKL (Fig. and MLP+LA (Fig. based
surrogates showed advantage of embeddings from polymer-specific pretrained models: PolyNC and
polyBERT over other general chemical pre-trained models in accelerated discovery of high-quality
samples. However, the differences in performance decreased as more labels were collected, except
for the case with MiniMol in the MLP+LA-based surrogate, which showed worse performance
than random acquisition in the first 20 queries. Nonetheless, this empirical findings highlight the
importance of representation learning of polymer language models, specially in extremely unfavorable
initialization. Furthermore, comparison with v = 0.5 case indicates that the discovery rate became
more sensitive to the choices of pre-trained models in the GP-DKL-based surrogate.

4 Conclusion

While MD simulation can effectively analyze the CO, adsoprtion mechanism, the associated computa-
tional cost constrains the use of MD simulation in the design process of amine-based polymer sorbents.
In this work, we adopted a combination of fast MD with GCMC simulation as a rapid alternative to
the lengthy MD simulation — providing improved throughput for estimating CO, adsorption capacity
of the polymer. Our retrospective experiment with the adsoprtion data of 1000 linear polymer samples
demonstrated that the BO strategy could further accelerate the discovery of high performing polymers



with limited number simulations. Importantly, it highlights the advantage of molecular representation
from pre-trained polymer language models in quickly discovering polymers with high adsorption
capacity, especially in cases where the initial labeled samples have low adsorption.

Since the adsorption estimates require validation by long-timescale MD simulations for high-
confidence CO, uptakes, one can adopt a multi-fidelity Bayesian optimization approach [33] to
discover high-quality polymers by leveraging both types of simulations. Exploration of the chemical
space, e.g. branched and cross-linked architectures beyond linear polymers with de-novo design
approaches, is another direction for future efforts. Specifically, this will also allow a more thorough
investigation into the utility of different molecular representations in the polymer discovery process.
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Figure 4: Computational pipeline for polymer sorbent screening. Molecular fragments are
assembled into polymers via BRICS composition, deposited into porous matrices, and equilibrated.
The resulting composites undergo molecular dynamics (MD) and grand canonical Monte Carlo
(GCMC) simulations, enabling large-scale automated screening for CO, capture.

A.1 Force Fields for Polyamine-CO,-H,O Interactions

In this study, the DREIDING force field [34] and the F3C force field [35] were employed to model
HB-PEI, HB-PPI, CO,, and water. The DREIDING force field has been extensively applied in prior
simulation studies across a wide range of materials, with results showing strong consistency with
experimental data [36]]. The functional form of the DREIDING potential is expressed as

Etotal = EvdW + EQ + Ebond + Eangle + Etorsion + Einversion; (4)

where Eial, Evaw, £Q, Ebonds Eangles Frorsions a1d Fipyersion correspond to the total, van der Waals,
electrostatic, bond stretching, angle bending, torsional, and inversion energies, respectively. Electro-
static contributions, Eq, were determined from Mulliken population analysis.

To accurately capture the specific interactions between amine-CO,, amine-H, O, and CO,—-H,O pairs,
interaction energy profiles as a function of distance were first obtained using DFT at the B3LYP-D3/6-
31G** level of theory (Fig.[5). From these calculations, Lennard-Jones (LJ) potential parameters (D



Algorithm 1 Bayesian Optimization for Accelerated Discovery

Require: Simulator for estimating CO, adsorption capacity fsm(7), initial dataset DY g =
) ()\1No i )1 Nooo L
Diaveled = { (2, y)};¥°,, initial pool DY, peteq = Duntaveled = { (29 },%", acquisition func-

tion (), computational budget Nyydget
1: for k = 1 to Nyygger do

2:  Train a surrogate model fs’fmgm with labeled dataset, Dﬁge]led
3:  Select sample to simulate next:
x(k) = argmax a(x | fslfxrrogate) ey
zeplﬁlgble]ed
4:  Simulate for adsorption capacity: y¥) = fyn (z(F)
5. Update datasets:
Diipeted = Phipetea U {(&*), ™)} @
DLllﬁnlabeled = Dfn?a{)e]ed \ {(x(k))} (3)
6: end for _
7: Return: z* = arg max Npudget y(@

(2@ ,y)eDy s

and ) in Eq. (5) were optimized to describe the off-diagonal van der Waals interactions:

FEott-diagonal (1) = D {(TO) v 2 <TO>6} , 5)

r r

where D is the potential well depth and 7y is the equilibrium separation distance.

The binding energy between species A and B was calculated as
Ebinding = E(AJrB) — Fa— Ep, (6)

where E (44 ) denotes the total energy of the optimized molecular pair, and E4 and Ep are
the corresponding isolated species. This formulation enables direct comparison of DFT-derived
interaction energies with those predicted by conventional mixing rules. As illustrated in Fig. [5]
the interaction curves based on the optimized LJ parameters show excellent agreement with DFT
results, in contrast to the less accurate predictions of the geometric-mean mixing rule. Notably, the
mean square error (MSE) was reduced by approximately 98% with the newly optimized parameters
compared to those obtained from the mixing rule, demonstrating the robustness of this refinement.
Consequently, the optimized LJ parameters were adopted for all subsequent MD simulations in this
study.
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Figure 5: DFT-calculated interaction energy curves for amine-CO, and amine-H,O pairs. (a)
Binding energy profiles of CO, with primary, secondary, and tertiary amines, as well as with the
—(CyH4)- linker group. (b) Binding energy profiles of H,O with primary, secondary, and tertiary
amines. Data points represent DFT calculations (B3LYP-D3/6-31G**), while lines correspond to
Lennard-Jones (LJ) potential fits.



It is noted that i) among the binding energies of CO, with amines (-5.31 kcal/mol, -5.78 kcal/mol, and
-4.75 kcal/mol, for primary, secondary, and tertiary amines, respectively), the CO,-secondary amine
pair has the strongest binding energy while the CO,-tertiary amine pair has the weakest binding
energy; ii) the binding energies of the CO,-amine pairs are weaker than those of the H,O-amine pairs
(-10.67 kcal/mol, -11.10 kcal/mol, and -11.50 kcal/mol for primary, secondary, and tertiary amines,
respectively).

A key outcome of the DFT-based parameterization is the capability to reproduce the observations from
experimental and computational studies that amine-H,O interactions are stronger than amine-CO,
interactions, validating the suitability of the newly developed force field for investigating CO, capture
in both HB-PEI and HB-PPI.

A.2 CO, Adsorption Estimation via Improved Throughput Simulation

For each polymer candidate in our dataset, we evaluated its CO, adsorption properties using a
two-stage simulation workflow that combined fast molecular dynamics (MD) relaxation and grand
canonical Monte Carlo (GCMC) sampling. The overall objective was to obtain accurate yet computa-
tionally efficient predictions of CO, capacity under specified capture conditions.

Fast MD simulations were first used to relax polymer configurations and approximate their packing
density prior to adsorption calculations. Initial geometries were energy-minimized and equilibrated
in the NVT ensemble at T = 298 K for 500 ps, followed by NPT ensemble simulations at P = 1 bar
for 500 ps to achieve realistic bulk densities. This approach ensured that chain conformations, void
spaces, and local environments were well-represented before introducing sorbate molecules. The
relaxed polymer configurations served as input for subsequent GCMC adsorption simulations.

GCMC simulations were carried out using the LAMMPS / RASPA framework to directly estimate the
equilibrium uptake of CO, at low partial pressures relevant to DAC. All simulations were performed
at T =298 K, with a CO, partial pressure of 0.4 mbar to mimic atmospheric capture conditions. The
DREIDING + F3C force field parameters described in Appendix[A.T| were used for polymer-CO,-
H,O interactions. Each GCMC run consisted of 1 million trial moves, with an insertion-to-deletion
ratio of 1:1 and displacement/rotation trials included to enhance sampling efficiency. The calculated
adsorption capacity was expressed in mmol g!, averaged over the production phase of the simulation
after equilibration. These results formed the quantitative performance labels for downstream machine
learning and Bayesian optimization workflows.

A.3 Molecular Representation of Polymer and Surrogate Model

Molecular Embeddings: For building the surrogate model to predict the adsorption capacity
of a polymer sample x, we have used the representation z encoded by the pre-trained models
for molecule space as a numerical representation of sample x. In our work, we considered both
polymer-specific and general molecular pre-trained models for encoding the polymer samples. The
two polymer-specific pretrained models: PolyNC [15] and polyBERT [14], encode the PSMILES
strings of polymer « into the embeddings of their corresponding chemical tokens. We obtained
the representation z by taking the average over these chemical token embeddings, excluding the
special tokens. For representation from the general molecular space, we computed the embedding z
from pre-trained MoLFormer [24], MolGen-large [25]], and MiniMol [26]]. For these models, the “*”
symbols in PSMILES (indicating the connection points in monomer) were removed, and the resulting
monomer was encoded to an embedding z. Note that MoLFormer and MolGen-large are chemical
language models for SMILES and SELFIES representation respectively, and the embedding z is the
token-wise average embedding of the monomer. For MiniMol, which is a pre-trained graph neural
network (GNN), z is the max-pool aggregation of the node embeddings of the molecular graph of the
monomer. Fig. [6]shows the UMAP [37] visualization of the 1000 polymer samples — with simulated
CO, adsorption capacity — based on the embedding z from these pretrained models.

Surrogate Models: In our work, we have used Gaussian Process (GP) [27]], GP with deep kernel
learning (GP-DKL) [28]], and Bayesian neural network with Laplace approximation (LA) [29, 30]] as
surrogate models mapping embedding z to the predictive distribution of the adsorption capacity of
polymer samples. For GP, the prediction for sample z is f(z) ~ GP(m, k) where m : Z — R is
the mean function, and &k : Z x Z — R is the kernel function (e.g., Matérn-5/2 kernel used in our
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Figure 6: UMAP visualization of 1000 polymer samples based on their representation from
polymer-specific pre-trained models: PolyNC, polyBERT and general chemical pre-trained
models: MolFormer, MolGen_large, MiniMol

work) defined on the embedding z of the sample. In GP-DKL, the kernel k(z, z’) is replaced with
k(o(z), ¢(z')) where ¢ represents a non-linear mapping with learnable parameters which is jointly
trained with the base GP. We have used a multilayer perceptron (MLP) network with one hidden
layer and one output layer — both with 50 neurons and ReLLU activation as the non-linear function
¢ in our experiment with GP-DKL. For LA, we have used the linearized Laplace approximation
from [30], where the output of a neural network fg(z) is linearized near a known model weights in
the parameter space. Specifically, we first trained a deterministic network fg= : Z — R (8™ being
trained parameters); followed by optimization of prior precision (over neural network’s weights) and
observation noise via marginal likelihood maximization. The predictive distribution for a sample z is
approximated by N ( fo=(z), Jo= (z)£J 9= (2)T), where the Jg+(2z) = Vg fo(2)|g_g- is the Jacobian

evaluated at model weights 6", and ¥ = ( V32 logp(6|D) | 0—0" ) ~!is the inverse of the Hessian.
Note, D in this expression of E denotes the tralmng data used for training the model fg=, which
is an MLP network with two hidden layers (each having 50 neurons and ReL.U activation) in our
experiments.

A.4 Acquisition Function

The acquisition function (| fsurrogate) defines the utility of performing simulation for measuring CO,
adsorption capacity of sample x based on the surrogate model fyrogate 1earned with the labeled data.
The choice of the acquisition strategy dictates the trade-off in terms of the “exploration vs exploitation"
goal of the Bayesian optimization. For example, the greedy acquisition strategy prioritizes sample
with the highest predictive mean, i.e., exploiting the knowledge of the trained surrogate, which may be
overconfident given the limited number of labeled data samples. In contrast, the random acquisition is
purely exploration-based without leveraging the current observation data. Eqgs. (7) to shows the
utility of sample z under greedy, upper confidence bound (UCB) [38]], Thompson sampling [31]|(used
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in our work), and expected improvement (EI) [39] acquisition functions, respectively.

Qlgreedy (x|fsurrogate) = Kz (N
aucs (2] farogate) = He + B0, With 3 >0 (®)
OThompson (T | fsurrogate) = § where  § ~ N (piz, 02) ©)
g (2| farrogae) = E [max(j — y*,0)] where § ~ N (s, 03) (10)

Here 1, and o2 are the predictive mean and variance from the surrogate model for polymer z. y*
denotes the best objective values within the current set of samples with measured objectives, i.e., the
training samples for the surrogate.
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