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ABSTRACT

Vision Transformers have emerged as state-of-the-art image recognition tools, but
may still exhibit incorrect behavior. Incorrect image recognition can have disas-
trous consequences in safety-critical real-world applications such as self-driving
automobiles. In this paper, we present Provable Repair of Vision Transformers
(PRoViT), a provable repair approach that guarantees the correct classification of
images in a repair set for a given Vision Transformer without modifying its ar-
chitecture. PRoViT avoids negatively affecting correctly classified images (draw-
down) by minimizing the changes made to the Vision Transformer’s parameters
and original output. We observe that for Vision Transformers, unlike for other
architectures such as ResNet or VGG, editing just the parameters in the last layer
achieves correctness guarantees and very low drawdown. We introduce a novel
method for editing these last-layer parameters that enables PRoViT to efficiently
repair state-of-the-art Vision Transformers for thousands of images, far exceeding
the capabilities of prior provable repair approaches.

1 INTRODUCTION

Vision Transformers (Dosovitskiy et al., 2021) have emerged as state-of-the-art image recognition
tools, but still exhibit faulty behavior that can result in disastrous real-world consequences. Im-
age recognition plays a significant role in safety-critical applications such as self-driving automo-
biles (Bojarski et al., 2016) and medical diagnosis (Kermany et al., 2018). Faulty image recognition
software has resulted in serious consequences, including loss of life (Gonzales, 2019; Lee, 2016). As
Vision Transformers integrate more into real-world applications, it becomes increasingly important
to provide guarantees about their correctness to ensure safety.

There is an abundance of research on editing pre-trained Transformers to correct faulty behav-
ior (Meng et al., 2022; 2023; Mitchell et al., 2022; Huang et al., 2023). To the best of our knowledge,
none of these methods provide provable correctness guarantees. Recent research on provable repair
of deep neural networks (DNNs) (Sotoudeh & Thakur, 2021; Tao et al., 2023; Goldberger et al.,
2020; Fu & Li, 2022) explores strategies to provide such guarantees, but such research has not
focused on Vision Transformers. In general, provable repair methods guarantee correctness of a
DNN’s output according to a user-defined repair specification. Provable repair methods strive for
the following properties:

e Efficacy: The repaired DNN must achieve 100% accuracy on the specified points.
e Efficiency: The repair process should be efficient and scale to large DNNSs.

e Low drawdown: The repair should not negatively affect the previous good behavior of a
DNN.

e High generalization: The repair should generalize to similar points that are not directly
specified in the repair set.

These properties set provable repair apart from other DNN editing methods such as retraining and
fine tuning. Retraining is inefficient, especially on large models, and the original training set may
not be available. Fine tuning has demonstrated a tendency to cause high drawdown (Kemker et al.,
2018), meaning the edited DNN has “forgotten” much of its original knowledge.
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In this paper, we present PRoViT, a provable repair method for Vision Transformers that provides
correctness guarantees without modifying the original model’s architecture. PRoViT is sound: a
repaired network returned by PRoViT is guaranteed to classify all points in the repair set correctly.
Similar to prior provable repair approaches (Goldberger et al., 2020; Sotoudeh & Thakur, 2021;
Tao et al., 2023), PRoViT is not complete: given a network and a repair specification, it may not
find a repaired network. In practice, however, PRoViT successfully repairs thousands of images on
state-of-the-art Vision Transformers. It is efficient and highly scalable, and it avoids drawdown by
minimizing the changes made to the parameters of the Vision Transformer.

The key observation underlying PRoViT is that editing the parameters of the last fully-connected
linear layer of the Vision Transformer is sufficient to achieve provable repair with low drawdown
and high generalization. In particular, PRoViT combines gradient-descent-based fine tuning of the
last layer with a scalable linear-programming-based provable repair approach to edit the parameters
of the last layer. PRoViT is able to repair ImageNet Vision Transformers using thousands of repair
points, far exceeding prior approaches for provable repair such as APRNN (Tao et al., 2023) and
“minimal modifications of deep neural networks” (MMDNN) (Goldberger et al., 2020). Though
APRNN and MMDNN present strategies to repair the last layer of a DNN by formulating the repair
as a linear programming (LP) problem, they are unable to scale beyond a few hundred repair points.
This is because these earlier LP formulations require a large number of variables and constraints,
which is avoided by the novel approach presented in this paper.

To the best of our knowledge, PRoViT is the only approach for provable repair of Vision Transform-
ers with all of the following properties:

e Provable correctness guarantees: The repaired network returned by PRoViT is guaranteed
to classify all points in the repair set.

o Transformer architecture-preserving: The repair does not make any changes to the original
architecture of the Vision Transformer.

e Highly scalable: PRoViT successfully repairs large Vision Transformers and repair sets
with thousands of images.

e Efficient: The repair is efficient, remaining within the order of minutes to hours for thou-
sands of points.

o Low drawdown: PRoViT does not negatively impact the previous correct classifications of
the Vision Transformer after repairing the images in the repair set.

e High generalization: The repair generalizes to images beyond those explicitly present in
the repair set.

The rest of the paper is organized as follows: Section 2 presents preliminaries; Section 3 presents
the PRoViT approach; Section 4 details the experimental evaluation of PRoViT; Section 5 discusses
related work; Section 6 concludes.

2 PRELIMINARIES

We use NV to denote a deep neural network (DNN) with parameters #, and NV'(x; #) € R™ to denote
the output vector of the DNN on input vector x € R”. We drop the parameters 6 if they are clear
from the context. In this paper, we restrict ourselves to classification tasks; thus, n is the number
of labels. We use accuracy(N?, A) to represent the accuracy of a DNN A% on set A of inputs and
expected labels.

Given a repair set S of inputs and expected labels, the goal of architecture-preserving provable

repair is to make small changes to the parameters of a given DNN N so that the resulting DNN
N* has 100% accuracy on the repair set S.

Definition 1. Given a DNN N and a repair set S of inputs and expected labels, an architecture-
preserving provable repair finds parameters §" such that |\, ;) cs arg max(N (x;6")) = I; that is,

accuracy(N? | S) = 100%.

We use efficacy to refer to the accuracy of the repaired network on the given repair set. Apart from
efficacy, provable repair methods are also evaluated on drawdown and generalization.
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Definition 2. A drawdown set D is a set of points disjoint from the repair set and representative of
a DNN’s existing knowledge. For two DNNs N and N, the drawdown of N with respect to N is
accuracy(N, D) — accuracy(N’, D). Lower drawdown is better, representing less knowledge lost
during repair.

Definition 3. A generalization set G is a set of points disjoint but similar to those in the repair
set. For two DNNs N and N, the generalization of N’ with respect to N is accuracy(N”',G) —
accuracy(N', G). Higher generalization is better.

Our goal is to find an architecture-preserving provable repair approach for Vision Transform-
ers (Dosovitskiy et al., 2021). Vision Transformers are self-attention-based architectures that par-
tition an input image into patches for processing. Encoder layers process the patches, taking into
account their relations to one another via nonlinear operations. Finally, the last encoder layer returns
a class token, which is a vector representing the predicted class of the input image. This class token
is passed through the final feed-forward layer of the Vision Transformer to determine the label for
the input image.

There are a number of existing provable repair approaches including PRDNN (Sotoudeh & Thakur,
2021), REASSURE (Fu & Li, 2022), MMDNN (Goldberger et al., 2020), and APRNN (Tao et al,,
2023). PRDNN is unable to repair Vision Transformers due to the nonlinearity and architecture
within the encoder layers. REASSURE only works for models that use ReLLU activation func-
tions, but Transformers use softmax activations. In addition, PRDNN and REASSURE are not
architecture-preserving, so we turn to MMDNN and APRNN instead.

MMDNN and APRNN encounter similar issues in the encoder layers as REASSURE and PRDNN,
but MMDNN and APRNN can both narrow their focus to only modify the last layer of a model and
encode the repair as a linear programming (LP) problem.

We use N'G—1 to represent a DNN N without its last layer (-, Similarly, we use 8¢~1 to
denote A”’s parameters excluding those in the last layer #(—1). Thus, N'C=D (x; §G=1) € R is the
input vector to the last layer of A/ for some input vector x. The parameters (1) o {W,b} of the

last layer consist of weights W and biases b. W has shape p x n and b has shape n, where n is the
number of labels in the classification task.

First, we introduce symbolic parameters p-n & {VAV, Z} where Wisa symbolic matrix corresponds
to Wand b is a symbolic bias vector corresponds to b. Wandb represent the new weights and biases
we must find to satisfy the repair set. Now, the output of the layer isy = A/¢—1 (x; 6(:_1)) W+b
for an input vector x. y is a symbolic output vector with n elements, one for each label.

The following formula ,remax (y,1) means the argmax of the vectory is I:

~ def ~ ~
@argmax(yal) = /\yl >y (1)
il
Intuitively, representing the argmax function in the form of linear constraints requires that the value

of y, is greater than all other values y; iny where ¢ 5 [. Using this @uemax definition, we formulate
the LP for provable repair as follows:

min HW— VAVH + Hb — ZH
s.t. /\ (Lpargmax(y,l) ANYy= N(:—l)(x;9(=—1)) Wb A ¥, > max(N(x, 9))) 2)
(x,0)eS

An off-the-shelf LP solver can find a solution to W and & that satisfies all of the constraints if it
exists. We then update the original parameters of the last layer, 8(—1), with the solution to make

97(1;},). The repaired N’s parameters are 6’ = [0(:_1) , (9,(;&,)].

Proposition 1 (Goldberger et al. (2020)). Given a repair set S and DNN N, 0’ solved by the LP in
Equation 2 satisfies S.

Remark 1. The number of variables in the LP in Equation 2 is n X p + n and the number of
constraints is (n — 1) x |S].
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Proof. The symbolic matrix W is of size p X n, and each element of W is a variable. Similarly, the

symbolic vector b is of size n, and each element of b is a variable. In total, there are n X p +n
variables in the LP.

For each element in the repair set, we add n — 1 constraints. Each of these constraints ensures that
the symbolic output associated with the correct label is greater than another label. Because there
are n labels, there must be n — 1 comparison constraints (as there is no need to add a constraint to
compare the correct label with itself). There are |S| points in the repair set, so we multiply |S| with
n —1to get (n — 1) x |S] total constraints.

The LP for provable repair in Equation 2 is categorized as an architecture-preserving provable repair
approach for Vision Transformers. Consider another approach in this category based on fine-tuning.
Fine tuning is a well-studied strategy to adjust a DNN’s behavior on a set of points, usually disjoint
from the training set. The parameters 6 of a DNN A/ are updated via gradient descent. We define a
variation of fine tuning, FTyy, that continues to edit all of the parameters of the DNN until the repair
set is satisfied. FTy; is not guaranteed to terminate, but if it terminates, then all inputs are classified
correctly and hence it is a provable repair approach. We will consider FT,; a baseline to compare
against our approach.

3 APPROACH

In this section, we present our scalable architecture-preserving provable repair method for Vision
Transformers, PRoViT. A key observation in this paper is that editing the parameters of the last
layer of a Vision Transformer is sufficient to find a high-quality provable repair, namely, one with
low drawdown and high generalization. We present three variants of PRoViT:

e PRoViTLp: PRoViTyp is a novel scalable LP repair approach, the details of which are pro-
vided later in this section. We observed that the LP for provable repair defined in Equation 2
works well on small repair sets, resulting in very low drawdown and high generalization,
but it does not scale beyond 250 images. The LP solver runs out of memory due to the
high number of variables and constraints required to encode the repair. Instead, our re-
duced LP approach PRoViTyp results in very low drawdown, generalizes well, and scales
to thousands of images, as shown in Section 4.

o PRoViTgr: PRoViTgr is a variation on fine tuning which restricts the edits to just the last
layer of the Vision Transformer. We observed that FT,; results in high drawdown and is
inredibly inefficient. On the other hand, PRoViTgr is much more efficient and has lower
drawdown than FT,;, as shown in Section 4.

o PRoViTgriLp: PROViTEr,p is a combination of the two above approaches. PRoViTpp
results in extremely low drawdown and generalizes well. PRoViTgr generalizes better than
PRoViTyp but has slightly higher drawdown. PRoViTgr,1p leverages the strengths of both
to find a satisfying tradeoff between drawdown and generalization. We demonstrate this
tradeoff in Section 4.

Now we explain our scalable LP provable repair approach, PRoViTp. Let (x,1) be an element of
the repair set. It is sufficient to only modify the value of y; to repair the DNN for x. Consequently,
it is sufficient to only modify the [-th column of the last-layer weight matrix W. Now let K be
the set of labels present in the entire repair set. Our new LP formulation PRoViTyp is based on the
observation that it is sufficient in practice to only adjust the values of those particular | K| elements
of y and not modify the rest. Consequently, it is sufficient in practice to only modify the columns in
K of the last-layer weight and bias matrices.

Let us now convert K to a subsequence of [0,1,...,n — 1] where n is the total number of labels in
the classification task. We define a submatrix of W, denoted W. x, and a subvector of b, denoted
by . These submatrices are formed by selecting columns of W and b indexed by K. W. g has shape

p x | K| and b has shape | K| where p is the size of the input to the last layer A/(—1).

. . 1 3 5 7 9 3 5 9
Example 1. Consider a matrix W = [2 416 8 10}. Then W. g = {4 6 10} where ) =

[1,2,4].
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Algorithm 1: PRoViTgryp(N, S)

Input: A Vision Transformer N\ and a repair set S.
Output: A repaired Vision Transformer A" that satisfies S.
PRoViTer (N, S)

while =PRoViT.p (N, S) do

LPROViTFT WN,S)

return \/

We introduce a symbolic matrix Wreduced and a symbolic vector breduced to represent the weights

and biases we must find to satisfy the repair set S. The shapes of W, -educedq and b, educed match W. g
and b ¢, respectively, since we will only find new values for the weights and biases associated with
the labels in K.

We encode the constraints to ensure that each repair point is correctly classified. Let max(Y) be a
function that returns the maximum value in the vector Y. We formulate the reduced LP for PRoViT
as follows:

S.t. /\ (wargmax(ja I) NYy= N(:il) (x§ 0(:71)) : Wreduced +/b\reduced A 3’\1 > max(/\/(x, 9)))
x,0)es
3)

An LP solver can find a solution to ﬁ’mducad and i;reduced that satisfies all of the constraints if it
exists. We then update the original parameters of the last layer, 8~ 1), with the solution to make

min HWK - Wr(zduccd ‘ + HbK - breduccd

95;&,). The repaired N’s parameters are ' = [0( -1 Hsle&,)].
Proposition 2. Given a repair set S and DNN N with parameters 0, the repaired DNN with param-
eters 0’ solved by the LP in Equation 3 satisfies S.

Proof. Let (' be the parameters computed by the provable repair technique that uses Equation 3. Let
(x,1) be any element of the repair set S, andy’ = N (x, 6’). We will show that arg max(y’) = [

The argmax constraints (,gmax ensure that
y; >y, forallie K — {l} 4)
Lety = N(x.0). Equation 3 includes a constraint to ensure that y; >y, for all ¢ € |y|. The outputs
not associated with the labels in K~ are not modified by the repair; thus, y;, =y, forall i ¢ K.
y; >yiforalli ¢ K (5)

Using Equations 4 and 5, we have y; > y’.i # [; that is, arg max(y’) = [. O

Remark 2. The number of variables in the LP in Equation 3 is p X |K| + | K| and the number of
constraints is |S| x | K|.

Proof. The size of the symbolic matrix Wmduced is |K| x p and each element of Wreduced is a

variable. Similarly, the symbolic vector Breducad is of size |K| and each element of ’b\mduced is a
variable. In total, there are p x | K| + | K| variables in the LP.

The | K| constraints consist of | K| — 1 constraints to encode the argmax across the labels present in
K. There is one more constraint added to encode the max function. There are |K| — 1+ 1 = | K|
constraints per element in the repair set, so there are | K| x |S|.

As demonstrate in Remark 1 and Remark 2, while the size of the original problem (Equation 2) de-
pends on the number of labels n, the size of the reduced problem (Equation 3) depends on |K| < n.

PRoViTgr,p combines both PRoViTgr and PRoViTip as shown in Algorithm 1. Given a Vision
Transformer A and a repair set S, PRoViTgr,y p first runs one iteration of PRoViTgr to quickly gain
accuracy of A/ on the inputs in S. PRoViTgr may achieve 100% efficacy at this stage, in which case
PRoOViTgr,p p terminates and returns the repaired . If the efficacy is not 100%, PRoViTgr,pp runs
PRoViTLp to make additional edits to ensure that all inputs in S are classified correctly. If there is
no solution to the LP, the loop continues. Otherwise, the repaired Vision Transformer is returned.
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Table 1: Drawdown and generalization results in the experiment. Bold number indicates the best
result, underlined number indicates the second best result, t/o indicates timeout in 20000 seconds.

Drawdown [%] Generalization [%]
Model |K| |S] . .
PRoViT PRoViT
FTan FTIall
LP FT  FT+LP LP FT FT+LP

2000 76.80% 0.01% 0.22% 0.08% 24.70% 43.82% 53.40% 49.07%
8 4000 76.77% 0.01% 0.67% 0.23% 831% 32.18% 39.74% 38.96%
12 6000 76.66% 0.01% 1.05% 0.39% 835% 3525% 42.14% 41.65%

ViT-L/32
16 8000 t/o 0.01% 2.19% 0.57% t/o 32.43% 37.80% 38.16%
20 10000 t/o 0.02% 3.24% 0.74% t/o 31.69% 36.20% 37.76%
2000 81.51% -0.01% 0.28% -0.01% 36.18% 44.76% 54.33% 50.01%
8 4000 81.39% -0.01% 0.80% 0.06% 1721% 32.87% 39.34% 38.05%
DeiT 12 6000 t/o 0.00% 1.43% 0.14% t/o 3477% 41.74% 40.37%
16 8000 t/o 0.05% 2.40% 0.40% t/o 31.99% 37.41% 38.02%
20 10000 t/o 0.05% 4.33% 0.62% t/o 31.45% 35.75% 37.49%

Table 2: Time spent in the experiment. Bold number indicates the best result, underlined number
indicates the second best result, t/o indicates timeout in 20000 seconds.

Time [s]

Model |K| |S| .
PRoViT
FTun

LP FT  FT+LP

2000 8502s 440s 537s 541s
8 4000 12633s 964s 847s 1187s
12 6000 18869s 1598s 1230s 1834s

ViT-L/32
16 8000 t/o 2339s 3225s 2637s
20 10000 t/o 3095s 3960s 3576s
2000 2681s 386s 2282s 535s
8 4000 9853s 820s 1950s 1204s
. 12 6000 t/o 1317s 1944s 1761s
DeiT -

16 8000  t/o 1952s  2642s 2473s
20 10000  t/o 2576s 3050s 3291s

4 EXPERIMENTAL EVALUATION

The following experiments repair three Vision Transformers trained on ImageNet: ViT-L/32 (Doso-
vitskiy et al., 2021) and DeiT (Touvron et al.,, 2021). We also evaluate our approach on
ResNet152 (He et al., 2016) and VGG19 (Simonyan & Zisserman, 2015) to demonstrate that last
layer repairs are best suited for Vision Transformers rather than other image recognition architec-
tures. All experiments were run on a machine with dual 16-core Intel Xeon Silver 4216 CPUs,
384 GB of memory, SSD and a NVIDIA RTX A6000 with 48 GB of GPU memory. We imple-
mented PRoViT using PyTorch (Paszke et al., 2019) and Gurobi (Gurobi Optimization, LLC, 2023),
a mathematical optimization solver for linear programming (LP) problems.

Baseline and our approach. Our baseline is FT,. We could not evaluate full Vision Transformers
on a standard LP-based last-layer repair (as in Equation 2) due to the scalability issues discussed in
Section 3. However, we compared the performance of APRNN (Tao et al., 2023) on reduced Vision
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Table 3: Drawdown, generalization and timing results for non-ViT networks in the experiment. Bold
number indicates the best result, underlined number indicates the second best result, t/o indicates
timeout in 20000 seconds.

Drawdown [%] Generalization [%] Time [s]
Model —|K| |3 PROVIT PROVIT PROVIiT
LP FT FT+LP LP FT FT+LP LP FT FT+LP
ResNet152 4 2000 11.28% 77.92% 77.87%  52.90% 56.58% 55.94%  1851s 1323s  2004s
VGGI19 4 2000 1.03% 56.01% 4597%  50.14% 52.92% 52.68% 621s 4784s 848s
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(a) Miniature pinscher (b) Combination lock (c) Jaguar with frost cor- (d) Collie with snow cor-
with fog corruption. with brightness corrup- ruption. ruption.
tion.

Figure 1: Examples of images with different corruptions applied

Transformers with just 50 ImageNet classes and noted that PRoViT outperforms APRNN even in
the reduced scenario. The results of this comparison are in the Appendix. Other baselines were
eliminated because they do not support transformer architectures or their approaches were specific
to NLP tasks. We evaluate the following three variants of our approach PRoViT: (1) PRoViTp
(abbrev. LP): without any initial fine tuning, we solve the LP in Equation 3 to repair the network;
(2) PRoViTyy (abbrev. FT): we run fine tuning on the last layer until the repair set is satisfied;
(3) PRoViTprp (abbrev. FT+LP): we run Algorithm 1, which alternates between PRoViTgr
and PRoViTgr. We compare the performance of these approaches by evaluating their efficiency,
drawdown, and generalization on various repair specifications.

Repair Set. 'We repair weather-corrupted images from the ImageNet-C dataset (Hendrycks & Diet-
terich, 2018). We select | K | random ImageNet labels and repair 500 images for each of the selected
labels. The 500 images are selected by choosing 4 corruptions of 5 base images: fog, brightness,
frost, and snow. Figure 1 shows example images with the four corruptions. Each corruption has 5
severity levels. We apply 5 rotations (—10°, —5°,0°,5°,10°) to each image. In total, this creates
4 x 5 x 5 x 5 = 500 images per label in the repair set. In this experiment, we increase the size of
the repair set by incrementing the number of labels we include. Thus, the size of each repair set is
| K| x 500.

Drawdown Set. 'We use the official ILSVRC2012 ImageNet validation set (Deng et al., 2012) to
measure the drawdown of each repair. For ViT-L/32, the top-1 accuracy is 76.972% and the top-5
accuracy is 93.07%. For DeiT, the top-1 accuracy is 81.742% and the top-5 accuracy is 95.586%.
For ResNet152, the top-1 accuracy is 78.312% and the top-5 accuracy is 94.046%. For VGG19, the
top-1 accuracy is 72.376% and the top-5 accuracy is 90.876%.

Generalization Set. The generalization set includes all of the weather-corrupted ImageNet-C im-
ages within the selected | K| labels that are not present in the repair set. There are 4 corruptions of
the remaining 45 base images. Each corruption has 5 severity levels and we apply the same 5 rota-
tions to each image. So for each label, there are 4 x 45 x 5 x 5 = 4500 images in the generalization
set. In total, the size of each generalization set is | K| x 4500 where | K| is the number of labels in
the repair set.
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4.1 COMPARISON WITH BASELINE

We compare the performance of our approach, PRoViTgr,p, against the baseline, FT,;. Table 1
shows the drawdown and generalization for each Vision Transformer. FT,; results in terrible draw-
down, causing the Vision Transformer to lost most of its original test set accuracy. In addition,
PRoViTgr,p consistently outperforms FT,;’s generalization by 20%. PRoViTgr4p also results in
near-zero drawdown, never reaching more than 1%. Table 2 shows the time comparison between
our baseline FT,; and our approach PRoViTgr,p. FTyy takes significantly more time to repair
than PRoViTgr,p, SO0 we set a timeout of 20000 seconds. Even as repair set sizes reach into the
thousands, PRoViTgr,yp is more efficient than FT,; was on much smaller repair sets.

4.2 ABLATION STUDY

We compare the variations of PRoViT, as shown in both Table 1 and Table 2. For ViT-L/32, both
the FT and LP variants of PRoViTgr, p are faster than FT+LP. However, for DeiT, the LP variant is
always the fastest. The PRoViTyp always achieves the best drawdown. The drawdown is sometimes
even negative, meaning that instead of “forgetting” prior knowledge, additional accuracy was gained
on the test set. PRoViTgt has the best overall generalization.

The results for the FT+LP variation of PRoViT provide evidence of a nice tradeoff between draw-
down and generalization. FT+LP leverages the benefits of both variations while still providing
provable correctness guarantees.

These results demonstrate PRoViT’s efficiency, low drawdown, and high generalization, all while
maintaining correctness guarantees on the repair set. PRoViT’s success highlights the strength of
targeting the last layer of a Vision Transformer for repair.

4.3 COMPARISON ACROSS ARCHITECTURES

To further explore the uniqueness of PRoViT’s approach to repairing Vision Transformers, we con-
ducted experiments on ResNet152 and VGG19 to demonstrate that PRoViT is not well suited for
other image recognition architectures. Table 3 shows the drawdown and generalization of the dif-
ferent variants of PRoViT. The generalization is good, but the drawdown is extremely high for both
ResNet152 and VGG19. Notably, the FT approach resulted in the best drawdown, but the repairs
are considerably worse than those on the Vision Transformers. This provides insight into the key
differences between the ways convolutional architectures like ResNet and VGG distill information
within images and how that information is reflected in the final output layer. The theoretical basis
for why PRoViT works well on Vision Transformers but not convolutional networks is left to future
work.

5 RELATED WORK

5.1 FORMAL METHODS FOR TRAINING AND VERIFICATION

Training DNNS that are robust to adversarial inputs has been extensively researched. Miiller et al.
(2023) present a certified DNN training approach that evaluates worst-case loss on small boxes
within the adversarial input region. Balunovic & Vechev (2019) propose adversarial training in
combination with provable defenses to achieve certified robustness. Their approach aims to strike a
balance between high test accuracy and providing robustness certificates.

There are also formal verification methods that work to prove the correctness of a particular input
according to some specification for a pre-trained DNN. DeepPoly (Singh et al., 2019) is a veri-
fication tool that uses abstract transformers to prove properties of DNNs. DeepT (Bonaert et al.,
2021) is also a verification tool based on abstract interpretation, specific to Transformer architec-
tures. Both DeepPoly and DeepT return counterexamples to the properties if they are found. These
counterexamples can be used as input to PRoViT. Shi et al. (2020) have also addressed the verifi-
cation of Transformers by computing certified bounds to reflect the importance of specified inputs.
Their experiments, along with those in DeepT, focus mainly on NLP Transformers as opposed to
Vision Transformers.
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5.2 PROVABLE REPAIR OF DNNs

The provable repair problem is a related but separate problem for DNNs. Certified training operates
as a starting point for correctness guarantees, usually creating a model from scratch. Verification
methods aim to produce a certificate of correctness on a pre-trained model; it does not make edits
to the DNN at all. Provable repair, on the other hand, provides correctness guarantees for specified
inputs by editing the model’s parameters.

There are two classes of provable repair approaches for DNNs: architecture-modifying and
architecture-preserving. The first architecture-modifying approach proposed is PRDNN (Sotoudeh
& Thakur, 2021), which processes a DNN by decoupling its structure. This architecture modifica-
tion allows PRDNN to provide correctness guarantees about the parameter edits by formulating the
problem as an LP. REASSURE (Fu & Li, 2022) is another architecture-modifying provable repair
approach. REASSURE adds small “patch networks” to the original DNN architecture that activate
for the inputs that are in the repair set. The parameters of the patch networks can be designed to
correct the behavior of the designated points in the repair set. REASSURE does not work on Vision
Transformer architectures due to the nonlinear activation functions within the encoder layers.

Architecture-preserving provable repair methods guarantee the correctness of the inputs post-repair
without modifying the original structure of the DNN. Goldberger et al. (2020) first proposed for-
mulating the repair as an LP in their approach “minimal modifications of deep neural networks”
(MMDNN), but due to the nonlinear nature of the activation functions, the method only works for
large DNNs when the repair is restricted to the last layer. Otherwise, the search space of potential
LP solutions becomes exponential and does not scale. APRNN (Tao et al., 2023) also formulates the
repair problem as an LP, but avoids the exponential search space of MMDNN by adding activation
pattern constraints to the LP. Thus, APRNN can successfully repair any layer of a DNN. However,
on such large models like Vision Transformers, neither MMDNN nor APRNN scale, even when
restricted to just the last layer. PRoViT is hence the only method architecture-preserving provable
repair method that scales to Vision Transformers.

5.3 TRANSFORMER EDITING

While none of the prior provable repair approaches have focused on Transformer architectures,
there are many approaches in recent research that focus on editing Transformers without formal
correctness guarantees. SERAC (Mitchell et al., 2022) tackles the Transformer editing problem by
storing edits in an explicit memory, acting as a wrapper around the base Transformer model. In
addition to the memory-based cache, SERAC also trains a scope classifier and counterfactual model
to determine when to override the base model during inference. Transformer-Patcher (Huang et al.,
2023) is another approach that, similarly to PRoViT, makes edits to the last layer of a Transformer.
For each input to correct, however, Transformer-Patcher adds a neuron to the last layer to fix the
output’s behavior. This approach suffers from scalability issues and increases the inference time of
the resulting Transformer model significantly.

ROME (Meng et al., 2022) is another model editing approach for Transformers based on identifying
neuron activations that determine a model’s predictions. The weights of a Transformer are updated
based on these selected neurons to correct a particular “fact” in an NLP Transformer. ROME only
has the capability to update one fact at a time, so its scalability is restricted. MEMIT (Meng et al.,
2023) builds on ROME by tracing a “critical path” through the MLP layers and updates the weights
along this critical path to allow for thousands of edits at once. This addresses the scalability issue
of ROME, however both MEMIT and ROME require the NLP facts to be in the form of a (subject,
relation, object) format, and thus are not flexible to other types of model edits.

6 CONCLUSION

We presented PRoViT, a scalable architecture-preserving provable repair approach for Vision Trans-
formers. We leveraged the combination of fine tuning and linear programming to make edits to the
last layer of Vision Transformers. Our experimental evaluation demonstrates that PRoViT is effi-
cient, generalizes well, and avoids drawdown, all while providing provable correctness guarantees
on the repair set. We highlight that for provable repair of Vision Transformers, the last layer is all
you need.
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