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Abstract
With the recent emergence of powerful001
instruction-tuned large language models002
(LLMs), various helpful conversational Ar-003
tificial Intelligence (AI) systems have been004
deployed across many applications. When005
prompted by users, these AI systems suc-006
cessfully perform a wide range of tasks as007
part of a conversation. To provide some sort008
of memory and context, such approaches009
typically condition their output on the en-010
tire conversational history. Although this011
sensitivity to the conversational history can012
often lead to improved performance on sub-013
sequent tasks, we find that performance can014
in fact also be negatively impacted, if there015
is a task-switch. To the best of our knowl-016
edge, our work makes the first attempt to017
formalize the study of such vulnerabilities018
and interference of tasks in conversational019
LLMs caused by task-switches in the con-020
versational history. Our experiments across021
5 datasets with 15 task switches using pop-022
ular LLMs reveal that many of the task-023
switches can lead to significant performance024
degradation.1025

1 Introduction026

Recent advancements in Natural Language Pro-027

cessing (NLP) (Brown et al., 2020; OpenAI,028

2023), have led to their widespread deployment029

of large language models (LLMs) across var-030

ious applications (Bubeck et al., 2023; Anil031

et al., 2023; Singhal et al., 2022). One of032

the popular NLP tasks includes conversational033

systems where LLMs are capable of engag-034

ing in dialogues that mimic human interac-035

tions (Manyika and Hsiao, 2023; Bai et al.,036

2022). A typical interaction involves a series of037

conversation turns starting with the user and038

the LLM responds to the user. This interac-039

tion is however focused on a specific topic or a040

1Code attached anonymously with the submission.

  Give sentiment of this review.
 "The food was terrible."

   The sentiment is Negative

 Give sentiment of this review.
 "The brunch menu is amazing..."

   The sentiment is Positive

 Solve the problem. "John has
five delicious apples. He eats
two. How many are left?"

   The sentiment is Positive

Algebra problem
Task Switch

Sentiment Prediction

 Solve the problem. "John has
five delicious apples. He eats
two. How many are left?"

Three apples left.

No Conversation History

Figure 1: An illustrative example where the chat
history is based on sentiment prediction. Algebra
word problem introduces task-switch which results
in an incorrect prediction.

task (Hosseini-Asl et al., 2020; Lee et al., 2022). 041

042

The performance of LLMs is further boosted 043

by leveraging in-context examples or few-shot 044

examples of a particular task (Brown et al., 045

2020; Smith et al., 2022; Thoppilan et al., 046

2022). In-context learning, by utilizing ex- 047

amples within the conversation history, en- 048

ables LLMs to generate responses that are 049

relevant and tailored to the contextual con- 050

versation. The auto-regressive nature of pop- 051

ular instruction-tuned (LLMs) suggests that 052

the LLM generated response is conditioned on 053

the entire conversation history. This under- 054

scores the sequential dependency and contex- 055

tual awareness embedded within these models. 056

While prompt sensitivity has been exploited 057

by in-context learning to improve downstream 058

performance, this sensitivity has also opened 059
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the door to vulnerabilities, where malicious ac-060

tors can exploit prompt sensitivity for adverse061

purposes (Greshake et al., 2023; Liu et al., 2023;062

Jiang et al., 2023b; Xu et al., 2023).063

In this paper, we investigate the sensitivity064

and the impact of LLM performance on past065

conversational interaction. To do so, we intro-066

duce the concept of task-switch. A task-switch067

is characterized by a conversational objective,068

moving from one distinct task to another within069

the same conversation thread, for example: Fig-070

ure 1 illustrates a task-switch from sentiment071

prediction to math algebra which confuses the072

model to output erroneously. Designing LLMs073

that can seamlessly switch between tasks with-074

out degradation in performance can influence075

the reliability of LLMs in realistic scenarios.076

In this work, we systematically study the077

impact of predictive performance and the sen-078

sitivity of LLMs in the presence of different079

task-based chat histories. Our key contribu-080

tions and takeaways can be summarised as:081

• We formalize the risk of performance082

degradation of LLMs due to task-switch.083

• We present the impact of task-switch on di-084

verse datasets with more than 15 different085

task-switches.086

• We measure the task-switch sensitivity for087

popular LLMs of different sizes, where we088

observe that very large (175B) and small089

(7B) LLMs can both be susceptible to per-090

formance degradation from task-switch.091

2 Related Work092

Large Language Models (LLMs) are becom-093

ing a crucial building block of conversation-094

based virtual assistants (OpenAI, 2023; Tou-095

vron et al., 2023; Jiang et al., 2023a; Anil et al.,096

2023). Leveraging in-context or few-shot ex-097

amples, LLMs have demonstrated remarkable098

capabilities for downstream tasks (Brown et al.,099

2020). In contrast to the resource-intensive fine-100

tuning process (Gao et al., 2020), in-context101

learning eliminates the need for parameter up-102

dates, while achieving state-of-the-art perfor-103

mance (Rae et al., 2021; Smith et al., 2022;104

Thoppilan et al., 2022; Von Oswald et al., 2023;105

Chan et al., 2022; Akyürek et al., 2022; Hahn106

and Goyal, 2023). However, despite its ad-107

vantages, in-context learning tends to suffer108

from sensitivity to prompts, input distribu-109

tion, and formats, which can potentially im- 110

pact the model’s performance (Liu et al., 2021; 111

Zhao et al., 2021; Lu et al., 2021; Min et al., 112

2022; Liu and Wang, 2023; Chang and Jia, 113

2023). Chang and Jia (2023) observe that the 114

in-context examples implicitly bias the model. 115

In our work, we aim to study the bias that 116

arises due to chat history (in-context exam- 117

ples) when a user switches the task. Further- 118

more, recent works (Liu et al., 2023; Greshake 119

et al., 2023) have looked at the vulnerability 120

of LLM to prompt injections and adversarial 121

attacks. Unlike prompt injection, where a ma- 122

licious prompt may be added to the conver- 123

sation of LLM, our setting, is concerned with 124

non-malicious task-switches. While a few re- 125

cent works have investigated the reliance on 126

shortcuts in conversation history (Tang et al., 127

2023; Si et al., 2022; Weston and Sukhbaatar, 128

2023), our work aims to evaluate prompt his- 129

tory sensitivity for a new task. Our work is 130

also differentiated from the study topic change 131

in Task-oriented Dialogue systems (Xie et al., 132

2021; Xu et al., 2021; Yang et al., 2022) as we 133

consider a stronger shift of task-switch from 134

open dialogue LLMs. 135

3 Conversational Task-Switch 136

This work introduces and formalizes task-switch 137

in a conversation for LLMs. A conversation 138

between a user and the LLM consists of multi- 139

ple conversation turns. Now consider (uk, rk) 140

as the k-th turn of the conversation where uk 141

corresponds to the k-th user prompt and the 142

model’s corresponding response rk. Each user 143

prompt uk can be viewed as an instance of 144

a specific task request, e.g. sentiment clas- 145

sification or mathematical reasoning. A con- 146

versation history of L turns can be defined 147

as h = {(uk, rk)}L
k=1. Subsequently, the next 148

response, rL+1 for model θ is given as: 149

rL+1 = arg max
r

Pθ(r|uL+1, h) (1) 150

In this work, we consider conversations with 151
a single task-switch, where all user requests 152

in the conversation history h belong to the 153

same task and the final user request uL+1 is a 154

different task. We refer to the task associated 155

with h as the conversation history task (CH 156

task) Th where h ∈ Th and the switched task 157

2



associated with the final user request uL+1 as158

the target task Tt where uL+1 ∈ Tt.159

When the tasks Th and Tt are sufficiently160

different (as per human understanding of lan-161

guage and tasks), the conversation history h162

ideally must not impact the response, rL+1.163

For a model robust to such a task-switches,164

Th → Tt, its response rL+1 is conditionally165

independent of the conversation history,166

rL+1 ⊥ h|uL+1 h ∈ Th, uL+1 ∈ Tt. (2)167

However, in practice, models can be sensitive168

to the conversation history, h, which can harm169

the quality of the response rL+1 after a task-170

switch, Th → Tt. We define τ(·), the task-171

switch sensitivity of a model θ, to measure the172

extent of this vulnerability.2173

τ(Th, Tt; θ) = EuL+1∈Tt,h∈Th
[log ρ] (3)174

ρ = Pθ (r∗|uL+1)
Pθ (r∗|uL+1, h) (4)175

r∗ = arg max
r

Pθ(r|uL+1). (5)176

Task-switch sensitivity can be interpreted as:177

1. τ(·) > 0: The model is impacted by the178

task-switch in the conversation history and179

is less confident in zero-shot prediction.180

2. τ(·) = 0: The task-switch has no impact181

on the model’s zero-shot prediction, sug-182

gesting a level of task-switch robustness.183

3. τ(·) < 0: The task-switch gives the model184

more confidence in its zero-shot prediction.185

186

To simulate a setting where the model has187

perfect performance on the CH-task, Th we188

adopt teacher-forcing, s.t. h = {(uk, r̂k)}L
k=1,189

where r̂ is the reference ground-truth response.190

4 Experiments191

4.1 Experimental Setup192

Data. We evaluate five different datasets193

covering a range of tasks: Gigaword (Graff194

et al., 2003); abstract algebra subset of Measur-195

ing Massive Multitask Language Understand-196

ing (MMLU; Hendrycks et al. (2021)), named197

MMLU AA; TweetQA (Xiong et al., 2019); Rot-198

ten Tomatoes (RT; Pang and Lee (2005)); and199

human-aging subset from the MMLU dataset200

(MMLU HA) in the Appendix.201

2Theoretical and empirical implications of other def-
initions for task-switch sensitivity in Appendix E

Data Task
Gigaword Summarization
MMLU AA Math Multiple Choice Question
TweetQA Social Question Answer
RT Sentiment classification
MMLU HA Social Multiple Choice Question

Table 1: Datasets Summary.

Models. We explore the task-switch sensitiv- 202

ity of four popular models. We consider two 203

open-source small models, Llama-7b-chat (Tou- 204

vron et al., 2023) and Mistral-7b-chat (Jiang 205

et al., 2023a); and two larger closed models, 206

GPT-3.5 (Brown et al., 2020) and GPT-4 (Ope- 207

nAI, 2023). Zero-shot, absolute model perfor- 208

mances are presented in Appendix B. 209

4.2 Results 210

Task-switch. In addition to the task-switch 211

sensitivity τ(·), we assess performance changes 212

between the predictions in the presence of his- 213

tory and task-switch vs zero-shot. Table 2 and 214

Table 3 showcases the impact of conversational 215

task-switch with MMLU AA and Rotten Toma- 216

toes as the target tasks, Tt respectively3. As 217

would be expected with in-context examples, 218

the performance change in accuracy is gener- 219

ally positive. The negative trend for change 220

in accuracy from Th → Tt, suggests that the 221

task-switch causes performance degradation. 222

For example, in the Gigaword summarization 223

task as Th and MMLU AA as Tt, most mod- 224

els (GPT-3.5, Llama-7B and Mistral-7B) see a 225

performance drop. Interestingly, for some mod- 226

els, the task-switch may increase performance; 227

most prominently for Mistral-7B with Rotten 228

Tomatoes as Th and MMLU AA as Tt. 229

The sensitivity of different models to differ- 230

ent task-switches can be compared fairly us- 231

ing the task-switch metric, τ(·) The larger the 232

value of τ(·), the greater a model’s sensitivity 233

to a specific task-switch. In Table 2 and Table 234

3, Llama-7B usually has the highest sensitivity 235

to task-switches with for example τ = 3.37 for 236

a switch from MMLU AA to Rotten Toma- 237

toes and τ = 9.91 for task-switch from Rotten 238

Tomatoes to MMLU AA. We observe a general 239

trend between the change in accuracy and τ(·) 240

for task-switch scenarios for Tt = Rotten Toma- 241

toes where a negative change in performance 242

3The impact of task-switch for other datasets as the
target tasks is given in Appendix C.1
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Figure 2: Target Task: MMLU Abstract Algebra. % change in accuracy relative to zero-shot performance.

CH-Task Model % Change τ(·)
MMLU AA GPT-3.5 19.35 ∗

GPT-4 8.62 ∗
Llama-7B 3.57 31.51
Mistral-7B 28.57 1.12

Gigaword GPT-3.5 −3.13 ∗
GPT-4 0.00 ∗
Llama-7B −10.71 5.23
Mistral-7B −19.05 3.13

Rotten Tomatoes GPT-3.5 6.45 ∗
GPT-4 −13.11 ∗
Llama-7B −15.63 9.91
Mistral-7B 18.18 0.83

TweetQA GPT-3.5 6.45 ∗
GPT-4 −3.39 ∗
Llama-7B 0.00 6.37
Mistral-7B −4.76 2.78

Table 2: Task-switch impact from CH-tasks (Th) to
target (Tt): MMLU AA and conversation length
L = 6. Sensitivity not calculable for ∗.

CH-Task Model % Change τ(·)
Rotten Tomatoes GPT-3.5 3.00 ∗

GPT-4 1.74 ∗
Llama-7B 1.82 4.02
Mistral-7B 3.79 2.65

Gigaword GPT-3.5 0.11 ∗
GPT-4 −0.98 ∗
Llama-7B 1.82 1.98
Mistral-7B −1.30 3.04

MMLU AA GPT-3.5 −0.22 ∗
GPT-4 0.76 ∗
Llama-7B −5.69 3.37
Mistral-7B 0.97 1.39

TweetQA GPT-3.5 −0.33 ∗
GPT-4 −0.98 ∗
Llama-7B 3.76 2.77
Mistral-7B −0.87 3.01

Table 3: Task-switch impact from CH-tasks (Th) to
target (Tt): Rotten Tomatoes and conversation
length L = 6. Sensitivity not calculable for ∗.

also suggests very high task-switch sensitivity. 243

In Figure 2, we plot the change in performance 244

with increasing Th examples for MMLU AA 245

dataset. Here we can clearly observe that in- 246

context examples improve the predictive per- 247

formance. Notably, the accuracy variation is 248

more pronounced in smaller 7B models, likely 249

due to their lower baseline performance, which 250

is substantially improved by in-context learn- 251

ing. Performance fluctuations for conversation 252

history, h, can stem from two primary factors: 253

a significant drop in the predicted probabil- 254

ity for the zero-shot response, r∗, or a notable 255

increase in the probability for an alternative 256

response, r. The latter can result in substantial 257

performance change while maintaining low sen- 258

sitivity, τ(·). By analyzing both performance 259

changes and task-switch sensitivity, we gain 260

deeper insights into the models’ adaptability 261

to task-switches and the underlying dynamics 262

influencing these shifts. 263

5 Conclusions and Future Work 264

This work formalizes and performs an initial 265

investigation into the sensitivity of large lan- 266

guage models (LLMs) to task-switch scenarios 267

within conversational contexts. We introduce 268

a task-sensitivity metric that can explain a 269

model’s behavior to task-switches along with 270

the performance change. By experimenting 271

with various task-switch settings, we observe 272

that even advanced models like GPT-4 exhibit 273

vulnerabilities to task-switches. Our work ad- 274

ditionally lays the foundation for future work 275

on ‘side-channel’ vulnerabilities of LLMs to 276

undesired information leakage/bias from the 277

conversation history. Further work will focus 278

on developing adaptive context management 279

strategies within LLMs to mitigate the risk of 280

task-switch sensitivity. 281
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6 Limitations282

Although both GPT-3.5 and GPT-4 show283

degradation in performance, given the closed284

nature of OpenAI models, we were not able285

to perform task sensitivity analysis. We were286

additionally limited by the maximum token287

length, hence analysis over extremely long con-288

versations was not feasible. Future work could289

also look into alignment between humans and290

the model as a metric which was out of the291

scope for this paper.292

7 Ethics and Risks293

All of the datasets used are publicly avail-294

able. Our implementation utilizes the PyTorch295

1.12 framework, an open-source library. We296

obtained a license from Meta to employ the297

Llama-7B model via HuggingFace. Addition-298

ally, our research is conducted per the licensing299

agreements of the Mistral-7B, GPT-3.5, and300

GPT-4 models. We ran our experiments on301

A100 Nvidia GPU and via OpenAI API.302

Our work may be built upon to identify vul-303

nerabilities of LLMs. Overall, there are no304

ethical concerns with this work.305
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Appendix513

The appendix is structured as follows: Ap-514

pendix A gives more details about the datasets,515

Appendix B reports the zero-shot absolute per-516

formance of all models on all tasks, Appendix C517

presents an ablation study on the conversa-518

tion history length, Appendix D discusses the519

prompt templates used for each dataset, and520

Appendix E discusses other definitions for task-521

switch sensitivity.522

A Datasets and Metrics Summary523

Data #Train #Test Task
MMLU HA 26 222 Social MCQ
MMLU AA 14 99 Math MCQ
RT 8.53k 1.07k Sentiment class
Gigaword 3.8M 1.95k Summarization
TweetQA 4.54k 583 Social QA

Table 4: Dataset Summary. QA: Question-
Answering. MCQ: Multiple Choice Question

In Section 4.2 of the main paper, we present524

results evaluated on two different datasets:525

MMLU Abstract Algebra (MMLU AA) mul-526

tiple choice questions and Rotten Tomatoes527

(RT) sentiment classification. In Appendix B,528

C, we present results evaluated on all of the529

datasets covering a range of tasks: MMLU530

Human Aging (MMLU HA) multiple choice531

questions, Gigaword for summarization, and532

TweetQA question-answering. The train-test533

splits of these datasets are shown in Table 4.534

The train set is randomly sampled to form535

prompts to produce a conversation history h536

of L turns, and the test set is used to evalu-537

ate model performance on the (L + 1)-th turn.538

The prompt templates used for each dataset539

are discussed in Appendix D.540

For classification tasks performance is mea-541

sured using accuracy, whilst for generative542

tasks it is measured using ROUGE (Lin, 2004)543

or METEOR (Banerjee and Lavie, 2005).544

B Absolute Performance545

When evaluating the target task with a conver-546

sation history, it is useful to compare the perfor-547

mance against a baseline with no conversation548

history (h = Ø, L = 0). This is equivalent to549

evaluating in a zero-shot setting. This section550

reports the zero-shot performance for all the551

target task (Tt) datasets: MMLU HA in Table 552

5, MMLU AA in Table 6, RT in Table 7, Giga- 553

word in Table 8 and TweetQA in Table 9. Also 554

note that for the classification tasks (MMLU 555

HA, MMLU AA, RT), we also report the num- 556

ber of responses for which we were unable to 557

extract the answer (# Format Errors), which 558

is further discussed in Appendix D. We evalu- 559

ate on the test set with four LLMs (GPT-3.5, 560

GPT-4, Mistral-7B, Llama-7B), which were all 561

set to Temperature 0 for reproducability. 562

Model Accuracy # Format Errors
GPT-3.5 66.22 18
GPT-4 84.68 0
Llama-7B 45.50 12
Mistral-7B 55.41 0

Table 5: Zero-shot performance on MMLU HA.

Model Accuracy # Format Errors
GPT-3.5 31.31 7
GPT-4 58.59 0
Llama-7B 28.28 3
Mistral-7B 21.21 0

Table 6: Zero-shot performance on MMLU AA.

Model Accuracy # Format Errors
GPT-3.5 89.90 0
GPT-4 91.80 4
Llama-7B 87.43 1
Mistral-7B 86.68 1

Table 7: Zero-shot performance on RT.

Model ROUGE-1 ROUGE-2 ROUGE-L
GPT-3.5 17.37 4.79 14.78
GPT-4 15.76 4.07 13.34
Llama-7B 11.61 3.13 9.90
Mistral-7B 18.60 5.19 15.84

Table 8: Zero-shot performance on Gigaword.

Model ROUGE-1 ROUGE-L METEOR
GPT-3.5 30.66 30.39 44.18
GPT-4 28.03 27.68 43.41
Llama-7B 17.91 17.67 33.84
Mistral-7B 25.35 25.01 40.71

Table 9: Zero-shot performance on TweetQA.
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C Conversation History Length563

Ablation564

This section presents an ablation study on565

the performance change after a task-switch566

for varying conversation history lengths. For567

each dataset in Table 4 we select four datasets568

(including itself), from which we use the train-569

ing set to use as conversation history. The570

details of the prompt structure are presented571

in Appendix D.572

C.1 Performance change with573

Task-switch574

We compare the percentage change in metrics575

relative to zero-shot performance (h = Ø, i.e.576

no conversation history) as a function of conver-577

sation history length L and for different LLMs.578

Results are plot in Figures 3, 4, 5, 6, 7 for579

MMLU HA, MMLU AA, RT, Gigaword and580

TweetQA respectively. Intuitively, we would581

expect that when there is not a task switch,582

the performance would increase (assuming the583

training examples are aligned well with the584

test set). As per our discussion in Section 4.2,585

we observe that different models degrade on586

different task-switches and this is not limited587

by the model size.588

C.2 Format Failure Rate589

Typically, classification tasks (MMLU HA,590

MMLU AA, RT) are evaluated using logits,591

however we chose to use a generative approach592

for consistency: we are evaluating the model593

in a conversational setting, and we do not have594

access to the logits exactly. Thus, we must595

post-process the model output to determine596

the class. In this, we try to give the LLM the597

benefit of the doubt and do our best to extract598

the class. For example, although the prompt re-599

quests the model to output within answer tags600

like "<Answer> positive </Answer>", we also601

accept "positive", however we do not accept602

"positive/negative". Due to the imperfect603

nature of this setup, either we may not de-604

tect the correct format, or the model generates605

erroneous text.606

Importantly, models may become more sus-607

ceptible to these errors when performing a task-608

switch, causing performance degradation. We609

capture this by reporting the percentage %610

change in the number of examples that the611

model failed on (relative to zero-shot) as the 612

context history length increases. These are 613

plot in Figures 8, 9, 10 for MMLU HA, MMLU 614

AA and RT respectively. Figures 8 and 9 show 615

that GPT-3.5 and Mistral-7B are susceptible to 616

format errors in task-switches when evaluating 617

on multiple choice questions, whereas Figure 618

10 shows that GPT-4 and Llama-7B are more 619

susceptible in sentiment classification. 620

D Prompt Template 621

In each conversation turn, the user prompts the 622

model uk. The prompts are shown in Table 10. 623

We chose these prompts after careful research 624

and experimentation. We began with popular 625

templates and refined them for our purpose. 626

Additionally, since we do not have access to 627

the logits for all models, we take a generative 628

approach to the classification tasks (MMLU 629

HA, MMLU AA, RT). Since the model may 630

fail to output an answer in the desired format, 631

we post process the text to extract the answer 632

(which we count as a positive result it matches 633

the reference). We report and discuss the effect 634

of format failures further in C.2. Furthermore, 635

we note that the standard evaluation method 636

used in the Open-LLM leaderboard code (avail- 637

able on GitHub) is to see if the response starts 638

with A,B,C or D(Gao et al., 2023). We modified 639

the prompt to ensure a more consistent output 640

format (across the different models) resulting 641

in fewer mistakes made. 642

For the classification tasks, we structure the 643

prompt such that we request the model to 644

output their final answer within answer tags. 645

We note that giving an example of how to use 646

the answer tags always helped, however, this 647

can bias the model towards a particular answer. 648

Instead, we found for MMLU to just leave the 649

answer tags empty, whereas for RT to have the 650

all the sentiment classes inside the tags (see 651

Table 10 for further details). 652
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Figure 3: Target Task: MMLU HA. Percentage % change in accuracy relative to zero-shot performance
(no conversation history) for increasing conversation history length L and various models.
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Figure 4: Target Task: MMLU AA. Percentage % change in accuracy relative to zero-shot performance
(no conversation history) for increasing conversation history length L and various models.
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(b) ROUGE-2
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(c) ROUGE-L

0 2 4 6
−20

0

20

40

60

R
O

U
G

E
-L

%
C

h
an

ge

GPT-3.5

Conversation History Task

Gigaword

MMLU Abstract Algebra

Rotten Tomatoes

TweetQA

0 2 4 6
−20

0

20

40

60

GPT-4

0 2 4 6
−20

0

20

40

60

LLAMA-7B

0 2 4 6
−20

0

20

40

60

Mistral-7B

Conversation History Length L

Figure 6: Target Task: Gigaword. Percentage % change in accuracy relative to zero-shot performance (no
conversation history) for increasing conversation history length L and various models. Note that we focus
on the effect of task-switching by clipping the y-axes at +75%.
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(b) ROUGE-L
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(c) METEOR
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Figure 7: Target Task: TweetQA. Percentage % change in accuracy relative to zero-shot performance (no
conversation history) for increasing conversation history length L and various models. Note that we focus
on the effect of task-switching by clipping the y-axes at +75%.

12



0 2 4 6

0

5

10

15

20

F
ai

le
d

%
C

h
an

ge

GPT-3.5

0 2 4 6

0

5

10

15

20

GPT-4

Conversation History Task

Gigaword

MMLU Human Aging

Rotten Tomatoes

TweetQA

0 2 4 6

0

5

10

15

20

LLAMA-7B

0 2 4 6

0

5

10

15

20

Mistral-7B

Conversation History Length L

Figure 8: Target Task: MMLU Human Aging. Percentage % of examples where format failed.
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Figure 9: Target Task: MMLU Abstract Algebra. Percentage % of examples where format failed.
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Figure 10: Target Task: Rotten Tomatoes. Percentage % of examples where format failed.
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MMLU {Topic} You have a multiple choice question on {Topic}. Only one of
the options is correct: A, B, C, or D. Give your answer in
the following format with the tags provided: <Answer> </Answer>.
Please read the following question and options and answer the
question
Question: {Question}
(A) {A}
(B) {B}
(C) {C}
(D) {D}

Rotten Tomatoes Can you choose only one sentiment [‘negative’, ‘positive’] for
this review.
review: {Review}
Return only the sentiment label without any other text. Make sure
to follow the format otherwise your answer will be disqualified:
<Answer> positive / negative </Answer>.
Do not output neutral.

Gigaword Please summarize the following article.
{Article}

TweetQA Read the given tweet and answer the corresponding question.
tweet: {Tweet}
question: {Question}

Table 10: Prompt templates for each dataset. Note that the MMLU {Topic} can be either Human Aging
or Abstract Algebra. Other {words} enclosed in curly braces are replaced by the corresponding field in
the datasets.
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(a) Zero-shot Sensitivity
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(b) Confidence Sensitivity
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(c) Loss Sensitivity
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Figure 11: Empirical investigation of various sensitivity metrics on the target task Rotten Tomatoes as a
function of the conversation history length L for Llama-7b and Mistral-7b. Note that we omit the line for
the in-context dataset as this is not relevant to the investigation.
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E Task-Switch Sensitivity Metrics653

In Section 3, we introduced and formalized eval-654

uation of a model’s sensitivity to task-switch,655

namely the task sensitivity τ . This metric656

aims to capture the vulnerability of a model657

prompt to its chat history after a task-switch.658

Formally, it compares the zero-shot prediction659

r∗|u, h = Ø to the probability of the model660

outputting the same zero-shot response after661

a task switch P (r∗|u, h ̸= Ø). In this section,662

we compare the theoretical and empirical im-663

plications of different task switch sensitivity664

metrics.665

Formally, given a conversation history h of666

length L and the next user prompt u, the prob-667

ability of a model’s response rL+1 is given by668

Pθ(rL+1 | u, h). We consider the probability of669

three possible responses:670

1. r∗: zero-shot response671

2. rL+1: model’s actual response672

3. r̂L+1: reference response673

We posit that after a task-switch, a robust674

model’s likelihood of the zero-shot response re-675

mains high. Naturally, this gives us the formu-676

lation for the aforementioned sensitivity metric677

ρ1 = Pθ(r∗|u)
Pθ(r∗|u, h) , (6)678

which we call zero-shot sensitivity.679

Additionally, after a task-switch, we posit680

that a robust model’s likelihood of the actual681

response should be similar to that of the zero-682

shot response, because the irrelevant history683

should be largely ignored. This gives us684

ρ2 = Pθ(r∗|u)
Pθ(rL+1|u, h) , (7)685

which we call the confidence sensitivity.686

Lastly, we posit that if a model is well aligned687

to a task, then both the zero-shot and model’s688

actual response should be close to the reference689

response:690

ρ3 = Pθ(r̂L+1|u)
Pθ(r̂L+1|u, h) , (8)691

where each probability is essentially a measure692

of the loss, hence we label this as the loss693

sensitivity.694

The above are sensitivity per example, which 695

we can use to estimate the task-switch sensi- 696

tivity τi = E[log ρi] as per Equation 3, where 697

the expectation is calculated over the exam- 698

ples and histories (for a given length L). We 699

evaluate these metrics on the target task RT 700

(rotten tomatoes) as shown in Figure 11. Fig- 701

ure 11a shows that the zero-shot sensitivity 702

metric trends upwards for both models. This 703

is expected for a model which does not handle 704

task-switch well as the probability of the output 705

with an increased conversation length decreases 706

in comparison to the zero-shot probability. For 707

the confidence sensitivity in Figure 11b, we 708

observe that Mistral-7B behaves as we expect, 709

whereas Llama-7B becomes less confident in 710

its output compared to having no conversation 711

history. For the loss sensitivity metric in Fig- 712

ure 11c, we observe that Llama behaves as we 713

expect as the sensitivity remains relatively flat: 714

as the conversation history increases, there is 715

no significant change in the probability of out- 716

putting the reference. However, for Mistral-7b, 717

the probability falls immediately and plateaus 718

showing that the model was giving a very low 719

probability mass to the reference with no con- 720

versation history. Intuitively, it is clear that 721

both models agree in their trends only for the 722

zero-shot sensitivity τ1 in Figure 11a, hence in 723

the main paper, we report zero-shot sensitivity 724

as the task-switch sensitivity. 725
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