
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

SOFTMAX FOR CONTINUOUS ACTIONS: OPTIMALITY,
MCMC SAMPLING, AND ACTOR-FREE CONTROL

Anonymous authors
Paper under double-blind review

ABSTRACT

As a mathematical solution to entropy-regularized reinforcement learning, soft-
max policies play important roles in facilitating exploration and policy multi-
modality. However, the use of softmax has mainly been restricted to discrete ac-
tion spaces, and significant challenges exist, both theoretically and empirically, in
extending its use to continuous actions: Theoretically, it remains unclear how con-
tinuous softmax approximates hard max as temperature decreases, which existing
discrete analyses cannot handle. Empirically, using a stand actor architecture (e.g.,
with Gaussian noise) to approximate softmax is subject to the limited expressiv-
ity, while leveraging complex generative models can involve more sophisticated
loss design. Our work address these challenges with a simple Deep Decoupled
Softmax Q-Learning (DDSQ) algorithm and associated analyses, where we di-
rectly implement a continuous softmax of the critic without using a separate actor,
eliminating the bias due to actor’s expressivity constraint. Theoretically, we pro-
vide theoretical guarantees on the suboptimality of continuous softmax based on a
novel volume-growth characterization of the level sets in action spaces. Algorith-
mically, we establish a critic-only training framework that samples from softmax
via state-dependent Langevin dynamics. Experiments on MuJoCo benchmarks
demonstrate strong performance with balanced training cost.

1 INTRODUCTION

Maximum entropy regularization is a standard framework in reinforcement learning to enhance pol-
icy multimodality (Ziebart et al., 2008; Haarnoja et al., 2017) and improve training robustness (Ey-
senbach & Levine, 2022), which induces the softmax distribution as a closed-form solution. Existing
research on softmax (Song et al., 2019; Smirnova & Dohmatob, 2020) are often restricted to finite
and discrete actions. When it comes to continuous actions (Van Hasselt & Wiering, 2007), a standard
approach is to use a separate actor to optimize the entropy-regularized objective, which inevitably
results in a discrepancy between the actor distribution and the real softmax policy (see Figure 4), es-
pecially when actor architecture induces relatively simple action distributions (Agarwal et al., 2021).
While one can deploy more sophisticated generative architectures like diffusion or flow models for
actor parameterization (Tang & Agrawal, 2020; Janner et al., 2022; Ma et al., 2025), instabilities can
occasionally occur during training (Barceló et al., 2024), and the computational cost of the forward
& backward processes can be high (Kang et al., 2023). On top of that, maintaining and tuning two
separate complex neural-nets (the actor and the critic) at the same time can be demanding, and the
complex losses handcrafted for generative models further adds to the complexity of the methods
(Ajay et al., 2022; Black et al., 2023).

In this work, we propose a simple mitigation to the above problems, where we directly extend soft-
max to continuous actions and propose a critic-only algorithm without actors. In contrast to existing
approaches that treat softmax policy approximation as an optimization problem for minimizing the
distance between actor action distribution and the real solution to entropy regularization, we frame
it as a sampling problem (Levine, 2018) and leverage Markov Chain Monte Carlo (MCMC) tech-
niques, especially Langevin dynamics, to tackle sparsity and heterogeneity of high-dimensional
spaces (Neal et al., 2011; Welling & Teh, 2011). The result is a simple, actor-free framework for
deep continuous control, which we call Deep Decoupled Softmax Q-Learning (DDSQ). Our contri-
butions can be outlined as follows.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

• Continuous Softmax Analysis. In Section 3, we analyze the approximation error of softmax
policies w.r.t. hard max. A suboptimality guarantee is established, based on a novel volume-
growth characterization of the level sets in action spaces. We apply this result to provide conver-
gence analyses of softmax value iteration for continuous actions.

• Non-Parametric MCMC. In Section 4, we formulate continuous softmax policies as a non-
parametric, actor-free Langevin sampler. To promote more stable sampling, we propose several
design choices, including SNIS initialization as an informative accelerator, specular reflection to
handle boundary stagnation, and a careful selection of candidate step schedules.

• Empirical Validation. In Section 5, We train DDSQ across eight continuous control tasks in
the MuJoCo suite. The main results demonstrate that DDSQ achieves strong performance with
reasonable training time, while additional studies confirm its ability to capture multimodal policies
and offer more flexible temperature control.

Broader Relevance Our work also bears significance beyond the specific scope of the paper, as
softmax policies are an important tool that plays fundamental roles in RL theory, yet their use is
mostly restricted to finite and discrete action spaces. In particular, softmax policies are the analytical
solution to the entropy-regularized objective (Neu et al., 2017; Haarnoja et al., 2018), which has
gained popularity in RLHF for LLMs recently (Christiano et al., 2017; Xiong et al., 2023; Chen
et al., 2024). The use of softmax policies in RL can often be viewed as an application of mirror
descent (Beck & Teboulle, 2003) and natural policy gradient (Kakade, 2001), which are frequently
the key to achieving strong theoretical guarantees in both offline (Xie et al., 2023) and online RL
(Liu et al., 2023). Our work, both the theoretical analyses in Section 3 and 4, and the practical
implementation in Section 5, lays the foundation of extending the theoretical results in the literature
to the more challenging continuous-action domains.

2 PRELIMINARIES

Markov Decision Processes. The Markov Decision Process (MDP) is represented by a tuple
(S,A, P,R, γ), where P : S × A → ∆(S) governs state transitions and R : S × A → [0, Rmax]
assigns scalar rewards. The central objective in policy optimization is to maximize the discounted
return maxπ J(π) := E [

∑∞
t=0 γ

tR(st, at)] ,where s0 ∼ d0, at ∼ π(·|st), and st+1 ∼ P (·|st, at).
We define the state-action value function as

Qπ(s, a) = Eπ

[
+∞∑
t=0

γtR(st, at)

∣∣∣∣ s0 = s, a0 = a

]
∈ [0, Vmax],

where Vmax = Rmax

1−γ . It represents the expected cumulative return starting from state-action pair
(s, a) under policy π. It is also the unique fixed point of the (policy-specific) Bellman operator T π ,
defined as (T πf)(s, a) = R(s, a)+γEs′∼P (·|s,a)[f(s

′, π)], where f(s′, π) = Ea′∼π(·|s′) [f(s
′, a′)].

The value function w.r.t. an optimal policy particularly serves as a unique solution to f(s, a) =
R(s, a) + γEs′∼P (·|s,a) [maxa′∈A f(s′, a′)], the Bellman optimality equation.

Softmax Policies and Softmax Value Iteration. Given a measurable space (X , µ) equipped with
a base measure µ (the counting measure # in the discrete case and the Lebesgue measure L in
the continuous case), an entropy-regularized optimization problem (Neu et al., 2017) aims to find a
density π w.r.t. µ that maximizes∫

X
f(x)π(x)dµ(x) + λH(π), H(π) = −

∫
X
π(x) log π(x)dµ(x)

for some target function f : X → R and some temperature parameter λ > 0. Its closed-
form solution is essentially a Boltzmann (softmax) distribution πf

soft(x) ∝ exp
(
λ−1f(x)

)
(see

Appendix B.3.1), but it is generally much more challenging to estimate the continuous parti-
tion factor

∫
X exp(λ−1f(x))dµ(x) than the normalization factor

∑
x∈X exp(λ−1f(x)) in the dis-

crete sample space. Entropy-regularized RL leverages this property and introduces softmax poli-
cies πQ

soft(·|s) ∝ exp
(
λ−1Q(s, ·)

)
by replacing general f(·) with state-dependent value functions

Q(s, ·), and admits the following protocol to iterate both value functions and policies

Qk+1 = T πkQk, πk+1 ∝ exp(λ−1Qk+1(s, ·)),

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

which equivalently corresponds to value iteration under softmax Bellman operators (Song et al.,
2019; Li et al., 2024)

Qk+1(s, a) = R(s, a) + γEs′∼P (·|s,a)

[
Qk(s

′, πQk

soft)
]
,

where hardmax targets are replaced with softmax surrogates, denoted as a softmax Bellman operator
Tsoft such that Qk+1 = TsoftQk. Previous study (Song et al., 2019) analyzed that for discrete control,
the aforementioned iteration enjoys a performance bound grounded on the cardinality CardA of the
finite action set A, which can be detailed as

lim sup
k→∞

[
Q∗(s, a)− (T k

softQ0)(s, a)
]
≲ O

(
CardA ·max

{
1

λ−1 + 2
,

2Vmax

1 + exp(λ−1)

})
. (1)

However, in the context of continuous control, a similar suboptimality guarantee still remains unex-
amined since CardA →∞, highlighting the need for further investigation.

Policy Gradient. The mainstream approach to practically train a softmax actor is via the policy
gradient (PG) method (Sutton et al., 1999; Schulman et al., 2017; Agarwal et al., 2021)

∇θJλ(θ) = Es∼B, a∼πθ

[
∇θ log πθ(a | s)Qπ(s, a)

]
+ λ∇θH(πθ),

where s is sampled from a minibatch B = {(s, a, r, s′)}, πθ denotes parametric actors, and Qπ is
exclusively estimated by a critic network. However, this optimization-based perspective may intro-
duce discrepancy if the parameterized policy class is simple, such as Gaussian families (Fujimoto
et al., 2018). Moreover, since a complex policy class may preclude efficiency for sample generations
and density estimations, directly applying diffusion models may hinder accurate estimation for the
gradients, limiting the applicability of generative PG methods (Ajay et al., 2022; Wang et al., 2024).

Langevin Dynamics. In lieu of policy optimizations, instantly sampling from softmax distribu-
tions can be an promising alternative, which bypasses the challenge for finding a suitable policy
parameterization. Determined by a temperature λ and an energy function E(x), the Langevin dy-
namics (Roberts & Tweedie, 1996) defines a stochastic process

dXt =
1

2λ
∇xE(Xt)dt+ dBt, xt+1 = xt +

δt
2λ
∇xt

E(xt) +
√
δtξt

where the continuous-time Markov chain is formulated on the left, the Euler-Maruyama discretiza-
tion is demonstrated on the right, Bt denotes standard Brownian motion, {δt} represents step sched-
ules, and ξt ∼ N (0, I) are i.i.d. Gaussian perturbations. Under mild conditions, both processes will
converge to an identical stationary distribution π(·) ∝ exp

(
λ−1E(·)

)
, which leaves room for us to

substitute E(·) with Q(s, ·) for actor-free softmax action generations. Notably, the Langevin Actor-
Critic (LAC) (Lei et al., 2024) and Q-Score Matching (QSM) (Psenka et al., 2025) also adopts the
concept of Langevin dynamics, but contrasts with our work from different theoretical perspectives
and practical implementations. A detailed comparison is provided in paragraph 10.

While the vanilla Langevin algorithm can effectively resolve Rd sampling without domain con-
straints, continuous control problems generally have a finite-volume action space, making the afore-
mentioned MCMC no longer applicable. A common solution is to adopt clamping tricks, but this
is in nature the projected Langevin dynamics, which may encounter boundary stagnation problems
and cause severe approximation bias. In Section 4, we will provide a MCMC variant with specular
reflection to better overcome this issue.

SNIS Resample. The self-normalized importance sampling (SNIS) (Kong et al., 1994; Swami-
nathan & Joachims, 2015) is another feasible alternative for drawing samples from an un-normalized
distribution p(x) ∝ u(x). Starting from a proposal q(·) that generates x1, . . . , xm, the SNIS resam-
pler draws x̂ among them according to

ω(x̂ = xi |x1, ..., xm) =
u(xi)/q(xi)∑m
i=1 u(xi)/q(xi)

so that the marginal distribution ω(x̂) approximates the target distribution p (see Appendix B.3.5).
SNIS enables reusing the same data for estimating various policy statistics (e.g., the softmax en-
tropy), or approximating energy-based actions. However, the SNIS technique may incur high vari-
ance or bias when the proposal is not properly designed (Cardoso et al., 2022), making it ill-suited
for more refined continuous sample generation. In our setting, we adopt a uniform proposal due to
the lack of prior knowledge, making SNIS a coarse initialization scheme for action generation.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3 CONTINUOUS SOFTMAX ANALYSIS

While the theory of softmax policy and value iteration is well established for discrete control, a prac-
tical challenge arising in continuous control is that softmax policies fail to track hardmax policies
without additional assumptions, particularly since the action space cardinality CardA diverges to in-
finity. Intuitively, the difference between the softmax expectation Ea∼πf

soft
[f(s, a)] and the hardmax

value maxa∈A f(s, a) depends not only on the numerical differences between function values but
also on how many actions are near-optimal. To quantify this, we can define a volume function that
measures the size of the set of actions within a given error threshold ϵ, by capturing how “spread
out” the near optimal region is. The definition can be found at Definition 1 as illustrated in Figure 1,
and our measure-based analysis directly parallels the regret-based action ranking scheme developed
in discrete settings (Song et al., 2019). As a fundamental setup, our analytical framework can be
initiated with the following core definitions and assumptions.
Definition 1. Given f and s′, the regret function is formulated as τf (a′) = f∗ − f(s′, a′), where
f∗ = maxa′∈A f(s′, a′).

Definition 2. Given f and s′, the volume function is defined as Volfs′(ϵ) = L ({a′, τf (a′) ≤ ϵ})
where L is the Lebesgue measure over the action space. Additionally, we denote Volf (ϵ) =

mins′∼S

[
Volfs′(ϵ)

]
as a uniform lower bound over the state space S.

Q Value

Action

(a) An example 1d volume function
plotted in a (a, f(a)) fashion.

(b) An example 2d volume function as an diagram with equipotential
lines identical in their function values.

Figure 1: A demonstration of volume functions as the integration of colored areas on action space.

Definition 3. Given Q0, we assume that the infimum volume function Vol(ϵ) = inf+∞
k=0 VolQk

(ϵ)
exists, where Qk = T k

softQ0.
Assumption 1. The action space A is a Lebesgue-measurable subset with a finite volume ∥A∥ <
+∞.
Assumption 2. Given Q0, there exists a function g0(κ) growing at most polynomially, such that
∀k ∈ N, s′ ∈ S, the inequality VolQk

s′ (κϵ) ≤ g0(κ)VolQk

s′ (ϵ) holds for any ϵ > 0, where Qk =
T k

softQ0.

Supported by the above formulations, we are then able to verify a polylog suboptimality bound for
the difference between Tsoft and T , as outlined below in Theorem 1.
Theorem 1. For a bounded function Q0 ∈ [0, Vmax] and ∀(s, a) ∈ S ×A,

lim inf
k→∞

Q∗(s, a)− (T k
soft)Q0(s, a) ≥ 0 (2)

lim sup
k→∞

Q∗(s, a)− (T k
softQ0)(s, a) ≲

γ

1− γ
O(λ · polylog(Vol−1(λ))) (3)

Our proof B.3.3 can be sketched in the following steps. First, we demonstrate that, for any arbitrary
function f throughout the iterative updates, the non-negative difference T f − Tsoftf has an upper
bound O(λ ·polylog(Vol−1(λ))). This is analyzed by dividing the Lebesgue measure into two parts:
the integral on [0, κλ] where the majority of the mass is concentrated, and on [κλ,∞] which can
be exponentially bounded by κλ ∥A∥ exp(−κ). Note that by properly choosing a pivot κ, the error

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

bound can provably contract to the polylog error term that we desire. Second, we extend the upper
bound through mathematical inductions, where(
T kQ0

)
(s, a)−

(
T k

softQ0

)
(s, a) ≤ λ(g0(log(∥A∥ Vol−1(λ))) + e log(∥A∥ Vol−1(λ)))

k∑
j=1

γj .

Invoking Eq. 3, we thus complete the final proof for polylog suboptimality error bounds.

4 ACTOR-FREE LANGEVIN MCMC AND STATISTICAL ESTIMATION

1.0 0.5 0.0 0.5 1.0
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Projected Langevin
Diffusion Samples
Extremum Samples

1.0 0.5 0.0 0.5 1.0
1.00
0.75
0.50
0.25
0.00
0.25
0.50
0.75
1.00

Reflected Langevin
Diffusion Samples
Extremum Samples

Figure 2: An illus-
tration for boundary
stagnation.

We have now handled one of the main theoretical challenges for continu-
ous softmax policy approximation, but the partition constant still makes it
intractable to estimate the policy statistics (e.g. the policy entropy), and so
is to draw action samples from the energy-based policies. In Preliminary 2,
we demonstrate that the Langevin dynamics can effectively generate Monte-
Carlo samples by ruling out the normalization factor, and SNIS estimator can
serve as a coarse distributional approximation when the proposal density is
not guaranteed to be optimal. Incorporating both techniques, we will next
present how to implement softmax samplers without additional parametric
actors in this section.

SNIS Initialization. To expedite the MCMC sampler, we can reasonably
draw uniform samples a

(0)
0 , ..., a

(m−1)
0 from the action space, and consecu-

tively resample an initial action a0 with a probability mass function

ω(a0 = a
(i)
0 | s, a

(0)
0 , ..., a

(m−1)
0) =

exp(λ−1Q(s, a
(i)
0))∑m−1

j=0 exp(λ−1Q(s, a
(j)
0))

to constitute a principled, network-free initialization protocol, where logSumExp techniques are
leveraged to ensure numerical stability. Following the analysis in Appendix B.3.5, we will now
instantiate the approximation error bound, as demonstrated in Theorem 2.
Theorem 2. Suppose that the proposal q(·) is a uniform distribution over A, and the target gener-
ator ps(·) ∝ exp(λ−1Q(s, ·)). With m ≥ 2, the total variation (TV) distance between ps(·) and the
marginal density ωm(· | s) estimated by SNIS procedure, enjoys an error bound

TV(ωm(· | s), ps) ≲
Varq[W]

m− 1
+mWmax exp

(
−m− 1

W 2
max

)
,

where W weights the importance ratio, Varq[W] denotes the variance for W under q, Wmax =
Z−1|A| exp(λ−1Vmax) represents an upper bound for W , and Z is the partition function.

Algorithm 1: QGLG
Input : Observation s, potential Q(·, ·), temperature λ,

candidate schedules ∆c = {δ(i) ∈ RT }
Output: aT generated by Langevin MCMC

1 Initialize a0 via the SNIS generator (4) from Q(s, ·) and λ;
2 Pre-sample Gaussian noises {ξ0, ..., ξT−1};
3 for δ(i) ∈ ∆c do
4 for t = 0 to T − 1 do

5 Set yt =
δ
(i)
t
2λ
∇aQ(s, a

(i)
t) +

√
δ
(i)
t ξt and

at+1 = R(at, yt) (7);

6 Collect terminal sample a
(i)
T ;

7 return argmaxi Q(s, a
(i)
T);

Nevertheless, we need to reiterate that
SNIS is merely a coarse approximation
to the target density, since the number
of candidate particles m is generally
small for efficiency considerations, and
the uniform proposal generally does
not hold a strong optimality guaran-
tee. For a more fine-grained sam-
ple approximation, the discrete-time
Langevin MCMC is still necessitated.

Jitted Score Functions. In order to
run MCMC, a primary task is to access
the score function ∇E(x), which cor-
responds to ∇aQθ(s, a) for continuous
RL. This can be implemented via jit-compiled gradient functions prior to training, as the network
architecture uniquely defines the score function itself, and ∇aQθ(s, a) can be instantly determined
once θ, s and a are provided. This approach eliminates the need for additional networks to fit the
score function, minimizing the risk of introducing biased score estimates.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Specular Reflection. In the preliminary section, we mentioned that projected Langevin dynamics
(i.e. Langevin sampler with boundary clipping) may theoretically cause stagnation problems. To
visualize this, a counterexample is demonstrated in Figure 2 by exposing the failure of projected
Langevin algorithms, where the orange Lemniscate curve matches the point set at which the energy
function attains its maximum, and the blue scatter points exhibit i.i.d. samples drawn from a 2-D
finite-step Langevin chain, either with boundary projection (the top figure) or specular reflection
(the bottom figure) to satisfy domain restrictions. With steps improperly scheduled, the modest
number of steps involved in diffusion and the unduly large sizes for initial steps may cause the
projected Langevin algorithms to allocate a significant portion of samples at stationary points around
boundaries. To this end, we define the operator of specular reflection R(x, y) as the termination of
a free trajectory initiated at x with an initial direction y

∥y∥ , such that, after free propagation and
specular reflections, its total path length amounts to ∥y∥. Furthermore, a variant with specular
reflection can be designed as follows:{

yt =
δt
2λ∇xtE(xt) +

√
δtϵt, ϵt ∼ N (0, I), # Compute Langevin Shift

xt+1 = R(xt, yt). # Law of Reflection

This is motivated by the reflected replica exchange stochastic gradient Langevin dynamics (r2SGLD)
(Zheng et al., 2024). The basic idea is that the reflected Langevin dynamics will not degenerate to
stagnation for steps that may not be well-tuned during training, and the convergence rate for it can be
analyzed as follows. We will focus on a simplified case where the sample space is a unit hypercube,
as is generally a standard setting for continuous RL, in order to encourage further sophisticated
analyses for general bounded point sets.
Theorem 3. With domain X = [−1, 1]d, (i) the reflection operator R is an 1-Lipschitz mapping
s.t. ∥R(a, y1)−R(b, y2)∥ ≤ ∥a+ y1 − b− y2∥ holds for any a, b ∈ X and y ∈ Rd, and (ii) if
the potential function E(·) is m-strongly concave, and∇E is L− Lipschitz, then the Wasserstein-2
distance, defined as W 2

2 (µ, ν) = infγ∈Π(µ,ν)

∫
∥x − y∥2dγ(x, y) for two probability measure µ, ν

on Rd with finite second moments (where Π(µ, ν) is the set of couplings of µ, ν), is bounded by

W2(x
∗, xT) ≤W2(x

∗, x0)

T−1∏
t=0

(
1− mδt

λ
+

L2δ2t
4λ2

)
,

where x∗ is randomly drawn from the stationary distribution µ∗ of the reflective Langevin dynamics:
µ∗(dx) ∝ exp(E(x)/λ)1{x ∈ X}dx, and W2(x

∗, xT) is the shorthand for W2(µ
∗,L (xt)).

Furthermore, by substituting E(·) with Q(s, ·), the reflective Langevin dynamics can be inherently
introduced as a softmax policy approximation conditioned on the state s, while enjoying similar
convergence guarantees.
Remark 1. The exponential rate decay is not always established for a more general class of energy
landscapes, if they do not hold strong concave premises. In contrast, as analyzed by Nguyen et al.
(2021), potentials devoid of strong concavity may incur an extra term in their upper bound, which
is essentially a time-irrelevant discretization bias. This judgment suggests that the final Wasserstein
distance may not necessarily vanish even as T → ∞, echoing existing empirical findings (Halder,
2025; Czerwinska, 2025) that under certain circumstances, extending the diffusion chain may yield
higher bias compared to shorter-step MCMC.

Adaptive Step Selection. Ding et al. (2024) showed that single-chain simulations may lead to de-
generated policy performance, which coincides with our observation in early experiments. Though
running multiple stochastic chains and selecting the optimal one has become a common choice, it ac-
tually biases the generated action from following the target distribution1. To address this limitation,
we perform a grid search over the step schedule that yields near-optimal actions, with informative
SNIS initialization and Gaussian perturbations determined in advance of step selection. Specifically,
we adhere to the Q-gradient Langevin generator (QGLG) in algorithm 1 to sample softmax actions
from the Q landscapes, while avoiding unnecessary alterations to the underlying softmax–Langevin
sampling framework.

1For example, when the target density is a uniform distribution that generates x0, ..., xm−1, picking an
optimal one x̂ = argmaxx∈{x0,...,xm−1} f(x) is approximately equivalent to finding a x̂ ∈ argmaxx∈X f(x)
as m→∞, which is highly biased from the intended x̂ ∼ uniform.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Entropy Estimation. To facilitate efficient real-time entropy tracking and adaptive temperature
control, we can calculate the entropy (see Appendix B.3.4) by

HQ(λ; s) = − logm+ log ∥A∥ + LogSumExpmj=1

(
1

λ
Q(s, aj)

)
− 1

λ
Q(s, πQ

soft)

where Q(s, πQ
soft) can be further estimated via SNIS with uniform proposals. Since the value func-

tion exhibits heterogeneous sensitivity to temperature across states, the true differential entropy
estimated on real batch data can introduce high variance. This contrasts with prior work such as
SAC (Haarnoja et al., 2018) and DACER (Wang et al., 2024), which estimate the statistics via one
or multiple Gaussian distributions. The Gaussian-based estimates tend to be inherently more sta-
ble than those obtained from arbitrary energy-based distributions, although they may not faithfully
reflect the softmax entropy 2.

5 EXPERIMENTS AND DISCUSSIONS

State-Dependent Temperature. In practice, the temperature can be state-dependent function λ(s)
that aligns the magnitude of score functions across different states, without alternating the theory
of softmax policy and softmax Q iteration (see Corollary 1). We empirically set this temperature
function with z-score normalization

λ(s) = λ0 ·
√

Vara∼uniform [Q(s, a)]

to better mitigate numerical instability, where λ0 is a constant that scales the standard deviation.

Algorithm 2: DDSQ
Input : Temperature λ, critic params θ1, θ2, target params

θ−1 , θ−2 , learning rate η, soft Polyak rate τ ,
candidate steps ∆c

Output: θ1, θ2, θ−1 , θ−2
1 for each training step do
2 Set twin-Q surrogates

Qθ(s, a) = min{Qθ1(s, a), Qθ2(s, a)},
Qθ−(s, a) = min{Q

θ−1
(s, a), Q

θ−2
(s, a)};

3 Execute environment step through behavior policy (10);
4 Store new data into replay buffer D;
5 Sample minibatch B = {(s, a, r, s′)} ∼ D;
6 Get target actions via πθ = QGLG(s,Qθ, λ,∆c);
7 Set loss L(θi) = E[(Qθi(s, a)− r− γQθ−(s′, πθ))

2];
8 Update critic: θi ← θi − η∇θiL(θi), i ∈ {1, 2};
9 Polyak update: θ−i ← τθi + (1− τ)θ−i , i ∈ {1, 2};

10 return θ1, θ2, θ
−
1 , θ−2 ;

Evaluation. The deterministic evalu-
ation protocol follows the Q-gradient
Langevin generator (Algorithm 1) with
specular reflection and step-size selec-
tion. The initialization is replaced by a
greedy choice

a0 ← argmax
i

Q(s, a
(i)
0),

over uniform candidates, and Gaussian
noise is replaced with deterministic
zero vectors. Determinism can be en-
sured with a fixed random seed, and this
protocol can thus be seen as a gradient-
based DDPG (Lillicrap et al., 2019) ac-
tion generator with zero-variance per-
turbations.

Behavior Policy. For reconciling exploration with optimality, we thereby adopt a probabilistic
combination of Langevin generators and deterministic generators, with likelihoods of pe3 and 1−pe
respectively. And our training framework is finally presented in Algorithm 2.

Main Result. Our experiments are built upon the publicly available Jax implementation of
DACER (Wang et al., 2024), which we selected both for consistency and its capability to model mul-
timodal action distributions. We compare our method against DACER, SAC, and QSM as baselines,
and the evaluation is conducted on eight continuous control tasks from the MuJoCo suite: Walker2d-
v3, Swimmer-v3, Humanoid-v4, Hopper-v4, InvertedPendulum-v4, HalfCheetah-v4, Pusher-v2,
Ant-v4. The hyperparameter settings can be found in Appendix B.2, and the corresponding training
curves are presented in Figure 3. The trending performance of our method is comparable to state-
of-the-art (SOTA) baselines in most environments, and reaches SOTA performance in several tasks.

2To this end, we do not directly tune the temperature λ itself, and simply set the temperature learning rate
equal to zero. However, we do develop an empirical law to calibrate the temperature, as shown in Appendix
B.3.4.

3We empirically set pe = 0.15 in the experiments.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Compared with DACER, which requires over 20 hours of training, our approach completes training
in approximately 10 hours (see Table 1). This demonstrates that our method can effectively balance
both optimality and training efficiency.

0

2000

4000

6000

Walker2d-v3

0

50

100

150

200

Swimmer-v3

0

2000

4000

6000

8000

Humanoid-v4

1000

2000

3000

4000
Hopper-v4

0.0 0.5 1.0 1.5
1e6

200

400

600

800

1000
InvertedPendulum-v4

0.0 0.5 1.0 1.5
1e6

0

5000

10000

15000

HalfCheetah-v4

0.0 0.5 1.0 1.5
1e6

60

50

40

30

20
Pusher-v2

0.0 0.5 1.0 1.5
1e6

0

2000

4000

6000

8000
Ant-v4

Training Steps

Un
-d

isc
ou

nt
ed

 R
et

ur
n

DDSQ DACER QSM SAC

Figure 3: Main results in comparison with the baselines: SAC, QSM, and DACER. The experiments
are conducted across 8 MuJuCo benchmarks, aggregating random seeds of 100, 200, 300 and 400 to
facilitate a more reliable evaluation for the algorithms involved. The shade surrounding the median
curve represents the interval between the 25-th percentile to the 75-th percentile.

Environment DDSQ DACER QSM SAC

Walker2d-v3 10.06 ± 0.01 22.73 ± 0.13 6.57 ± 0.03 1.31 ± 0.02
Swimmer-v3 10.04 ± 0.01 22.65 ± 0.17 6.56 ± 0.03 1.26 ± 0.07
Humanoid-v4 11.05 ± 0.04 23.04 ± 0.13 7.87 ± 0.03 1.79 ± 0.05
Hopper-v4 10.82 ± 0.05 23.11 ± 0.25 7.01 ± 0.17 1.35 ± 0.13
InvertedPendulum-v4 10.09 ± 0.05 19.29 ± 0.25 6.42 ± 0.01 1.21 ± 0.04
HalfCheetah-v4 10.10 ± 0.04 19.62 ± 0.17 6.43 ± 0.01 1.24 ± 0.05
Pusher-v2 9.67 ± 0.04 22.56 ± 0.48 6.48 ± 0.02 1.22 ± 0.06
Ant-v4 9.68 ± 0.03 22.50 ± 0.39 6.51 ± 0.06 1.51 ± 0.03

Table 1: A100 hours across environments. Each entry represents a median ± the interquartile range
among the total training time induced by the four random seeds, where each GPU fraction simulta-
neously parallels 2 running sessions.

Training-Time Discrepancy. Discrepancy occurs when the actors are unable to approximate the
target softmax distribution given a simple parameterization. This can be empirically verified in
Figure 4, where the MCMC sampler in DDSQ faithfully captures multimodal distributions and SAC
fails to do so.

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
DDSQ, Step 3000

0.08 0.16

0.2
4

0.240.24

0.3
2

0.32

0.32

0.32

0.32

0.4
0

0.40

0.40

0.4
0

0.
40

0.4
8

0.48

0.48

0.48

0.48

0.
56

0.56

0.
56

0.56

0.64

0.64

0.64

0.
72

0.72 0.
72

0.80

0.80

0.80

0.88

0.88

0.8
8

0.96

0.96

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
DDSQ, Step 18000

0.2
4

0.24

0.240.2
4

0.3
2

0.32

0.32

0.3
2

0.400.40

0.400.40

0.
48

0.48

0.48

0.
48

0.48

0.5
6

0.56

0.560.56

0.56

0.64

0.64

0.64

0.64

0.64
0.72

0.72

0.72

0.
72

0.80

0.80

0.80

0.8
0

0.8
8

0.88

0.8
8

0.88

0.96

0.9
6

0.96

0.96

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
SAC, Step 3000

0.24
0.32

0.40

0.40

0.40

0.40

0.4
8

0.48

0.48
0.48

0.56

0.56

0.56

0.5
6

0.64

0.64

0.640.64

0.72

0.72

0.720.72

0.8
0

0.80

0.80

0.88

0.88

0.96

1.0 0.5 0.0 0.5 1.0
1.0

0.5

0.0

0.5

1.0
SAC, Step 18000

0.24

0.24

0.3
2

0.32

0.32

0.3
2

0.400.40

0.400.40

0.
40

0.
480.48

0.48

0.
48

0.48

0.560.56

0.56

0.56

0.56

0.
64

0.
64

0.64

0.64

0.64
0.72

0.72

0.
72

0.72

0.80

0.8
0

0.80

0.80

0.88

0.88

0.88

0.8
8

0.96

0.96

0.
96

Figure 4: Landscapes of Q functions and actions generated across algorithms at an intermediate
training step. The DDSQ here is trained with λ0 = 0.15 for a more representative demonstration.

Test-Time Flexibility. Compared to standard PG methods that fix the entropy regularization term
in the loss and thereby constrain the learned policy to partially align with a certain temperature,
our approach offers greater flexibility in controlling the sampling process. As illustrated in Figure

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

5, even when trained under a relatively small temperature, the converged Q-function can be paired
with different temperatures at test time to instantly generate actions with varying trade-offs between
diversity and performance. Moreover, when operating at higher temperatures, we also observe that
our method achieves higher action diversity than existing baselines such as DACER and SAC.

MultiGoal-v0 DDSQ (D. 0=0.01) MultiGoal-v0 DDSQ (0=0.01) MultiGoal-v0 DDSQ (0=1.00)

MultiGoal-v0 DACER MultiGoal-v0 QSM MultiGoal-v0 SAC

Figure 5: Policies induced by different training algorithms in a 2-D MultiGoal environment
(Haarnoja et al., 2017), where the task is to trace targets at (−5, 0), (5, 0), (0,−5), (0, 5). We reset
observations at (2.5 · i, 2.5 ·j) across different combinations for i ∈ {−1, 0, 1} and j ∈ {−1, 0, 1} at
test time, and the first row represents DDSQ policies with diverse test temperatures. The DDSQ here
is trained with λ0 = 0.01 for a more representative demonstration. Figure titled ”D. λ0 = 0.01”
represents deterministic policy evaluation under scaling factor λ0 = 0.01.

DDSQ, QSM and LAC: A Comparison The central ideas of QSM (Psenka et al., 2025) and LAC
(Lei et al., 2024) are broadly aligned with Langevin dynamics, yet they differ from our approach ei-
ther in theoretical starting points, or in practice, by introducing additional approximation errors.
Specifically, QSM shows that if a diffusion process parameterized by a score function sθ(a | s)
solves the policy gradient (PG) problem, then the score function must be proportional to the Q-
gradient, i.e., sθ(a | s) ∝ ∇aQ(s, a). However, this perspective is largely confined to using diffu-
sion models as a PG solver and requires fitting an extra network to approximate the Q-gradient itself,
which introduces additional approximation error. In contrast, LAC starts from a different viewpoint,
by observing that the solution to constrained policy optimization (CPO) problems (Achiam et al.,
2017) naturally takes a softmax form, and hence employs Langevin dynamics to implement sam-
pling. LAC also introduces an auxiliary action network for initialization, but this design inherits
limitations of parameterized policy classes. For instance, Gaussian initialization concentrates ac-
tions around a single mode that fail to cover multimodal peaks, while diffusion-based initialization
incurs higher computational and training costs, potentially leading to suboptimal initialization that
requires more diffusion steps. Both QSM and LAC offer limited further insight into the softmax
policy itself, and by contrast, our approach provides a refined sampling procedure using SNIS ini-
tialization, jitted score functions, specular reflection, and step selection, to enable a more stable
Langevin MCMC implementation for softmax policy approximations.

6 CONCLUSION AND FUTURE WORK

In this work, we present Deep Decoupled Softmax Q-Learning (DDSQ), a critic-only framework
with a deeper understanding of continuous softmax approximation. Our methodology addresses
practical limitations of PG optimizations and achieves high-fidelity softmax action generations, and
the empirical results on continuous MuJoCo benchmarks demonstrate both strong performance and
efficiency. Looking ahead, extending DDSQ to multi-agent scenarios or offline RL would provide
opportunities to evaluate its ability to scale to practical applications. We believe that the framework
established here can provide a foundation, both theoretically and empirically, for advancing research
in high-dimensional policy sampling and softmax-based reinforcement learning.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

We have read and adhered to the ICLR Code of Ethics. Our work does not involve human subjects
or sensitive personal data, and all RL environments used are publicly available or properly licensed.
We have considered potential societal impacts, including fairness, privacy, and possible misuse, and
we believe that our research is conducted responsibly and ethically.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. Specifically, (i) Our training code
builds upon the DACER (Wang et al., 2024) implementation. The code is made available to the
reviewers and is also included in the supplementary materials. (ii) All hyperparameters for the
algorithms used in our experiments are disclosed in Appendix B.2. (iii) Pseudo-code for our methods
is provided in Algorithms 1 and 2.

10

https://iclr.cc/public/CodeOfEthics

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Joshua Achiam, David Held, Aviv Tamar, and Pieter Abbeel. Constrained policy optimization, 2017.
URL https://arxiv.org/abs/1705.10528.

Alekh Agarwal, Sham M Kakade, Jason D Lee, and Gaurav Mahajan. On the theory of policy
gradient methods: Optimality, approximation, and distribution shift. Journal of Machine Learning
Research, 22(98):1–76, 2021.

Anurag Ajay, Yilun Du, Abhi Gupta, Joshua Tenenbaum, Tommi Jaakkola, and Pulkit Agrawal.
Is conditional generative modeling all you need for decision-making? arXiv preprint
arXiv:2211.15657, 2022.

Roberto Barceló, Cristóbal Alcázar, and Felipe Tobar. Avoiding mode collapse in diffusion mod-
els fine-tuned with reinforcement learning, 2024. URL https://arxiv.org/abs/2410.
08315.

Amir Beck and Marc Teboulle. Mirror descent and nonlinear projected subgradient methods for
convex optimization. Operations Research Letters, 31(3):167–175, 2003.

Kevin Black, Michael Janner, Yilun Du, Ilya Kostrikov, and Sergey Levine. Training diffusion
models with reinforcement learning. arXiv preprint arXiv:2305.13301, 2023.

Gabriel Cardoso, Sergey Samsonov, Achille Thin, Eric Moulines, and Jimmy Olsson. Br-snis:
Bias reduced self-normalized importance sampling, 2022. URL https://arxiv.org/abs/
2207.06364.

Yuxin Chen, Junfei Tan, An Zhang, Zhengyi Yang, Leheng Sheng, Enzhi Zhang, Xiang Wang, and
Tat-Seng Chua. On softmax direct preference optimization for recommendation. Advances in
Neural Information Processing Systems, 37:27463–27489, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei. Deep
reinforcement learning from human preferences. Advances in neural information processing sys-
tems, 30, 2017.

Urszula Czerwinska. Beyond denoising—rethinking inference-time scaling in dif-
fusion models. https://urszulaczerwinska.github.io/thoughts/
inference-time-scaling-diffusion, 2025. Accessed: 2025-08-26.

Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization,
2024. URL https://arxiv.org/abs/2405.16173.

Benjamin Eysenbach and Sergey Levine. Maximum entropy rl (provably) solves some robust rl
problems, 2022. URL https://arxiv.org/abs/2103.06257.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning with
deep energy-based policies, 2017. URL https://arxiv.org/abs/1702.08165.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor, 2018. URL https:
//arxiv.org/abs/1801.01290.

Indranil Halder. A solvable generative model with a linear, one-step denoiser, 2025. URL https:
//arxiv.org/abs/2411.17807.

Michael Janner, Yilun Du, Joshua B Tenenbaum, and Sergey Levine. Planning with diffusion for
flexible behavior synthesis. arXiv preprint arXiv:2205.09991, 2022.

Sham M Kakade. A natural policy gradient. Advances in neural information processing systems,
14, 2001.

11

https://arxiv.org/abs/1705.10528
https://arxiv.org/abs/2410.08315
https://arxiv.org/abs/2410.08315
https://arxiv.org/abs/2207.06364
https://arxiv.org/abs/2207.06364
https://urszulaczerwinska.github.io/thoughts/inference-time-scaling-diffusion
https://urszulaczerwinska.github.io/thoughts/inference-time-scaling-diffusion
https://arxiv.org/abs/2405.16173
https://arxiv.org/abs/2103.06257
https://arxiv.org/abs/1702.08165
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/2411.17807
https://arxiv.org/abs/2411.17807

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Bingyi Kang, Xiao Ma, Chao Du, Tianyu Pang, and Shuicheng Yan. Efficient diffusion policies for
offline reinforcement learning, 2023.

Augustine Kong, Jun S Liu, and Wing Hung Wong. Sequential imputations and bayesian missing
data problems. Journal of the American statistical association, 89(425):278–288, 1994.

Ilja Kuzborskij, Claire Vernade, Andras Gyorgy, and Csaba Szepesvári. Confident off-policy eval-
uation and selection through self-normalized importance weighting. In International Conference
on Artificial Intelligence and Statistics, pp. 640–648. PMLR, 2021.

Fenghao Lei, Long Yang, Shiting Wen, Zhixiong Huang, Zhiwang Zhang, and Chaoyi Pang.
Langevin policy for safe reinforcement learning. In Forty-first International Conference on Ma-
chine Learning, 2024. URL https://openreview.net/forum?id=xgoilgLPGD.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and review.
arXiv preprint arXiv:1805.00909, 2018.

Zheng Li, Xinkai Chen, Jiaqing Fu, Ning Xie, and Tingting Zhao. Reducing q-value estimation bias
via mutual estimation and softmax operation in madrl. Algorithms, 17(1), 2024. ISSN 1999-4893.
doi: 10.3390/a17010036. URL https://www.mdpi.com/1999-4893/17/1/36.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning, 2019.
URL https://arxiv.org/abs/1509.02971.

Qinghua Liu, Gellért Weisz, András György, Chi Jin, and Csaba Szepesvári. Optimistic natural
policy gradient: a simple efficient policy optimization framework for online rl. Advances in
Neural Information Processing Systems, 36:3560–3577, 2023.

Haitong Ma, Tianyi Chen, Kai Wang, Na Li, and Bo Dai. Soft diffusion actor-critic: Efficient online
reinforcement learning for diffusion policy, 2025. URL https://arxiv.org/abs/2502.
00361.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap between
value and policy based reinforcement learning. Advances in neural information processing sys-
tems, 30, 2017.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte carlo,
2(11):2, 2011.

Gergely Neu, Anders Jonsson, and Vicenç Gómez. A unified view of entropy-regularized markov
decision processes. arXiv preprint arXiv:1705.07798, 2017.

Dao Nguyen, Xin Dang, and Yixin Chen. Unadjusted langevin algorithm for non-convex weakly
smooth potentials, 2021. URL https://arxiv.org/abs/2101.06369.

Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model policy
from rewards via q-score matching, 2025. URL https://arxiv.org/abs/2312.11752.

Gareth O. Roberts and Richard L. Tweedie. Exponential convergence of langevin distribu-
tions and their discrete approximations. Bernoulli, 2:341–363, 1996. URL https://api.
semanticscholar.org/CorpusID:18787082.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter Abbeel. Trust region
policy optimization, 2017. URL https://arxiv.org/abs/1502.05477.

Elena Smirnova and Elvis Dohmatob. On the convergence of smooth regularized approximate value
iteration schemes. In Proceedings of the 34th International Conference on Neural Informa-
tion Processing Systems, NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN
9781713829546.

12

https://openreview.net/forum?id=xgoilgLPGD
https://www.mdpi.com/1999-4893/17/1/36
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/2502.00361
https://arxiv.org/abs/2502.00361
https://arxiv.org/abs/2101.06369
https://arxiv.org/abs/2312.11752
https://api.semanticscholar.org/CorpusID:18787082
https://api.semanticscholar.org/CorpusID:18787082
https://arxiv.org/abs/1502.05477

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Zhao Song, Ronald E. Parr, and Lawrence Carin. Revisiting the softmax bellman operator: New
benefits and new perspective, 2019. URL https://arxiv.org/abs/1812.00456.

Richard S Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

Adith Swaminathan and Thorsten Joachims. The self-normalized estimator for counterfactual learn-
ing. advances in neural information processing systems, 28, 2015.

Yunhao Tang and Shipra Agrawal. Discretizing continuous action space for on-policy optimization.
In Proceedings of the aaai conference on artificial intelligence, volume 34, pp. 5981–5988, 2020.

Hado Van Hasselt and Marco A Wiering. Reinforcement learning in continuous action spaces. In
2007 IEEE International Symposium on Approximate Dynamic Programming and Reinforcement
Learning, pp. 272–279. IEEE, 2007.

Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, and Shengbo Eben Li. Diffusion actor-critic with entropy
regulator, 2024. URL https://arxiv.org/abs/2405.15177.

Max Welling and Yee W Teh. Bayesian learning via stochastic gradient langevin dynamics. In
Proceedings of the 28th international conference on machine learning (ICML-11), pp. 681–688,
2011.

Tengyang Xie, Ching-An Cheng, Nan Jiang, Paul Mineiro, and Alekh Agarwal. Bellman-consistent
pessimism for offline reinforcement learning, 2023. URL https://arxiv.org/abs/
2106.06926.

Wei Xiong, Hanze Dong, Chenlu Ye, Ziqi Wang, Han Zhong, Heng Ji, Nan Jiang, and Tong Zhang.
Iterative preference learning from human feedback: Bridging theory and practice for rlhf under
kl-constraint. arXiv preprint arXiv:2312.11456, 2023.

Haoyang Zheng, Hengrong Du, Qi Feng, Wei Deng, and Guang Lin. Constrained exploration
via reflected replica exchange stochastic gradient langevin dynamics, 2024. URL https:
//arxiv.org/abs/2405.07839.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Aaai, volume 8, pp. 1433–1438. Chicago, IL, USA, 2008.

13

https://arxiv.org/abs/1812.00456
https://arxiv.org/abs/2405.15177
https://arxiv.org/abs/2106.06926
https://arxiv.org/abs/2106.06926
https://arxiv.org/abs/2405.07839
https://arxiv.org/abs/2405.07839

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ADDITIONAL EXPERIMENTS

Fitted Landscape for Different Vol(λ). In Figure 6, each panel shows the Q-values across
actions for a fixed state. When the optimal Q̂ is smooth (high Vol(λ)), the fitted Q-function closely
matches Q̂. In contrast, when Q̂ is sharp (low Vol(λ)), the fitted Q becomes biased, highlighting the
difficulty of accurately approximating sharp reward landscapes even under the same temperature λ.

a1

a 2

Q
En

er
gy

DDSQ, Step 0

a1

a 2

Q
En

er
gy

DDSQ, Step 6000

a1

a 2

Q
En

er
gy

DDSQ, Step 90000

a1

a 2

Q
En

er
gy

DDSQ, Step 0

a1

a 2

Q
En

er
gy

DDSQ, Step 6000

a1

a 2

Q
En

er
gy

DDSQ, Step 90000

Figure 6: Comparison between learnt and optimal Q-function landscapes.

Inference Time. In Figure 7, we report the inference time for each algorithm. For each method,
the inference step was executed consecutively 100 times, and the mean latency was computed over
these runs. All single-step action generations were consistently performed on A100 GPUs.

0

50

100

150

Walker2d-v3

0

50

100

150

Swimmer-v3

0

50

100

150

200

250
Humanoid-v4

0

50

100

150

Hopper-v4

0 1000 2000
0

50

100

150
InvertedPendulum-v4

0 1000 2000
0

50

100

150

HalfCheetah-v4

0 1000 2000
0

50

100

150

Pusher-v2

0 1000 2000
0

50

100

150

Ant-v4

Observation Batch Size

In
fe

re
nc

e
Ti

m
e

(m
s)

SAC DDSQ DACER QSM

Figure 7: Inference time of the stochastic behavior policy across algorithms.

Temperature Selection. We show that very small temperatures (0.001) and large temperatures
(1) both lead to suboptimal performance—small temperatures correspond to very low differential

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

entropy, while large temperatures result in imprecise sampling. Intermediate temperatures (0.01 and
0.1) perform well, and we set 0.05 as a compromise in our main experiments.

0 1
Steps 1e6

2000

4000

6000

Un
-d

isc
ou

nt
ed

 R
et

ur
n

0 1
Steps 1e6

0.4

0.6

Ac
tio

n
No

rm

10 2 100

0

4000

5000

6000

Un
-d

isc
ou

nt
ed

 R
et

ur
n

10 2 100

0

0.40

0.45

Ac
tio

n
No

rm

Temperatures

0 = 0.001 0 = 0.01 0 = 0.1 0 = 1.0

Figure 8: Ablation study for temperature selection.

Choice of Candidate Steps. We study the effect of the number of candidate schedules. With only
one schedule, sampling degenerates to a single trajectory under linspace[1, 1e-4, 20], yielding the
worst performance. Increasing the number of candidate schedules improves performance, which
saturates around 8. Considering training cost, we select 4 schedules in the main experiments as a
tradeoff.

0 1
Steps 1e6

0

2000

4000

6000

Un
-d

isc
ou

nt
ed

 R
et

ur
n

0 1
Steps 1e6

0.4

0.5

0.6

0.7

Ac
tio

n
No

rm

21 23

Candidate Num

0

2000

4000

6000

Un
-d

isc
ou

nt
ed

 R
et

ur
n

21 23

Candidate Num

0.40

0.45

0.50

Ac
tio

n
No

rm

Candidate Steps

candidates 1 candidates 2 candidates 4 candidates 8

Figure 9: Ablation study for the choice of candidate step schedules.

MCMC Components. We compare clip and reflect versions of boundary handling, tracking the
average absolute value of each action dimension during training. The clip version leads to more
severe stagnation, while reflection mitigates this problem and overall training output is better, con-
sistent with theoretical predictions. In addition, the distribution obtained by SNIS coarse sampling
approaches the true softmax distribution as m → ∞. We test m = 1, 5, 25, 125 and observe the
expected trend, with performance saturating at 125. Notably, when m = 1, SNIS degenerates to
uniform random sampling, demonstrating the necessity of SNIS for accelerating convergence.

0 1
Steps 1e6

0

2000

4000

6000

Un
-d

isc
ou

nt
ed

 R
et

ur
n

0 1
Steps 1e6

0.4

0.6

0.8

1.0

Ac
tio

n
No

rm

51 53

Particle Num

0

2000

4000

6000

Un
-d

isc
ou

nt
ed

 R
et

ur
n

51 53

Particle Num

0.4

0.6

0.8

1.0

Ac
tio

n
No

rm

MCMC Sampling

reflect_snis_1
reflect_snis_5

reflect_snis_25
reflect_snis_125

clip_snis_1
clip_snis_5

clip_snis_25
clip_snis_125

reflect
clip

Figure 10: Ablation study for MCMC components.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

B APPENDIX

B.1 DISCLOSURE OF LLM USAGE

We use large language models to facilitate our research, and their contributions can be shortlisted
as follows. (i) Grammatical refinement. We employ LLM to polish vocabularies, sentences and
paragraphs, in order to present the academic paper in a more standard way. (ii) Code development.
LLM’s are leveraged for debugging and understanding the logic of Jax framework. (iii) Theoretical
validation. We leverage LLM to prompt literature research, refer to existing theories, and confirm
the feasibility of new theories.

B.2 HYPERPARAMETERS

To ensure fairness, environment-specific hyperparameters are refrained in our experiments. Instead,
each algorithm including DDSQ and other baselines, is evaluated with a unified set of hyperpa-
rameters, which is algorithm-specific but sustains environment-agnostic. The concrete settings are
detailed in Table 2, 3, 4, 5, and 6, defaulting from the official implementation of DACER (Wang
et al., 2024).

Parameter Value Notes

Vectorized envs 20 Number of Environments for Sampling (s, a, r, s′)
Network architecture [256, 256, 256] Commonly adopted neural structures across components
Diffusion steps 20 Number of steps (if applicable) for diffusion-based methodologies
Warmup Steps 2e5 Steps involved for warmup data collection
Update steps 1.5e6 Steps involved for param optimizations
Sample steps 3e6 Update steps multiplied by vectorized envs
Buffer size 1e6 Capacity of the replay buffer
Batch size 256 Batch data for each updtae step
Discount factor (γ) 0.99 Standard in MuJoCo tasks
Seeds 100, 200, 300, 400 Reported with medium ± interquartile range

Table 2: Common hyperparameters across algorithms.

Parameter Value Notes

Reward scale 1.0 Reward scaling factor
Learning rate 2e-4 Adam Optimizer
Activation Mish Nonlinearity
Samples for entropy estimation 1000 Uniformly generated for SNIS entropy estimator
Samples for SNIS initialization 100 Uniform particles for SNIS action initialization
Start steps logspace(0, -4, 10) Candidate start steps
End steps [1e-4] * 10 Candidate end steps
Initial Temperature λ0 0.05 The constant scalar
Temperature normalization std Standard deviation along uniform samples
Target entropy -act dim Optional, not activated in our experiments
Temperature learning rate 0 Optional, not activated in our experiments
Temperature learning cycle 100 Optional, not activated in our experiments
τ 0.005 Soft target polyak rate
Target update cycle 1 τ -exponentially averaged every 1 update steps

Table 3: Hyperparameters for DDSQ.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Parameter Value Notes

Reward scale 0.2 Reward scaling factor
Learning rate 1e-4 Adam Optimizer
Activation Mish Nonlinearity
Initial Temperature λ 3.0 Multiplied by 0.15 for noise injection
Samples for entropy estimation 200 Generated directly via get action
Target entropy -0.9 * act dim Estimated via GMM
Temperature learning rate 3e-2 Optimizing over logarithms of λ
Temperature learning cycle 10000 Update temperatures every 10000 update steps
τ 0.005 Soft target polyak rate
Target update cycle 2 τ -exponentially averaged every 2 update steps

Table 4: Hyperparameters for DACER.

Parameter Value Notes

Reward scale 1.0 Reward scaling factor
Learning rate 1e-4 Adam Optimizer
Activation ReLU Nonlinearity
Particles 64 Number of i.i.d. Langevin chains for arg-maximum
Initial Temperature λ 1.0 Fixed in Langevin dynamics, not learnable
τ 0.005 Soft target polyak rate
Target update cycle 1 τ -exponentially averaged every 1 update steps

Table 5: Hyperparameters for QSM.

Parameter Value Notes

Reward scale 1.0 Reward scaling factor
Learning rate 1e-4 Adam Optimizer
Activation GeLU Nonlinearity
Initial Temperature λ e The weight of entropy regularization
Target entropy -act dim Estimated via GMM
Temperature learning rate 3e-4 Optimizing over logarithms of λ
Temperature learning cycle 1 Update temperatures every 1 update steps
τ 0.005 Soft target polyak rate
Target update cycle 1 τ -exponentially averaged every 1 update steps

Table 6: Hyperparameters for SAC.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

B.3 PROOFS

B.3.1 SOLUTION TO ENTROPY-REGULARIZED OPTIMIZATION

1. Discrete Case.

argmax
π

Ex∼π(·)[f(x)] + λH(π(·)) = argmax
π

Ex∼π(·)

[
f(x)

λ

]
+H(π(·))︸ ︷︷ ︸

Linear Scaling

− log
∑
x∈X

exp

(
f(x)

λ

)
︸ ︷︷ ︸

Irrelevant to π, denoted as logZf (λ)

= argmin
π

DKL

(
π

∥∥∥∥exp(λ−1f(x))

Zf (λ)

)
,

2. Continuous Case.

argmax
π

Ex∼π(·)[f(x)] + λH(π(·)) = argmax
π

Ex∼π(·)

[
f(x)

λ

]
+H(π(·))︸ ︷︷ ︸

Linear Scaling

− log

∫
X
exp

(
f(x)

λ

)
dx︸ ︷︷ ︸

Irrelevant to π, denoted as logZf (λ)

= argmin
π

DKL

(
π

∥∥∥∥exp(λ−1f(x))

Zf (λ)

)
,

both of which induce a softmax solution πsoft ∝ exp(λ−1f(x)), given that the Kullback-Leibler
(KL) Divergence attains zero when and only when

π(x) =
exp(λ−1f(x))

Zf (λ)
.

B.3.2 PROOF OF THEOREM 3.

Proof. We first prove that, the specular reflection operatorR is a 1-Lipschitz mapping. For a hyper-
cube X =

∏d
i=1[Li, Ri], note that for each reflected process along dimension i,

Ri(x, a)− Li = min
ki∈Z
∥2ki(Ri − Li)− xi − ai∥ ,

it follows that

∥Ri(x, a)−Ri(y, b)∥ =

∥∥∥∥∥ min
k
(1)
i ∈Z

∥∥∥2k(1)i (Ri − Li)− xi − ai

∥∥∥ − min
k
(2)
i ∈Z

∥∥∥2k(2)i (Ri − Li)− yi − bi

∥∥∥∥∥∥∥∥ .
Without loss of generality, we assume that

min
k
(1)
i ∈Z

∥∥∥2k(1)i (Ri − Li)− xi − ai

∥∥∥ ≥ min
k
(2)
i ∈Z

∥∥∥2k(2)i (Ri − Li)− yi − bi

∥∥∥
and we can further bound the distance by

∥Ri(x, a)−Ri(y, b)∥ =
∥∥∥2k(1)i,∗ (Ri − Li)− xi − ai

∥∥∥ − ∥∥∥2k(2)i,∗ (Ri − Li)− yi − bi

∥∥∥
≤
∥∥∥2k(2)i,∗ (Ri − Li)− xi − ai

∥∥∥ − ∥∥∥2k(2)i,∗ (Ri − Li)− yi − bi

∥∥∥
≤
∥∥∥2k(2)i,∗ (Ri − Li)− xi − ai −

(
2k

(2)
i,∗ (Ri − Li)− yi − bi

)∥∥∥
= ∥xi + ai − yi − bi∥ ,

where k
(1)
i,∗ , k

(2)
i,∗ denote the argmin’s, and we hence complete the Lipschitzness proof. Consider

some x∗
t ∼ 1

Z exp
(

E(x)
λ

)
from the stationary distribution induced by the reflective Langevin

MCMC, along with an arbitrary xt ∈ X . By drawing a ϵt ∼ N (0, I) for both reflected processes,

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

we obtain that∥∥x∗
t+1 − xt+1

∥∥2 = ∥R(x∗
t , y

∗
t)−R(xt, yt)∥2 ≤ ∥x∗

t + y∗t − xt − yt∥2

= ∥x∗
t − xt∥2 + 2(x∗

t − xt)
T (y∗t − yt) + ∥y∗t − yt∥2

= ∥x∗
t − xt∥2 +

δt
λ
(x∗

t − xt)
T (∇E(x∗

t)−∇E(xt)) +
δ2t
4λ2
∥∇E(x∗

t)−∇E(xt)∥2

≤ ∥x∗
t − xt∥2 −

mδt
λ
∥x∗

t − xt∥2 +
L2δ2t
4λ2
∥x∗

t − xt∥2

≤
(
1− mδt

λ
+

L2δ2t
4λ2

)
∥x∗

t − xt∥2,

With µ∗
t ∈ argminµ(·,·)∈Π(πsoft,pt) Eµ

[∥∥x∗
t+1 − xt+1

∥∥2], it follows that

W2(x
∗
t+1, xt+1) = Eµ∗

t+1

[∥∥x∗
t+1 − xt+1

∥∥2] ≤ Eµ∗
t

[∥∥x∗
t+1 − xt+1

∥∥2]
≤
(
1− mδt

λ
+

L2δ2t
4λ2

)
Eµ∗

t

[
∥x∗

t − xt∥2
]

≤
(
1− mδt

λ
+

L2δ2t
4λ2

)
W2(x

∗
t , xt),

which leads to a bounded solution

W2(x
∗, xT) ≤W2(x

∗, x0)

T−1∏
t=0

(
1− mδt

λ
+

L2δ2t
4λ2

)
. (4)

B.3.3 PROOF OF THEOREM 1

Proof. We first prove a single-step bound and then extend it by induction.

Notation and preliminaries. For a fixed state s′ and function f , define

τf (s
′, a′) := f(s′, π∗

f)− f(s′, a′),

where π∗
f (s

′) = argmaxa′∈A f(s′, a′). For ϵ ≥ 0 let Volfs′(ϵ) denote the volume (measure) of the
set {a′ : τf (s′, a′) ≤ ϵ}. We assume Assumption 2 which guarantees a comparison

Volfs′(κλ) ≤ g0(κ)Vol
f
s′(λ),

for κ ≥ 1 and some function g0(·) (as stated in the main text). Also write ∥A∥ for the total measure
of the action space.

Step 1: Single-step bound. For any f ∈ [0, Vmax] we have

(T f)(s, a)− (Tsoftf)(s, a) = γ Es′∼P (·|s,a)
[
f(s′, π∗

f)− f(s′, πf
soft)

]
= γ Es′∼P (·|s,a)

[∫
a′ τf (s

′, a′) e−τf (s
′,a′)/λ da′∫

a′ e−τf (s′,a′)/λ da′

]

= γ Es′

[∫∞
0

ϵ e−ϵ/λ dVolfs′(ϵ)∫∞
0

e−ϵ/λ dVolfs′(ϵ)

]
.

Let g(ϵ) := ϵe−ϵ/λ. Note g attains its maximum at ϵ = λ with g(λ) = λ/e, and g is decreasing on
[λ,∞). Fix κ ≥ 1. Split the numerator:∫ ∞

0

ϵe−ϵ/λ dVolfs′(ϵ) =

∫ κλ

0

g(ϵ) dVolfs′(ϵ) +

∫ ∞

κλ

g(ϵ) dVolfs′(ϵ).

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Using g(ϵ) ≤ λ/e on [0, κλ] and g(ϵ) ≤ g(κλ) = κλe−κ on [κλ,∞), we get∫ ∞

0

ϵe−ϵ/λ dVolfs′(ϵ) ≤
λ

e
Volfs′(κλ) + κλe−κ

(
∥A∥ −Volfs′(κλ)

)
.

Applying Assumption 2 (Volfs′(κλ) ≤ g0(κ)Vol
f
s′(λ)) yields∫ ∞

0

ϵe−ϵ/λ dVolfs′(ϵ) ≤
λ

e
g0(κ)Vol

f
s′(λ) + κλe−κ ∥A∥ .

For the denominator we have the lower bound∫ ∞

0

e−ϵ/λ dVolfs′(ϵ) ≥
∫ λ

0

e−ϵ/λ dVolfs′(ϵ) ≥
1

e
Volfs′(λ).

Thus, for the choice κf := log
(
∥A∥ /Volfs′(λ)

)
(take κf ≥ 1, e.g. κf = max{1, log(·)} if

needed), we obtain
(T f)(s, a)− (Tsoftf)(s, a) ≤ γλ

(
g0(κf) + eκf

)
.

For conciseness define

C(λ) := g0
(
log(∥A∥Vol−1(λ))

)
+ e log(∥A∥Vol−1(λ)),

so the single-step bound reads

(T f)(s, a)− (Tsoftf)(s, a) ≤ γλC(λ).

Finally, by definition (T f)(s, a) ≥ (Tsoftf)(s, a), hence the difference is nonnegative.

Step 2: Induction. We prove by induction that for all k ≥ 1,

0 ≤ (T kQ0)(s, a)− (T k
softQ0)(s, a) ≤ λC(λ)

k∑
j=1

γj .

The base case k = 1 is exactly the single-step bound above. Now assume the bound holds for k− 1.
Then

(T kQ0)(s, a)− (T k
softQ0)(s, a)

=
(
T (T k−1Q0)

)
(s, a)−

(
Tsoft(T k−1

soft Q0)
)
(s, a)

=
[
T (T k−1Q0)− T (T k−1

soft Q0)
]
(s, a) +

[
T (T k−1

soft Q0)− Tsoft(T k−1
soft Q0)

]
(s, a).

For the first bracket we use the standard contraction property of T :

T f − T g = γ Es′
[
max

a
f(s′, a)−max

a
g(s′, a)

]
≤ γ∥f − g∥∞,

hence by the induction hypothesis the first bracket is at most

γ · λC(λ)

k−1∑
j=1

γj .

The second bracket is a single-step difference with f = T k−1
soft Q0 ∈ [0, Vmax], so by Step 1 it is

bounded by γλC(λ). Summing these two bounds yields

(T kQ0)(s, a)− (T k
softQ0)(s, a) ≤ λC(λ)

k∑
j=1

γj ,

completing the induction. Nonnegativity holds similarly at each step.

Step 3: Limit and conclusion. Combining the above,

0 ≤ T kQ0 − T k
softQ0 ≤ λC(λ)

k∑
j=1

γj = λC(λ)
γ(1− γk)

1− γ
.

Taking k →∞ and using T kQ0 → Q∗ yields the desired bound in Theorem 1.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

While Theorem 1 establishes a polylogarithmic suboptimality guarantee for softmax Q-iteration
under a fixed temperature parameter λ, in practice it is often advantageous to allow the temperature
to vary across states. The rationale is that different states exhibits distinct action-value landscapes:
state with large value gaps benefit from smaller temperatures to sharpen exploitation, whereas flatter
landscapes call for larger temperatures to promote adequate exploration.

A natural way to capture this heterogeneity is to adopt a state-dependent temperature schedule λ(s)
(Schulman et al., 2015; Nachum et al., 2017). In particular, a typical choice is the z-score normal-
ization:

λ(s) =
√

Vara∼uniform [Q(s, a)],

which dynamically rescales the local action-value range and thereby enhances algorithmic stability
across iterations. Building the same volume-based analysis as in Theorem 1, we can extend the
analysis to obtain the following corollary for the state-dependent case.

Corollary 1. Suppose the temperature parameter is chosen as a state-dependent function λ : S →
R+, and the value function is initialized as 0 ≤ Q0(s, a) ≤ Vmax. Then for all (s, a) ∈ S × A, the
softmax Q-iteration satisfies the following bounds:

lim inf
k→∞

(Q∗ − T k
softQ0)(s, a) ≥ 0, (5)

and
lim sup
k→∞

(Q∗ − T k
softQ0)(s, a) ≤

γ

1− γ
Es′∼d

πg
s,a

[
λ(s′) · polylog

(
Vol−1

s′ (λ(s′))
)]

, (6)

where Vols′(λ(s′)) = infk V olQk

s′ (λ(s′)), and d
πg
s,a is the normalized discounted occupancy mea-

sure starting from (s, a) under the non-stationary greedy policy πg induced at each iteration. In
particular, at round k, πg chooses action as

ak = πg(sk) = argmax
a∈A

(T k−1Q0 − T k−1
soft Q0)(sk, a). (7)

Moreover, if the state-dependent temperature is bounded such that λmin ≤ λ(s) ≤ λmax for all
s ∈ S, we obtain the uniform upper bound

lim sup
k→∞

(Q∗ − T k
softQ0)(s, a) ≤

γ

1− γ
λmax · polylog

(
Vol−1(λmin)

)
. (8)

The proof of Corollary 1 follows the same procedure as that of Theorem 1, namely establishing a
one-step bound and then applying recursion, except that here the one-step bound is given by

(T f − Tsoftf)(s, a) ≤ γEs′∼P (·|s,a)

[
λ(s′) · polylog

(
∥A∥

Vols
′

f (λ(s
′))

)]
, (9)

from which the greedy policy πg naturally arises when we try to telescope over equation (47).

B.3.4 DIFFERENTIAL ENTROPY ESTIMATOR

In our continuous-action setting, we estimate the differential entropy of the softmax policy πQ
soft at a

given state s as follows. The exact entropy is defined by

H
(
πQ

soft(· | s)
)
=

∫
A
πQ

soft(a | s) log
1

πQ
soft(a | s)

da.

By substituting the softmax form

πQ
soft(a | s) ∝ exp

(Q(s, a)

λ

)
and using

Z(s, λ) =

∫
A
exp

(Q(s, a)

λ

)
da,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

we can rewrite

H
(
πQ

soft(· | s)
)
= logZ(s, λ)− 1

λ
Q(s, πQ

soft)

= logEa∼U(A)

[
∥A∥ · exp

(Q(s, a)

λ

)]
− 1

λ
Q(s, πQ

soft),

where Q(s, πQ
soft) is the expected value under the softmax policy. Since the integral over A is gen-

erally intractable, we approximate it using Monte Carlo sampling. Let a1, . . . , am ∼ U(A) be i.i.d.
uniform samples. Then the entropy estimator at state s is

ĤQ(λ; s) = − logm+ LogSumExpmj=1

(
log ∥A∥ + 1

λ
Q(s, aj)

)
− 1

λ
Q(s, πQ

soft),

and its expectation over states defines the overall entropy estimate

HQ(λ) = Es∼ν

[
ĤQ(λ; s)

]
.

To stabilize the temperature update, we also compute the standard error of the estimator,

σQ(λ) =

√
Vars∼ν

(
ĤQ(λ; s)

)
,

and update the temperature λ via

λ← λ− ηλ ·
HQ(λ)− H̄

max{1, σQ(λ)}
,

where H̄ is the target entropy. The standard error σQ(λ) effectively scales the update to prevent
overly aggressive changes when the variance is large.

This estimator is a simple extension of the self-normalized importance sampling (SNIS) approach,
where the numerator approximates the log-partition function via the LogSumExp trick and the de-
nominator corrects for the normalization by the sampled softmax policy.

B.3.5 ANALYSIS OF SELF-NORMALIZED IMPORTANCE SAMPLING

Under specific circumstances, we may wish to draw samples from some target distribution p,
whereas only a proposal q is given available for practical sample generation. The self-normalized
importance sampling (SNIS) algorithm (Kong et al., 1994; Swaminathan & Joachims, 2015;
Kuzborskij et al., 2021) characterizes the following generative protocol:

1. Draw samples from the proposal distribution q:

x1, x2, . . . , xm
i.i.d.∼ q,

2. Calculate the weights for importance sampling:

Wi =
p(xi)

q(xi)
, where i ∈ [m],

3. Execute resampling procedure in accordance with the aforementioned weight functions. Output
x̃ = xI , where the index I ∈ [m] is randomly selected with probability

Pr(I = i | x1:m) =
Wi∑m
j=1 Wj

.

In terms of energy-based sample generation, our target distribution p(x) ∝ exp (f(x)) corresponds
to a softmax distribution with respect to a potential function f(x), and the proposal generator q(x) =
1
|Ω|1x∈Ω is specified as a uniform measure, where the normalizing factor over the sample space Ω

is denoted as Z =
∫
Ω
exp(f(x))dx. The analysis will consider a universal class of p and q. For

our specific choice p(x) ∝ exp(f(x)), q(x) = 1
|Ω|1x∈Ω, the guarantee is shown in Theorem 2. Our

theory begins with the following primary result that establishes the asymptotic property of the SNIS
estimator, as demonstrated in Lemma 1.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Lemma 1. For a target density p(x) and a proposal distribution q(x) with their weight function
being W (x) = p(x)

q(x) . If:

1. (Non-Negative Support) ∀x ∈ Ω such that p(x) > 0, the proposal density q(x) > 0,

2. (Weight Boundness) ∃Wmax > 0 such that ∀x ∈ Ω, 0 ≤W (x) ≤Wmax,

then ∀x ∈ Ω, the density ωm(x;x1:m) estimated by the SNIS generator will converge to the target
density

lim
m→∞

ωm(x;x1:m) = p(x),

as m→∞.

Proof. Since ωm(x;x1:m) is the probability density function of the output X̃ , by definition,

ωm(x;x1:m) =

m∑
i=1

∫
· · ·
∫

Wi∑m
j=1 Wj

δ(x−Xi)

m∏
k=1

q(Xk)dX1 · · · dXm,

where δ is the dirac delta function. Given the i.i.d. property for each Xi, we are then able to expand
the above target by leveraging symmetry of the random variables, as analyzed accordingly:

ωm(x;x1:m) = m

∫
· · ·
∫
x2:m

W1∑m
j=1 Wj

δ(x− x1)

m∏
k=1

q(xk)dx1 · · · dxm

= m

∫
· · ·
∫
x2:m

p(x)
q(x)

p(x)
q(x) +

∑m
j=2

p(xj)
q(xj)

q(x)

m∏
k=2

q(xk)dx2 · · · dxm

= m · p(x) · Ex2:m∼q

 1
p(x)
q(x) +

∑m
j=2

p(xj)
q(xj)


= m · p(x) · Ex2:m∼q

[
1

W (x) +
∑m

j=2 Wj

]
. (⋆)

By the law of large numbers, the following asymptotic guarantee can be yielded as m→∞:

1

m− 1

m∑
j=2

Wj → Ex∼q[W (x)] =

∫
q(x)

p(x)

q(x)
dx =

∫
p(x)dx = 1.

Incorporating this property, we can ultimately validate the consistency of the SNIS estimator by

ωm(x;x1:m)→ m · p(x) · 1

W (x) + (m− 1)
→ p(x),

where the bounded weight function W (x) is negligible in comparison to m− 1.

The following establishes a finite-sample, non-asymptotic analysis for the SNIS estimator, confirm-
ing the rate depends on both the inherent bias and the concentration deviation.

Lemma 2. Under the assumptions of lemma 1, let ωm(x;x1:m) denote the output density of the
self-normalized importance sampling (SNIS) procedure using m ≥ 2 samples. Then, for any point
x ∈ Ω such that p(x) > 0, the pointwise bias of the SNIS density estimator is bounded by

|ωm(x;x1:m)− p(x)| ≤ 2p(x)

 |1−W (x)|+ Varq[W]

m− 1︸ ︷︷ ︸
polynomial term (bias)

+
2m(1 +Wmax)

W (x)
exp

(
− m− 1

2W 2
max

)
︸ ︷︷ ︸

exponential term (concentration)

 ,

where W (x) = p(x)/q(x), Varq[W] is the variance of the importance weights.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Proof. By the expression (⋆) of ωm(x;x1:m), we know that

ωm(x;x1:m)− p(x) = Ex2:m∼q

[
p(x) ·

(
m

W (x) + Sm−1
− 1

)]
,

where Sm−1 =
∑m

j=2 Wj . Let B(x;x2:m) = p(x) ·
(

m
W (x)+Sm−1

− 1
)

denote the random error
inside the expectation. Out goal is to bound |Ex2:m∼q[B(x;x2:m)]|.
Step 1. Define a high-probability ”good event” E where Sm−1 is close to its mean.

Since Ex∼q[W (x)] = 1, which means the expectation of the sum is Eq[Sm−1] = m − 1, we can
define the ”good event” E as the set of outcomes where Sm−1 does not deviate from its mean by
more than a factor of 1/2:

E =

{
|Sm−1 − (m− 1)| ≤ m− 1

2

}
.

By Hoeffding’s inequality, for a sum Sm−1 of m − 1 independent random variables bounded in
[0,Wmax], we have

Pr (|Sm−1 − Eq[Sm−1]| ≥ t) ≤ 2 exp

(
− 2t2

(m− 1)W 2
max

)
.

We set t = (m− 1)/2 to find the probability of the bad event Ec:

Pr(Ec) ≤ 2 exp

(
−2((m− 1)/2)2

(m− 1)W 2
max

)
= 2 exp

(
− m− 1

2W 2
max

)
,

which decays exponentially in m.

Step 2. Bounding the bias of the bad event Ec.

We decompose the total bias using the law of total expectation:

|Ex2:m∼q[B(x;x2:m)]| ≤ |Ex2:m∼q[B(x;x2:m)1E]|+ |Ex2:m∼q[B(x;x2:m)1Ec]|.
The second term can be bounded by the supremum of the error multiplied by the probability of the
event:

|Ex2:m∼q[B(x;x2:m)1Ec]| ≤ sup
x2:m∈Ec

|B(x;x2:m)| · Pr(Ec).

To bound the error |B(x;x2:m)|, we need a lower bound on its denominator. Since Sm−1 ≥ 0, we
have W (x)+Sm−1 ≥W (x). The numerator is |m−W (x)−Sm−1| ≤ m+W (x)+Sm−1. Hence,

|B(x;x2:m)| = p(x)
|m−W (x)− Sm−1|

W (x) + Sm−1
≤ p(x)

m(1 +Wmax)

W (x)
.

Therefore the contribution from the bad event is thus

|Ex2:m∼q[B(x;x2:m)1Ec]| ≤ p(x)
m(1 +Wmax)

W (x)
· 2 exp

(
− m− 1

2W 2
max

)
.

Step 3. Bounding the bias on the good event E .

Our objective is to bound the term |Ex2:m
[B(x;x2:m)1E]|. From the definitions, this is equal to

p(x)|Eq[T · 1E]|, where

T =
−δS + (1−W (x))

W (x) + (m− 1) + δS
=
−δS + (1−W (x))

a+ δS
,

where δS = Sm−1 − (m− 1) and a = W (x) + (m− 1). The expression for T can be rewritten as

T =
1−W (x)

a+ δS
− δS

a+ δS

=
1−W (x)

a+ δS
− δS

(
1

a
− δS

a(a+ δS)

)
=

1−W (x)

a+ δS
− δS

a
+

δ2S
a(a+ δS)

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

We now bound the expectation of each of these three terms when multiplied by the indicator 1E . By
the triangle inequality,

|Eq[T · 1E]| ≤
∣∣∣∣E [1−W (x)

a+ δS
1E

]∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣E [−δS
a
1E

]∣∣∣∣︸ ︷︷ ︸
(B)

+

∣∣∣∣E [δ2S
a(a+ δS)

1E

]∣∣∣∣︸ ︷︷ ︸
(C)

.

We first bound the term (A). On the event E , we have ∆S = |Sm−1 − (m − 1)| ≤ (m − 1)/2,
which implies Sm−1 ≥ (m− 1)/2. Therefore, the denominator a+ δS = W (x) + Sm−1 is strictly
positive and bounded below by W (x) + (m− 1)/2. Hence,

(A) =

∣∣∣∣E [1−W (x)

a+ δS
1E

]∣∣∣∣ ≤ E
[
|1−W (x)|
|a+ δS |

1E

]
≤ E

[
|1−W (x)|

W (x) + (m− 1)/2
1E

]
≤ |1−W (x)|

W (x) + (m− 1)/2

≤ 2|1−W (x)|
m− 1

.

We then bound the term (B). Since E[δS] = 0, we have E[δS1E] = −E[δS1Ec]. Therefore,

|E[δS1E]| = |E[δS1Ec]|
≤ E[|δS |1Ec]

≤ sup
x2:m∈Ec

|δS | · Pr(Ec)

≤ (m− 1)Wmax · Pr(Ec),

where the last step follows because |Sm−1− (m−1)| ≤ (m−1)Wmax is a universal bound. Hence
the second term can be bounded by

(B) ≤ 1

a
|E[δS1E]| ≤

(m− 1)Wmax

W (x) + (m− 1)
· 2 exp

(
− m− 1

2W 2
max

)
,

which is exponentially small in m.

Finally we bound the term (C). On E , the denominator a(a+ δS) is positive and bounded below by
(W (x) +m− 1)(W (x) + (m− 1)/2). This indicates that∣∣∣∣E [δ2S

a(a+ δS)
1E

]∣∣∣∣ ≤ E
[

δ2S
|a(a+ δS)|

1E

]
≤ E[δ2S1E]

(W (x) +m− 1)(W (x) + (m− 1)/2)

≤ E[δ2S]
(W (x) +m− 1)(m− 1)/2

.

Since E[δ2S] = Var[Sm−1] = (m− 1)VarX∼q[W (X))] by the i.i.d. samples, this becomes

(C) ≤ (m− 1)Varq[W]

(W (x) +m− 1)(m− 1)/2
=

2Varq[W]

W (x) +m− 1
≤ 2Varq[W]

m− 1
.

Combining these three bounds, we get the bound for the bias on the good event E :

|Ex2:m∼q[B(x;x2:m)1E]| ≤ 2p(x)

(
|1−W (x)|+ Varq[W]

m− 1
+

(m− 1)Wmax

W (x) +m− 1
exp

(
− m− 1

2W 2
max

))
.

Step 4. Combining the bounds.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

We assemble the final bound on the total bias, which is given by

|ωm(x;x1:m)− p(x)| = |Ex2:m
[B(x;x2:m)]| ≤ |Ex2:m

[B(x;x2:m)1E]|+ |Ex2:m
[B(x;x2:m)1Ec]|.

From step 2, we have the bound for the bad event:

|Ex2:m [B(x;x2:m)1Ec]| ≤ 2p(x)
m(1 +Wmax)

W (x)
exp

(
− m− 1

2W 2
max

)
.

From step 3, we have the bound for the good event:

|Ex2:m [B(x;x2:m)1E]| ≤ 2p(x)

(
|1−W (x)|+ Varq[W]

m− 1
+

(m− 1)Wmax

W (x) +m− 1
exp

(
− m− 1

2W 2
max

))
.

Therefore, combining all these together, we get the guarantee in proposition 2:

|ωm(x;x1:m)− p(x)| ≤ 2p(x)

 |1−W (x)|+ Varq[W]

m− 1︸ ︷︷ ︸
polynomial term (bias)

+
2m(1 +Wmax)

W (x)
exp

(
− m− 1

2W 2
max

)
︸ ︷︷ ︸

exponential term (concentration)

 .

The structure of the bound in Lemma 2 is highly informative, as it decomposes the total error into two
distinct components with different rates of convergence. The dominant component is a polynomial
term of order O(1/m), which represents the intrinsic bias of the estimator and dictates its overall
convergence rate. This bias is in turn governed by two key factors: a local mismatch term, |1 −
W (x)|, which captures the inaccuracy at the specific point of evaluation, and a global mismatch term,
Varq[W], which quantifies the overall discrepancy between the proposal and target distributions. The
second component of the bound is an exponential term of order O(m · e−cm) that accounts for the
risk of a concentration failure, which is common in machine learning literature.

While Lemma 2 characterizes the point-wise bound, it also implies a global measure of distributional
error. The following lemma extends the analysis by bounding the total variation (TV) distance
between the estimated density pm and the target density p.
Lemma 3. Under the assumptions of Lemma 1, the total variation distance between the estimated
density pm from the SNIS procedure with m ≥ 2 samples and the target density p is bounded by:

TV(pm∥p) ≤
Ep[|1−W |] + Varq[W]

m− 1
+ 2m(1 +Wmax) exp

(
− m− 1

2W 2
max

)
.

Proof. Followed by the definition of the total variation distance, we have

TV(pm∥p) =
1

2

∫
Ω

|ωm(x;x1:m)− p(x)|dx

≤ 1

2

∫
Ω

2p(x)

(
|1−W (x)|+ Varq[W]

m− 1
+

2m(1 +Wmax)

W (x)
exp

(
− m− 1

2W 2
max

))
dx

=
1

m− 1

(
Ep

[
|1−W |

]
+ Varq[W]

)
+ 2m(1 +Wmax) exp

(
− m− 1

2W 2
max

)
,

where we uses that
∫
Ω
p(x)dx =

∫
Ω
q(x)dx = 1.

26

	Introduction
	Preliminaries
	Continuous Softmax Analysis
	Actor-Free Langevin MCMC and Statistical Estimation
	Experiments and Discussions
	Conclusion and Future Work
	Additional Experiments
	Appendix
	Disclosure of LLM Usage
	Hyperparameters
	Proofs
	Solution to Entropy-Regularized Optimization
	Proof of Theorem 3.
	Proof of Theorem 1
	Differential Entropy Estimator
	Analysis of Self-Normalized Importance Sampling

