
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMIZATION ON MANIFOLDS WITH RIEMANNIAN
JACOBIAN REGULARIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Understanding the effectiveness of intrinsic geometry in enhancing a model’s
generalization ability, we draw upon prior works that apply geometric principles to
optimization and present a novel approach to improve robustness and generalization
for constrained optimization problems. This work aims to strengthen the sharpness-
aware optimizers and proposes a novel Riemannian optimizer. We first present
a theoretical analysis that characterizes the relationship between the general loss
and the perturbation of the empirical loss in the context of Riemannian manifolds.
Motivated by the result obtained from this analysis, we introduce our algorithm
named Riemannian Jacobian Regularization (RJR), which explicitly regularizes the
Riemannian gradient norm and the projected Hessian. To demonstrate RJR’s ability
to enhance generalization, we evaluate and contrast our algorithm on a broad set
of problems, such as image classification and contrastive learning across different
datasets with various architectures.

1 INTRODUCTION

In deep learning and statistics, overfitting is a long-standing and challenging problem in which
the model fails to generalize to the whole population due to the training process getting stuck in
one of the local minima of the landscape of loss functions. This is attributed to high-dimensional
and non-convex loss functions, which have a complicated landscape with multiple local minima.
Regarding this issue, flat minimizers that seek regions with low sharpness have been known to be
among the most effective approaches (Keskar et al., 2016; Kaddour et al., 2022b; Li et al., 2022).
Sharpness-aware minimization (SAM), as introduced by Foret et al. (2021b), stands out as a notable
method by simultaneously minimizing the loss function and the worst-case loss within a neighborhood
of the model’s parameters. SAM already has proven to be versatile across a diverse array of tasks
such as meta-learning (Abbas et al., 2022), federated learning (Qu et al., 2022), vision models (Chen
et al., 2021), or language models (Bahri et al., 2022).

Another desired property of the model is robustness, which could be improved when encouraging
the model’s parameters to satisfy strict conditions, i.e., SPD constraints (Gao et al., 2020), orthog-
onality, and full rank (Xie et al., 2017; Roy et al., 2019; Wang et al., 2020), etc. In those cases,
the model’s parameters are restricted to certain Riemannian manifolds, such as Grassmann, SPD,
etc. Consequently, it becomes more challenging to work with its loss landscape, thus requiring
novel optimization techniques that take into account the intrinsic geometry of the parameter spaces
(Bonnabel, 2013; Luenberger, 1972; Kasai et al., 2019; Sato et al., 2019; Zhang et al., 2017).

In this work, we address both problems by bridging the gap between the sharpness-aware and
Jacobian-aware optimizers on Riemannian manifolds. In doing so, we first derive a comprehensive
theoretical analysis showing that the general loss function can be bounded by the empirical loss,
the Riemannian gradient, and the projected Hessian. Motivated by this analysis, we proposed
a Riemannian optimization technique named Riemannian Jacobian Regularization (RJR), which
explicitly regularizes the Riemannian gradient norm and the Jacobian. Our empirical study shows
that the RJR improves the model’s generalization ability across a range of different tasks, namely
supervised learning and self-supervised learning, for a diverse array of computer vision datasets
(CIFAR100, CIFAR10, STL10, FGVCAircraft (Maji et al., 2013)), as well as different model’s
architectures (ResNet34, ResNet50, EfficientNetV2-S, EfficientNetV2-L Tan & Le (2021), and
PyramidNet-101 (Han et al., 2017)). RJR has made a notable improvement upon SAM, SupCon

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(Khosla et al., 2021), as well as other Riemannian optimizers, including Riemannian Stochastic
Gradient Descent (RSGD) (Bonnabel, 2013), and Riemannian-SAM (Yun & Yang, 2023). In the
ablation studies, we will also show the efficacy of RJR in simultaneously minimizing the Riemannian
gradient norm and the Hessian spectral norm, thus indicating a flat region with low sharpness. In
short, our contributions are as follows:

❶ We introduce a theoretical analysis that expresses the relationship between the general loss and the
empirical loss via the Riemannian gradient and the projected Hessian.
❷ Motivated by this theoretical analysis, we introduce RJR, which strengthens the Jacobian
regularization techniques to Riemannian manifolds. Empirical experiments across various settings
show that RJR outperforms current methods by notable margins.

2 RELATED WORKS

Optimization on Riemannian Manifolds. Imposing appropriate constraints on model parameters
has been shown to obtain the desired effect on the model performance (Roy et al., 2019; Absil
et al., 2008a). In those situations, studying the intrinsic geometry of the parameters manifold could
lead to improved optimization methods. For example, in the domain of metric learning, Roy et al.
(2019) incorporated Stiefel manifolds to ensure that the learned parameters maintain orthogonality
constraints. When the model is a Gaussian mixture, Gao et al. (2020) proposed a strategy involving
learning on SPD manifolds to enforce SPD constraints. Furthermore, Grassmann manifolds have been
utilized in encompassing recommender systems (Dai et al., 2012; Boumal & Absil, 2015) or modeling
affine subspaces within document-specific language models (Hall & Hofmann, 2000). Since the
optimization is carried out on manifolds, the Riemannian gradient descent approach developed by
(Luenberger, 1972) is a tool to move on the manifold to look for minimums. Its stochastic version
introduced by Bonnabel (2013) reduces computational overhead, thus gaining widespread adoption.

Sharpness Aware Minimization and Jacobian Regularization. The Sharpness-Aware Minimiza-
tion (SAM) technique (Foret et al. (2021a)) has gained prominence due to its effectiveness and
scalability compared to previous methods. SAM’s versatility is evident across various tasks and
domains, making it a powerful optimization approach. SAM has found applications in diverse areas
such as meta-learning bi-level optimization (Abbas et al., 2022), federated learning (Qu et al., 2022),
vision models (Chen et al., 2021), language models (Bahri et al., 2022), domain generalization (Cha
et al., 2021), and multi-task learning (Phan et al., 2022).

Recent works have further enhanced SAM’s capabilities by exploring its underlying geometry (Kwon
et al., 2021; Kim et al., 2022a), minimizing surrogate gaps (Zhuang et al., 2022), and speeding up
training time (Du et al., 2022; Liu et al., 2022). Additionally, Kaddour et al. (2022a) empirically
studied SAM’s sharpness compared to Stochastic Weights Average (SWA) (Izmailov et al., 2018). In
contrast, Möllenhoff & Khan (2023) demonstrated that SAM is an optimal Bayesian relaxation of
standard Bayesian inference with a normal posterior. Moreover, Nguyen et al. (2023b) developed
the sharpness concept for Bayesian Neural Networks. Nguyen et al. (2023a) generalized SAM by
leveraging optimal transport-based distributional robustness with sharpness-aware minimization.
Recently, Yun & Yang (2023) proposed Riemannian-SAM, which extends SAM to Riemannian
manifolds, and the technique has demonstrated its efficacy on a wide range of manifolds. Lee et al.
(2023) has extended SAM techniques to show that minimizing the Jacobian norm can affect the
sharpness and the model accuracy, thus proposing explicitly regularizing the Jacobian norm.

3 PRELIMINARIES

3.1 FORMULATIONS AND NOTATIONS

This section presents the problem formulations and notions used for our theory development. We
consider a classification problem where the data distribution denoted by D, consists of pairs of
(x,y), in which x ∈ Rk and y belongs to one of the classes in [C] = {1, 2, . . . , C}. We aim
to construct a C−class classifier that maps x to its true corresponding label y. This classifier is
modeled by a function fθ : X → Y , parameterized by hyperparameter θ, will produce a logit

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

vector z = fθ(x) which in turn is used to predict the target labels. The model trainer is given
a specific training set S = {(x1,y1), (x2,y2), · · · , (xn,yn)} is then sampled from D, those are
i.i.d samples. Given (x,y) ∼ D, we use the per-sample loss function ℓ(fθ(x),y) to quantify
the loss suffered by the model fθ when predicting (x,y). The empirical loss in the training set
S is LS(θ) = 1

n

∑n
i=1 ℓ(fθ(xi),yi), while the general loss in the data/label distribution D is

LD(θ) = E(x,y)∼D
[
ℓ(fθ(x),y)

]
. Throughout our paper, ∥A∥σ denotes the spectral norm of a

matrix A, while ∥v∥ denotes the Euclidean norm-2 of a vector v.

3.2 BACKGROUND ON RIEMANNIAN GEOMETRY

In this work, we assume that some conditions are imposed on the models (e.g., orthogonality, full
rank, or SPD constraints), making the model parameters θ lying in a low-dimensional manifold
M ⊂ Rk embedded in the ambient vector space Rk, where the dimension d of M is much smaller
than k. Given a θ ∈ M, denote TθM as the tangent space of M at θ. Conventionally, θ is the origin
of TθM. Thus, ϵ ∈ TθM specifies the offset from θ in the ambient vector space Rk. The tangent
bundle of M is defined as the disjoint union of the tangent spaces of M:

T M = {(θ,v) : θ ∈ M and v ∈ TθM}.

For each θ ∈ M, TθM is linear space, thus one can define an inner product ⟨·, ·⟩θ : TθM×TθM →
R. A metric on M is a choice of inner product ⟨·, ·⟩θ for each θ ∈ M. The metric ⟨·, ·⟩θ is a
Riemannian metric if this metric varies smoothly with θ, in the sense that for all smooth vector
fields V,W on M, the function θ 7→ ⟨V (θ),W (θ)⟩θ is smooth from M to R. A manifold with a
Riemannian metric is called a Riemannian manifold.

For a given pair of (θ,v) ∈ T M, there are many trajectories c on the manifold M starting from θ
and follow the direction of v, which can be formulated as c : [0, 1] → M : c(0) = θ, c′(0) = v. A
retraction picks a particular curve for each possible (θ,v) ∈ T M. In particular, it is a smooth map

R : T M → M,

such that each curve c(t) = R(θ, tv) satisfies c(0) = θ, c′(0) = v for 0 ≤ t ≤ 1. For the sake of
simplification, we use Rθ(v) instead of R(θ,v).

Next, we want to define the Riemannian gradient of a smooth map f : M → R. We start with
the case f : M → M′ being a smooth map between two general manifolds. For any tangent
vector v ∈ TθM, there exists a smooth curve c on M passing through θ with velocity v. Then,
t 7→ f(c(t)) itself defines a curve on M′ passing through f(θ), thus passing through f(θ) with a
certain velocity. By definition, this velocity is a tangent vector of M′ at f(θ). We call this tangent
vector the differential of f at θ along v. Specifically, the differential of f : M → M′ at the point
θ ∈ M is the linear map Df(θ) : TθM → Tf(θ)M′ defined by Df(θ)[v] = d

dtf(c(t))
∣∣∣
t=0

, where

c is a smooth curve on M passing through θ at t = 0 with velocity v. For the case M′ = R, which
means f is a smooth, real map, the Riemannian gradient of f is defined as the unique vector field
gradθf on tangent space TθM satisfies:

∀(θ,v) ∈ T M;Df(θ)[v] = ⟨v, gradθf(θ)⟩θ ,
in a neighbourhood of θ on M.

Finally, the orthogonal projection Pθ onto TθM is defined as:
Pθ : Rk → TθM : w 7→ Pθ(w),

with ⟨w − Pθ(w),v⟩θ = 0 for all v ∈ TθM. Once an orthogonal basis is chosen for TθM, Pθ is
represented as a (symmetric) matrix. Thus, for readability purposes, the notation Pθw as a matrix
multiplication is used instead of Pθ(w) as a linear map.

4 RIEMANNIAN JACOBIAN REGULARIZATION

4.1 THEORETICAL DEVELOPMENT

This section presents a theoretical development for Riemannian Jacobian Regularization (RJR).
Consider the minimization problem in which the parameter space is an embedded manifold in Rk

min
θ∈M

LD(θ).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

The condition θ ∈ M can be interpreted as a constraint imposed on the optimization problem, such
as orthogonality, full-rank, Euclidean, etc. There are two challenges on this problem, namely, (a)
only a finite sample S is available instead of D, thus one can only work with the empirical loss LS(θ)
rather than the generalization loss; (b) the minimization problem is constrained on the manifold M.
The next result will show that with a high probability, the generalization loss is upper-bounded by the
empirical loss and some quantities characterizing the behavior of the loss function on the manifold
M. The proof can be found in Appendix C

Theorem 1. Assume that the parameter space M is bounded and the loss function is Lipschitz.
Then, for any ρ > 0 and δ ∈ [0; 1], with a probability of 1− δ over training set S generated from a
distribution D, we have the following inequality on the manifold M:

LD(θ) ≤ LS(θ) +Mρ∥gradθLS(θ)∥θ +
ρ2

2
∥Pθ∇2

θLS(θ)∥σ +O

(
ρ+D

√
d log 1

ρ + log 1
δ

2n

)
,

for M,D being constants and d = dimM. Here, Pθ∇2
θLS(θ) is formed by projecting the columns

of the Euclidean Hessian matrix ∇2
θLS(θ) to the tangent space.

A key novelty of the generalization inequality presented in Theorem 1 is that, unlike SAM (Foret
et al., 2021b) or FisherSAM (Kim et al., 2022b), which bound the general loss using the worst-case
empirical loss, our theorem directly relates the general loss to the empirical loss on the right-hand
side. This approach suggests that to reduce the gap between the general loss and the empirical
loss—i.e., to mitigate overfitting—we need to minimize both the gradient norm ∥gradθLS(θ)∥θ
and the projected Hessian norm ∥Pθ∇2

θLS(θ)∥σ. As we will demonstrate in subsequent sections,
regularizing the gradient norm ∥gradθLS(θ)∥θ implicitly minimizes sharpness, leading to sharpness-
aware techniques such as Riemannian-SAM. Furthermore, minimizing both terms is expected to
further reduce sharpness, which we empirically validate in Section 7.1. This reduction in sharpness,
corresponds to a smaller generalization gap, thereby improving the generalization inequality.

Another key feature of this theorem is that our result is the first generalization equality that generalizes
from the Euclidean spaces to the setting of Riemannian manifolds. By restricting the analysis to the
embedding manifold, the error term is reduced to O(

√
d), which is typically smaller than O(

√
k)

established in previous works such as Foret et al. (2021b) and Kim et al. (2022b), where k represents
the dimensionality of the ambient space. Building on this result, we introduce the Riemannian
Jacobian Regularization (RJR) in the following section. As we show in subsequent sections, RJR
effectively identifies low-sharpness regions on the manifold and, therefore, enhances generalization
performance over previous methods, including SAM and Riemannian-SAM.

4.2 PRACTICAL ALGORITHM

Motivated by Theorem 1, we introduce the RJR algorithm that aims to simultaneously minimize the
Riemannian gradient gradθLS(θ) and the term ∥Pθ∇2LS(θ)∥σ in the Inequality 1. The Riemannian
gradient can be efficiently computed from the Euclidean gradient as:

gradθLS(θ) = Pθ∇θLS(θ). (1)

It is important to note that directly computing the term ∥Pθ∇2
θLS(θ)∥σ is prohibitively expensive.

To implicitly regularize this term without computing it explicitly, we rely on the following lemma,
with its proof provided in Appendix B.

Lemma 1. We have the following bound:

∥Pθ∇2LS∥σ ≈ 1

n

∥∥∥ n∑
i=1

Pθ∇θz
⊤
i ∇2

zi
ℓ∇θzi

∥∥∥ ≤
√
Eϵ[∥gradθ(zϵ)∥2]Eϵ[∥∇θ(zϵ)∥2]

2
, (2)

where the summation is taken over the training data S with zi = fθ(xi), ϵ is uniformly drawn from a
unit hypersphere (i.e., ϵ ∼ U(SC−1)), and z = ES [fθ(x)].

In this lemma, the first approximation comes from the Gaussian-Newton approximation, whose proof
can be found in Lee et al. (2023). Motivated by Eq. (1) and Eq. (2), we propose to simultaneously
minimize the terms ∥Pθ∇θLS(θ)∥, ∥gradθ(zϵ)∥, and ∥∇θ(zϵ)∥ along with the empirical loss LS(θ)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Algorithm 1 Riemannian Jacobian Regularization (RJR)
Input: Manifold M, training set S .

= ∪n
i=1{(xi,yi)}. Loss function ℓ : W × X × Y 7→ R+,

batch size b, learning rate η > 0, ascent step sizes λ1, λ2 > 0.
Initialize θ0 ∈ M, t = 0
repeat

Sample mini batch B = {(xi,yi)}bi=1 and ϵ ∼ U(SC−1)
Compute the batch Riemannian gradients gradθt

LB(θt) and gradθt
(zϵ) using Eq. (1)

Compute δt = λ1
gradθt

LB(θt)

∥gradθt
LB(θt)∥ + λ2

(
gradθt (zϵ)

∥gradθt (zϵ)∥2
+

∇θt (zϵ)

∥∇θt (zϵ)∥2

)
Ascend step: Compute θ̂t = Rθt

(Pθt
δt)

Descend step: θt+1 = Rθt

(
− ηgradθt

(
LB(θ̂t)

))
until converges

by regularizing these terms. Consider regularizing the first term alone, the Taylor expansion on
smooth manifolds establishes that:

LS

(
Rθ

(
λ1

gradθLS(θ)

∥gradθLS(θ)∥

))
≈ LS(θ) + λ1gradθLS(θ)

⊤ gradθLS(θ)

∥gradθLS(θ)∥
(3)

= LS(θ) + λ1∥gradθLS(θ)∥. (4)

Explicitly regularizing the term ∥gradθLS(θ))∥ itself requires taking the gradient of a Riemannian
gradient, giving a second-order term, which can be expensive. Instead, we propose to implicitly
regularize ∥gradθLS(θ)∥ by minimizing the LHS of Eq. (4), which leads to the two gradient steps
like SAM (Foret et al., 2021b)

θ̂t = Rθt(δt)) where δt = λ1

gradθt
LS(θt)

∥gradθt
LS(θt)|

,

θt+1 = Rθt
(−ηgradθt

LS(θ̂t)).

Recall that besides ∥gradθLS(θ))∥, we also want to implicitly regularize ∥gradθ(zϵ)∥ and ∥∇θ(zϵ)∥.
The approach above generalizes, leading to the modified ascending step

δt = λ1

gradθt
LS(θt)

∥gradθt
LS(θt)|

+ λ2

(
gradθt

(zϵ)

∥gradθt
(zϵ)∥

+
∇θt

(zϵ)

|∇θt
(zϵ)∥

)
.

This modified ascending step leads to the two gradient steps procedure:

θt+1 = Rθt(−ηgradθt
(LB(θ̂t))),

θ̂t = Rθt
(Pθt

δt),

δt = λ1

gradθt
LB(θt)

∥gradθt
LB(θt)∥

+ λ2

(
gradθt

(zϵ)

∥gradθt
(zϵ)∥

+
∇θt

(zϵ)

∥∇θt(zϵ)∥

)
.

where B is the sampled mini-batch, z =
∑

x∈B fθ(x) and ϵ ∼ U(SC−1), leading to Algorithm 1.

In this algorithm, the Riemannian gradient gradθt
LB(θt) can be obtained from the Euclidean

counterpart ∇θLB(θ) using Eq. (1). Similarly, gradθt
(zϵ) can be efficiently computed from ∇θt

(zϵ).
Moreover, the gradients ∇θt

(zϵ) and ∇θLB(θ) are related through the Jacobian matrix, allowing for
their joint efficient computation. Consequently, all the additional terms can be computed efficiently
with a single backward pass, giving RJR the same computational complexity as SAM and Riemannian-
SAM. Notably, RJR is a generalization upon many prior works for specific choices of manifolds and
hyperparameters. If we set λ2 = 0 for a general Riemannian manifold, we have Riemannian-SAM
Yun & Yang (2023). On the other hand, if we choose the manifold to be Euclidean and λ1 = 0, we
obtain EJR Lee et al. (2023); if we set λ2 = 0, we obtain SAM Foret et al. (2021b).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 APPLICATIONS TO SUPERVISED AND SELF-SUPERVISED LEARNING

1This section presents the applications of RJR for three settings: supervised learning, labeled
self-supervised learning, and unlabeled self-supervised learning. In the subsequent sections, we
will empirically demonstrate the efficacy of our algorithm in contrast with the baselines on these
applications. Throughout this paper, we particularly focus on the Stiefel manifolds:
Definition 1 (The Stiefel Manifolds). The set of n× p matrices, for p ≤ n, with orthogonal columns
and Frobenius inner products forms a Riemannian manifold is called the Stiefel manifold St(p, n)

St(p, n) .
= {X ∈ Rn×p : X⊤X = Ip}.

Absil et al. (2008b) proposed multiple retractions for Stiefel manifolds. For the sake of computational
complexity, we suggest using the retraction: RX(ε) = qf(X+ ε) in which qf(A) denote the Q factor
of the QR-decomposition of a matrix A. Accordingly, the projection on the Stiefel manifolds can
also be derived as PX(v) = v − XSym(X⊤v) in which Sym(A) = 1

2 (A + A⊤). In this paper,
we demonstrate the performance of the Stiefel manifold in two applications: imposing orthogonal
convolutional filters in CNN and metric learning for self-supervised learning.

5.1 METRIC LEARNING FOR SELF-SUPERVISED LEARNING

Backbone
Encoder

R-Stiefel Layer

Matrix U
lies on
Stiefel

Manifold

Diagonal
Matrix S Objective

Figure 1: Metric learning with R-Stiefel layer. The
linear projectional layer is replaced with the R-
Stiefel layer consisting of U ∈ St(n, p) and a di-
agonal matrix S.

We consider two self-supervised settings, in-
cluding labeled self-supervised learning with
the Supervised Contrastive (SupCon) methodol-
ogy proposed by Khosla et al. (2021) and unla-
beled self-supervised learning with the SimCLR
loss function (Chen et al., 2020). Our settings
are as follows: For a set of N randomly sam-
pled sample/label pairs, {xk,yk}Nk=1, the cor-
responding batch used for training consists of
2N pairs, {x̃l, ỹl}2Nl=1, where x̃2k and x̃2k−1

are random augmentations of xk, and ỹ2k−1 =
ỹ2k = yk. A set of N samples is referred to
as a "batch," and the set of 2N samples is a
"multiview batch". Within a multiview batch,
let i ∈ I = {1, · · · , 2N} be the index of an
arbitrary augmented sample, and let j(i) be the
index of the other augmented sample originating
from the same source sample. The architecture
of both settings involves two components: 1) The backbone Encoders, which is denoted as Enc(·);
and 2) The projection head P (·), which is either a linear or fully-connected low-dimensional layer. It
is worth noting that the projection head P (·) differs from the Riemannian projection operation Pθ.
For any l, denote zl = P (Enc(x̃l)).

As proposed by Khosla et al. (2021), the logit zl’s are then trained with the SupCon objective:

Lsup
out :=

∑
i∈I

Lsup
out,i =

∑
i∈I

−1

|C(i)|
log

exp(
zi·zp

τ)∑
a∈A(i) exp(

zi·za

τ)

= L
(
z1 · · · , z2N) = L(P (f(x̃1)) · · · , P (f(x̃2N))

)
,

where A(i) = I\{i}, and C(i) = {c ∈ A(i) : ỹc = ỹi}.

On the other hand, SimCLR (Chen et al., 2020) defines the loss for a positive pair of examples as:

ℓi,j = − log
exp(si,j/τ)∑2N

k=1 1k ̸=i exp(si,k/τ)
,

where si,j =
zi·zj

∥zi∥∥zj∥ measures the similarity of the two logits, and 1[k ̸=i] is an indicator function
evaluating to 1 iff k ̸= i. Then, the final loss is computed across all positive pairs in a mini-batch.

In our practical applications, the Euclidean inner product is replaced with the Mahalanobis distance
in which ⟨h1,h2⟩ = h⊤

1 Mh2 with learnable M. By doing so, M is learned to take into account

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Top-1 classification accuracy for supervised learning on Cross-Entropy loss function.
CIFAR10 CIFAR100 Aircraft STL10

Method E
ff

N
et

V
2-

S

E
ff

N
et

V
2-

L

Py
ra

m
id

N
et

-1
01

R
es

N
et

34

R
es

N
et

50

E
ff

N
et

V
2-

S

E
ff

N
et

V
2-

L

Py
ra

m
id

N
et

-1
01

R
es

N
et

34

R
es

N
et

50

E
ff

N
et

V
2-

S

E
ff

N
et

V
2-

L

Py
ra

m
id

N
et

-1
01

R
es

N
et

34

R
es

N
et

50

E
ff

N
et

V
2-

S

E
ff

N
et

V
2-

L

Py
ra

m
id

N
et

-1
01

R
es

N
et

34

R
es

N
et

50

SGD 89.7 91.5 94.2 94.8 94.5 67.0 68.7 77.6 73.6 74.6 80.8 81.0 82.3 78.7 82.4 73.0 73.1 77.6 70.9 69.9

SAM 90.2 92.1 95.9 95.5 95.3 70.2 70.3 79.1 75.0 75.0 81.0 82.3 83.1 80.5 82.7 75.2 78.2 80.0 73.0 76.0

RSAM 90.7 92.4 95.3 95.3 94.9 69.3 72.0 80.3 75.6 75.3 81.4 82.5 85.0 81.8 84.4 75.1 81.0 82.1 75.3 76.2

RSGD 90.0 92.2 94.9 95.8 95.7 68.0 70.8 79.8 74.9 77.1 81.9 82.1 83.2 83.5 84.0 74.1 79.6 81.6 76.0 76.1

91.7 94.2 96.3 96.4 96.5 73.6 76.4 83.3 77.3 78.6 84.5 85.0 89.0 84.6 85.2 79.9 81.2 84.0 78.3 79.3
RJR

(.31) (.29) (.25) (.23) (.19) (.27) (.24) (.18) (.25) (.23) (.31) (.17) (.32) (.23) (.35) (.27) (.19) (.26) (.31) (.25)

the local geometry of the parameter space, and the neighborhood becomes an adaptive ellipsoid
instead of an open ball that treats every direction identically. Singular Value Decomposition yields
M = UDU⊤ = UD1/2D1/2U⊤. Denote S = D1/2, it follows that:

⟨h1,h2⟩ = h⊤
1 Mh2 = (h⊤

1 US) · (h⊤
2 US)⊤.

Motivated by the equation above, instead of optimizing L(P (Enc(x̃1)), · · · , P (Enc(x̃2N))), we will
optimize L(P (Enc(x̃1))US, · · · , P (Enc(x̃2N))US) in which U is a rotational matrix on the Stiefel
manifold, and S is a diagonal matrix. From now on, we will call the layer that multiplies with the
matrix US an R-Stiefel layer, illustrated in Figure 1. Such modification can be done on the SupCon
loss function and other different loss functions involving distance calculations such as triplet loss
(Roy et al., 2019). Since U is enforced to lie on the Stiefel manifold, this orthogonal matrix will be
optimized with RJR. Other parameters, including the backbone and the diagonal matrix S, will be
optimized by Euclidean optimizers such as SAM or SGD.

5.2 ORTHOGONAL CONVOLUTIONAL NEURAL NETWORK

In the literature of deep learning, enforcing orthogonality on the convolutional filters has established
various significant benefits, such as alleviating gradient vanishing or exploding phenomenon (Xie
et al., 2017), decorrelating the filter banks so that they learn distinct features (Wang et al., 2020),
or stabilize the distribution of activations over layers within CNNs and make optimization more
efficient (Rodríguez et al., 2016; Desjardins et al., 2015). Let {Wi}Di=1 be the set of convolutional
kernels for the ℓ-th layer in which Wi ∈ RWHM . To impose orthogonality, Previous works

introduce orthogonal regularizers such as Lortho =
λ

2

D∑
i=1

∥W⊤
i Wi − I∥22 (Xie et al., 2017), or a

self-convolution regularization term of the kernels (Wang et al., 2020) to encourage orthogonality
between the convolutional kernels. In this section, we propose eliminating those regularizers and
strictly enforcing the kernels to be always orthogonal during training. To do so, we flatten the kernels
Wi into the column vectors of shape W ×H ×M . Let Kℓ be the matrix with the columns formed
by W′

is. With RJR, we can enforce Kℓ to always lie on the Stiefel manifold St(W ×H ×M,C)
during training. Therefore, throughout training, K⊤

ℓ Kℓ = Id always holds, therefore guarantees
orthonormality between the kernels on the layer ℓ. The next section will demonstrate that imposing
orthogonality onto a single convolutional layer in the middle of the architecture by training with RJR
can notably improve generalization ability.

6 EXPERIMENTAL RESULTS

To assess RJR’s efficacy, we experimented with various vision datasets (including CIFAR10, CI-
FAR100, STL10, and Aircraft). We conducted three experiments: the standard supervised classifi-
cation, labeled self-supervised learning, and unlabeled self-supervised learning. In all settings, we
compare and contrast RJR with Momentum SGD, SAM, Riemannian-SAM (Yun & Yang, 2023), and
Riemannian SGD (Bonnabel, 2013). All the experiments were trained for 500 epochs on Pytorch with

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

a Tesla V100 GPU with 40GB RAM. In all settings, the learning rate of RJR is set to 0.1 with a cosine
annealing learning rate scheduler throughout the experiments. λ1 in RJR is set to 0.5, and λ2 is set to
0.01. All the models are trained with a batch size of 256 on CIFAR100, CIFAR10, and STL10 and a
batch size of 64 on the Aircraft dataset for all methods. To measure the error, 10% of the training
set was initially allocated as a validation set to tune the hyperparameters. After rigorous testing, we
found λ1 = 0.5, λ2 = 0.01 to be robust default values, as reported in Table 4. Subsequently, we
conducted five independent runs for each setting and report the mean accuracies along with the 95%
confidence interval.

Supervised Learning. In this first setting, we examine the classification accuracy with a cross-entropy
loss on five architectures, including ResNet34, ResNet50, PyramidNet-101, EfficientNetV2-S, and
EfficientNetV2-L. In this setting, RJR is incorporated to force the orthogonality on the convolutional
layers. Specifically, we imposed orthogonality on a single convolutional layer in the middle of the
architecture in all settings. Table 1 shows that RJR generalizes better than the baselines in this
standard training setting, with an improvement of 3% on average compared to Riemannian-SAM.

Labeled Self-Supervised Learning. In this second set of experiments, we compare RJR with the
baselines on two architechtures including ResNet34 and ResNet50. This set of experiments has
two stages. The SupCon objective is trained with the baseline methods in pretraining. Then, in
the second stage, we conduct linear evaluation, that is, to freeze the parameters and train a linear
classifier. We note that in the pre-trained step, the projectional layer of SGD and SAM are linear
layers, while RJR’s is the R-Stiefel layer as discussed in Section 5.1. Therefore, the applications of
RJR in this setting are two-fold: RJR is used to impose orthogonality on the convolutional layers
and used for the R-Stiefel during pretraining. As shown in Table 2, RJR consistently outperforms
the baselines. Furthermore, we note that on ResNet50, RJR made a remarkable accuracy of 82.52%
on CIFAR100, which outperforms 7% compared to SupCon with SGD on the same setting and
consistently outperforms other baselines.

Table 2: Top-1 classification accuracy for labeled self-supervised learning settings with SupCon loss.
CIFAR100 CIFAR10 Aircraft STL10

Method ResNet50 ResNet34 ResNet50 ResNet34 ResNet50 ResNet34 ResNet50 ResNet34

SGD 75.29±.21 74.04±.23 95.99±.11 95.34±.14 82.03±.24 78.19±.32 83.33±.23 85.69±.19

SAM 76.73±.16 76.91±.15 96.31±.13 96.07±.22 82.84±.21 81.73±.13 85.02±.19 87.10±.24

RSGD 78.13±.17 77.32±.33 96.06±.19 96.25±.09 83.38±.26 83.17±.27 84.23±.22 86.03±.24

RSAM 79.46±.13 78.52±.16 96.11±.24 95.81±.22 84.02±.13 84.37±.21 88.35±.19 87.21±.18

RJR 82.52±.22 81.12±.22 96.74±.20 96.81±.19 89.93±.31 87.52±.25 91.04±.23 90.14±.29

Unlabeled Self-Supervised Learning. Similar to the previous set, this set of experiments has two
stages. In the first stage, the model was trained with the SimCLR objective (Chen et al., 2020) instead.
In this set of experiments, RJR also outperforms the baselines by a notable margin on average,
especially on CIFAR100, where RJR outperforms conventional SimCLR with SGD by a margin of
7%. We refer to Table 3 for more details.

Table 3: Top-1 classification accuracy for unlabeled self-supervised learning with SimCLR loss
CIFAR100 CIFAR10 Aircraft STL10

Method ResNet50 ResNet34 ResNet50 ResNet34 ResNet50 ResNet34 ResNet50 ResNet34

SGD 65.65±.31 63.05±.31 92.98±.22 90.98±.17 61.20±.36 59.37±.38 65.35±.24 64.23±.31

SAM 67.24±.19 64.32±.29 93.11±.23 91.16±.19 63.17±.38 64.01±.32 69.93±.26 67.83±.31

RSGD 66.31±.32 63.58±.20 93.50±.35 91.02±.31 65.01±.21 63.93±.25 68.61±.41 67.02±.35

RSAM 69.12±.35 67.26±.33 94.27±.33 92.14±.31 64.97±.43 61.82±.34 70.39±.21 70.08±.29

RJR 72.71±.23 71.04±.27 95.82±.27 92.03±.24 67.79±.41 65.25±.35 73.03±.34 73.32±.32

As discussed in Section 4.2, RJR establishes the same theoretical complexity as SAM and Riemannian-
SAM since all the additional terms can be computed efficiently in a single backward pass. However,
RJR is expected to be slower due to additional computations involving the Jacobian and Riemannian
gradients. Despite this, Appendix A.1 shows that the runtime difference is negligible, making

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

the trade-off worthwhile for the improved final performance. Besides, as demonstrated in Section
7.1, RJR effectively minimizes both the gradient norm and the Hessian spectral norm, in line with
theoretical expectations. Furthermore, our algorithm identifies low-sharpness regions on the manifold,
enhancing robustness. For a detailed behavioral comparison of SAM and RJR, we refer to Appendix
A.2, which highlights the importance of manifold-based optimization and the effectiveness of our
algorithm in minimizing both the loss function and sharpness.

7 ABLATION STUDIES

In this section, we perform several ablation studies to gain a deeper understanding of RJR’s behavior,
including its effectiveness in minimizing sharpness and its robustness to hyperparameter choices.

7.1 RJR VS. RIEMANNIAN-SAM: SHARPNESS AND HESSIAN SPECTRA

Figure 2: Hessian spectra of RSAM (left) vs. RJR (right). For RSAM, λmax = 13.93, λmax

λ5
= 3.05.

For RJR, λmax = 10.52, λmax

λ5
= 2.67.

Figure 3: Gradient norms (left) and Hessian spectral norm (right) of Riemannian-SAM and RJR.

Throughout this work, we designed RJR to simultaneously minimize the empirical loss value, gradient
norm, and Hessian spectral norm. To gain further insight into RJR’s behavior and verify whether the
algorithm successfully minimizes these three objectives, we first compare the Hessian spectrum of
ResNet34 trained on CIFAR100 over 400 steps using RJR and Riemannian-SAM. As shown in Figure
2, the model trained with RJR exhibits a significantly lower maximum eigenvalue (10.52 for RJR
compared to 13.93 for Riemannian-SAM) and a flatter eigenvalue distribution. We also assess the bulk

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

of the spectrum using the ratio λmax/λ5, a commonly used proxy for sharpness (Jastrzebski et al.,
2020), which yields values of 3.05 for Riemannian-SAM and 2.67 for RJR. Additionally, Figure 3
demonstrates that the gradient norm over time for RJR is notably lower than that of Riemannian-SAM,
suggesting that RJR effectively minimizes both the Hessian spectral norm and the gradient norm,
ultimately converging to minima with lower curvature on the manifold.

7.2 HYPERPARAMETERS SENSITIVITY

The implementation of RJR relies on two hyperparameters, λ1 and λ2. This ablation study investigates
the performance of RJR on ResNet50 and PyramidNet-101 using the CIFAR100 dataset across various
values for these hyperparameters. As shown in Tables 4 and 5, RJR demonstrated robust performance
across a wide range of hyperparameter settings, indicating a desirable level of stability to these
hyperparameters.

Table 4: Hyperparameter sensitivity on supervised setting with ResNet50 on CIFAR100 dataset.

λ2

λ1 0.01 0.1 0.5 1 2 5

0 77.85 78.95 80.15 78.13 77.86 76.32

0.01 78.96 81.97 82.52 81.69 79.32 77.81

0.1 80.36 80.33 82.31 79.93 78.81 < 70

1 77.51 78.09 77.58 78.37 74.11 <70

2 71.31 73.11 72.09 73.11 <70 <70

Table 5: Hyperparameter sensitivity on supervised setting with PyramidNet-101 on CIFAR100
dataset.

λ2

λ1 0 0.1 0.01 1 2 5

0 77.60 80.01 80.32 79.91 77.39 77.45

0.0001 81.02 81.89 83.35 82.06 78.50 76.87

1 79.81 83.47 80.79 80.08 78.65 76.01

2 78.30 81.44 81.94 78.35 77.36 75.23

5 77.14 77.10 78.15 77.46 76.71 78.09

8 CONCLUSION

We have extended the flat minimizers to differential manifolds by introducing a novel Riemannian
optimizer. Theoretically, we presented a theorem that characterizes the generalization in terms of the
Riemannian gradient and Hessian. Motivated by this analysis, we propose RJR that considers the
intrinsic geometry and simultaneously minimizes the loss function, the Riemannian gradient norm,
and the Jacobian. Empirically, RJR has demonstrated its effectiveness on different tasks with various
datasets and consistently outperforms the comparative methods by a notable margin.

Limitations and Future works. Similar to other Riemannian optimizers such as Riemannian-SAM
or RSGD, a limitation of RJR is that the method is only applicable to the class of Riemannian
manifolds where the operations such as retraction and projection are well-defined. Even though this
class of manifolds has demonstrated a wide range of applications in deep learning literature, further
studies are still needed for a broader class of manifolds, such as general transformer architecture.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REPRODUCIBILITY STATEMENT

Regarding the theoretical results, all the proof of the theories can be found in our appendix. Regarding
the experiments, we have provided the necessary details to reproduce in Section 4.2 and Section 6,
including the experimental settings, algorithm, hyperparameters details, and hardware details.

REFERENCES

Momin Abbas, Quan Xiao, Lisha Chen, Pin-Yu Chen, and Tianyi Chen. Sharp-maml: Sharpness-
aware model-agnostic meta learning. arXiv preprint arXiv:2206.03996, 2022.

Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization Algorithms on Matrix
Manifolds, volume 78. 12 2008a. ISBN 978-0-691-13298-3. doi: 10.1515/9781400830244.

Pierre-Antoine Absil, Robert Mahony, and Rodolphe Sepulchre. Optimization Algorithms on Matrix
Manifolds, volume 78. 12 2008b. ISBN 978-0-691-13298-3. doi: 10.1515/9781400830244.

Pierre Alquier. User-friendly introduction to pac-bayes bounds, 2023.

Dara Bahri, Hossein Mobahi, and Yi Tay. Sharpness-aware minimization improves language
model generalization. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp. 7360–7371, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.508. URL
https://aclanthology.org/2022.acl-long.508.

Silvere Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE Transactions on
Automatic Control, 58(9):2217–2229, sep 2013. doi: 10.1109/tac.2013.2254619. URL https:
//doi.org/10.1109%2Ftac.2013.2254619.

Nicolas Boumal. An introduction to optimization on smooth manifolds. Cambridge University Press,
2023. doi: 10.1017/9781009166164. URL https://www.nicolasboumal.net/book.

Nicolas Boumal and P.-A. Absil. Low-rank matrix completion via preconditioned optimization on the
grassmann manifold. Linear Algebra and its Applications, 475:200–239, 2015. ISSN 0024-3795.
doi: https://doi.org/10.1016/j.laa.2015.02.027. URL https://www.sciencedirect.com/
science/article/pii/S0024379515001342.

Junbum Cha, Sanghyuk Chun, Kyungjae Lee, Han-Cheol Cho, Seunghyun Park, Yunsung Lee,
and Sungrae Park. Swad: Domain generalization by seeking flat minima. Advances in Neural
Information Processing Systems, 34:22405–22418, 2021.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations, 2020.

Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets
without pre-training or strong data augmentations. arXiv preprint arXiv:2106.01548, 2021.

Wei Dai, Ely Kerman, and Olgica Milenkovic. A geometric approach to low-rank matrix completion.
IEEE Transactions on Information Theory, 58(1):237–247, 2012. doi: 10.1109/TIT.2011.2171521.

Guillaume Desjardins, Karen Simonyan, Razvan Pascanu, et al. Natural neural networks. In Advances
in Neural Information Processing Systems, pp. 2071–2079, 2015.

Jiawei Du, Daquan Zhou, Jiashi Feng, Vincent YF Tan, and Joey Tianyi Zhou. Sharpness-aware
training for free. arXiv preprint arXiv:2205.14083, 2022.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In International Conference on Learning Representations,
2021a. URL https://openreview.net/forum?id=6Tm1mposlrM.

Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization
for efficiently improving generalization. In 9th International Conference on Learning Repre-
sentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021b. URL
https://openreview.net/forum?id=6Tm1mposlrM.

11

https://aclanthology.org/2022.acl-long.508
https://doi.org/10.1109%2Ftac.2013.2254619
https://doi.org/10.1109%2Ftac.2013.2254619
https://www.nicolasboumal.net/book
https://www.sciencedirect.com/science/article/pii/S0024379515001342
https://www.sciencedirect.com/science/article/pii/S0024379515001342
https://openreview.net/forum?id=6Tm1mposlrM
https://openreview.net/forum?id=6Tm1mposlrM

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Zhi Gao, Yuwei Wu, Yunde Jia, and Mehrtash Harandi. Learning to optimize on spd manifolds. In
2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7697–7706,
2020. doi: 10.1109/CVPR42600.2020.00772.

Keith Hall and Thomas Hofmann. Learning curved multinomial subfamilies for natural language
processing and information retrieval. pp. 351–358, 01 2000.

Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyramidal residual networks. arXiv preprint
arXiv:1610.02915, 2017.

Pavel Izmailov, Dmitrii Podoprikhin, Timur Garipov, Dmitry Vetrov, and Andrew Gordon Wilson. Av-
eraging weights leads to wider optima and better generalization. arXiv preprint arXiv:1803.05407,
2018.

Stanislaw Jastrzebski, Maciej Szymczak, Stanislav Fort, Devansh Arpit, Jacek Tabor, Kyunghyun
Cho, and Krzysztof Geras. The break-even point on optimization trajectories of deep neural
networks, 2020.

Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt Kusner. When do flat minima optimizers work?
In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho (eds.), Advances in
Neural Information Processing Systems, 2022a. URL https://openreview.net/forum?
id=vDeh2yxTvuh.

Jean Kaddour, Linqing Liu, Ricardo Silva, and Matt J. Kusner. Questions for flat-minima optimization
of modern neural networks. CoRR, abs/2202.00661, 2022b. URL https://arxiv.org/abs/
2202.00661.

Hiroyuki Kasai, Pratik Jawanpuria, and Bamdev Mishra. Riemannian adaptive stochastic gra-
dient algorithms on matrix manifolds. In Kamalika Chaudhuri and Ruslan Salakhutdinov
(eds.), Proceedings of the 36th International Conference on Machine Learning, volume 97 of
Proceedings of Machine Learning Research, pp. 3262–3271. PMLR, 09–15 Jun 2019. URL
https://proceedings.mlr.press/v97/kasai19a.html.

Nitish Shirish Keskar, Dheevatsa Mudigere, Jorge Nocedal, Mikhail Smelyanskiy, and Ping Tak Peter
Tang. On large-batch training for deep learning: Generalization gap and sharp minima. CoRR,
abs/1609.04836, 2016. URL http://arxiv.org/abs/1609.04836.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning, 2021.

Minyoung Kim, Da Li, Shell X Hu, and Timothy Hospedales. Fisher SAM: Information geometry
and sharpness aware minimisation. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (eds.), Proceedings of the 39th International Conference
on Machine Learning, volume 162 of Proceedings of Machine Learning Research, pp. 11148–
11161. PMLR, 17–23 Jul 2022a.

Minyoung Kim, Da Li, Shell Xu Hu, and Timothy M. Hospedales. Fisher sam: Information geometry
and sharpness aware minimisation, 2022b.

Jungmin Kwon, Jeongseop Kim, Hyunseo Park, and In Kwon Choi. Asam: Adaptive sharpness-aware
minimization for scale-invariant learning of deep neural networks. In International Conference on
Machine Learning, pp. 5905–5914. PMLR, 2021.

Sungyoon Lee, Jinseong Park, and Jaewook Lee. Implicit Jacobian regularization weighted with
impurity of probability output. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International
Conference on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pp.
19141–19184. PMLR, 23–29 Jul 2023. URL https://proceedings.mlr.press/v202/
lee23q.html.

Zhouzi Li, Zixuan Wang, and Jian Li. Analyzing sharpness along gd trajectory: Progressive
sharpening and edge of stability, 2022.

12

https://openreview.net/forum?id=vDeh2yxTvuh
https://openreview.net/forum?id=vDeh2yxTvuh
https://arxiv.org/abs/2202.00661
https://arxiv.org/abs/2202.00661
https://proceedings.mlr.press/v97/kasai19a.html
http://arxiv.org/abs/1609.04836
https://proceedings.mlr.press/v202/lee23q.html
https://proceedings.mlr.press/v202/lee23q.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yong Liu, Siqi Mai, Xiangning Chen, Cho-Jui Hsieh, and Yang You. Towards efficient and scalable
sharpness-aware minimization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 12360–12370, 2022.

David Luenberger. The gradient projection method along geodesics. Management Science, 18:
620–631, 07 1972. doi: 10.1287/mnsc.18.11.620.

Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained
visual classification of aircraft, 2013. URL https://arxiv.org/abs/1306.5151.

Thomas Möllenhoff and Mohammad Emtiyaz Khan. SAM as an optimal relaxation of bayes.
In The Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=k4fevFqSQcX.

Van-Anh Nguyen, Trung Le, Anh Tuan Bui, Thanh-Toan Do, and Dinh Phung. Optimal transport
model distributional robustness. In Advances in Neural Information Processing Systems, 2023a.

Van-Anh Nguyen, Tung-Long Vuong, Hoang Phan, Thanh-Toan Do, Dinh Phung, and Trung Le. Flat
seeking bayesian neural networks. In Advances in Neural Information Processing Systems, 2023b.

Hoang Phan, Ngoc Tran, Trung Le, Toan Tran, Nhat Ho, and Dinh Phung. Stochastic multiple target
sampling gradient descent. Advances in neural information processing systems, 2022.

Zhe Qu, Xingyu Li, Rui Duan, Yao Liu, Bo Tang, and Zhuo Lu. Generalized federated learning via
sharpness aware minimization. arXiv preprint arXiv:2206.02618, 2022.

Pau Rodríguez, Jordi Gonzalez, Guillem Cucurull, Josep M Gonfaus, and Xavier Roca. Regularizing
cnns with locally constrained decorrelations. arXiv preprint arXiv:1611.01967, 2016.

Soumava Roy, Mehrtash Harandi, Richard Nock, and Richard Hartley. Siamese networks: The tale
of two manifolds. In 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
3046–3055, 2019. doi: 10.1109/ICCV.2019.00314.

Hiroyuki Sato, Hiroyuki Kasai, and Bamdev Mishra. Riemannian stochastic variance reduced gradient
algorithm with retraction and vector transport. SIAM Journal on Optimization, 29(2):1444–1472,
jan 2019. doi: 10.1137/17m1116787. URL https://doi.org/10.1137%2F17m1116787.

X. Sun, Z. Zhang, X. Ren, R. Luo, and L. Li. Exploring the vulnerability of deep neural networks: A
study of parameter corruption. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 35, pp. 9284–9291, 2021.

Mingxing Tan and Quoc V Le. Efficientnetv2: Smaller models and faster training. In International
Conference on Machine Learning, pp. 10096–10106. PMLR, 2021.

Jiayun Wang, Yubei Chen, Rudrasis Chakraborty, and Stella X. Yu. Orthogonal convolutional neural
networks, 2020.

Di Xie, Jiang Xiong, and Shiliang Pu. All you need is beyond a good init: Exploring better solution
for training extremely deep convolutional neural networks with orthonormality and modulation,
2017.

Jihun Yun and Eunho Yang. Riemannian sam: Sharpness-aware minimization on riemannian
manifolds. Neural Information Processing Systems, 2023.

Hongyi Zhang, Sashank J. Reddi, and Suvrit Sra. Riemannian svrg: Fast stochastic optimization on
riemannian manifolds, 2017.

Juntang Zhuang, Boqing Gong, Liangzhe Yuan, Yin Cui, Hartwig Adam, Nicha Dvornek, Sekhar
Tatikonda, James Duncan, and Ting Liu. Surrogate gap minimization improves sharpness-aware
training. arXiv preprint arXiv:2203.08065, 2022.

13

https://arxiv.org/abs/1306.5151
https://openreview.net/forum?id=k4fevFqSQcX
https://openreview.net/forum?id=k4fevFqSQcX
https://doi.org/10.1137%2F17m1116787

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL EXPERIMENTS

A.1 WALL-CLOCK RUNTIME

In this ablation, we compare the single-epoch wall-clock runtimes of SGD, SAM, Riemannian-SAM,
RSGD, and RJR. It is expected that SAM, Riemannian-SAM, and RJR take at least twice as long
as SGD or RSGD because these methods involve double backward-forward computation in each
iteration. Since the RJR requires additional computations such as the Riemannian gradients and the
Jacobians as shown in Algorithm 1, it is expected that the RJR would take longer than Riemannian-
SAM. However, as shown in Table 6, we emphasize that these additional computations can be done
efficiently. In particular, while the RJR improves the classification accuracies by a notable margin,
its wallclock runtime is only slightly slower than Riemannian-SAM by a 4% gap overall, therefore
worth the tradeoff for better performance as well as robustness.

Table 6: Per-epoch wall-clock runtime in seconds.
Method CIFAR100 CIFAR10 AirCraft

RN34 RN50 RN34 RN50 RN34 RN50

SGD 21.5±1.73 40.1±2.96 21.4±1.72 38.8±3.05 57.6±2.59 114.5±4.77

RSGD 30.5±2.35 46.3±3.87 28.1±0.23 47.6±1.52 64.8±1.02 130.2±3.25

SAM 49.1±1.68 83.9±2.79 48.8±1.62 84.7±2.68 125.3±1.3 245.6±4.30

RSAM 50.6±1.66 85.7±3.14 49.1±1.90 88.3±2.79 127.9±2.1 253.2±3.82

RJR 51.8±2.97 88.6±1.42 51.6±1.03 92.4±1.63 132.0±1.4 260.8±2.20

A.2 RJR VS. SAM: BEHAVIORAL COMPARISON

In the previous section, we demonstrated the efficiency of RJR compared to Riemannian-SAM. In this
section, we emphasize the importance of optimization on Riemannian manifolds in different scenarios
and the effectiveness of RJR in accomplishing this task. We designed a simple experiment on the
MNIST dataset to show a particular case where RJR is favorably robust compared to SAM, which did
not take into account the intrinsic geometry. Indeed, we train a simple PCA-style autoencoder that
aims to find an orthogonal matrix W which encodes each input x into lower-dimensional z = xW,
and then decodes as x̃ = zW⊤. The encoded vector z is then used for the classification. Therefore,
the objective that we will minimize is the reconstruction loss, which is regularized with a classification
loss. Since W is constrained to be orthogonal, we want it to stay within a Stiefel manifold during
training. To enforce orthogonality with SAM, an orthogonal regulazrizer ∥W⊤W − Id∥22 is added,
which gives the objective:

LS(W) =
1

n

n∑
i=1

∥xi − x̃i∥22 + βCrossEntropyLoss(zi,yi) + γ∥W⊤W − Id∥22.

To emphasize the importance of remaining in the Stiefel manifold during training in this case, we
examine the effects attributable to the different values of γ - the hyperparameter associated with
the regularizer ∥W⊤W − Id∥22 that characterizes how orthogonal W is. In this set of experiments,
we set the batch size to 16, the learning rate to 0.1, β = 0.1, and λ1 = 0.3, λ2 = 0.01. Figure 4
reports 1) the loss value over time, 2) the gradient norm of the loss function over time, and 3) the
values of the orthogonal regularizer, which measures how orthogonal the parameters were. For the
convergence of the loss function, the smaller γ is, the better SAM can keep up with RJR because the
orthogonal regularization has less impact on the final loss function. However, in such cases, W fails
to be orthogonal, demonstrating that SAM is remarkably sensitive to the orthogonal regularization.
Hence, we emphasize that by explicitly enforcing W to be on the Stiefel manifold, RJR eliminates
this vulnerability, remarkably reducing the sharpness and leading to better loss convergence as shown
in Figure 4. In short, Figure 4 suggests that in certain scenarios, taking into account the intrinsic
geometry of the parameters can notably enhance the model’s robustness, and we claim that RJR is
favorable to learn on manifolds in these scenarios.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 4: Comparision between SAM with different λ’s and RJR (black) on MNIST dataset regarding
a) Loss value, b) Gradient norm, and c) Value of the orthogonal regularizer ∥W⊤W − Id∥22.

A.3 MODEL ROBUSTNESS

In addition to its generalization ability, another desirable feature of the proposed approach is the
robustness of the trained model. Recently, adversarial perturbations have been introduced as a way to
assess the vulnerability of neural networks by considering the worst-case scenario under parameter
corruption, which involves perturbation in the direction of the gradient (Sun et al., 2021). Specifically,

the perturbation is defined as θ′ = θ+α
∇LS(θ)

∥∇LS(θ)∥
. It has been shown that sharpness-aware methods

can improve model robustness (Kim et al., 2022b). In this section, we apply this perturbation to a
ResNet50 model trained with RJR, Riemannian-SAM, and SGD on CIFAR10, with the perturbation
strength α varying from 0 to 4.0. As shown in Figure 5, RJR exhibits less performance degradation
as α increases compared to Riemannian-SAM and SGD.

Figure 5: Robustness w.r.t adversarial parameter purturbation.

B PROOF OF LEMMA 1

Proof. In our proof, we introduce a few additional notations. Recall that the model fθ(x) outputs a
logit vector z = fθ(x). The logic vector z is then given as an input to the softmax function to yield a
probability output p ≡ Softmax(z) ∈ ∆C−1 where ∆C−1 ≡ {p ∈ [0, 1]C : 1⊤p = 1,p ≥ 0}. We
want the model to match the most probable class c1 to the true label y where c(x) ≡ argsort(p) in

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

descending order. We interchangeably denote the probability value corresponding to the true label y
as p ≡ py ∈ [0, 1]. Notice that the logit Hessian matrix M ≡ ∇2

z ℓ is fully characterized by p, that is,
M = diag(p)− pp⊤. Since this is a rank-one modification of a diagonal matrix, we can obtain its
eigenvalues {λ(i)}Ci=1 where λ(i) is the i−th largest eigenvalue of M. We can also obtain the same
ordered index of (i) ∈ [C] with parentheses for the probability output p ∈ ∆C−1, i.e. ci = (i) and
p(1) ≥ p(2) ≥ · · · ≥ p(C), because the ordering is related to the eigenvalues {λ(i)}Ci=1 as shown in
the following lemma, whose proof can be found in Theorem 4.1 by Lee et al. (2023)

Lemma 2. (Eigen system of the logit Hessian M) Then eigenvalues λ(1) ≥ λ(2) ≥ · · · ≥ λ(C) of the
logit Hessian M ≡ ∇2

z ℓ = diag(p)− pp⊤ satisfies the following properties:

1. p(i+1) ≤ λ(i) ≤ p(i) for 1 ≤ i ≤ C − 1, and λ(C) = 0

2. λ(1) ≤ 2p(1)(1− p(1))

Proof. The proof can be found in Theorem 4.1 Lee et al. (2023).

Furthermore, we note that the Frobenius norm of the Jacobian can be efficiently computed with an
unbiased estimator:

∥J∥2F = Eϵ∼U(SC−1)[∥Jϵ∥2] = Eϵ∼U(SC−1)[∥∇θ(ϵ
⊤z)∥2].

Now we are ready to prove our lemma. Indeed, according to the Gauss-Newton approximation as
derived by Lee et al. (2023), the Hessian of the loss function ℓ for a single sample x for the model
parameter can be expressed as:

∇2
θℓ = ∇θz∇2

zℓ∇θz
⊤ +

C∑
c=1

∇2
θzc∇zc

ℓ ≈ ∇θz∇2
zℓ∇θz

⊤.

For now, we denote x(i) to be the i−th sample and denote z(i), ℓ(i),J(i) to be the corresponding
logit, the loss function, and the Jacobian for the given example x(i), respectively. Notice that we have
∇θz = J. Then, we have the following inequalities:

∥Pθ∇2LS∥σ = ∥ 1
n

n∑
i=1

Pθ∇2ℓ(i)∥σ ≈ ∥ 1
n

n∑
i=1

Pθ∇θ(z(i))⊤∇2
z ℓ

(i)∇θz(i)∥σ

≤ 1

n

n∑
i=1

∥Pθ∇θ(z(i))⊤∇2
z ℓ

(i)∇θz(i)∥σ.

Utilizing the identities above along with Lemma 2, we have the following chain of inequalities:

1

n

n∑
i=1

∥Pθ∇θ(z(i))⊤∇2
z ℓ

(i)∇θz(i)∥σ ≤ 1

n

n∑
i=1

∥PθJ(i)∥σ∥∇2
z ℓ

(i)∥σ∥J(i)∥σ

≤
2p(1)(1− p(1))

n

n∑
i=1

∥PθJ(i)∥σ∥J(i)∥σ

≤
2p(1)(1− p(1))

n

n∑
i=1

∥PθJ(i)∥F ∥J(i)∥F

≤ 2p(1)(1− p(1))
√

Eϵ∼U(SC−1)[∥gradθ(zϵ)∥2]× Eϵ∼U(SC−1)[∥∇θ(zϵ)∥2]

≤

√
Eϵ∼U(SC−1)[∥gradθ(zϵ)∥2]× Eϵ∼U(SC−1)[∥∇θ(zϵ)∥2]

2

which concludes our proof.

To further proceed with our proof, we must introduce the concept of Riemannian Hessian. Indeed,
the Riemannian Hessian of a function is defined as the covariant derivative of its gradient vector field
for the Riemannian connection ∇. More formally, we have the following definition:

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Definition 2. Let M be a Riemannian manifold with its Riemannian connection ∇ (we refer to
Boumal (2023) for more details about Riemannian connections). The Riemannian Hessian of f at
x ∈ M is the linear map Hessf(x) : TxM → TxM defined as follows:

Hessf(x)[u] = ∇xgradf.

We will make use of a property about Riemannian Hessian, whose proof can be found in Boumal
(2023):
Lemma 3. Let M be a Riemannian submanifold of an Euclidean space. Consider a smooth function
f : M → R. Let G be a smooth extension of gradf , that is, G is any smooth vector field defined on
a neighborhood of M in the embedding space such that G(x) = gradf(x) for all x ∈ M. Then, we
have the following properties:

Hessf(x)[u] = Px(DG(x)[u]).

We prove the following inequality regarding the Riemannian Hessian.
Lemma 4. (Riemannian Hessian approximation) Suppose that θ ∈ M, and ϵ ∈ TθM. Then, we
have the following inequality for some constant m > 0

⟨HessLS(θ)[ϵ], ϵ⟩θ ≤ ∥ϵ∥2
(
m∥gradθLS(θ)∥+ ∥Pθ∇2

θLS(θ)∥σ
)
.

Proof. We start with the definition of the Hessian of a loss function:
HessLS(θ)[ϵ] = Pθ(DgradθLS(θ)[ϵ]) Def. of Riemannian Hessian

= Pθ(DPθ∇θLS(θ)[ϵ]) Property of Riemannian gradient
= Pθ ⟨gradθ(Pθ∇θLS(θ)), ϵ⟩θ Property of differential
= Pθ ⟨Pθ∇θ(Pθ∇θLS(θ)), ϵ⟩θ Property of Riemannian gradient

= Pθ

〈
Pθ∇2

θLS(θ) +
(
Pθ∇θLS(θ)

)⊤
∇(P⊤

θ), ϵ

〉
θ

Product rule

= Pθ

(
∇2

θLS(θ)
)⊤

ϵ+
(
Pθ∇θLS(θ)

)⊤
∇(P⊤

θ) · ϵ Def. of the Riemannian metric

= Pθ

(
∇2

θLS(θ)
)⊤

ϵ+
(
gradθLS(θ)

)⊤
∇(P⊤

θ) · ϵ Property of Riemannian gradient

So, we have the following:
⟨HessLS(θ)[ϵ], ϵ⟩θ = ϵ⊤Pθ∇2

θLS(θ)ϵ+ ϵ⊤(gradθLS(θ))
⊤∇(P⊤

θ)ϵ

Regarding the first term, we have the following inequality:
ϵ⊤Pθ∇2

θLS(θ)ϵ ≤ ∥ϵ⊤Pθ∇2
θLS(θ)ϵ∥ ≤ ∥Pθ∇2

θLS(θ)∥σ∥ϵ∥2

Now we bound the second term. We have the following:

∥ϵ⊤(gradθLS(θ))
⊤∇(P⊤

θ)ϵ∥ ≤
k∑

i=1

k∑
j=1

∥ϵiϵj∥∥gradθLS(θ)
⊤∇(P⊤

θ)i∥

where we note that ∇(P⊤
θ)i is the i−th column of a 3D tensor, and ϵi denotes the −ith element of

ϵ. Equivalently, it is the gradient of the i−th column of P⊤
θ , that is ∇(P⊤

θ)i. Notice that (P⊤
θ)i is a

unit vector. Also, M is assumed to be bounded and smooth, so there exists a constant m = O(k)
such that ∥∇(P⊤

θ)i∥ ≤ m
3 for all i. Hence, we have:

k∑
i=1

k∑
j=1

∥ϵiϵj∥∥gradθLS(θ)
⊤∇(P⊤

θ)i∥ ≤ m

3

k∑
i=1

k∑
j=1

∥ϵiϵj∥∥gradθLS(θ)∥

≤ 3
m

3

k∑
i=1

∥ϵi∥2∥gradθLS(θ)∥

= m∥gradθLS(θ)∥∥ϵ∥2.
Combining the two inequalities for two terms, we conclude the following inequality:

⟨HessLS(θ)[ϵ], ϵ⟩θ ≤ ∥ϵ∥2
(
m∥gradθLS(θ)∥+ ∥Pθ∇2

θLS(θ)∥σ
)
. (5)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C PROOF OF THEOREM 1

We first state several notations and settings that will be used throughout the proof. We are given a
training dataset S = {(xi, yi)}ni=1 drawn i.i.d from a distribution D, we consider a family of models
parameterized by θ ∈ M ⊆ Rk. Given a per-data-point loss function ℓ, we recall the definition of
the training set loss

LS(θ) =
1

n

n∑
i=1

ℓ(θ,xi,yi)

and the population loss LD(θ) = E(x,y)∼D
[
ℓ(θ,x,y)

]
. Suppose that the model space is an embedded

Riemannian submanifold M ⊂ Rk that has d < k dimensions. Consider a point θ ∈ M, denote
by TθM the tangent space of M at a point θ ∈ M, which is homeomorphic to M and also has
dimensionality of d.

Since M is assumed to be bounded, for every ε > 0, there exists a set {θi}Ji=1 of predefined
points on the manifold M that forms an ε-net of M with respect to the geodesic distance on M.
Indeed, for each θ ∈ M, there exists i such that θ lies inside a neighborhood of θi such that
dM(θi,θ) = di < ε, in which dM is the geodesic distance on manifold M. So, we can define the
following J neighborhoods on M centered at θj :

Rj =
{
θ ∈ M|dM(θ,θj) ≤ ε

}
.

Now, we are ready to prove our main theorem. Indeed, we restate the theorem statement:

Theorem 1. Assuming that the loss function L is K−Lipschitz and the parameter space is a bounded
manifold. Then, for any small ρ > 0 and δ ∈ (0, 1), with a high probability 1− δ over the training
set S generated from a distribution D, the following holds:

LD(θ) ≤ LS(θ) +Mρ∥gradθLS(θ)∥θ +
ρ2

2
∥Pθ∇2

θLS(θ)∥σ +O

(
ρ+D

√
d log 1

ρ + log 1
δ

2n

)

for constants M,D and Pθ∇2LS(θ) is formed by projecting the columns of the Euclidean Hessian
matrix ∇2LS(θ) to the tangent space.

Proof. Since M is assumed to be compact, it is bounded, and for every ρ > 0, there exists a set
{θi}Ji=1 of predefined points on the manifold M that forms an ρ-net of M with respect to the geodesic
distance on M. Indeed, for each θ ∈ M, there exists i such that θ lies inside a neighborhood of θi
such that dM(θi,θ) = di < ρ, in which dM is the geodesic distance on manifold M. Since the loss
function L is K-Lipschitz, we have:∣∣LD(θ)− LD(θi)

∣∣ ≤ Kdi = Kρ. (6)

We have the following lemma regarding PAC-Bayes bound, whose proof can be found at Alquier
(2023):

Lemma 5. Suppose that θ ∈ θ, let R(θ) = E(X,Y)∼P [ℓ(fθ(X), Y)], and r(θ) = 1
n

∑n
i=1 ℓi(θ),

assume that card(θ) = M < ∞. Then, for any ε ∈ (0, 1),

PS

(
∀θ ∈ θ, R(θ) ≤ r(θ) +D

√
log M

ε

2n

)
≥ 1− ε

Proof. The proof can be found in Alquier (2023).

Applying the lemma above for θ = {θj}Jj=1, we have with a probability of at least 1 − δ, the
following inequality holds:

LD(θj) ≤ LS(θj) +D

√
log J

δ

2n
. (7)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Let ϵ = Logθ(θj) be the image of θj under the logarithmic map, that is, the vector on TθM such
that Rθ(ϵ) = θj . Notice that we have dM(θ,θj) ≤ ρ, so ∥ϵ∥ ≤ ρ. Thus, with probability at least
1− δ we have the following inequalities

LD(θ)
6
≤ LD(θj) +Kρ

7
≤ LS(θj) +D

√
log J

δ

2n
+Kρ

≤ LS(Rθ(ϵ)) +D

√
log J

δ

2n
+ 2Kρ

≤ LS(θ) + ⟨gradθLS(θ), ϵ⟩θ +
1

2
⟨HessLS(θ)[ϵ], ϵ⟩+O(∥ϵ∥3) +D

√
log J

δ

2n
+ 2Kρ

≤ LS(θ) + ∥gradθLS(θ)∥θ∥ϵ∥θ +
1

2
ϵ⊤HessLS(θ)[ϵ] + 2Kρ+D

√
log J

δ

2n

5
≤ LS(θ) + ∥gradθLS(θ)∥θ∥ϵ∥θ +

1

2
∥ϵ∥2

(
m∥gradθLS(θ)∥+ ∥Pθ∇2

θLS(θ)∥σ

)
+ 2Kρ+D

√
log J

δ

2n

≤ LS(θ) + ∥gradθLS(θ)∥θρ+
1

2
ρ2

(
m∥gradθLS(θ)∥+ ∥Pθ∇2

θLS(θ)∥σ

)
+ 2Kρ+D

√
log J

δ

2n
.

When ρ is small, we have ρ2(m∥gradθLS(θ)∥) ≪ ρ∥gradθLS(θ)∥θ . Hence, there is a constant M
such that:

LD(θ) ≤ LS(θ) +Mρ∥gradθLS(θ)∥θ +
ρ2

2
∥Pθ∇2

θLS(θ)∥σ + 2Kρ+D

√
log J

δ

2n

for some constant M > 0. Now we are left to bound J , the number of ρ−balls covering M.
Recall that M is a d−dimensional manifold covered within J ρ-balls. If we denote Rj to be the
ρ−ball with the center θi, then vol(Rj) = O(ρd), implying J = O(maxj diam(M)d/ρd), thus
log J = O(d log K

ρ), in which K = diam(M) < +∞ since we assume M is bounded.

Hence, we conclude that:

LD(θ) ≤ LS(θ) +Mρ∥gradθLS(θ)∥θ +
ρ2

2
∥Pθ∇2

θLS(θ)∥σ +O
(
ρ+D

√
d log 1

ρ + log 1
δ

2n

)
.

19

	Introduction
	Related Works
	Preliminaries
	Formulations and Notations
	Background on Riemannian Geometry

	Riemannian Jacobian Regularization
	Theoretical Development
	Practical Algorithm

	Applications to Supervised and Self-Supervised Learning
	Metric Learning for Self-supervised Learning
	Orthogonal Convolutional Neural Network

	Experimental Results
	Ablation Studies
	RJR vs. Riemannian-SAM: Sharpness and Hessian spectra
	Hyperparameters Sensitivity

	Conclusion
	Additional Experiments
	Wall-clock runtime
	RJR vs. SAM: Behavioral comparison
	Model Robustness

	Proof of Lemma 1
	Proof of Theorem 1

