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ABSTRACT

Understanding the effectiveness of intrinsic geometry in enhancing a model’s
generalization ability, we draw upon prior works that apply geometric principles to
optimization and present a novel approach to improve robustness and generalization
for constrained optimization problems. This work aims to strengthen the sharpness-
aware optimizers and proposes a novel Riemannian optimizer. We first present
a theoretical analysis that characterizes the relationship between the general loss
and the perturbation of the empirical loss in the context of Riemannian manifolds.
Motivated by the result obtained from this analysis, we introduce our algorithm
named Riemannian Jacobian Regularization (RJR), which explicitly regularizes the
Riemannian gradient norm and the projected Hessian. To demonstrate RJR’s ability
to enhance generalization, we evaluate and contrast our algorithm on a broad set
of problems, such as image classification and contrastive learning across different
datasets with various architectures.

1 INTRODUCTION

In deep learning and statistics, overfitting is a long-standing and challenging problem in which
the model fails to generalize to the whole population due to the training process getting stuck in
one of the local minima of the landscape of loss functions. This is attributed to high-dimensional
and non-convex loss functions, which have a complicated landscape with multiple local minima.
Regarding this issue, flat minimizers that seek regions with low sharpness have been known to be
among the most effective approaches (Keskar et al., 2016} |Kaddour et al., [2022bj |Li et al., |2022).
Sharpness-aware minimization (SAM), as introduced by [Foret et al.|(2021b)), stands out as a notable
method by simultaneously minimizing the loss function and the worst-case loss within a neighborhood
of the model’s parameters. SAM already has proven to be versatile across a diverse array of tasks
such as meta-learning (Abbas et al.|[2022), federated learning (Qu et al.|[2022), vision models (Chen
et al.,[2021)), or language models (Bahri et al., 2022).

Another desired property of the model is robustness, which could be improved when encouraging
the model’s parameters to satisfy strict conditions, i.e., SPD constraints (Gao et al.| 2020), orthog-
onality, and full rank (Xie et al., [2017; |[Roy et al.l |2019; Wang et al., [2020), etc. In those cases,
the model’s parameters are restricted to certain Riemannian manifolds, such as Grassmann, SPD,
etc. Consequently, it becomes more challenging to work with its loss landscape, thus requiring
novel optimization techniques that take into account the intrinsic geometry of the parameter spaces
(Bonnabel, |2013} |[Luenberger, [1972; Kasai et al., 2019; |Sato et al.,[2019; [Zhang et al., [2017)).

In this work, we address both problems by bridging the gap between the sharpness-aware and
Jacobian-aware optimizers on Riemannian manifolds. In doing so, we first derive a comprehensive
theoretical analysis showing that the general loss function can be bounded by the empirical loss,
the Riemannian gradient, and the projected Hessian. Motivated by this analysis, we proposed
a Riemannian optimization technique named Riemannian Jacobian Regularization (RJR), which
explicitly regularizes the Riemannian gradient norm and the Jacobian. Our empirical study shows
that the RJR improves the model’s generalization ability across a range of different tasks, namely
supervised learning and self-supervised learning, for a diverse array of computer vision datasets
(CIFAR100, CIFAR10, STL10, FGVCAircraft (Maji et al., 2013)), as well as different model’s
architectures (ResNet34, ResNet50, EfficientNetV2-S, EfficientNetV2-L [Tan & Le| (2021), and
PyramidNet-101 (Han et al., 2017)). RJR has made a notable improvement upon SAM, SupCon
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(Khosla et al.l 2021)), as well as other Riemannian optimizers, including Riemannian Stochastic
Gradient Descent (RSGD) (Bonnabel, [2013), and Riemannian-SAM (Yun & Yang, [2023). In the
ablation studies, we will also show the efficacy of RIR in simultaneously minimizing the Riemannian
gradient norm and the Hessian spectral norm, thus indicating a flat region with low sharpness. In
short, our contributions are as follows:

® We introduce a theoretical analysis that expresses the relationship between the general loss and the
empirical loss via the Riemannian gradient and the projected Hessian.

@ Motivated by this theoretical analysis, we introduce RJR, which strengthens the Jacobian
regularization techniques to Riemannian manifolds. Empirical experiments across various settings
show that RJR outperforms current methods by notable margins.

2 RELATED WORKS

Optimization on Riemannian Manifolds. Imposing appropriate constraints on model parameters
has been shown to obtain the desired effect on the model performance (Roy et al., [2019; |Absil
et al.| 2008a)). In those situations, studying the intrinsic geometry of the parameters manifold could
lead to improved optimization methods. For example, in the domain of metric learning, Roy et al.
(2019) incorporated Stiefel manifolds to ensure that the learned parameters maintain orthogonality
constraints. When the model is a Gaussian mixture, (Gao et al.|(2020) proposed a strategy involving
learning on SPD manifolds to enforce SPD constraints. Furthermore, Grassmann manifolds have been
utilized in encompassing recommender systems (Dai et al.,2012;|Boumal & Absil, |2015) or modeling
affine subspaces within document-specific language models (Hall & Hofmann, [2000). Since the
optimization is carried out on manifolds, the Riemannian gradient descent approach developed by
(Luenberger, |1972) is a tool to move on the manifold to look for minimums. Its stochastic version
introduced by Bonnabel| (2013) reduces computational overhead, thus gaining widespread adoption.

Sharpness Aware Minimization and Jacobian Regularization. The Sharpness-Aware Minimiza-
tion (SAM) technique ( [Foret et al| (2021a)) has gained prominence due to its effectiveness and
scalability compared to previous methods. SAM’s versatility is evident across various tasks and
domains, making it a powerful optimization approach. SAM has found applications in diverse areas
such as meta-learning bi-level optimization (Abbas et al.| 2022), federated learning (Qu et al., 2022),
vision models (Chen et al.l2021)), language models (Bahri et al., 2022), domain generalization (Cha
et al.,[2021)), and multi-task learning (Phan et al.| 2022).

Recent works have further enhanced SAM’s capabilities by exploring its underlying geometry (Kwon
et al., 20215 Kim et al.,[2022a), minimizing surrogate gaps (Zhuang et al.,2022), and speeding up
training time (Du et al., 2022} |Liu et al., 2022). Additionally, Kaddour et al.| (2022a)) empirically
studied SAM’s sharpness compared to Stochastic Weights Average (SWA) (Izmailov et al., [2018)). In
contrast, [ Mollenhoft & Khan|(2023)) demonstrated that SAM is an optimal Bayesian relaxation of
standard Bayesian inference with a normal posterior. Moreover, [Nguyen et al.|(2023b) developed
the sharpness concept for Bayesian Neural Networks. [Nguyen et al.|(2023a) generalized SAM by
leveraging optimal transport-based distributional robustness with sharpness-aware minimization.
Recently, [Yun & Yang| (2023) proposed Riemannian-SAM, which extends SAM to Riemannian
manifolds, and the technique has demonstrated its efficacy on a wide range of manifolds. [Lee et al.
(2023)) has extended SAM techniques to show that minimizing the Jacobian norm can affect the
sharpness and the model accuracy, thus proposing explicitly regularizing the Jacobian norm.

3 PRELIMINARIES

3.1 FORMULATIONS AND NOTATIONS

This section presents the problem formulations and notions used for our theory development. We
consider a classification problem where the data distribution denoted by D, consists of pairs of
(x,¥), in which x € R* and y belongs to one of the classes in [C] = {1,2,...,C}. We aim
to construct a C'—class classifier that maps x to its true corresponding label y. This classifier is
modeled by a function fg : X — Y, parameterized by hyperparameter 6, will produce a logit
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vector z = fp(x) which in turn is used to predict the target labels. The model trainer is given
a specific training set S = {(x1,¥1), (X2,¥2), ", (Xn,¥n)} is then sampled from D, those are
i.i.d samples. Given (x,y) ~ D, we use the per-sample loss function ¢(fg(x),y) to quantify
the loss suffered by the model fg when predicting (x,y). The empirical loss in the training set
Sis Ls(0) = =>°"  U(fo(xi),yi), while the general loss in the data/label distribution D is
Lp(0) = Exy)~p[{(fo(x),y)]. Throughout our paper, |A|, denotes the spectral norm of a
matrix A, while ||v|| denotes the Euclidean norm-2 of a vector v.

3.2 BACKGROUND ON RIEMANNIAN GEOMETRY

In this work, we assume that some conditions are imposed on the models (e.g., orthogonality, full
rank, or SPD constraints), making the model parameters 6 lying in a low-dimensional manifold
M C R¥ embedded in the ambient vector space R¥, where the dimension d of M is much smaller
than k. Given a 8 € M, denote T9. M as the tangent space of M at 8. Conventionally, 6 is the origin
of TgM. Thus, € € To.M specifies the offset from € in the ambient vector space R¥. The tangent
bundle of M is defined as the disjoint union of the tangent spaces of M:

TM={(0,v):0 € Mandv € TgM}.

For each 6 € M, TgM is linear space, thus one can define an inner product (-, )4 : ToM x TgM —
R. A metric on M is a choice of inner product (-,-), for each § € M. The metric (-,), is a
Riemannian metric if this metric varies smoothly with 6, in the sense that for all smooth vector
fields V, W on M, the function 8 — (V' (6), W (8)), is smooth from M to R. A manifold with a
Riemannian metric is called a Riemannian manifold.

For a given pair of (6, v) € T .M, there are many trajectories ¢ on the manifold M starting from 6

and follow the direction of v, which can be formulated as ¢ : [0,1] = M : ¢(0) =0, (0) =v. A

retraction picks a particular curve for each possible (6, v) € T M. In particular, it is a smooth map
R:TM— M,

such that each curve ¢(t) = R(0, tv) satisfies ¢(0) = 0,¢'(0) = v for 0 < ¢ < 1. For the sake of

simplification, we use Rg(v) instead of R(0, v).

Next, we want to define the Riemannian gradient of a smooth map f : M — R. We start with
the case f : M — M/’ being a smooth map between two general manifolds. For any tangent
vector v € Tg M, there exists a smooth curve ¢ on M passing through 6 with velocity v. Then,
t — f(c(t)) itself defines a curve on M’ passing through f(8), thus passing through f(0) with a
certain velocity. By definition, this velocity is a tangent vector of M’ at f(0). We call this tangent
vector the differential of f at 6 along v. Specifically, the differential of f : M — M’ at the point
6 € M is the linear map D f(6) : ToM — Tj(g) M’ defined by Df(0)[v] = 4 f(c(t))| ., where
t=0

¢ is a smooth curve on M passing through 6 at ¢ = 0 with velocity v. For the case M’ = R, which
means f is a smooth, real map, the Riemannian gradient of f is defined as the unique vector field
grad, f on tangent space TgM satisfies:

V(8,v) € TM; Df(0)[v] = (v, grady f(8))g ,
in a neighbourhood of 6 on M.
Finally, the orthogonal projection Pg onto 79 M is defined as:

'Pg:Rk —>7-9M:W0—>7)9(W),

with (w — Pg(w), v), = 0 for all v € T9.M. Once an orthogonal basis is chosen for Tg M, Py is
represented as a (symmetric) matrix. Thus, for readability purposes, the notation Pew as a matrix
multiplication is used instead of Pg(w) as a linear map.

4 RIEMANNIAN JACOBIAN REGULARIZATION

4.1 THEORETICAL DEVELOPMENT

This section presents a theoretical development for Riemannian Jacobian Regularization (RJR).
Consider the minimization problem in which the parameter space is an embedded manifold in R*

Imin Lp(0).
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The condition & € M can be interpreted as a constraint imposed on the optimization problem, such
as orthogonality, full-rank, Euclidean, etc. There are two challenges on this problem, namely, (a)
only a finite sample S is available instead of D, thus one can only work with the empirical loss Ls(8)
rather than the generalization loss; (b) the minimization problem is constrained on the manifold M.
The next result will show that with a high probability, the generalization loss is upper-bounded by the
empirical loss and some quantities characterizing the behavior of the loss function on the manifold
M. The proof can be found in Appendix [C|

Theorem 1. Assume that the parameter space M is bounded and the loss function is Lipschitz.
Then, for any p > 0 and § € [0; 1], with a probability of 1 — § over training set S generated from a
distribution D, we have the following inequality on the manifold M :

p? ) dlog % + log %
Lp(0) < Ls(0) + MpllgradgLs(0)lle + 5||P9V9£S(0)||a +O0|p+D —on )

for M, D being constants and d = dim M. Here, PN Ls(0) is formed by projecting the columns
of the Euclidean Hessian matrix Vi Ls(0) to the tangent space.

A key novelty of the generalization inequality presented in Theorem [I]is that, unlike SAM (Foref
et al.,[2021b) or FisherSAM (Kim et al., 2022b), which bound the general loss using the worst-case
empirical loss, our theorem directly relates the general loss to the empirical loss on the right-hand
side. This approach suggests that to reduce the gap between the general loss and the empirical
loss—i.e., to mitigate overfitting—we need to minimize both the gradient norm ||gradgLs(0)||e
and the projected Hessian norm ||PaV3Ls(0)|,. As we will demonstrate in subsequent sections,
regularizing the gradient norm ||grady Ls(8)||e implicitly minimizes sharpness, leading to sharpness-
aware techniques such as Riemannian-SAM. Furthermore, minimizing both terms is expected to
further reduce sharpness, which we empirically validate in Section[7.1] This reduction in sharpness,
corresponds to a smaller generalization gap, thereby improving the generalization inequality.

Another key feature of this theorem is that our result is the first generalization equality that generalizes
from the Euclidean spaces to the setting of Riemannian manifolds. By restricting the analysis to the
embedding manifold, the error term is reduced to O(+/d), which is typically smaller than O(v/k)
established in previous works such as [Foret et al.|(2021b) and [Kim et al.| (2022b), where k represents
the dimensionality of the ambient space. Building on this result, we introduce the Riemannian
Jacobian Regularization (RJR) in the following section. As we show in subsequent sections, RJR
effectively identifies low-sharpness regions on the manifold and, therefore, enhances generalization
performance over previous methods, including SAM and Riemannian-SAM.

4.2 PRACTICAL ALGORITHM

Motivated by Theorem [I] we introduce the RIR algorithm that aims to simultaneously minimize the
Riemannian gradient grad,Ls(6) and the term | PgV?Ls(0)||, in the Inequality The Riemannian
gradient can be efficiently computed from the Euclidean gradient as:

gradeﬁg(a) = P@Vgﬁg(a). (1)

It is important to note that directly computing the term |[PgV3Ls(8) ||, is prohibitively expensive.
To implicitly regularize this term without computing it explicitly, we rely on the following lemma,
with its proof provided in Appendix [B]

Lemma 1. We have the following bound:

llgrade (z€) [*JEc[|| Vo (z€)[|°]
2 b

1PeV2Ls|ly ~ %H zn:ngez;-rViZngiH < VE| ?)
=1

where the summation is taken over the training data S with z; = fo(x;), € is uniformly drawn from a
unit hypersphere (i.e., ¢ ~ U(S®™1)), and z = Eg[fo(x)].

In this lemma, the first approximation comes from the Gaussian-Newton approximation, whose proof
can be found inLee et al]| (2023). Motivated by Eq. (I)) and Eq. (2), we propose to simultaneously
minimize the terms ||PoVoLs(0)|], ||gradg(ze)||, and || Vg (z€)|| along with the empirical loss Ls(0)
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Algorithm 1 Riemannian Jacobian Regularization (RJR)

Input: Manifold M, training set S = U ;{(x;,y;)}. Loss function £ : W x X x J — R*,
batch size b, learning rate 1 > 0, ascent step sizes A1, Ao > 0.
Initialize 8y € M, t =0
repeat
Sample mini batch B = {(x;,y;)}’_, and e ~ U(S¢~1)
Compute the batch Riemannian gradients grady, £5(0;) and grady, (z¢) using Eq.

_ ), e, £600) ey, (2, o,(x0)
Compute 6t =\ Meradg, £5(01)]] + A2 <|gradet (ze)|l2 vat (ze)||2>

Ascend step: Compute §t = Ro, (Po,0t)

Descend step: 0,11 = R, ( — ngradg, (EB(Bt)))
until converges

by regularizing these terms. Consider regularizing the first term alone, the Taylor expansion on
smooth manifolds establishes that:

T _gradgLs(6)
lgradg Ls(6)]

= Ls5(0) + A1]lgradg Ls(0)]- 4

d 0
Ls (Re (Algmgﬁs()p) ~ Ls(0) + \grady Ls(0) 3

lgradg Ls(6)

Explicitly regularizing the term ||grady Ls(0))|| itself requires taking the gradient of a Riemannian
gradient, giving a second-order term, which can be expensive. Instead, we propose to implicitly
regularize ||gradyLs ()| by minimizing the LHS of Eq. (), which leads to the two gradient steps
like SAM (Foret et al.| [2021b)

gradg, L5(6;)

8, = Ro, (5 h 5y = Ay 5o, Ls(01)
t 0,(3t)) where 4 1 lerady Zs(0)]"
0111 = R, (—ngradg, Ls(6,)).

Recall that besides ||grady Ls(0))||, we also want to implicitly regularize ||gradg (z¢)|| and ||V (ze€)].
The approach above generalizes, leading to the modified ascending step

grady, Ls(6;) ( grady, (ze) Vo, (z€) >
| + A2

ot

= )\1
lgradg, £5(6:) lgradg, (ze)[| [V, (z€)]|
This modified ascending step leads to the two gradient steps procedure:
0:+1 = Re,(—ngrady, (L5(6)))),
0: = Ro, (Po, 1),

oo Ls@) , f grade, () Vo, (a)
[ |

0= A
"~ Mlgradg, £5(0) lgradg, (ze)[| ([ Ve, (z€)]|

where B is the sampled mini-batch, z = Yz fo(x) and € ~ U(S~1), leading to Algorithm

In this algorithm, the Riemannian gradient gradg, £5(6;) can be obtained from the Euclidean
counterpart Vo L5(6) using Eq. (I). Similarly, gradg, (z¢) can be efficiently computed from Ve, (ze).
Moreover, the gradients Vg, (ze) and Vg L3(0) are related through the Jacobian matrix, allowing for
their joint efficient computation. Consequently, all the additional terms can be computed efficiently
with a single backward pass, giving RJR the same computational complexity as SAM and Riemannian-
SAM. Notably, RJR is a generalization upon many prior works for specific choices of manifolds and
hyperparameters. If we set A, = 0 for a general Riemannian manifold, we have Riemannian-SAM
Yun & Yang|(2023). On the other hand, if we choose the manifold to be Euclidean and A\; = 0, we
obtain EJR |[Lee et al.|(2023)); if we set Ao = 0, we obtain SAM [Foret et al.| (2021Db).
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5 APPLICATIONS TO SUPERVISED AND SELF-SUPERVISED LEARNING

1This section presents the applications of RJIR for three settings: supervised learning, labeled
self-supervised learning, and unlabeled self-supervised learning. In the subsequent sections, we
will empirically demonstrate the efficacy of our algorithm in contrast with the baselines on these
applications. Throughout this paper, we particularly focus on the Stiefel manifolds:

Definition 1 (The Stiefel Manifolds). The set of n X p matrices, for p < n, with orthogonal columns
and Frobenius inner products forms a Riemannian manifold is called the Stiefel manifold St(p, n)

St(p,n) = {X e R™?: XX =1,}.

Absil et al.[(2008b) proposed multiple retractions for Stiefel manifolds. For the sake of computational
complexity, we suggest using the retraction: Rx () = qf(X + ¢) in which gf(A) denote the Q factor
of the QR-decomposition of a matrix A. Accordingly, the projection on the Stiefel manifolds can
also be derived as Px(v) = v — XSym(X"v) in which Sym(A) = (A + AT). In this paper,
we demonstrate the performance of the Stiefel manifold in two applications: imposing orthogonal
convolutional filters in CNN and metric learning for self-supervised learning.

5.1 METRIC LEARNING FOR SELF-SUPERVISED LEARNING

We consider two self-supervised settings, in-
cluding labeled self-supervised learning with
the Supervised Contrastive (SupCon) methodol- / R-Stiefel Laya\
ogy proposed by |Khosla et al.[(2021)) and unla-
beled self-supervised learning with the SImCLR
loss function (Chen et al.l [2020). Our settings
are as follows: For a set of N randomly sam-
pled sample/label pairs, {xj,yx}4_,, the cor-
responding batch used for training consists of
2N pairs, {x;, yl}%fl, where X9, and Xop_1
are random augmentations of x, and yor_1 = \ /
Yor = Yk- A set of N samples is referred to
as a "batch," and the set of 2/NV samples is a
"multiview batch". Within a multiview batch, Figure 1: Metric learning with R-Stiefel layer. The
leti € I = {1,---,2N} be the index of an linear projectional layer is replaced with the R-
arbitrary augmented sample, and let j(i) be the Stiefel layer consisting of U € St(n, p) and a di-
index of the other augmented sample originating agonal matrix S.

from the same source sample. The architecture

of both settings involves two components: 1) The backbone Encoders, which is denoted as Enc(-);
and 2) The projection head P(-), which is either a linear or fully-connected low-dimensional layer. It
is worth noting that the projection head P(-) differs from the Riemannian projection operation Pg.
For any [, denote z; = P(Enc(%X;)).

Matrix U
lies on
Stiefel

Manifold

Objective

Backbone |
Encoder

Diagonal
Matrix S

As proposed by [Khosla et al.|(2021), the logit z;’s are then trained with the SupCon objective:

Z;Zyp )

-1 exp(
Esup — ‘szpi — § log T -
R ILTIEDS ICO 7 Paean) exp(27)

i€l i€l

= L(z1--- ,2an) = L(P(f(X1)) -+, P(f(Xan))),
where A(7) = I\{i}, and C(i) = {c € A(i) : y. =¥:}.
On the other hand, SImCLR (Chen et al.,[2020) defines the loss for a positive pair of examples as:
exp(si ;/T)
SR Dppi exp(sin/T)
measures the similarity of the two logits, and 1., is an indicator function

gi,j = — IOg

Zi'Z;
[EAIEA]
evaluating to 1 iff & # 4. Then, the final loss is computed across all positive pairs in a mini-batch.

where s; ; =

In our practical applications, the Euclidean inner product is replaced with the Mahalanobis distance
in which (hy,hy) = h] Mh, with learnable M. By doing so, M is learned to take into account
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Table 1: Top-1 classification accuracy for supervised learning on Cross-Entropy loss function.

CIFAR10 CIFAR100 Aircraft STL10
E S = E
2 2 3 2 3 3 2 3 3 A
] 3 E 5 5 3 B E 5 5 3 B g 5 5 B 3 E 5 5
€ ¢ & % Z | & & § %2 =% & & & % =%z & ¢ & =% =
= = =3 g 4 = = =3 g 4 = = 8 g 3 = = =3 4 ]
Method | H A -9 - -4 M A -9 - 4 A M -9 -4 4 A = -9 -4 -

SGD 89.7 915

o
S
8]
o
-
o
o
IS
W
(=)
~
[=]
[=))
oo
~
~
~
[=))
~
>
f=))
~
N
[=))
®
=3
oo
f=]
oo
[S]
w
-
oo
~
oo
=]
-
~
>
f=]
~
>
~
~
f=)
~
=]
o
fo)
Nl
o

SAM 902 921 959 955 953|702 703 79.1 750 750 81.0 823 831 805 827 752 782 800 73.0 76.0
RSAM | 90.7 924 953 953 949 | 693 720 803 756 753 814 825 850 81.8 844 751 810 8.1 753 762

RSGD | 90.0 922 949 958 957 | 68.0 70.8 798 749 771 819 821 832 835 840 741 796 81.6 760 76.1

(31) (29) (25 (23) (19)|(27) (24) (18) (25 (23) (31) (17) (32) (23) (35 (27) (19) (26) (31) (25)

the local geometry of the parameter space, and the neighborhood becomes an adaptive ellipsoid
instead of an open ball that treats every direction identically. Singular Value Decomposition yields
M = UDU' = UD'/2D'/2UT. Denote S = D'/2, it follows that:

(h;,hy) = h{ Mhy = (h] US) - (hy US)".

Motivated by the equation above, instead of optimizing £L(P(Enc(X1)),--- , P(Enc(X2n))), we will
optimize L£(P(Enc(%X1))US, -, P(Enc(X2n))US) in which U is a rotational matrix on the Stiefel
manifold, and S is a diagonal matrix. From now on, we will call the layer that multiplies with the
matrix US an R-Stiefel layer, illustrated in Figure [T} Such modification can be done on the SupCon
loss function and other different loss functions involving distance calculations such as triplet loss
(Roy et al.} 2019). Since U is enforced to lie on the Stiefel manifold, this orthogonal matrix will be
optimized with RJR. Other parameters, including the backbone and the diagonal matrix S, will be
optimized by Euclidean optimizers such as SAM or SGD.

5.2 ORTHOGONAL CONVOLUTIONAL NEURAL NETWORK

In the literature of deep learning, enforcing orthogonality on the convolutional filters has established
various significant benefits, such as alleviating gradient vanishing or exploding phenomenon (Xie
et al., [2017), decorrelating the filter banks so that they learn distinct features (Wang et al., [2020),
or stabilize the distribution of activations over layers within CNNs and make optimization more
efficient (Rodriguez et al., 2016} Desjardins et al., 2015). Let {W;}2 | be the set of convolutional
kernels for the ¢-th layer in which W; € RWHM = To impose orthogonality, Previous works

D
A
introduce orthogonal regularizers such as Loqne = 5 Z ||VV1T W, — I||2 (Xie et al., 2017), or a
i—1

self-convolution regularization term of the kernels (Wang et al.,|2020) to encourage orthogonality
between the convolutional kernels. In this section, we propose eliminating those regularizers and
strictly enforcing the kernels to be always orthogonal during training. To do so, we flatten the kernels
‘W, into the column vectors of shape W x H x M. Let K, be the matrix with the columns formed
by Wis. With RJR, we can enforce K, to always lie on the Stiefel manifold St(W x H x M,C)
during training. Therefore, throughout training, K] K, = I, always holds, therefore guarantees
orthonormality between the kernels on the layer ¢. The next section will demonstrate that imposing

orthogonality onto a single convolutional layer in the middle of the architecture by training with RJR
can notably improve generalization ability.

6 EXPERIMENTAL RESULTS

To assess RIR’s efficacy, we experimented with various vision datasets (including CIFAR10, CI-
FAR100, STL10, and Aircraft). We conducted three experiments: the standard supervised classifi-
cation, labeled self-supervised learning, and unlabeled self-supervised learning. In all settings, we
compare and contrast RIR with Momentum SGD, SAM, Riemannian-SAM (Yun & Yang} 2023)), and
Riemannian SGD (Bonnabel, 2013)). All the experiments were trained for 500 epochs on Pytorch with
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a Tesla V100 GPU with 40GB RAM. In all settings, the learning rate of RJR is set to 0.1 with a cosine
annealing learning rate scheduler throughout the experiments. A; in RJR is set to 0.5, and A, is set to
0.01. All the models are trained with a batch size of 256 on CIFAR100, CIFAR10, and STL10 and a
batch size of 64 on the Aircraft dataset for all methods. To measure the error, 10% of the training
set was initially allocated as a validation set to tune the hyperparameters. After rigorous testing, we
found \; = 0.5, A2 = 0.01 to be robust default values, as reported in Table d] Subsequently, we
conducted five independent runs for each setting and report the mean accuracies along with the 95%
confidence interval.

Supervised Learning. In this first setting, we examine the classification accuracy with a cross-entropy
loss on five architectures, including ResNet34, ResNet50, PyramidNet-101, EfficientNetV2-S, and
EfficientNetV2-L. In this setting, RJR is incorporated to force the orthogonality on the convolutional
layers. Specifically, we imposed orthogonality on a single convolutional layer in the middle of the
architecture in all settings. Table [I] shows that RJR generalizes better than the baselines in this
standard training setting, with an improvement of 3% on average compared to Riemannian-SAM.

Labeled Self-Supervised Learning. In this second set of experiments, we compare RJR with the
baselines on two architechtures including ResNet34 and ResNet50. This set of experiments has
two stages. The SupCon objective is trained with the baseline methods in pretraining. Then, in
the second stage, we conduct linear evaluation, that is, to freeze the parameters and train a linear
classifier. We note that in the pre-trained step, the projectional layer of SGD and SAM are linear
layers, while RJR’s is the R-Stiefel layer as discussed in Section[5.1] Therefore, the applications of
RJR in this setting are two-fold: RJR is used to impose orthogonality on the convolutional layers
and used for the R-Stiefel during pretraining. As shown in Table[2} RJR consistently outperforms
the baselines. Furthermore, we note that on ResNet50, RJIR made a remarkable accuracy of 82.52%
on CIFAR100, which outperforms 7% compared to SupCon with SGD on the same setting and
consistently outperforms other baselines.

Table 2: Top-1 classification accuracy for labeled self-supervised learning settings with SupCon loss.

CIFAR100 CIFAR10 Aircraft STL10

Method | ResNet50 ResNet34 | ResNet50 ResNet34 | ResNet50 ResNet34 | ResNet50 ResNet34
SGD 75.29421 74.04423 | 9599411 9534414 | 82.031024 7819132 | 83.33123 85.69+.19
SAM 76.731.16 7691415 | 96.314 13 96.07192 | 82.841 21 81.73413 | 85.024 19 87.104 24
RSGD | 78.13+17 77.32+.33 | 96.06419 9625, o9 | 83.384+.96 83.17107 | 84.23190 86.031 94

RSAM | 79.46, 15 7852, 16 | 96.11, 5, 9581109 | 84.02, 15 84.37, ., | 88.35, 14 8721, j5
RJR | 82521 55 8112100 | 967450 96.81: o | 89.93. 51 87.521 o5 | 91.045 o5  90.14 o9

Unlabeled Self-Supervised Learning. Similar to the previous set, this set of experiments has two
stages. In the first stage, the model was trained with the SimCLR objective (Chen et al.,|2020) instead.
In this set of experiments, RJR also outperforms the baselines by a notable margin on average,
especially on CIFAR100, where RJR outperforms conventional SimCLR with SGD by a margin of
7%. We refer to Table Bl for more details.

Table 3: Top-1 classification accuracy for unlabeled self-supervised learning with SImCLR loss
CIFAR100 CIFAR10 Aircraft STL10
Method | ResNet50 ResNet34 | ResNet50 ResNet34 | ResNet50 ResNet34 ResNet50 ResNet34
SGD | 65.6543; 63.0543; | 92.984 00 9098117 | 61.204 36 59.37+ 133 65.354 04 64.234 51
SAM | 67.24419 64.32409 | 9311505 9116419 | 63.174 55 64.01, 40 69.93+ 0 67.8313
RSGD | 663113 6358100 | 93.50135 91.0245 | 65.01, 5, 63.93105 68.61c41 67.024 35
RSAM | 69.12, 55 67.26, 55 | 94.27, 55 920413 | 64974 45 6182134 70.39, , 70.08, 5
RIR | 7271155 710457 | 95825 07 92.03, o, | 6779141 6525. 55 730313, 73.32.3

As discussed in Section[4.2] RIR establishes the same theoretical complexity as SAM and Riemannian-
SAM since all the additional terms can be computed efficiently in a single backward pass. However,
RJR is expected to be slower due to additional computations involving the Jacobian and Riemannian
gradients. Despite this, Appendix shows that the runtime difference is negligible, making
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the trade-off worthwhile for the improved final performance. Besides, as demonstrated in Section
[7-1] RIR effectively minimizes both the gradient norm and the Hessian spectral norm, in line with
theoretical expectations. Furthermore, our algorithm identifies low-sharpness regions on the manifold,
enhancing robustness. For a detailed behavioral comparison of SAM and RJR, we refer to Appendix
which highlights the importance of manifold-based optimization and the effectiveness of our
algorithm in minimizing both the loss function and sharpness.

7 ABLATION STUDIES

In this section, we perform several ablation studies to gain a deeper understanding of RJR’s behavior,
including its effectiveness in minimizing sharpness and its robustness to hyperparameter choices.

7.1 RIJR vS. RIEMANNIAN-SAM: SHARPNESS AND HESSIAN SPECTRA

X j'max

Aax = 13.93, 'L;“ =305 A = 10.52, G =267
10° 2 10°
6x107 6x10"
4x107! 4x1071
3x107? 3x 10
2x107 | 2x107

0 2 4 6 8 10 12 14 -2 0 2 4 6 8 10
Hessian spectra of RSAM Hessian spectra of RJIR

Figure 2: Hessian spectra of RSAM (left) vs. RIR (right). For RSAM, Ap.x = 13.93, )‘;‘\‘—:" = 3.05.
For RIR, Anax = 10.52, *;1—5 = 2.67.
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Figure 3: Gradient norms (left) and Hessian spectral norm (right) of Riemannian-SAM and RJR.

Throughout this work, we designed RJR to simultaneously minimize the empirical loss value, gradient
norm, and Hessian spectral norm. To gain further insight into RJR’s behavior and verify whether the
algorithm successfully minimizes these three objectives, we first compare the Hessian spectrum of
ResNet34 trained on CIFAR100 over 400 steps using RJR and Riemannian-SAM. As shown in Figure
[2] the model trained with RJR exhibits a significantly lower maximum eigenvalue (10.52 for RJR
compared to 13.93 for Riemannian-SAM) and a flatter eigenvalue distribution. We also assess the bulk
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of the spectrum using the ratio Apax/ A5, a commonly used proxy for sharpness (Jastrzebski et al.)
2020), which yields values of 3.05 for Riemannian-SAM and 2.67 for RJR. Additionally, FigureE]
demonstrates that the gradient norm over time for RJR is notably lower than that of Riemannian-SAM,
suggesting that RJR effectively minimizes both the Hessian spectral norm and the gradient norm,
ultimately converging to minima with lower curvature on the manifold.

7.2 HYPERPARAMETERS SENSITIVITY

The implementation of RJR relies on two hyperparameters, A; and Ao. This ablation study investigates
the performance of RJR on ResNet50 and PyramidNet-101 using the CIFAR100 dataset across various
values for these hyperparameters. As shown in Tables []and[5] RIR demonstrated robust performance
across a wide range of hyperparameter settings, indicating a desirable level of stability to these
hyperparameters.

Table 4: Hyperparameter sensitivity on supervised setting with ResNet50 on CIFAR100 dataset.

Moo 01 0.5 1 2 5
Az
0 77.85 78.95 80.15 78.13 77.86 76.32
001 | 7896 81.97 8252 81.69 7932 77.81
0.1 80.36  80.33 8231 7993 7881 <70
1 7751 78.09 77.58 7837 74.11 <70
2 7131 73.11 7209 73.11 <70 <70

Table 5: Hyperparameter sensitivity on supervised setting with PyramidNet-101 on CIFAR100

dataset.
M 0 0.1 001 1 2 5

A2
0 7760 80.01 8032 7991 7739 7745
0.0001 | 81.02 81.89 83.35 8206 78.50 76.87
1 79.81 83.47 80.79 80.08 78.65 76.01
2 78.30 81.44 8194 7835 7736 7523
77.14  77.10 78.15 77.46 7671 78.09

8 CONCLUSION

We have extended the flat minimizers to differential manifolds by introducing a novel Riemannian
optimizer. Theoretically, we presented a theorem that characterizes the generalization in terms of the
Riemannian gradient and Hessian. Motivated by this analysis, we propose RJR that considers the
intrinsic geometry and simultaneously minimizes the loss function, the Riemannian gradient norm,
and the Jacobian. Empirically, RJR has demonstrated its effectiveness on different tasks with various
datasets and consistently outperforms the comparative methods by a notable margin.

Limitations and Future works. Similar to other Riemannian optimizers such as Riemannian-SAM
or RSGD, a limitation of RJR is that the method is only applicable to the class of Riemannian
manifolds where the operations such as retraction and projection are well-defined. Even though this
class of manifolds has demonstrated a wide range of applications in deep learning literature, further
studies are still needed for a broader class of manifolds, such as general transformer architecture.

10
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REPRODUCIBILITY STATEMENT

Regarding the theoretical results, all the proof of the theories can be found in our appendix. Regarding
the experiments, we have provided the necessary details to reproduce in Section[d.2]and Section [6}
including the experimental settings, algorithm, hyperparameters details, and hardware details.
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A ADDITIONAL EXPERIMENTS

A.1 WALL-CLOCK RUNTIME

In this ablation, we compare the single-epoch wall-clock runtimes of SGD, SAM, Riemannian-SAM,
RSGD, and RJR. It is expected that SAM, Riemannian-SAM, and RJR take at least twice as long
as SGD or RSGD because these methods involve double backward-forward computation in each
iteration. Since the RJR requires additional computations such as the Riemannian gradients and the
Jacobians as shown in Algorithm[T] it is expected that the RJIR would take longer than Riemannian-
SAM. However, as shown in Table|6] we emphasize that these additional computations can be done
efficiently. In particular, while the RJR improves the classification accuracies by a notable margin,
its wallclock runtime is only slightly slower than Riemannian-SAM by a 4% gap overall, therefore
worth the tradeoff for better performance as well as robustness.

Table 6: Per-epoch wall-clock runtime in seconds.
Method CIFAR100 CIFAR10 AirCraft
RN34 RN50 RN34 RN50 RN34 RN50

SGD  21.51173 40.14296 2141172 38.84305 57.61259 114.54477
RSGD  30.512.35 46.34387 28.14023 47.61152 6484102 130.243.25

SAM 4914168 8394079 48.84162 84.Ti06s 1253113 245.644.30
RSAM  50.64166 85.7+314 4914190 8834079 12794571 253.24340

RIJR 51.84297 88.64142 51.641.03 9244163 132.0414 260.84229

A.2 RJR vS. SAM: BEHAVIORAL COMPARISON

In the previous section, we demonstrated the efficiency of RJIR compared to Riemannian-SAM. In this
section, we emphasize the importance of optimization on Riemannian manifolds in different scenarios
and the effectiveness of RJR in accomplishing this task. We designed a simple experiment on the
MNIST dataset to show a particular case where RJR is favorably robust compared to SAM, which did
not take into account the intrinsic geometry. Indeed, we train a simple PCA-style autoencoder that
aims to find an orthogonal matrix W which encodes each input x into lower-dimensional z = xW,
and then decodes as X = zW | . The encoded vector z is then used for the classification. Therefore,
the objective that we will minimize is the reconstruction loss, which is regularized with a classification
loss. Since W is constrained to be orthogonal, we want it to stay within a Stiefel manifold during
training. To enforce orthogonality with SAM, an orthogonal regulazrizer ||[W TW — 14||2 is added,
which gives the objective:

1o 5
Ls(W) = - Z Ixi — %i[|5 + SCrossEntropyLoss(zi, yi) +v[|W W —I4f5.
=1

To emphasize the importance of remaining in the Stiefel manifold during training in this case, we
examine the effects attributable to the different values of v - the hyperparameter associated with
the regularizer |W "W — 1,||2 that characterizes how orthogonal W is. In this set of experiments,
we set the batch size to 16, the learning rate to 0.1, 8 = 0.1, and A\; = 0.3, A2 = 0.01. Figure
reports 1) the loss value over time, 2) the gradient norm of the loss function over time, and 3) the
values of the orthogonal regularizer, which measures how orthogonal the parameters were. For the
convergence of the loss function, the smaller - is, the better SAM can keep up with RJR because the
orthogonal regularization has less impact on the final loss function. However, in such cases, W fails
to be orthogonal, demonstrating that SAM is remarkably sensitive to the orthogonal regularization.
Hence, we emphasize that by explicitly enforcing W to be on the Stiefel manifold, RJR eliminates
this vulnerability, remarkably reducing the sharpness and leading to better loss convergence as shown
in Figure @ In short, Figure 4] suggests that in certain scenarios, taking into account the intrinsic
geometry of the parameters can notably enhance the model’s robustness, and we claim that RJR is
favorable to learn on manifolds in these scenarios.
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Figure 4: Comparision between SAM with different \’s and RJR (black) on MNIST dataset regarding
a) Loss value, b) Gradient norm, and ¢) Value of the orthogonal regularizer ||[W W — I]|3.

A.3 MODEL ROBUSTNESS

In addition to its generalization ability, another desirable feature of the proposed approach is the
robustness of the trained model. Recently, adversarial perturbations have been introduced as a way to
assess the vulnerability of neural networks by considering the worst-case scenario under parameter
corruption, which involves perturbation in the direction of the gradient [2021)). Specifically,

Ls(0
the perturbation is defined as ' = 0+ QM

VLs(0
can improve model robustness (Kim et al.| |2022b). In this section, we apply this perturbation to a
ResNet50 model trained with RJR, Riemannian-SAM, and SGD on CIFAR10, with the perturbation
strength o varying from 0 to 4.0. As shown in Figure[5] RJR exhibits less performance degradation
as a increases compared to Riemannian-SAM and SGD.

. It has been shown that sharpness-aware methods
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Figure 5: Robustness w.r.t adversarial parameter purturbation.

B PROOF OF LEMMA I

Proof. In our proof, we introduce a few additional notations. Recall that the model fg(x) outputs a
logit vector z = fg(x). The logic vector z is then given as an input to the softmax function to yield a

probability output p = Softmax(z) € A°~! where A~ = {p € [0,1]° : 1"p=1,p > 0}. We
want the model to match the most probable class ¢; to the true label y where ¢(x) = argsort(p) in
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descending order. We interchangeably denote the probability value corresponding to the true label y
as p = p, € [0, 1]. Notice that the logit Hessian matrix M = V2( is fully characterized by p, that is,
M = diag(p) — pp ' . Since this is a rank-one modification of a diagonal matrix, we can obtain its
eigenvalues {\(V}S | where A(%) is the i—th largest eigenvalue of M. We can also obtain the same
ordered index of (i) € [C] with parentheses for the probability output p € A~ i.e. ¢; = (i) and
P(1) = P2y = - = P(c), because the ordering is related to the eigenvalues {A@1C | as shown in
the following lemma, whose proof can be found in Theorem 4.1 by |Lee et al.[(2023))

Lemma 2. (Eigen system of the logit Hessian M) Then eigenvalues \V) > X2 > ... > X(©) of the
logit Hessian M = V?E = diag(p) —pp ' satisfies the following properties:

1. P(it+1) < \® §p(i)f0r 1<i<C—1,and N =0
2. 230 <2py (1 =pyy)
Proof. The proof can be found in Theorem 4.1 [Lee et al.|(2023). O

Furthermore, we note that the Frobenius norm of the Jacobian can be efficiently computed with an
unbiased estimator:

1317 = Ecvvge-)Iell’] = Ecvuse-1)[IVe(e 2) 7).

Now we are ready to prove our lemma. Indeed, according to the Gauss-Newton approximation as
derived by [Lee et al.|(2023)), the Hessian of the loss function £ for a single sample x for the model
parameter can be expressed as:

C
Vel =VezVilVez' + V5z,V, ~ VezVilVez .
c=1

For now, we denote x(*) to be the i—th sample and denote z(*), £(?), J(*) to be the corresponding
logit, the loss function, and the Jacobian for the given example x(?), respectively. Notice that we have
Vez = J. Then, we have the following inequalities:

1 & . 1 & . . .
2 — = 200~ 1= (T 72 (%) (%)
PeV=Ls|l» ||n ;:1 PeVLY |, ||n ;:1 PoVe(z'") V,1"Vez'"|,

IN

1< . , _
=3 PeVe(2) V2 IVez D,
n
i=1
Utilizing the identities above along with Lemma[2} we have the following chain of inequalities:

IS i i i 1 ¢ i i i
3 IPeVo@) VOV, < = 3 [Pad V2O 3,
i=1

=1

2p(1)(1 - P(1)) - i i
< S 1Ped ]l 3
n || 9J HO’HJ ||c7

i=1

2p(l)(1 - p(l)) - ) )
< (2 2
S — > 1P £ lI3?

=1

<2p;(1 - P(1))\/EE~U(SC—1)[ngade(“)”Q] X Ecwyse-[lIVe(ze)[|]

_ /B llarade () P] < oo [Vo(ac) P

2
which concludes our proof. O

To further proceed with our proof, we must introduce the concept of Riemannian Hessian. Indeed,
the Riemannian Hessian of a function is defined as the covariant derivative of its gradient vector field
for the Riemannian connection V. More formally, we have the following definition:
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Definition 2. Let M be a Riemannian manifold with its Riemannian connection V (we refer to
Boumal|(2023)) for more details about Riemannian connections). The Riemannian Hessian of f at
x € M is the linear map Hessf (x) : T, M — T, M defined as follows:

Hessf(x)[u] = V gradf.
We will make use of a property about Riemannian Hessian, whose proof can be found in|[Boumal
(2023):

Lemma 3. Let M be a Riemannian submanifold of an Euclidean space. Consider a smooth function
f: M = R. Let G be a smooth extension of gradf, that is, G is any smooth vector field defined on
a neighborhood of M in the embedding space such that G(x) = gradf(z) for all x € M. Then, we
have the following properties:

Hessf (2)[u] = Pu(DG(2)[u)).

We prove the following inequality regarding the Riemannian Hessian.

Lemma 4. (Riemannian Hessian approximation) Suppose that @ € M, and € € Tg M. Then, we
have the following inequality for some constant m > 0

(HessL5(0)[c], ) < ||e||2(m||gradaz:s<9>| n ||7’9V555(9)||o)-

Proof. We start with the definition of the Hessian of a loss function:

HessLs(0)[e] = Po(DgradgLs(0)[e]) Def. of Riemannian Hessian
= Po(DPgVeLs(0)[e]) Property of Riemannian gradient
= Po (gradg(PeVeLs(0)),€)q Property of differential
=Pg (PoVe(PoVoLs(0)),€)q Property of Riemannian gradient

T
=Pe <779Vg£s + P9V9E3(0)> V(Pg ), e> Product rule
0

.
=Py (V Ls(0 ) €+ (Pngﬁg( )) V(’P;—) € Def. of the Riemannian metric

= Po (v?,ts (0)) €+ (gradgﬁg(e)) TV(PJ) -e  Property of Riemannian gradient
So, we have the following:
(HessLs(0)[e],€)g = € PoVgLs(0)e+ €' (gradgLs(8))TV(Pg )e
Regarding the first term, we have the following inequality:
¢' PoVgLs(0)e < [" PoVLs(B)ell < |[PeV5Ls(0)]sle]®
Now we bound the second term. We have the following:

k
leT (gradgLs(8)) TV (P )ell < DD lleielllgradoLs(8) TV (Pg )il

i=1j=1
where we note that V(P ); is the i—th column of a 3D tensor, and ¢; denotes the —ith element of

e. Equivalently, it is the gradient of the i—th column of P, , that is V(P );. Notice that (Pg ); is a
unit vector. Also, M is assumed to be bounded and smooth, so there exists a constant m = O(k)
such that HV(PJLH < 7 for all 4. Hence, we have:

k  k ko k
YD llecilllgrade £5(6) TV (Pg )s ZZ leie;lllgradg Ls ()]
i=1j=1 i=1j=1
k

m
<35 ) lleilPllgradg L5 (6)]
i=1

= m||gradeLs (8)]|]€l*.
Combining the two inequalities for two terms, we conclude the following inequality:

(HessLs(0)[e) ) < |1 (mllzrads £5(0) | + [ PoV3L(6)]], ). )
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C PROOF OF THEOREMII

We first state several notations and settings that will be used throughout the proof. We are given a
training dataset S = {(x;,y;)}/_; drawn i.i.d from a distribution D, we consider a family of models
parameterized by @ € M C RF. Given a per-data-point loss function ¢, we recall the definition of
the training set loss

1 n
Ls(6) =~ U0,%i,y:)
i=1

and the population loss £ (0) = E(, )~ [¢(6,x,y)]. Suppose that the model space is an embedded
Riemannian submanifold M C R¥ that has d < k dimensions. Consider a point @ € M, denote
by 79 M the tangent space of M at a point & € M, which is homeomorphic to M and also has
dimensionality of d.

Since M is assumed to be bounded, for every ¢ > 0, there exists a set {6;}7_, of predefined
points on the manifold M that forms an e-net of M with respect to the geodesic distance on M.
Indeed, for each 8 € M, there exists ¢ such that 6 lies inside a neighborhood of 6; such that
dam(0;,0) = d; < e, in which d is the geodesic distance on manifold M. So, we can define the
following J neighborhoods on M centered at 6;:

R; = {0 € M|dpm(0,6;) <c}.

Now, we are ready to prove our main theorem. Indeed, we restate the theorem statement:

Theorem 1. Assuming that the loss function L is K —Lipschitz and the parameter space is a bounded
manifold. Then, for any small p > 0 and 6 € (0,1), with a high probability 1 — 6 over the training
set S generated from a distribution D, the following holds:

p? ) dlog % + log %
Lp(0) < Ls(0) + Mp|lgradgLs(0)]le + ?H’PGVBES(Q)”G +0|p+D — on

for constants M, D and PeNV>*Ls(0) is formed by projecting the columns of the Euclidean Hessian
matrix V2Ls(0) to the tangent space.

Proof. Since M is assumed to be compact, it is bounded, and for every p > 0, there exists a set
{6;}7_, of predefined points on the manifold M that forms an p-net of M with respect to the geodesic
distance on M. Indeed, for each 8 € M, there exists 7 such that @ lies inside a neighborhood of 6;
such that da(0;,0) = d; < p, in which d o, is the geodesic distance on manifold M. Since the loss
function £ is K-Lipschitz, we have:

|Lp(60) — Lp(6;)| < Kd; = Kp. (6)
We have the following lemma regarding PAC-Bayes bound, whose proof can be found at|Alquier
(2023):

Lemma 5. Suppose that 0 € 0, let R(0) = E(x y)~p[l(fo(X),Y)], and 7(8) = > | £;(6),
assume that card(0) = M < oo. Then, for any € € (0, 1),

log 4
Ps(V0€O,R(O) <r(0)+D{|—=|>1-¢

Proof. The proof can be found in |Alquier| (2023). O

J

Applying the lemma above for 6 = {0;};_;,

following inequality holds:

we have with a probability of at least 1 — 4, the

Lp(0;) < Ls(0;) + D (7
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Let € = Logg(6;) be the image of 8; under the logarithmic map, that is, the vector on 7gM such
that Rg(€) = 6;. Notice that we have d((0,0,) < p, so |l¢]| < p. Thus, with probability at least
1 — § we have the following inequalities

Lp(0) < Lp(0;) + Kp

m log <
< Ls(6;)+ D %5 L Kp
2n
1og§’
< Ls(Re(e))+ D o +2Kp
1 3 log%
< Ls(0) + (gradgLs(0), €)y + 3 (HessLs(0)[e], ) + O(|le||?) + D 5 T 2Kp
1+ log%
< Ls(0) + ||gradg Ls(0)|le]l€llo + 7€ HessLs(0)[e] + 2Kp + D 5
B 1, 12 9 log%
< £5(0) + lgradg L (@)l + 5 el | mllaradgLs ()] + [PoV3Ls (O, ) +2Kp + Dy -

g
d

1 lo
< L5(0) + lgradgLs(O)]lop + 50° <m|grad9£s<0> T ||Pevzﬁs<0>||a> +2Kp+ DY

When p is small, we have p?(m||gradgLs(0)|) < pllgradgLs(0)]|e. Hence, there is a constant M
such that:

log %

2n

for some constant M > 0. Now we are left to bound J, the number of p—balls covering M.
Recall that M is a d—dimensional manifold covered within J p-balls. If we denote R; to be the
p—ball with the center 6;, then vol(R;) = O(p?), implying J = O(max; diam(M)?/p?), thus
log J = O(dlog %), in which K = diam(M) < 400 since we assume M is bounded.

2
Lp(0) < Ls(0) + MpllgradgLs(0)llo + %HPN%ﬁS(O)HU +2Kp+D

Hence, we conclude that:

0? ) dlog % + log %
£0(6) < £5(6) + MplaradgLs(O)]lo + 2 [PT3L5(6) |, + o(p+ D 2n)

O
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