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ABSTRACT

As a mathematical solution to entropy-regularized reinforcement learning, soft-
max policies play important roles in facilitating exploration and policy multi-
modality. However, the use of softmax has mainly been restricted to discrete ac-
tion spaces, and significant challenges exist, both theoretically and empirically, in
extending its use to continuous actions: Theoretically, it remains unclear how con-
tinuous softmax approximates hard max as temperature decreases, which existing
discrete analyses cannot handle. Empirically, using a stand actor architecture (e.g.,
with Gaussian noise) to approximate softmax is subject to the limited expressiv-
ity, while leveraging complex generative models can involve more sophisticated
loss design. Our work address these challenges with a simple Deep Decoupled
Softmax Q-Learning (DDSQ) algorithm and associated analyses, where we di-
rectly implement a continuous softmax of the critic without using a separate actor,
eliminating the bias due to actor’s expressivity constraint. Theoretically, we pro-
vide theoretical guarantees on the suboptimality of continuous softmax based on a
novel volume-growth characterization of the level sets in action spaces. Algorith-
mically, we establish a critic-only training framework that samples from softmax
via state-dependent Langevin dynamics. Experiments on MuJoCo benchmarks
demonstrate strong performance with balanced training cost.

1 INTRODUCTION

Maximum entropy regularization is a standard framework in reinforcement learning to enhance pol-
icy multimodality (Ziebart et al., 2008; Haarnoja et al., 2017) and improve training robustness (Ey-
senbach & Levine, 2022), which induces the softmax distribution as a closed-form solution. Existing
research on softmax (Song et al., 2019; Smirnova & Dohmatob, 2020) are often restricted to finite
and discrete actions. When it comes to continuous actions (Van Hasselt & Wiering, 2007), a standard
approach is to use a separate actor to optimize the entropy-regularized objective, which inevitably
results in a discrepancy between the actor distribution and the real softmax policy (see Figure 4), es-
pecially when actor architecture induces relatively simple action distributions (Agarwal et al., 2021).
While one can deploy more sophisticated generative architectures like diffusion or flow models for
actor parameterization (Tang & Agrawal, 2020; Janner et al., 2022; Ma et al., 2025), instabilities can
occasionally occur during training (Barcelo et al., 2024), and the computational cost of the forward
& backward processes can be high (Kang et al., 2023). On top of that, maintaining and tuning two
separate complex neural-nets (the actor and the critic) at the same time can be demanding, and the
complex losses handcrafted for generative models further adds to the complexity of the methods
(Ajay et al., 2022; Black et al., 2023).

In this work, we propose a simple mitigation to the above problems, where we directly extend soft-
max to continuous actions and propose a critic-only algorithm without actors. In contrast to existing
approaches that treat softmax policy approximation as an optimization problem for minimizing the
distance between actor action distribution and the real solution to entropy regularization, we frame
it as a sampling problem (Levine, 2018) and leverage Markov Chain Monte Carlo (MCMC) tech-
niques, especially Langevin dynamics, to tackle sparsity and heterogeneity of high-dimensional
spaces (Neal et al., 2011; Welling & Teh, 2011). The result is a simple, actor-free framework for
deep continuous control, which we call Deep Decoupled Softmax Q-Learning (DDSQ). Our contri-
butions can be outlined as follows.
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* Continuous Softmax Analysis. In Section 3, we analyze the approximation error of softmax
policies w.r.t. hard max. A suboptimality guarantee is established, based on a novel volume-
growth characterization of the level sets in action spaces. We apply this result to provide conver-
gence analyses of softmax value iteration for continuous actions.

* Non-Parametric MCMC. In Section 4, we formulate continuous softmax policies as a non-
parametric, actor-free Langevin sampler. To promote more stable sampling, we propose several
design choices, including SNIS initialization as an informative accelerator, specular reflection to
handle boundary stagnation, and a careful selection of candidate step schedules.

* Empirical Validation. In Section 5, We train DDSQ across eight continuous control tasks in
the MuJoCo suite. The main results demonstrate that DDSQ achieves strong performance with
reasonable training time, while additional studies confirm its ability to capture multimodal policies
and offer more flexible temperature control.

Broader Relevance Our work also bears significance beyond the specific scope of the paper, as
softmax policies are an important tool that plays fundamental roles in RL theory, yet their use is
mostly restricted to finite and discrete action spaces. In particular, softmax policies are the analytical
solution to the entropy-regularized objective (Neu et al., 2017; Haarnoja et al., 2018), which has
gained popularity in RLHF for LLMs recently (Christiano et al., 2017; Xiong et al., 2023; Chen
et al., 2024). The use of softmax policies in RL can often be viewed as an application of mirror
descent (Beck & Teboulle, 2003) and natural policy gradient (Kakade, 2001), which are frequently
the key to achieving strong theoretical guarantees in both offline (Xie et al., 2023) and online RL
(Liu et al., 2023). Our work, both the theoretical analyses in Section 3 and 4, and the practical
implementation in Section 5, lays the foundation of extending the theoretical results in the literature
to the more challenging continuous-action domains.

2 PRELIMINARIES

Markov Decision Processes. The Markov Decision Process (MDP) is represented by a tuple
(S, A, P,R,~), where P : S x A — A(S) governs state transitions and R : S X A — [0, Ryax]
assigns scalar rewards. The central objective in policy optimization is to maximize the discounted
return max, J(m) := E[Y ;2 7y R(st, ar)] ,where so ~ do, ay ~ 7(-|s¢), and s¢41 ~ P(:|s¢, az).
We define the state-action value function as

+oo
QW(Saa’) = Eﬂ' Z’th(Sta at) S0 = S,a0 = (L‘| S [07 Vmax]7
t=0
where Vijax = 1’}%’:‘. It represents the expected cumulative return starting from state-action pair

(s,a) under policy 7. It is also the unique fixed point of the (policy-specific) Bellman operator T™,
defined as (77 f)(s,a) = R(s,a) +7YEy~p(|s,a)[f(s',7)], where f(s',7) = Eqror()sy [f(s',a")].
The value function w.r.t. an optimal policy particularly serves as a unique solution to f(s,a) =
R(s,a) + YEy < p(.|s,a) [Maxaca f(s',a")], the Bellman optimality equation.

Softmax Policies and Softmax Value Iteration. Given a measurable space (X, 1) equipped with
a base measure p (the counting measure # in the discrete case and the Lebesgue measure .Z in
the continuous case), an entropy-regularized optimization problem (Neu et al., 2017) aims to find a
density 7 w.r.t. u that maximizes

/ Fla)m(@)dp(x) + XH(r), H(m) = — / 7(z) log () du(x)
X X

for some target function f : A — R and some temperature parameter A > 0. Its closed-
form solution is essentially a Boltzmann (softmax) distribution Ws{)ﬂ(z) o exp (AT f(2)) (see
Appendix B.3.1), but it is generally much more challenging to estimate the continuous parti-
tion factor [, exp(A~! f(z))du(z) than the normalization factor Y- ., exp(A~! f(x)) in the dis-
crete sample space. Entropy-regularized RL leverages this property and introduces softmax poli-
cies ﬂgﬁ(~\s) o exp (A7'Q(s,)) by replacing general f(-) with state-dependent value functions
Q(s, ), and admits the following protocol to iterate both value functions and policies

Qr+1=T™Qr, Tr+1 X exp(A ' Qri1(s,+)),
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which equivalently corresponds to value iteration under softmax Bellman operators (Song et al.,
2019; Li et al., 2024)

Qr+1(s,a) = R(s,a) +YEy<p(s,a) [Qk(sl,ﬂgﬁ)} ,

where hardmax targets are replaced with softmax surrogates, denoted as a softmax Bellman operator
Tsote such that Q11 = Tson@k- Previous study (Song et al., 2019) analyzed that for discrete control,
the aforementioned iteration enjoys a performance bound grounded on the cardinality Card 4 of the
finite action set A, which can be detailed as

. % 1 2vaax
i sup [Q° (5.0) — (T4Qo)(5.0)] SO (CardA - max { o T }) o
However, in the context of continuous control, a similar suboptimality guarantee still remains unex-
amined since Card 4 — oo, highlighting the need for further investigation.

Policy Gradient. The mainstream approach to practically train a softmax actor is via the policy
gradient (PG) method (Sutton et al., 1999; Schulman et al., 2017; Agarwal et al., 2021)

VgJ)\(G) = ESNByaNﬂ-G [V@ log 7r9(a | S) Q”(s, a)] + )\VQH(W@),

where s is sampled from a minibatch B = {(s, a,r,s’)}, mp denotes parametric actors, and Q™ is
exclusively estimated by a critic network. However, this optimization-based perspective may intro-
duce discrepancy if the parameterized policy class is simple, such as Gaussian families (Fujimoto
et al., 2018). Moreover, since a complex policy class may preclude efficiency for sample generations
and density estimations, directly applying diffusion models may hinder accurate estimation for the
gradients, limiting the applicability of generative PG methods (Ajay et al., 2022; Wang et al., 2024).

Langevin Dynamics. In lieu of policy optimizations, instantly sampling from softmax distribu-
tions can be an promising alternative, which bypasses the challenge for finding a suitable policy
parameterization. Determined by a temperature A and an energy function E(z), the Langevin dy-
namics (Roberts & Tweedie, 1996) defines a stochastic process

1 1)
dXt = 5VxE(Xt)dt + dBt, Ti41 = T + ivztE(.’I}t) + \/a t

where the continuous-time Markov chain is formulated on the left, the Euler-Maruyama discretiza-
tion is demonstrated on the right, B; denotes standard Brownian motion, {d; } represents step sched-
ules, and &; ~ N(0, I) are i.i.d. Gaussian perturbations. Under mild conditions, both processes will
converge to an identical stationary distribution 7(-) o exp (A™*E(-)), which leaves room for us to
substitute E(-) with Q(s, -) for actor-free softmax action generations. Notably, the Langevin Actor-
Critic (LAC) (Lei et al., 2024) and Q-Score Matching (QSM) (Psenka et al., 2025) also adopts the
concept of Langevin dynamics, but contrasts with our work from different theoretical perspectives
and practical implementations. A detailed comparison is provided in paragraph 10.

While the vanilla Langevin algorithm can effectively resolve R? sampling without domain con-
straints, continuous control problems generally have a finite-volume action space, making the afore-
mentioned MCMC no longer applicable. A common solution is to adopt clamping tricks, but this
is in nature the projected Langevin dynamics, which may encounter boundary stagnation problems
and cause severe approximation bias. In Section 4, we will provide a MCMC variant with specular
reflection to better overcome this issue.

SNIS Resample. The self-normalized importance sampling (SNIS) (Kong et al., 1994; Swami-
nathan & Joachims, 2015) is another feasible alternative for drawing samples from an un-normalized
distribution p(z) o< u(z). Starting from a proposal ¢(-) that generates x1, . . ., Z;,, the SNIS resam-
pler draws & among them according to

u(zi)/q(xi)

Dlimy u(xi)/q(xi)

so that the marginal distribution w(Z) approximates the target distribution p (see Appendix B.3.5).
SNIS enables reusing the same data for estimating various policy statistics (e.g., the softmax en-
tropy), or approximating energy-based actions. However, the SNIS technique may incur high vari-
ance or bias when the proposal is not properly designed (Cardoso et al., 2022), making it ill-suited
for more refined continuous sample generation. In our setting, we adopt a uniform proposal due to
the lack of prior knowledge, making SNIS a coarse initialization scheme for action generation.

(.d(.’i' ) | Ty, ,l’m) =
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3 CONTINUOUS SOFTMAX ANALYSIS

While the theory of softmax policy and value iteration is well established for discrete control, a prac-
tical challenge arising in continuous control is that softmax policies fail to track hardmax policies
without additional assumptions, particularly since the action space cardinality Card 4 diverges to in-
finity. Intuitively, the difference between the softmax expectation E,_ _ ;0 [f(s,a)] and the hardmax

value max,e 4 f(s,a) depends not only on the numerical differences between function values but
also on how many actions are near-optimal. To quantify this, we can define a volume function that
measures the size of the set of actions within a given error threshold ¢, by capturing how “spread
out” the near optimal region is. The definition can be found at Definition | as illustrated in Figure 1,
and our measure-based analysis directly parallels the regret-based action ranking scheme developed
in discrete settings (Song et al., 2019). As a fundamental setup, our analytical framework can be
initiated with the following core definitions and assumptions.

Definition 1. Given f and ', the regret function is formulated as 7¢(a’) = f* — f(s’,a’), where
f* = MaXg’eA f(s/a a/)'

Definition 2. Given f and s’, the volume function is defined as Volz/(e) = ZL{d,14(d) < €})
where . is the Lebesgue measure over the action space. Additionally, we denote Voly(e) =

ming s {Volg, (6)} as a uniform lower bound over the state space S.

Q Value A €
Iz Vol(e) [ ] Vol(e) []
Vol(2e) [ J+[]
froe i -7 vel(se) [+ J+[]
E E i i Vol(ae) [ ]+ J+[J+[]
v N Volse) [ ]+ J+ [ J+[J+[]
Action
(a) An example 1d volume function (b) An example 2d volume function as an diagram with equipotential
plotted in a (a, f(a)) fashion. lines identical in their function values.

Figure 1: A demonstration of volume functions as the integration of colored areas on action space.

Definition 3. Given ), we assume that the infimum volume function Vol(e) = inf; > Volg, (¢)
exists, where Q) = 7.5, Qo.

Assumption 1. The action space A is a Lebesgue-measurable subset with a finite volume ||A| <
+00.

Assumption 2. Given @, there exists a function go(x) growing at most polynomially, such that
Vk € N, s’ € S, the inequality Volgk (ke) < go(n)Volg’“(e) holds for any € > 0, where Q) =
7;5&@0-

Supported by the above formulations, we are then able to verify a polylog suboptimality bound for
the difference between T and 7, as outlined below in Theorem 1.

Theorem 1. For a bounded function Qg € [0, Vipas| and V(s,a) € S x A,
liminf Q*(s,a) — (Ten)Qo(s,a) >0 @)
k—o00

limsup Q" (s, @) — (T Qo) (s, @) < ﬁou - polylog(Vol = (1)) 3)
k—o0 -

Our proof B.3.3 can be sketched in the following steps. First, we demonstrate that, for any arbitrary
function f throughout the iterative updates, the non-negative difference 7 f — Ty f has an upper
bound O(\ - polylog(Vol*()))). This is analyzed by dividing the Lebesgue measure into two parts:
the integral on [0, k\] where the majority of the mass is concentrated, and on [k, oo] which can
be exponentially bounded by A\ ||.A|| exp(—«). Note that by properly choosing a pivot x, the error
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bound can provably contract to the polylog error term that we desire. Second, we extend the upper
bound through mathematical inductions, where

k
(T*Qo) (s,a) — (TaQo) (5,@) < Mgo(log(|A|| VoI~ (1)) + elog([lAl| Vol (X)) D ~7.
j=1
Invoking Eq. 3, we thus complete the final proof for polylog suboptimality error bounds.

4  ACTOR-FREE LANGEVIN MCMC AND STATISTICAL ESTIMATION

Projected Langevin
1.00

We have now handled one of the main theoretical challenges for continu- — ass{ = ofsion somles -

Extremum Samples
0.501 o

ous softmax policy approximation, but the partition constant still makes it 7] s
intractable to estimate the policy statistics (e.g. the policy entropy), and so  ooof = )
is to draw action samples from the energy-based policies. In Preliminary 2, 77
we demonstrate that the Langevin dynamics can effectively generate Monte-  -o7s1. _:
Carlo samples by ruling out the normalization factor, and SNIS estimator can e
serve as a coarse distributional approximation when the proposal density is

not guaranteed to be optimal. Incorporating both techniques, we will next ]
present how to implement softmax samplers without additional parametric =~ oso{
actors in this section. 028

Reflected Langevin
1.00

mmm Diffusion Samples
Extremum Samples

0.00 1
—~0.25%

-0509

SNIS Initialization. To expedite the MCMC sampler, we can reasonably

-0.754

: (0) (m—1) : _ -1.00 . : :
draw uniform samples a; "/, ..., a; from the action space, and consecu 2o 85 o0 o5 1o
tively resample an initial action ag with a probability mass function
' 1 (4) Figure 2: An illus-
wlag =al’ | 5,0, ... ai" V) = meip()\ Qs, a9 ))( 3 tration for boundary
Sty exp(AT1Q(s, ag”)) stagnation.

to constitute a principled, network-free initialization protocol, where 1ogSumExp techniques are
leveraged to ensure numerical stability. Following the analysis in Appendix B.3.5, we will now
instantiate the approximation error bound, as demonstrated in Theorem 2.

Theorem 2. Suppose that the proposal q(-) is a uniform distribution over A, and the target gener-
ator ps(+) oc exp(A"1Q(s,-)). With m > 2, the total variation (TV) distance between p(-) and the
marginal density w., (- | s) estimated by SNIS procedure, enjoys an error bound

Var,|[W m—1
TV(Wm(' | s)vps) S mqi_[l] + meax exXp <_VVI%aX> )
where W weights the importance ratio, Var,[W| denotes the variance for W under ¢, Wiyax =
Z 7| Al exp(A " Vinax ) represents an upper bound for W, and Z is the partition function.

Nevertheless, we need to reiterate that Algorithm 1: QGLG

SNIS is merely a coarse approximation
to the target density, since the number
of candidate particles m is generally
small for efficiency considerations, and
the uniform proposal generally does
not hold a strong optimalit.y guaran- - e s6) ¢ AL do

tee. For a more fine-grained sam- fori=0toT — 1do

ple approximation, the discrete-time 50 @) @
Langevin MCMC is still necessitated. 5 Sety: = 35 VaQ(s,a;") + 1/, and
at+1 = R(at, yt) (7);

Jitted Score Functions. In order to Collect terminal sample a'?;
run MCMC, a primary task is to access (0
the score function VE(z), which cor- 7 Feturn argmax; Q(s, ay ):

Input : Observation s, potential Q(-, -), temperature A,
candidate schedules A, = {§®) ¢ RT}

Output: a7 generated by Langevin MCMC

Initialize ao via the SNIS generator (4) from Q(s, -) and X;

Pre-sample Gaussian noises {o, ..., {r—1};

BOWON =

=

responds to V,Qg(s, a) for continuous

RL. This can be implemented via jit-compiled gradient functions prior to training, as the network
architecture uniquely defines the score function itself, and V,Q(s, a) can be instantly determined
once 6, s and a are provided. This approach eliminates the need for additional networks to fit the
score function, minimizing the risk of introducing biased score estimates.
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Specular Reflection. In the preliminary section, we mentioned that projected Langevin dynamics
(i.e. Langevin sampler with boundary clipping) may theoretically cause stagnation problems. To
visualize this, a counterexample is demonstrated in Figure 2 by exposing the failure of projected
Langevin algorithms, where the orange Lemniscate curve matches the point set at which the energy
function attains its maximum, and the blue scatter points exhibit i.i.d. samples drawn from a 2-D
finite-step Langevin chain, either with boundary projection (the top figure) or specular reflection
(the bottom figure) to satisfy domain restrictions. With steps improperly scheduled, the modest
number of steps involved in diffusion and the unduly large sizes for initial steps may cause the
projected Langevin algorithms to allocate a significant portion of samples at stationary points around
boundaries. To this end, we define the operator of specular reflection R(z, y) as the termination of
a free trajectory initiated at  with an initial direction m, such that, after free propagation and

specular reflections, its total path length amounts to ||y||. Furthermore, a variant with specular
reflection can be designed as follows:

Y = g—ivmtE(xt) +V/0res, € ~N(0,I), # Compute Langevin Shift
Trr1 = R(xe, yt). # Law of Reflection

This is motivated by the reflected replica exchange stochastic gradient Langevin dynamics (r2SGLD)
(Zheng et al., 2024). The basic idea is that the reflected Langevin dynamics will not degenerate to
stagnation for steps that may not be well-tuned during training, and the convergence rate for it can be
analyzed as follows. We will focus on a simplified case where the sample space is a unit hypercube,
as is generally a standard setting for continuous RL, in order to encourage further sophisticated
analyses for general bounded point sets.

Theorem 3. With domain X = [—1,1]%, (i) the reflection operator R is an 1-Lipschitz mapping
st |R(a,y1) — R(b,y2)|| < |la+y1 —b— ya| holds for any a,b € X and y € R?, and (ii) if
the potential function E(-) is m-strongly concave, and V E is L — Lipschitz, then the Wasserstein-2
distance, defined as W3 (p,v) = inf enu,.) [ |o — yl|?dvy(x,y) for two probability measure i, v

on R with finite second moments (where I1(1, v) is the set of couplings of i1, v), is bounded by

T-1
mdy L2067
Wo(z*,zp) < Wa(z™, zo) H (1 - 7/\t + 4)\; ) ,
t=0

where x* is randomly drawn from the stationary distribution * of the reflective Langevin dynamics:
w*(dz) < exp(E(z)/N)1{z € X}dx, and Wa(x*, x1) is the shorthand for Wa(u*, L (x+)).

Furthermore, by substituting F(-) with (s, -), the reflective Langevin dynamics can be inherently
introduced as a softmax policy approximation conditioned on the state s, while enjoying similar
convergence guarantees.

Remark 1. The exponential rate decay is not always established for a more general class of energy
landscapes, if they do not hold strong concave premises. In contrast, as analyzed by Nguyen et al.
(2021), potentials devoid of strong concavity may incur an extra term in their upper bound, which
is essentially a time-irrelevant discretization bias. This judgment suggests that the final Wasserstein
distance may not necessarily vanish even as T' — oo, echoing existing empirical findings (Halder,
2025; Czerwinska, 2025) that under certain circumstances, extending the diffusion chain may yield
higher bias compared to shorter-step MCMC.

Adaptive Step Selection. Ding et al. (2024) showed that single-chain simulations may lead to de-
generated policy performance, which coincides with our observation in early experiments. Though
running multiple stochastic chains and selecting the optimal one has become a common choice, it ac-
tually biases the generated action from following the target distribution'. To address this limitation,
we perform a grid search over the step schedule that yields near-optimal actions, with informative
SNIS initialization and Gaussian perturbations determined in advance of step selection. Specifically,
we adhere to the Q-gradient Langevin generator (QGLG) in algorithm | to sample softmax actions
from the Q landscapes, while avoiding unnecessary alterations to the underlying softmax—Langevin
sampling framework.

"For example, when the target density is a uniform distribution that generates o, ..., ;m—1, picking an
optimal one & = arg maxge(s,....e,,_,} J () is approximately equivalent to finding a & € arg maxecx f(x)
as m — oo, which is highly biased from the intended & ~ uniform.
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Entropy Estimation. To facilitate efficient real-time entropy tracking and adaptive temperature
control, we can calculate the entropy (see Appendix B.3.4) by

1 1
Ho(XA;s) = —logm + log || Al + LogSumExp;”:1 (/\Q(s,aj)) — XQ(SstQoﬁ)

where Q(s, WSQOﬂ) can be further estimated via SNIS with uniform proposals. Since the value func-
tion exhibits heterogeneous sensitivity to temperature across states, the true differential entropy
estimated on real batch data can introduce high variance. This contrasts with prior work such as
SAC (Haarnoja et al., 2018) and DACER (Wang et al., 2024), which estimate the statistics via one
or multiple Gaussian distributions. The Gaussian-based estimates tend to be inherently more sta-
ble than those obtained from arbitrary energy-based distributions, although they may not faithfully
reflect the softmax entropy .

5 EXPERIMENTS AND DISCUSSIONS

State-Dependent Temperature. In practice, the temperature can be state-dependent function A(s)
that aligns the magnitude of score functions across different states, without alternating the theory
of softmax policy and softmax Q iteration (see Corollary 1). We empirically set this temperature
function with z-score normalization

)\(S) =Xo- \/Vﬁra~uniform [Q(Sa a)]

to better mitigate numerical instability, where )¢ is a constant that scales the standard deviation.

Evaluation. The deterministic evalu- Algorithm 2: DDSQ

ation protocol follows the Q-gradient  Input :Temperature ), critic params 61, 6, target params
Langevin generator (Algorithm 1) with 01,05 , learning rate 7), soft Polyak rate 7,
specular reflection and step-size selec- candidate steps A

tion. The initialization is replaced by a ?utpuz 01,62,0,, 02_(1
greedy choice or each training step do

-

2 Set twin-Q surrogates
Q) Qo(s,a) = min{Qy, (s, a), Qo, (s, a)},
ap ¢ argmax Q(s, ay’), O (s.a) = min{g?(,l—(&a)i%; (s.m)}:

Execute environment step through behavior policy (10);
Store new data into replay buffer D;
Sample minibatch B = {(s,a,r,s")} ~ D;
Get target actions via m¢ = QGLG(s, Qg, A, Ac);
Setloss £(0;) = E[(Qe, (s,a) — 1 — vQq- (5, 70))*];
Update critic: 8; < 6; — Ve, L£(0;),1 € {1,2};

| Polyak update: 0; < 76; + (1 —7)0; ,i € {1,2};

o return 61,02,60;,60;;

over uniform candidates, and Gaussian
noise is replaced with deterministic
zero vectors. Determinism can be en-
sured with a fixed random seed, and this
protocol can thus be seen as a gradient-
based DDPG (Lillicrap et al., 2019) ac-
tion generator with zero-variance per-
turbations.

e ® N O AW

—

Behavior Policy. For reconciling exploration with optimality, we thereby adopt a probabilistic
combination of Langevin generators and deterministic generators, with likelihoods of p.” and 1 — p,
respectively. And our training framework is finally presented in Algorithm 2.

Main Result. Our experiments are built upon the publicly available Jax implementation of
DACER (Wang et al., 2024), which we selected both for consistency and its capability to model mul-
timodal action distributions. We compare our method against DACER, SAC, and QSM as baselines,
and the evaluation is conducted on eight continuous control tasks from the MuJoCo suite: Walker2d-
v3, Swimmer-v3, Humanoid-v4, Hopper-v4, InvertedPendulum-v4, HalfCheetah-v4, Pusher-v2,
Ant-v4. The hyperparameter settings can be found in Appendix B.2, and the corresponding training
curves are presented in Figure 3. The trending performance of our method is comparable to state-
of-the-art (SOTA) baselines in most environments, and reaches SOTA performance in several tasks.

>To this end, we do not directly tune the temperature ) itself, and simply set the temperature learning rate
equal to zero. However, we do develop an empirical law to calibrate the temperature, as shown in Appendix
B.3.4.

3We empirically set p. = 0.15 in the experiments.
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Compared with DACER, which requires over 20 hours of training, our approach completes training
in approximately 10 hours (see Table 1). This demonstrates that our method can effectively balance
both optimality and training efficiency.

Walker2d-v3 Swimmer-v3 Humanoid-v4 Hopper-v4
4000 A

6000 q 200 -
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L |
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Al “\cAﬂ‘\”A;\_ i
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/

o
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[~ pbsa DACER —— QsM —— sAc]

Figure 3: Main results in comparison with the baselines: SAC, QSM, and DACER. The experiments
are conducted across 8 MuJuCo benchmarks, aggregating random seeds of 100, 200, 300 and 400 to
facilitate a more reliable evaluation for the algorithms involved. The shade surrounding the median
curve represents the interval between the 25-th percentile to the 75-th percentile.

Environment DDSQ DACER QSM SAC

Walker2d-v3 10.06 0.01 2273 +£0.13 6.57 £0.03 1.31 £0.02
Swimmer-v3 10.04 £0.01 22.65+0.17 6.56+0.03 1.26+0.07
Humanoid-v4 11.05 £0.04 23.04£0.13 7.87£0.03 1.79 £0.05
Hopper-v4 10.82 £0.05 23.11+£025 7.01 £0.17 135+0.13
InvertedPendulum-v4  10.09 0.05 19.29 £0.25 642 +0.01 1.21 £0.04
HalfCheetah-v4 10.10 £ 0.04 19.62£+0.17 643 +£0.01 1.24+0.05
Pusher-v2 9.67 £0.04 2256048 648 £0.02 1.22£0.06
Ant-v4 9.68 =0.03 2250+0.39 6.514+0.06 1.51+£0.03

Table 1: A100 hours across environments. Each entry represents a median + the interquartile range
among the total training time induced by the four random seeds, where each GPU fraction simulta-
neously parallels 2 running sessions.

Training-Time Discrepancy. Discrepancy occurs when the actors are unable to approximate the
target softmax distribution given a simple parameterization. This can be empirically verified in
Figure 4, where the MCMC sampler in DDSQ faithfully captures multimodal distributions and SAC
fails to do so.

DDSQ, Step 3000

DDSQ, Step 18000 SAC, Step 3000

SAC, Step 18000
TR R TS

) NE=T e |
sy

72 3
u / NN
N / N

7 A [ NI
g S| [ 7z el
T T v v v v v

Figure 4: Landscapes of Q functions and actions generated across algorithms at an intermediate
training step. The DDSQ here is trained with Ag = 0.15 for a more representative demonstration.

Test-Time Flexibility. Compared to standard PG methods that fix the entropy regularization term
in the loss and thereby constrain the learned policy to partially align with a certain temperature,
our approach offers greater flexibility in controlling the sampling process. As illustrated in Figure
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5, even when trained under a relatively small temperature, the converged Q-function can be paired
with different temperatures at test time to instantly generate actions with varying trade-offs between
diversity and performance. Moreover, when operating at higher temperatures, we also observe that
our method achieves higher action diversity than existing baselines such as DACER and SAC.

MultiGoal-v0 DDSQ (D. Ag=0.01) MultiGoal-v0 DDSQ (A0=0.01) MultiGoal-vO DDSQ (Ao=1.00)
| S A s
[ 1 2 %
o i SIS R o
[ N 7 1 ' W \f/
MultiGoal-vO DACER MultiGoal-v0 QSM MultiGoal-v0 SAC
= ﬁ@ - / " N e 4 N
¢ U N N 7LD
12 . =
N ¢ NG / ] N

Figure 5: Policies induced by different training algorithms in a 2-D MultiGoal environment
(Haarnoja et al., 2017), where the task is to trace targets at (—5,0), (5,0), (0, —5), (0,5). We reset
observations at (2.5-4, 2.5 - j) across different combinations fori € {—1,0,1}and j € {—1,0,1} at
test time, and the first row represents DDSQ policies with diverse test temperatures. The DDSQ here
is trained with Ao = 0.01 for a more representative demonstration. Figure titled "D. Ao = 0.01”
represents deterministic policy evaluation under scaling factor A\g = 0.01.

DDSQ, QSM and LAC: A Comparison The central ideas of QSM (Psenka et al., 2025) and LAC
(Lei et al., 2024) are broadly aligned with Langevin dynamics, yet they differ from our approach ei-
ther in theoretical starting points, or in practice, by introducing additional approximation errors.
Specifically, QSM shows that if a diffusion process parameterized by a score function sg(a | s)
solves the policy gradient (PG) problem, then the score function must be proportional to the Q-
gradient, i.e., sp(a | s) x V,Q(s,a). However, this perspective is largely confined to using diffu-
sion models as a PG solver and requires fitting an extra network to approximate the Q-gradient itself,
which introduces additional approximation error. In contrast, LAC starts from a different viewpoint,
by observing that the solution to constrained policy optimization (CPO) problems (Achiam et al.,
2017) naturally takes a softmax form, and hence employs Langevin dynamics to implement sam-
pling. LAC also introduces an auxiliary action network for initialization, but this design inherits
limitations of parameterized policy classes. For instance, Gaussian initialization concentrates ac-
tions around a single mode that fail to cover multimodal peaks, while diffusion-based initialization
incurs higher computational and training costs, potentially leading to suboptimal initialization that
requires more diffusion steps. Both QSM and LAC offer limited further insight into the softmax
policy itself, and by contrast, our approach provides a refined sampling procedure using SNIS ini-
tialization, jitted score functions, specular reflection, and step selection, to enable a more stable
Langevin MCMC implementation for softmax policy approximations.

6 CONCLUSION AND FUTURE WORK

In this work, we present Deep Decoupled Softmax Q-Learning (DDSQ), a critic-only framework
with a deeper understanding of continuous softmax approximation. Our methodology addresses
practical limitations of PG optimizations and achieves high-fidelity softmax action generations, and
the empirical results on continuous MuJoCo benchmarks demonstrate both strong performance and
efficiency. Looking ahead, extending DDSQ to multi-agent scenarios or offline RL would provide
opportunities to evaluate its ability to scale to practical applications. We believe that the framework
established here can provide a foundation, both theoretically and empirically, for advancing research
in high-dimensional policy sampling and softmax-based reinforcement learning.
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ETHICS STATEMENT

We have read and adhered to the ICLLR Code of Ethics. Our work does not involve human subjects
or sensitive personal data, and all RL environments used are publicly available or properly licensed.
We have considered potential societal impacts, including fairness, privacy, and possible misuse, and
we believe that our research is conducted responsibly and ethically.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. Specifically, (i) Our training code
builds upon the DACER (Wang et al., 2024) implementation. The code is made available to the
reviewers and is also included in the supplementary materials. (ii) All hyperparameters for the
algorithms used in our experiments are disclosed in Appendix B.2. (iii) Pseudo-code for our methods
is provided in Algorithms | and 2.
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A ADDITIONAL EXPERIMENTS

Fitted Landscape for Different Vol(\).  In Figure 6, each panel shows the Q-values across
actions for a fixed state. When the optimal () is smooth (high Vol()\)), the fitted Q-function closely

matches Q. In contrast, when Q is sharp (low Vol())), the fitted Q becomes biased, highlighting the
difficulty of accurately approximating sharp reward landscapes even under the same temperature \.
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Figure 6: Comparison between learnt and optimal Q-function landscapes.

Inference Time. In Figure 7, we report the inference time for each algorithm. For each method,
the inference step was executed consecutively 100 times, and the mean latency was computed over
these runs. All single-step action generations were consistently performed on A100 GPUs.
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Figure 7: Inference time of the stochastic behavior policy across algorithms.

Temperature Selection.  We show that very small temperatures (0.001) and large temperatures
(1) both lead to suboptimal performance—small temperatures correspond to very low differential
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entropy, while large temperatures result in imprecise sampling. Intermediate temperatures (0.01 and
0.1) perform well, and we set 0.05 as a compromise in our main experiments.
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Figure 8: Ablation study for temperature selection.

We study the effect of the number of candidate schedules. With only

one schedule, sampling degenerates to a single trajectory under linspace[1, le-4, 20], yielding the
worst performance. Increasing the number of candidate schedules improves performance, which
saturates around 8. Considering training cost, we select 4 schedules in the main experiments as a
tradeoff.
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Figure 9: Ablation study for the choice of candidate step schedules.

MCMC Components. We compare clip and reflect versions of boundary handling, tracking the
average absolute value of each action dimension during training. The clip version leads to more
severe stagnation, while reflection mitigates this problem and overall training output is better, con-
sistent with theoretical predictions. In addition, the distribution obtained by SNIS coarse sampling
approaches the true softmax distribution as m — oco. We test m = 1,5,25,125 and observe the
expected trend, with performance saturating at 125. Notably, when m = 1, SNIS degenerates to
uniform random sampling, demonstrating the necessity of SNIS for accelerating convergence.
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Figure 10: Ablation study for MCMC components.
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B APPENDIX

B.1 DISCLOSURE OF LLM USAGE

We use large language models to facilitate our research, and their contributions can be shortlisted
as follows. (i) Grammatical refinement. We employ LLM to polish vocabularies, sentences and
paragraphs, in order to present the academic paper in a more standard way. (ii) Code development.
LLM’s are leveraged for debugging and understanding the logic of Jax framework. (iii) Theoretical
validation. We leverage LLM to prompt literature research, refer to existing theories, and confirm
the feasibility of new theories.

B.2 HYPERPARAMETERS

To ensure fairness, environment-specific hyperparameters are refrained in our experiments. Instead,
each algorithm including DDSQ and other baselines, is evaluated with a unified set of hyperpa-
rameters, which is algorithm-specific but sustains environment-agnostic. The concrete settings are
detailed in Table 2, 3, 4, 5, and 6, defaulting from the official implementation of DACER (Wang
et al., 2024).

Parameter Value Notes

Vectorized envs 20 Number of Environments for Sampling (s, a,r, s")
Network architecture  [256, 256, 256] Commonly adopted neural structures across components
Diffusion steps 20 Number of steps (if applicable) for diffusion-based methodologies
Warmup Steps 2e5 Steps involved for warmup data collection

Update steps 1.5e6 Steps involved for param optimizations

Sample steps 3e6 Update steps multiplied by vectorized envs

Buffer size le6 Capacity of the replay buffer

Batch size 256 Batch data for each updtae step

Discount factor (vy) 0.99 Standard in MuJoCo tasks

Seeds 100, 200, 300,400 Reported with medium = interquartile range

Table 2: Common hyperparameters across algorithms.

Parameter Value Notes

Reward scale 1.0 Reward scaling factor

Learning rate 2e-4 Adam Optimizer

Activation Mish Nonlinearity

Samples for entropy estimation 1000 Uniformly generated for SNIS entropy estimator
Samples for SNIS initialization 100 Uniform particles for SNIS action initialization
Start steps logspace (0, -4, 10) Candidate start steps

End steps [le-4] = 10 Candidate end steps

Initial Temperature Ao 0.05 The constant scalar

Temperature normalization std Standard deviation along uniform samples
Target entropy -act_dim Optional, not activated in our experiments
Temperature learning rate 0 Optional, not activated in our experiments
Temperature learning cycle 100 Optional, not activated in our experiments

T 0.005 Soft target polyak rate

Target update cycle 1 T-exponentially averaged every 1 update steps

Table 3: Hyperparameters for DDSQ.
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Parameter Value Notes

Reward scale 0.2 Reward scaling factor

Learning rate le-4 Adam Optimizer

Activation Mish Nonlinearity

Initial Temperature A 3.0 Multiplied by 0.15 for noise injection
Samples for entropy estimation 200 Generated directly via get_action

Target entropy -09 * act_dim Estimated via GMM

Temperature learning rate 3e-2 Optimizing over logarithms of A

Temperature learning cycle 10000 Update temperatures every 10000 update steps
T 0.005 Soft target polyak rate

Target update cycle 2 T-exponentially averaged every 2 update steps

Table 4: Hyperparameters for DACER.

Parameter Value  Notes

Reward scale 1.0 Reward scaling factor

Learning rate le-4 Adam Optimizer

Activation ReLU  Nonlinearity

Particles 64 Number of i.i.d. Langevin chains for arg-maximum
Initial Temperature A 1.0 Fixed in Langevin dynamics, not learnable

T 0.005  Soft target polyak rate

Target update cycle 1 T-exponentially averaged every 1 update steps

Table 5: Hyperparameters for QSM.

Parameter Value Notes

Reward scale 1.0 Reward scaling factor

Learning rate le-4 Adam Optimizer

Activation GeLU Nonlinearity

Initial Temperature A e The weight of entropy regularization

Target entropy -act_dim  Estimated via GMM

Temperature learning rate 3e-4 Optimizing over logarithms of A

Temperature learning cycle 1 Update temperatures every 1 update steps

T 0.005 Soft target polyak rate

Target update cycle 1 T-exponentially averaged every 1 update steps

Table 6: Hyperparameters for SAC.
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B.3 PROOFS

B.3.1 SOLUTION TO ENTROPY-REGULARIZED OPTIMIZATION

1. Discrete Case.

arg mSXEmN,,(.)[f(x)] + AH(m(-)) = arg mﬁxEmNﬂ(.) f(/\ )} +H(n(-))— log Z exp ( )

zeX

Linear Scaling

eXp(/\_lf(fE)))
Zr(N) ’

Irrelevant to 7, denoted as log Z ¢ (\)

= argmin Dk, <7r
T

2. Continuous Case.

gy 0] + N () = angma ) [ 220 4 i)~ t0g [ e (1)

A A
Linear Scaling Irrelevant to 7, denoted as log Z ¢ (\)
: exp(A~" f(2))
= argmin D T||———— ],
o ’“( Zy()

both of which induce a softmax solution 7y o exp(A~!f(z)), given that the Kullback-Leibler
(KL) Divergence attains zero when and only when

exp(\" f(z))

@) = Zr(\)

B.3.2 PROOF OF THEOREM 3.

Proof. We first prove that, the specular reflection operator R is a 1-Lipschitz mapping. For a hyper-
cube X' = Hle [L;, R;], note that for each reflected process along dimension 4,

Ri(CC,(Z) — Li = g,lé% ||2]€7(R1 — Lz) — Xy — CLiH 5
it follows that

|[Ri(x,a) — Ri(y,b)|| = || min H%l(l)(Ri - L) -z —a

™
kMer

— min H2k1(2)<RZ — Li) —Yi — bl
ez

Without loss of generality, we assume that

min Hka(l)(Rz - Ll) — T; — a;

> min H2k§2)(Ri — L) —yi — b;

kPez kPez
and we can further bound the distance by
IRi(w, @) = Ri(y,b)| = ||262) (Ri = L) = i — | = ||26Z) (Ri = L2) —
H2k(2) (R, — L;) —x; — a;|| — HQk(Q) —Li) —yi

S HZki,* R, — Li) —X; —a; — (le(’z*)(Rl — Li) —Yi — bl)

= ||lzi +a; —yi — bil| ,
(1) k()

G,k 0 ViLx

where k; denote the arg min’s, and we hence complete the Lipschitzness proof. Consider

(z)

some x; ~ exp ( ) from the stationary distribution induced by the reflective Langevin

MCMC, along with an arbitrary z; € X. By drawing a ¢, ~ N(0, I) for both reflected processes,
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we obtain that

2 2 2
2t — zeq||” = IR, y) — Rz, wo)|I” < oy 4y — 20— wel|

*

2 * * * 2
= llzp — 24l|” + 2(2y — xt)T(yt =) + v — vell

= |lz} —a|)* + /\( — 1) (VE(%)—VE(ﬂct))JrﬁHVE(%t)—VE(ﬂﬂt)ll2
N mé L2682
swn—mu—jwt—mn+4gwm—mﬁ
md; L2567 .

With 117 € argmin,,(... eri(nunpr) Bn [Hx: = T yﬂ, it follows that

" N 2 N 2
Wa(2ii1, oe1) = By [||xf+1 | } < Eg; [||xt+1 — @epa| }
mét L2(52 * 2
< (1= + S ) B [let -l
mét L252 %
< 4)\; W2(‘/Et7$t))

which leads to a bounded solution

T-1
Wa(a™, zr) < Wa(z™, zo) H (1 - —+
Pt A 42

B.3.3 PROOF OF THEOREM |

Proof. We first prove a single-step bound and then extend it by induction.

Notation and preliminaries. For a fixed state s’ and function f, define
i (s, a') = f(s',73) — f(s'd),

where 7} (s’) = argmaxaea f(s',a’). Fore > 0 let Volf, (¢) denote the volume (measure) of the
set {a’ : 77(s’,a’) < e}. We assume Assumption 2 which guarantees a comparison

VolZ, (kX) < go(r) Vol/,(\),

for k > 1 and some function go(-) (as stated in the main text). Also write ||.4] for the total measure
of the action space.

Step 1: Single-step bound. For any f € [0, Vi,.x] we have
(Tf)(& a) - (ﬁoftf)(sa a) = 'YES’NP(-\S,a) [f(8/7 W;) - f(s aﬂ-goft)]
—7¢(s",a") /N
:'}/ES/NP(,‘S Y fa’ Tf(s/’a/)e, J:( N/ da’
, fa/ e*Tf(S ,a’)/ A da’
[ ee=</> avol/, (e)
Jo e/ dVol/, (e)

= ’YES,

Let g(€) := ee~</*. Note g attains its maximum at ¢ = \ with g(\) = /e, and g is decreasing on
[\, 00). Fix £ > 1. Split the numerator:

/ h ee /> dVoll, (e) = / H)\g(e) dvoll, () + / h g(€) dVol, (e).

0 0 KA
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Using g(e) < Meon [0,xA] and g(€) < g(kA) = kXe™" on [kA, 00), we get

/ ee=/*dVol/, (e) < = Voll, (k) + rxe ™ (|| Al| = VoI, (kA)).
0 ( e (

Applying Assumption 2 (Volf/ (kM) < go(m)Volf, (M) yields

/ ee—e/A dVOlf/(f) < %go(/@') VOIf/(A) + KXe " ||-A|| .
0

For the denominator we have the lower bound

- A
/ e~/* dvoll, (e) > / e~ dVol,(e) > EVolf:, ().
0 0 ‘

Thus, for the choice r; := log ([|A] /Volf;,()\)) (take Ky > 1, e.g. ky = max{l,log(-)} if

needed), we obtain
(Tf)(s,a) = (Teotsf)(5,a) < A (go(ky) + ery).
For conciseness define

C(N) = gof log([l Al VoI~ () + elog(|lA]| VoI~ (),
so the single-step bound reads
(TH)(s,a) = (Teose ) (s,a) SAAC(N).
Finally, by definition (7 f)(s,a) > (Tsott.f) (s, a), hence the difference is nonnegative.
Step 2: Induction. We prove by induction that for all k£ > 1,

k
0 < (T*Qo)(s.a) — (T Qo) (s,a) < AC(N) S 4.
j=1

The base case k = 1 is exactly the single-step bound above. Now assume the bound holds for k — 1.
Then

(T*Qo)(s,a) = (To61Qo)(s, @)
= (T(T*7'Q0)) (5, ) = (Teort (Totre Qo)) (5, @)
= [T(T1Q0) - T(T: Qo) (5,) + [T(TE3 Qo) = Teon (T2 Q0)] (5. ).
For the first bracket we use the standard contraction property of 7
Tf—Tg=vEy[maxf(s',a) —maxg(s',a)] <7[f = gl

hence by the induction hypothesis the first bracket is at most
k—1

Y ACN) Y .
j=1

The second bracket is a single-step difference with f = 5oft Qo € [0, Vinax), S0 by Step 1 it is
bounded by YA C'(\). Summing these two bounds yields

k
(TkQO)(Sﬂa’) ( softQO)(s a‘ < )‘C Z’Y%
J=1

completing the induction. Nonnegativity holds similarly at each step.

Step 3: Limit and conclusion. Combining the above,

0<T*Qo — TX,Qo < AC(A Z M.
soft i 1— v
Taking k — oo and using T*Qq — Q* yields the desired bound in Theorem 1. O
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While Theorem | establishes a polylogarithmic suboptimality guarantee for softmax Q-iteration
under a fixed temperature parameter A, in practice it is often advantageous to allow the temperature
to vary across states. The rationale is that different states exhibits distinct action-value landscapes:
state with large value gaps benefit from smaller temperatures to sharpen exploitation, whereas flatter
landscapes call for larger temperatures to promote adequate exploration.

A natural way to capture this heterogeneity is to adopt a state-dependent temperature schedule \(s)
(Schulman et al., 2015; Nachum et al., 2017). In particular, a typical choice is the z-score normal-
ization:

)\(5) = \/Varawuniform [Q(sa a)],

which dynamically rescales the local action-value range and thereby enhances algorithmic stability
across iterations. Building the same volume-based analysis as in Theorem |, we can extend the
analysis to obtain the following corollary for the state-dependent case.

Corollary 1. Suppose the temperature parameter is chosen as a state-dependent function A : § —
R™, and the value function is initialized as 0 < Qo(s,a) < Vipax. Then for all (s,a) € S x A, the
softmax Q-iteration satisfies the following bounds:

lim inf(Q* — TX.Qo)(s,a) >0, 5)

and

111?1 sup(Q* — 7?0“&@0)(8, a) < ﬁEswdfﬁa [/\(3’) - polylog (Vol;l(/\(s’)))] ’ (6)
— 00

where Volg (A(s')) = infy Volgk (X(s")), and ds%, is the normalized discounted occupancy mea-
sure starting from (s,a) under the non-stationary greedy policy Ty induced at each iteration. In
particular, at round k, 74 chooses action as

ap = my(sy) = arg Iiax(Tk_lQo — 7;’;{1@0)(%7(1)- @)
ac

Moreover, if the state-dependent temperature is bounded such that Apin < A(s) < Amax for all
s € S, we obtain the uniform upper bound

hlf;n sup(Q* — 7;]?&@0)(37 a) < ﬁAmax - polylog (Vorl()‘min)) . ®)
—00 -

The proof of Corollary | follows the same procedure as that of Theorem |, namely establishing a
one-step bound and then applying recursion, except that here the one-step bound is given by

, A
(Tf = Teotef)(s,a) < ’YES’NP(-\S,a) |ﬁ‘(5 ) - polylog (VC)I‘}'/'()\H(S,)))] ) 9

from which the greedy policy 7, naturally arises when we try to telescope over equation (47).

B.3.4 DIFFERENTIAL ENTROPY ESTIMATOR

In our continuous-action setting, we estimate the differential entropy of the softmax policy 79 ata

ft
given state s as follows. The exact entropy is defined by *

1
Mg 1) = [ wy(a] 910w g da.

ﬂ-soft(a | ‘9)

By substituting the softmax form

and using
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we can rewrite

Hx (- | 8)) = log Z(s,3) — ~Q(s,7%)

A
, 1
— 108 B [ A1 -exp (L2 D)] - 200,78y,

where Q(s, ﬂsQoﬂ) is the expected value under the softmax policy. Since the integral over A is gen-

erally intractable, we approximate it using Monte Carlo sampling. Let a1, ..., a,, ~ U(A) be i.i.d.
uniform samples. Then the entropy estimator at state s is

Ho(\;s) = —logm + LogSumExpjL, (log IIA| + %Q(s,aj)) - %Q(s,wgﬂ),
and its expectation over states defines the overall entropy estimate
Ho(\) = Eeu [Ho(N; 5)].
To stabilize the temperature update, we also compute the standard error of the estimator,

oo(\) = \/Varsw (Ha(X:9)),

and update the temperature \ via

Ho(\) —H

A A—gy QW
- ™ max{1, og(\)}’

where # is the target entropy. The standard error oo (A) effectively scales the update to prevent
overly aggressive changes when the variance is large.

This estimator is a simple extension of the self-normalized importance sampling (SNIS) approach,
where the numerator approximates the log-partition function via the LogSumExp trick and the de-
nominator corrects for the normalization by the sampled softmax policy.

B.3.5 ANALYSIS OF SELF-NORMALIZED IMPORTANCE SAMPLING

Under specific circumstances, we may wish to draw samples from some target distribution p,
whereas only a proposal g is given available for practical sample generation. The self-normalized
importance sampling (SNIS) algorithm (Kong et al., 1994; Swaminathan & Joachims, 2015;
Kuzborskij et al., 2021) characterizes the following generative protocol:

1. Draw samples from the proposal distribution q:

L1y L2y« Tm ~ q,
2. Calculate the weights for importance sampling:
W; = p(mi)’ where ¢ € [m],
q(;)

3. Execute resampling procedure in accordance with the aforementioned weight functions. Output
Z = x1, where the index I € [m] is randomly selected with probability

Pr(l =i | 21m) =
=) = e,

In terms of energy-based sample generation, our target distribution p(x) o exp (f(x)) corresponds
to a softmax distribution with respect to a potential function f(z), and the proposal generator g(z) =
I—glz‘lgceg is specified as a uniform measure, where the normalizing factor over the sample space €2
is denoted as Z = [, exp(f(x))dx. The analysis will consider a universal class of p and . For
our specific choice p(z) o exp(f(x)), ¢(z) = ‘—é‘lmg, the guarantee is shown in Theorem 2. Our

theory begins with the following primary result that establishes the asymptotic property of the SNIS
estimator, as demonstrated in Lemma 1.
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Lemma 1. For a target density p(x) and a proposal distribution q(x) with their weight function
; p(z)

being W (x) = o I

1. (Non-Negative Support) Vx € S such that p(x) > 0, the proposal density q(x) > 0,

2. (Weight Boundness) 3Wyax > 0 such thatVz € Q, 0 < W(z) < Wiax

then Vx € Q, the density wy, (x; x1.m) estimated by the SNIS generator will converge to the target
density

lm wp,(z; 21.m) = p(x),
m—r 00

as m — oQ.

Proof. Since wy, (x; 1.,) is the probability density function of the output X, by definition,

wm(x§x1:m = / /Z W H Xk dXy - dXpy,
j=1 k=1

where § is the dirac delta function. Given the i.i.d. property for each X;, we are then able to expand
the above target by leveraging symmetry of the random variables, as analyzed accordingly:

Wy
Wi (T3 2120, m/ q(zg)dxy -
Z2:m Z] IW H

(I) m

:m/.../ q(tzb p(TJ)q qu’kdl'g
T2im

q(w +ZJ =2 q(z;)

1
=m- p(:L') . EIz;-,,LNq p(ZE T Z ', p(wl
J=2 q(z
1
— . By _ ]
- p(e) - Egpmg [W TES Wj] *)

By the law of large numbers, the following asymptotic guarantee can be yielded as m — oo:

W B W@ = [ D= [ =1,

m — q(x)

Incorporating this property, we can ultimately validate the consistency of the SNIS estimator by
()

x )
W)+ m-1) "

where the bounded weight function W () is negligible in comparison to m — 1. O

Wi (X5 12m ) = m - p(x) -

The following establishes a finite-sample, non-asymptotic analysis for the SNIS estimator, confirm-
ing the rate depends on both the inherent bias and the concentration deviation.

Lemma 2. Under the assumptions of lemma 1, let w,,(x; x1.m) denote the output density of the
self-normalized importance sampling (SNIS) procedure using m > 2 samples. Then, for any point
x € Q such that p(x) > 0, the pointwise bias of the SNIS density estimator is bounded by

1 — W(z)| + Var,[W]  2m(1 + Winax) -1
m\L; m) S 2 ’
|wim (5 21:m ) — p(2)| < 2p(x) m—1 + W(z) QWI%aX
polynomial term (bias) exponential term (concentration)

where W (x) = p(x)/q(x), Varq[W] is the variance of the importance weights.

23



Under review as a conference paper at ICLR 2026

Proof. By the expression (x) of wy, (z; 1., ), we know that

Wi (T3 T1:m) — P(2) = Eay g {p(m) . <W($)Tsml - 1)] ’

where S,,_1 = ZT:Q W;. Let B(x; Z2.m) = p(z) - (W - 1) denote the random error
inside the expectation. Out goal is to bound |E,,.,, ~q[B(x; Z2.m)]|.
Step 1. Define a high-probability ”good event” € where S,,_1 is close to its mean.

Since E,q[W(x)] = 1, which means the expectation of the sum is E;[S,,,—1] = m — 1, we can
define the ”good event” £ as the set of outcomes where S,,,_1 does not deviate from its mean by

more than a factor of 1/2:
-1
£ = {|Sm1(m1)| < m2 }

By Hoeffding’s inequality, for a sum S,,_1 of m — 1 independent random variables bounded in
[0, Winax], we have

2t?
Pr (‘Sm_l — Eq[Sm_lﬂ Z t) S 2eXp <(’rn—1>VV2) .

max

We set t = (m — 1)/2 to find the probability of the bad event £¢:

Pr(£°) < 2exp <_W> — 2exp (_ n- 1 ) |

max max

which decays exponentially in m.
Step 2. Bounding the bias of the bad event £°.

We decompose the total bias using the law of total expectation:
By [B(2; 22:m )| < |Bay. g [B(5 Z2:m)Le]| + [Bay., g [B(5 2:m) Lee]]-

The second term can be bounded by the supremum of the error multiplied by the probability of the
event:
Eay.mg[B(@; 2im) Lee]| < sup  [B(x;@2:m)| - Pr(€°).

To.m EEC

To bound the error | B(z; 2., )|, we need a lower bound on its denominator. Since S,,—1 > 0, we
have W (z) +S,,—1 > W(z). The numerator is |m — W (z) —S;,—1| < m+W(x)+ S,—1. Hence,
m—Wx—Sm, m1+Wmax

W(z) + Sm—1 W (zx)
Therefore the contribution from the bad event is thus
m(1l + Wiax) 9 exp [ — = 1

W () P\ Tamz, )

max

| B(w; 22:m)| = p(2)

By g B(@; @2:m) Lee] | < p(z)

Step 3. Bounding the bias on the good event £.

Our objective is to bound the term |E,, [B(x;22.m)1e]|. From the definitions, this is equal to
p(x)|Eq[T - 1¢]|, where

—s+ (1 -W(x) _ —bs+(1-W(x))
W(z)+ (m—1)+6ds a+ds
where g = Sy,—1 — (m — 1) and a = W (z) + (m — 1). The expression for T can be rewritten as
- 1-— W((E) 55

a—+dg a—+dg
_1—W(Z‘) s 1 55
T a+6ds S(a_a(a+5s))
1-W(x) ds 5%
a+6s a  ala+0s)

T =

b
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We now bound the expectation of each of these three terms when multiplied by the indicator 1¢. By
the triangle inequality,
52
Bl

[Eq[T - 1e]| < ﬁf[lgglfgf)lﬁ}"*'E {‘iflg] a(a + bs)

(A) (B) (©)

We first bound the term (A). On the event £, we have Ag = |S;,,—1 — (m — 1)] < (m —1)/2,
which implies S,,—1 > (m — 1)/2. Therefore, the denominator a + dg = W (x) + Sy, —1 is strictly
positive and bounded below by W (z) 4+ (m — 1)/2. Hence,

e == e

o-f]

- W)
= {W<x>+<m—1>/215]

11— W)
W)+ (m—-1)/2
21— W)

m—1

We then bound the term (B). Since E[0s] = 0, we have E[ds1g] = —E[dg1gc]. Therefore,

[E[0s1e]| = [E[ds1ec]|
< E[[ds]1ec]
< sup |0g|-Pr(&9)

T2:m EEC

< (m — 1)Whax - Pr(€°),

where the last step follows because |S,,—1 — (m —1)| < (m — 1)Wax is a universal bound. Hence
the second term can be bounded by

1 (m = D)Winax m1
(B) < JEPstell < iy s m—1) 2P (_2W£ax) ’

which is exponentially small in m.

Finally we bound the term (C). On &, the denominator a(a + dg) is positive and bounded below by
(W(z) +m — 1)(W(x) + (m — 1)/2). This indicates that

|2 e

<= | s

< E[051¢]

- (W) +m = D(W(z) + (m - 1)/2)

3 E[52) |

- (W(@)+m—-1)(m—-1)/2

Since E[0%] = Var[S,,—1] = (m — 1)Varx.,[W (X))] by the i.i.d. samples, this becomes

(m — 1) Var, [W] _ 2Var,[W] 2Var, [WV]
O o smDm-12 W@ +m-1= m-1

Combining these three bounds, we get the bound for the bias on the good event £:

max

Bop sl Blizzn 1] < 20(0)
Step 4. Combining the bounds.
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We assemble the final bound on the total bias, which is given by
|wm(x;x1;m) —p(x)\ = ‘Ewa;m [B(x§x2:m)]| < |Ea:2;m [B(x§$2:m)1£“ + |Ea:2:m [B(x§$2:m)156]|~

From step 2, we have the bound for the bad event:

B, [B(2; :m) Lee]| < 2p(x)w exp ( m—1 ) .

W2

max
From step 3, we have the bound for the good event:

= W(2|_+1V3rq[w] + IEI;réx—) i):/‘n/nfx1 P <27;LV_21)> '

max

EMAM%MMk]S%M<

Therefore, combining all these together, we get the guarantee in proposition 2:

| (25 Z1.m) — p(2)| < 2p(2) |1 — W(z)| + Vary[W] n 2m(1 + Winax) N ( m—1 )

m—1 W(x) o2

max
polynomial term (bias) exponential term (concentration)

O

The structure of the bound in Lemma 2 is highly informative, as it decomposes the total error into two
distinct components with different rates of convergence. The dominant component is a polynomial
term of order O(1/m), which represents the intrinsic bias of the estimator and dictates its overall
convergence rate. This bias is in turn governed by two key factors: a local mismatch term, |1 —
W ()|, which captures the inaccuracy at the specific point of evaluation, and a global mismatch term,
Var, [W], which quantifies the overall discrepancy between the proposal and target distributions. The
second component of the bound is an exponential term of order O(m - e~ ™) that accounts for the
risk of a concentration failure, which is common in machine learning literature.

While Lemma 2 characterizes the point-wise bound, it also implies a global measure of distributional
error. The following lemma extends the analysis by bounding the total variation (TV) distance
between the estimated density p,, and the target density p.

Lemma 3. Under the assumptions of Lemma 1, the total variation distance between the estimated
density p, from the SNIS procedure with m > 2 samples and the target density p is bounded by:

i) < Bl I+ Var 17

m—1
+ 2m(1 + Wmax) exp (—2VV2> .

max

m—1

Proof. Followed by the definition of the total variation distance, we have

1
V(o) = 5 [ o (sio1m) — ple)ldo
Q
1 11— W ()| + Var, W] 2m(1 + Winax) m—1
<=-1/2 —— ) d
=2 /Q p(z) ( m— 1 w2, ) )
1 m—1
=— (Ep[|1 — W] + Varg[W]) + 2m(1 + Wiax) exp “owz )
where we uses that [, p(z)dz = [, q(x)dz = 1. O
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