
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

DRQA: DYNAMIC REASONING QUOTA ALLOCATION
FOR CONTROLLING OVERTHINKING IN REASONING
LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Reasoning large language models (RLLMs), such as OpenAI-O3 and DeepSeek-
R1, have recently demonstrated remarkable capabilities by performing structured
and multi-step reasoning. However, recent studies reveal that RLLMs often suf-
fer from overthinking, i.e., producing unnecessarily lengthy reasoning chains
even for simple questions, leading to excessive token consumption and computa-
tional inefficiency. Interestingly, we observe that when processing multiple ques-
tions in batch mode, RLLMs exhibit more resource-efficient behavior by dynam-
ically compressing reasoning steps for easier problems, due to implicit resource
competition. Inspired by this, we propose Dynamic Reasoning Quota Alloca-
tion (DRQA), a novel method that transfers the benefits of resource competition
from batch processing to single-question inference. Specifically, DRQA leverages
batch-generated preference data and reinforcement learning to train the model to
allocate reasoning resources adaptively. By encouraging the model to internalize
a preference for responses that are both accurate and concise, DRQA enables it to
generate concise answers for simple questions while retaining sufficient reason-
ing depth for more challenging ones. Extensive experiments on a wide range of
mathematical and scientific reasoning benchmarks demonstrate that DRQA sig-
nificantly reduces token usage while maintaining, and in many cases improving,
answer accuracy. By effectively mitigating the overthinking problem, DRQA of-
fers a promising direction for more efficient and scalable deployment of RLLMs,
and we hope it inspires further exploration into fine-grained control of reasoning
behaviors.

1 INTRODUCTION

Reasoning large language models (RLLMs), such as OpenAI-O3 (OpenAI, 2025) and DeepSeek-R1
(DeepSeek-AI et al., 2025), have recently showcased remarkable capabilities in complex problem
solving and decision-making, achieving state-of-the-art performance across a wide range of tasks.
However, recent studies have revealed that LLMs often generate unnecessarily lengthy reasoning
chains, even for simple questions like “2+3=?” (Sui et al., 2025; Chen et al., 2025). While extended
reasoning can improve accuracy on complex tasks, this tendency to overthink leads to excessive
token usage and growing computational and economic costs, posing significant challenges for the
scalable and practical deployment of RLLMs in real-world scenarios.

Inspired by recent findings on instruction-tuned LLMs (Lin et al., 2024; Cheng et al., 2023), which
show that processing multiple inputs together during batch inference can reduce the total generated
length compared to answering them individually, we investigate whether a similar phenomenon
exists in RLLMs. Our study reveals that this effect in RLLMs goes beyond mere solution shortening:
batch inference also compresses the chain-of-thought reasoning process itself. For example, as
shown in Figure 1, answering three questions together yields only 648 tokens in total, compared to
1205 tokens when answered separately. This suggests that under a shared context window, questions
implicitly compete for a global reasoning quota, prompting the model to prioritize essential logic
and suppress redundancy, an effect we refer to as “resource competition pressure”.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Divide 12 pencils equally among 3 friends. How many does each get?
<think> I have this problem: "Divide 12 pencils equally among 3 friends. How many does
each get?" It seems straightforward, but I should make sure I understand it correctly.
There are 12 pencils and 3 friends, and I need to split them equally.To find out how many
each friend gets, I divide the total number of pencils by the number of friends. So, that
would be 12 divided by 3.Let me do the division: 12 ÷ 3. ...</think>
To divide 12 pencils equally among 3 friends, divide the total number of pencils by the
number of friends:12 ÷ 3 = 4.
Thus, each friend gets 4 pencils.
This can be verified by distributing the pencils:
- After the first round, each friend has 1 pencil, totaling 3 pencils distributed.
- After the second round, each friend has 2 pencils, totaling 6 pencils.
- After the third round, each friend has 3 pencils, totaling 9 pencils.
- After the fourth round, each friend has 4 pencils, totaling 12 pencils.
Since all pencils are distributed equally, each friend receives 4 pencils.

Question1 : 488 tokens

What is 5+8?
<think>Hmm, the user is asking what 5+8 is. This seems like a very basic arithmetic
question - almost too simple.I wonder if this is a test of my capabilities? ... </think>
The sum of 5 and 8 is 13.You can calculate it as follows:
5 + 8 = 13

Question2 : 260 tokens

A rectangle is 8 cm long and 5 cm wide. What is its area?
<think> I have a rectangle that's 8 cm long and 5 cm wide, and I need to find its area.
The area of a rectangle is calculated by multiplying the length by the width. So, in this
case, that would be 8 cm times 5 cm.Let me do the multiplication: 8 times 5 is 40. Since
it's centimeters, the area should be in square centimeters. So, 40 square centimeters.I
should write it properly. The area is 40 cm². Yeah, that makes sense.Just to be thorough,
let me think about what area means. It's the space inside the...</think>
The area of a rectangle is calculated by multiplying its length by its width.
Given:
Length = 8 cm
Width = 5 cm
Area = Length × Width
Area = 8 cm × 5 cm = 40 cm²
Thus, the area of the rectangle is 40 cm².

Question3 : 457 tokens

1.Divide 12 pencils equally among 3 friends. How many does each get?
2.What is 5+8?
3.A rectangle is 8 cm long and 5 cm wide. What is its area?
<think>
I have three questions to answer. Let's take them one at a time.First question: Divide
12 pencils equally among 3 friends. How many does each get?This is straightforward
division. I have 12 pencils and 3 friends, so I need to split 12 into 3 equal parts. That
means dividing 12 by 3. What's 12 divided by 3? I know that 3 times 4 is 12, so each
friend gets 4 pencils. Let me confirm: Friend 1 gets 4, friend 2 gets 4, friend 3 gets 4,
total 12. Yes, that makes sense.Answer to question 1: Each friend gets 4
pencils.Second question: What is 5 + 8?This is simple addition. 5 plus 8. I can think of
it as 5 + 5 is 10, plus 3 more is 13, but that might be confusing. Better to just add: 5
and 8, that's 13. Let me count: 5, then 6,7,8,9,10,11,12,13. No, starting from 5: adding
8 means 5 + 8 = 13. Or, I know that 5 + 8 is the same as 8 + 5, and 8 + 5 is also 13.
Yes, definitely 13.Answer to question 2: 13Third question: A rectangle is 8 cm long and
5 cm wide. What is its area?The area of a rectangle is found by multiplying the length
by the width. So, length is 8 cm, width is 5 cm. Area = length × width. Therefore, area
= 8 cm × 5 cm.What's 8 times 5? That's 40. And since it's area, it should be in square
centimeters. So, 40 square centimeters.Answer to question 3: 40 cm² or 40 square
centimeters.Now, let me write the answers clearly.For question 1: Each gets 4
pencils.For question 2: 13For question 3: 40 cm²I think that's it. The questions seem
designed for basic math practice, so I shouldn't overcomplicate things. </think>
Here are the answers to your questions:
1. To divide 12 pencils equally among 3 friends, each friend gets:
12 ÷ 3 = 4 pencils.
2. The sum of 5 and 8 is:
5 + 8 = 13.
3. The area of a rectangle with a length of 8 cm and width of 5 cm is calculated as
length × width:
8 cm × 5 cm = 40 cm² (or 40 square centimeters).

Batch Questions : 648 tokens

1205 tokens

648 tokens

Figure 1: Comparison between batch inference and single-question inference using Deepseek-R1.
Answering three questions together results in significantly fewer tokens than answering each ques-
tion individually.

This observation raises a core research question: can the benefits of resource competition in batch
inference be transferred to single-question settings? If so, RLLMs could dynamically adjust their
reasoning behaviors, offering concise responses for simple questions while allocating more re-
sources to more complex ones. To this end, we introduce Dynamic Reasoning Quota Allocation
(DRQA), a novel approach that brings the advantages of resource competition into single-question
inference, enabling more efficient and adaptive reasoning. Specifically, we first collect diverse rea-
soning chains under batch inference settings and analyze how the model automatically allocates the
length of reasoning chains to problems of varying difficulty in the presence of resource competition.
We then construct a preference dataset and introduce a reinforcement learning objective that enables
the model to distinguish and learn the advantages of “concise and accurate” reasoning chains over
those that are “verbose or incorrect”. By indirectly encouraging the model to favor the “concise and
accurate” patterns that emerge from batch inference, we enhance its overall reasoning capabilities.

We evaluate the effectiveness of DRQA across a diverse set of reasoning benchmarks, in-
cluding GSM8K (Cobbe et al., 2021), MATH-500 (Hendrycks et al., 2021), AIME 2024 and
2025 (MAA Committees), AMC (AI-MO, 2024), GPQA-Diamond (Rein et al., 2023) and Live-
CodeBench (Jain et al., 2024). Experimental results show that DRQA reduces token usage by over
30% while consistently maintaining or improving answer accuracy, offering an effective and scal-
able solution to the overthinking problem. In summary, our main contributions are:

• To the best of our knowledge, we for the first time systematically investigate how “resource com-
petition pressure” can enhance the reasoning efficiency of RLLMs during batch inference.

• We propose DRQA, a novel method that transfers this efficiency mechanism to single-question
inference by leveraging batch-generated preference data and reinforcement learning. This enables
the model to generate concise answers for simple questions while maintaining deep reasoning for
complex ones.

• With extensive experiments, we demonstrate the effectiveness of DRQA compared to existing
ones and analyze the results thoroughly.

2 RESOURCE COMPETITION DURING BATCH INFERENCE

Batch Inference Encourages Efficient Reasoning. As discussed in the introduction, a major
challenge for RLLMs is their tendency to overthink, producing unnecessarily long reasoning chains

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

even for simple questions. To investigate whether batch inference can encourage more efficient
reasoning, we conduct a series of controlled experiments. Specifically, we randomly select 500
samples from the DeepScaleR dataset (Luo et al., 2025c) and evaluate several mainstream LLMs
under two settings: (i) querying one question at a time (Vanilla), and (ii) querying two questions per
prompt (Batch-2). As shown in Table 1, models including DeepSeek-R1 (DeepSeek-AI et al., 2025),
Qwen3-32B (think) (Yang et al., 2025a), and Doubao-Seed-1.6 (Seed, 2025) consistently generate
shorter outputs in the ‘Batch-2’ setting, suggesting that batch inference naturally promotes more
concise reasoning and that this effect generalizes well across different model architectures.
Table 1: Comparison of average output to-
ken lengths across different models under the
‘Vanilla’ and ‘Batch-2’ settings.

Model Vanilla Batch-2
Deepseek-R1 5640.4 4035.2
Qwen3-32B (think) 7761.6 5274.7
Doubao-Seed-1.6 5288.1 3898.2

1 2 3 5 10 15
Batch Size

0

1000

2000

3000

4000

5000

Av
er

ag
e

O
ut

pu
t

To
ke

n
Le

ng
th

Output Token Length
Accuracy

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

95.0

Ac
cu

ra
cy

 (
%

)

Figure 2: Impact of batch size on output
length and accuracy (DeepSeek-R1).

Scaling Up Batch Size Further Enhances Effi-
ciency. To further analyze the effect, we vary the
batch size using DeepSeek-R1 as a case study, test-
ing batches of 2, 3, 5, 10 and 15 questions. As shown
in Figure 2, increasing the batch size leads to a con-
tinuous and substantial reduction in the average out-
put length per question. Notably, this compression
is achieved with only minimal degradation in answer accuracy, We hypothesize that this phe-
nomenon stems from an attention budget mechanism under context constraints. When pro-
cessing multiple queries simultaneously, the shared context window acts as a soft bottleneck.
To maintain coherence across distinct logical streams, the model is implicitly forced to pri-
oritize high-saliency tokens (core reasoning steps) while suppressing low-information tokens
(redundant verbiage). This suggests that ‘resource competition’ acts as a context-driven in-
formation bottleneck, triggering the model’s latent capability to compress reasoning without
losing semantic integrity. We refer to this emergent behavior as resource competition pressure.

These findings provide compelling empirical evidence that RLLMs are capable of implicit reasoning
compression when facing context constraints. The behavior of allocating reasoning resources based
on task complexity, without any explicit instruction, points to a promising direction for mitigating the
overthinking problem commonly observed in single-question inference. Building on this insight, our
work is driven by a central research question: can we transfer the benefits of resource competition
from batch inference to single-question settings? If so, models could learn to reason adaptively,
producing concise answers for simple queries while maintaining sufficient reasoning depth for more
complex ones. To this end, we introduce Dynamic Reasoning Quota Allocation (DRQA), detailed
in the following section.

3 METHODOLOGY

Our goal is to enable RLLMs to assess question complexity and allocate reasoning resources adap-
tively, even when processing a single query. Ideally, the model should generate short responses
for simple problems while preserving sufficient reasoning depth for more challenging ones, thereby
improving inference efficiency without compromising answer accuracy. A key challenge in real-
izing this capability lies in how to effectively transfer “resource competition pressure” from batch
inference to single-question settings. We first explore a straightforward solution via supervised fine-
tuning (SFT) using batch-generated data. However, this approach revealed inherent limitations in
teaching the model to internalize conciseness as a quality criterion. Inspired by recent advancements
in Reinforcement Learning with Verifiable Rewards (RLVR) (Lambert et al., 2025; DeepSeek-AI
et al., 2025), we introduce Dynamic Reasoning Quota Allocation (DRQA), a reinforcement learning
framework that explicitly encourages reasoning that is both accurate and concise. By optimizing an
intrinsic reward aligned with these dual objectives, DRQA guides models to dynamically allocate
reasoning resources, enabling more efficient and adaptive inference.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Reward Policyquestion

question

question

Batch

questionSingle

questionSingle

Inference

Policy
Model

 The reasoning process is correct, but I think there
 is a simpler and quicker way to approach it

The reasoning process is correct, and I believe the
thinking is thorough and concise

The reasoning process is wrong

Data

RL Trainer

Figure 3: The pipeline of Dynamic Reasoning Quota Allocation (DRQA). Batched questions are in-
put to LLM, producing reasoning chains labeled as A/B/C. Reinforcement learning trains the model
to prefer concise and accurate reasoning for efficient resource allocation.

Table 2: Single-question evaluation results of Qwen3-8B after SFT with data generated by batch
inference. Batch-X denotes fine-tuning with data from batches of X questions, and Vanilla refers to
the original model without SFT.

Method GSM8K Math500 AIME2024 GPQA-Diamond AMC AIME2025 Overall
Acc tokens Acc tokens Acc tokens Acc tokens Acc tokens Acc tokens Acc tokens

Vanilla 95.67 1878.55 96.00 5270.58 74.67 15468.23 66.67 8685.21 97.50 8608.85 63.33 18058.65 82.31 9661.68
Batch-2 96.67 575.64 95.00 2359.21 57.33 11100.55 53.54 6874.42 90.00 4136.58 45.33 13130.95 72.98 6362.89
Batch-3 93.33 437.23 82.67 1593.53 26.00 5685.36 55.56 3555.65 77.50 4098.10 28.00 7400.53 60.51 3795.07
Batch-5 93.33 336.81 69.67 434.50 9.33 2486.77 46.46 1190.23 42.50 922.25 7.33 2365.41 44.77 1289.33

3.1 SUPERVISED FINE-TUNING WITH BATCH DATA

Our initial approach to transferring the benefits of resource competition into single-question infer-
ence is based on imitation learning, where we apply supervised fine-tuning (SFT) to mimic the
efficient reasoning patterns exhibited by models during batch inference.

Method We use DeepSeek-R1 (DeepSeek-AI et al., 2025) to perform batch inference over mul-
tiple questions sampled from DeepScaleR (Luo et al., 2025c) and collect the generated responses,
which are consistently more concise than those from single-question inference. Based on these re-
sults, we construct a dataset of “question–concise answer” pairs and apply full-parameter SFT on a
Qwen3-8B (Yang et al., 2025a), with the goal of teaching it to generate similarly concise responses
in single-question scenarios.

Experimental Results and Analysis We evaluate the fine-tuned models on a comprehensive set
of reasoning benchmarks, including GSM8K (Cobbe et al., 2021), MATH-500 (Hendrycks et al.,
2021), AIME 2024 (MAA Committees), GPQA-Diamond (Rein et al., 2023), AMC (AI-MO, 2024),
and AIME 2025 (MAA Committees). The results shown in Table 2 indicate that SFT does lead to
substantial reductions in output length. For example, on GSM8K, the average response length drops
from 1878.55 to 575.64 tokens, a 69.36% reduction, demonstrating that overthinking is mitigated to
some extent.

However, the efficiency gains come at a considerable cost to accuracy, particularly on more chal-
lenging tasks. As shown in Table 2, Models fine-tuned with two-question batch data show a slight
accuracy increase from 95.67% to 96.67% on GSM8K, while on MATH-500 accuracy drops from
96.00% to 95.00%, a decrease of 1.00% compared to vanilla prompting. More notably, the perfor-
mance degradation becomes increasingly severe with higher batch sizes and task complexity. On
AIME 2024, accuracy falls from 74.67% (Vanilla) to 57.33% (Batch-2), 26.00% (Batch-3), and just
9.33% (Batch-5). These results suggest the emergence of catastrophic forgetting (Luo et al., 2025d):
in attempting to mimic the surface-level conciseness of batch responses, the model compromises its
ability to perform the deeper, more nuanced reasoning necessary for solving complex problems.

In summary, while supervised fine-tuning with batch data effectively mitigates overthinking and im-
proves inference efficiency, it comes at the cost of reasoning accuracy, especially on complex tasks,

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

highlighting its limitations for real-world deployment. These shortcomings underscore the need for
a more principled solution that can balance conciseness with reasoning depth, which motivates our
proposed method: Dynamic Reasoning Quota Allocation (DRQA).

3.2 DYNAMIC REASONING QUOTA ALLOCATION

Rather than imitating outputs from batch inference, we aim to endow the model with an intrinsic
ability to evaluate and generate reasoning chains that are both accurate and concise. To this end, we
propose Dynamic Reasoning Quota Allocation (DRQA), a reinforcement learning framework that
enables RLLMs to dynamically allocate reasoning resources in single-question inference.

Core Idea The core idea of DRQA is to enhance the model’s intrinsic reasoning capabilities by
equipping it with the ability to evaluate the quality of its own reasoning chains. Specifically, the
model is trained to make two key judgments: (i) whether a given reasoning chain is logically correct,
and (ii) if correct, whether it is unnecessarily verbose. By developing this self-evaluation ability, the
model learns to strike a balance between accuracy and conciseness during generation, effectively
realizing adaptive resource allocation.

Preference Data Construction To train this evaluation ability, we construct a preference dataset
consisting of multiple-choice question-answering samples. Each sample contains a question, a
model-generated chain of thought (CoT), and three evaluation options that reflect different levels
of reasoning quality:

• A: The reasoning process is correct, but I think there is a simpler and quicker way to approach it.
• B: The reasoning process is correct, and I believe the thinking is thorough and concise.
• C: The reasoning process is wrong.

The dataset construction process involves three key steps. First, for ease of evaluation, we select
all questions in the DeepScaleR (Luo et al., 2025c) dataset whose answers are numbers of various
types, resulting in approximately 30,000 samples. Second, for each question, we generate two types
of reasoning chains using DeepSeek-R1 (DeepSeek-AI et al., 2025): (1) vanilla CoTs obtained by
prompting the model with individual questions, and (2) batch CoTs generated by prompting the
model with batched questions, followed by extracting the corresponding reasoning chain for each
question. Finally, we assign labels based on reasoning correctness and conciseness: for vanilla CoTs,
we label A if the reasoning is correct, and C if incorrect; for batch CoTs, we label B if the reasoning
is correct, and C if incorrect. This labeling scheme enables the model to learn nuanced distinctions
between correct-but-verbose reasoning (option A), correct-and-concise reasoning (option B), and
incorrect reasoning (option C), thereby developing a clearer understanding of what constitutes a
high-quality reasoning chain.

Reinforcement Learning Framework We use Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) to train the model to accurately classify each reasoning chain as
A, B, or C, thus encouraging concise and accurate reasoning. Formally, the GRPO objective is
defined as maximizing the likelihood of selecting the correct evaluation label:

LGRPO(θ) = Eτ∼D

[∑
a∈G

log πθ(a | s) Â(a, s, a∗)− β KL(πθ ∥πold)

]
(1)

where τ ∼ D denotes a sample from the dataset, with state s representing the question, reasoning
chain, and multiple-choice options (A, B, C); a∗ is the ground-truth label; G = {A,B,C} is the set
of actions; Â(a, s, a∗) is the relative advantage estimate, positive if a = a∗ and negative otherwise;
KL(πθ∥πold) is the KL divergence between the current and old policies, constrains the policy update;
and β is a regularization coefficient balancing learning efficiency and policy stability. This training
objective encourages the model to assign higher probabilities to correct judgments while mitigating
the risk of catastrophic forgetting caused by over-updating, a common issue encountered in SFT. As
a result, the model gradually internalizes a preference for reasoning chains that are both correct and
concise.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Summary DRQA enables the model to move beyond surface-level imitation and develop an intrin-
sic, reward-driven preference for high-quality reasoning. By balancing accuracy and conciseness,
the model learns to allocate reasoning resources more effectively, addressing the limitations of SFT
and supporting more efficient and adaptive inference in single-question settings.

4 EXPERIMENTS

In this section, we systematically evaluate the performance of the proposed DRQA algorithm, fo-
cusing on its ability to balance reasoning accuracy and efficiency. We compare DRQA against a
range of strong baselines and provide an in-depth analysis of the results.

4.1 EXPERIMENTAL SETUP

Models We evaluate all methods using three widely adopted distilled models: DeepSeek-R1-
Distill-Qwen-1.5B, DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Llama-8B. All mod-
els are derived from the more powerful DeepSeek-R1 (DeepSeek-AI et al., 2025) through large-scale
distillation, offering a favorable trade-off between computational efficiency and reasoning capability.

Datasets For training, we use the dataset described in Section 3.2, constructed by performing
batch inference with DeepSeek-R1 on the DeepScaleR (Luo et al., 2025c) training set. This process
yields over 50,000 multiple-choice examples annotated with reasoning quality labels.

Baselines To assess the effectiveness of DRQA, we compare it against a comprehensive set of
strong baselines approaches (refer to Appendix A for detailed descriptions of the baselines). All
baselines are either publicly released or carefully reproduced according to their original proto-
cols.We note that these baselines span different paradigms,methods like AutoL2S train base
models for efficient reasoning, while others and our DRQA focus on compressing or adapting
powerful existing RLLMs. We include this diverse set to map the full landscape of efficient
reasoning techniques.

Evaluation We evaluate the performance of different methods across a diverse set of benchmarks.
For mathematical reasoning, we include GSM8K (Cobbe et al., 2021), MATH-500 (Hendrycks et al.,
2021), AIME 2024 and 2025 (MAA Committees), and AMC 2023 (AI-MO, 2024). For domain-
specific scientific reasoning, we use the high-quality GPQA-diamond subset (Rein et al., 2023).
Detailed descriptions of these datasets are provided in Appendix B. We use both accuracy and re-
sponse length as evaluation metrics and report the average performance across all test sets. For the
AIME datasets, which contain only 30 questions each, we repeatedly sample 5 responses for each
case and report the average results to ensure more stable and reliable evaluation.

All models are evaluated using a unified inference configuration to ensure fair comparison. Experi-
ments are conducted with the vLLM framework on a computing cluster equipped with eight A800
(40GB) GPUs. The inference parameters are set to a temperature of 0.6 and a maximum generation
length of 32K tokens.

Training Details We use verl (Sheng et al., 2024) as the training framework. We set the batch
size to 256, the number of rollouts to 16, the learning rate to 1× 10−6, and the maximum response
length to 16K tokens. The model is trained for one epoch, consisting of 204 steps in total.

4.2 MAIN RESULTS

As shown in Table 3, DRQA demonstrates clear superiority in both answer accuracy and response
efficiency across all mathematical benchmarks. For example, on GSM8K with the 1.5B model,
DRQA achieves an accuracy of 86.67%, outperforming the vanilla baseline by 2 percentage points,
while reducing average token usage from 1928.96 to 1427.63, a 25.9% reduction. Similar patterns
are observed on more challenging datasets such as AIME 2024 and MATH-500, where DRQA
maintains high accuracy while significantly reducing output length. These results highlight DRQA’s
effectiveness in dynamically allocating reasoning resources, enabling it to strike a favorable balance
between accuracy and efficiency across tasks of varying difficulties. Moreover, DRQA demonstrates

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 3: Performance of different methods using three RLLMs: DeepSeek-R1-Distill-Qwen-1.5B,
DeepSeek-R1-Distill-Qwen-7B, and DeepSeek-R1-Distill-Llama-8B. DRQA achieves competitive
or superior accuracy while greatly reducing token usage across all datasets and model variants,
striking an excellent balance between performance and efficiency.

Method GSM8K MATH-500 AIME 2024 GPQA-Diamond AMC 2023 AIME 2025 Overall
Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens Acc Tokens AccAll TokensAll

DeepSeek-R1-Distill-Qwen-1.5B
Vanilla 84.67% 1928.96 83.33% 5536.14 28.67% 14394.61 30.84% 14731.59 72.50% 8830.10 23.67% 15323.3 53.95% 10124.12
O1-Pruner 74.80% 458 82.20% 3212 28.90% 10361 - - - - - - – –
DAST 77.20% 586 83.00% 2428 26.90% 7745 - - - - - - – –
ShortBetter 63.67% 107.86 60.33% 1186.27 11.33% 2935.68 21.72% 1433.95 57.50% 1260.43 12.67% 3326.22 37.87%-16.08 1708.40-83.13%
AdaptThink 86.00% 324.26 83.67% 1244.98 29.33% 7044.06 29.80% 4744.23 72.50% 2441.45 24.67% 7490.79 54.33%+0.38 3881.63-61.66%
GRPO 87.33% 1691.19 84.67% 5743.01 32.67% 15017.54 27.78% 13809.53 77.50% 9378.21 24.00% 13082.98 55.66%+1.71 9787.08-3.33%
GRPO+Length Penalty 86.00% 722.34 84.67% 2479.14 24.67% 9011.46 26.76% 6148.50 67.50% 3130.51 22.00% 9782.34 51.93%-2.01 5212.38-48.52%
SFT 81.67% 2296.54 80.33% 5465.95 25.33% 21337.44 27.27% 18540.94 65.00% 8806.48 19.33% 20258.82 49.82%-4.13 12784.36+26.28%
DRQA(our) 86.67% 1427.63 84.67% 3488.08 32.00% 11008.31 31.81% 9148.83 75.00% 5355.03 24.00% 10382.12 55.69%+1.74 6801.67-32.82%

DeepSeek-R1-Distill-Qwen-7B
Vanilla 91.33% 1735.5 90.40% 5099.95 53.33% 13712.6 48.98% 13313.92 90.00% 6349.53 40.00% 14248.11 69.01% 9076.60
DAST 86.70% 459 89.60% 2162 45.60% 7578 - - - - - - – –
O1-Pruner 87.60% 428 86.60% 2534 49.20% 9719 - - - - - - – –
Dynasor-CoT 89.60% 1285 89.00% 2971 46.70% 12695 30.50% 7639 85.00% 5980 - - – –
DEER 90.60% 6917 89.80% 2143 49.20% 9839 31.30% 5469 85.00% 4451 - - – –
ShortBetter 70.00% 112.86 68.00% 623.44 41.33% 5005.96 43.43% 1811.43 57.50% 1567.50 30.67% 5393.96 51.82%-17.19 2419.19-73.35%
AdaptThink 89.67% 296.94 91.67% 1839.59 54.00% 9894.05 51.52% 7128.95 87.50% 3287.95 39.33% 12454.59 68.95%-0.06 5817.01-35.91%
AutoL2S 93.33% 444.8 83.33% 3113.93 40.67% 6499.32 45.39% 2553.01 85.00% 2613.05 31.33% 3669.53 63.18%-5.84 3148.94-65.31%
GRPO 93.67% 1524.24 92.00% 4532.21 54.67% 12013.92 47.47% 12124.10 87.50% 5130.13 41.33% 12192.12 69.44%+0.43 7919.45-12.75%
GRPO+Length Penalty 91.33% 876.25 91.33% 2751.13 52.00% 7213.11 45.96% 7124 92.50% 3256.02 39.67% 6058.40 68.80%-0.21 4546.49-49.91%
SFT 92.33% 1317.85 92.00% 3824.43 44.67% 14903.82 46.97% 12385.43 77.50% 5519.55 32.00% 13931.80 64.25%-4.76 8647.15-4.73%
DRQA(our) 92.67% 1324.24 91.40% 3902.74 54.67% 10007.18 49.50% 8988.50 92.50% 4463.03 40.67% 9545.44 70.24%+1.23 6371.85-29.80%

DeepSeek-R1-Distill-Llama-8B
Vanilla 91.67% 1829.12 90.00% 5417.41 49.33% 13585.12 48.98% 11845.27 87.50% 7177.73 38.67% 14260.26 67.69% 9019.15
GRPO 92.33% 1605.94 91.67% 4812.02 50.67% 12897.09 46.46% 9869.20 90.00% 7600.58 39.33% 12204.58 68.41%+0.72 8164.90-9.47%
GRPO+Length Penalty 91.67% 875.66 91.33% 2753.43 48.00% 7192.28 45.96% 7055.54 90.00% 3236.22 38.00% 8040.74 67.49%-0.20 4858.98-46.13%
SFT 90.67% 1315.83 90.00% 3825.52 44.67% 14881.25 44.95% 10897.06 75.00% 5509.82 32.67% 13915.29 62.99%-4.70 8390.80-6.97%
DRQA(our) 93.00% 1594.70 91.33% 4180.83 50.67% 9940.46 50.00% 8986.63 92.50% 4463.43 39.33% 9542.11 69.47%+1.78 6451.36-28.47%

strong generalization on out-of-distribution (OOD) benchmarks, as evidenced by its performance on
GPQA-Diamond.

We also compare DRQA with aggressive compression methods such as ShorterBetter (Yi et al.,
2025) and DAST (Shen et al., 2025), which can reduce output length even further, for example,
generating outputs as short as 107.86 tokens on GSM8K. However, these methods often suffer from
severe accuracy degradation, with performance drops exceeding 20 percentage points in some cases.
This highlights a key limitation of methods that rely solely on length-based reward signals: they tend
to compromise the logical integrity of reasoning chains, limiting their practical applicability.

Notably, DRQA remains highly effective on larger models. On GSM8K with the 7B model, DRQA
improves accuracy by 1.34% over the baseline while reducing token usage by 23.6%. On Llama-8B,
DRQA achieves a 1.78% accuracy gain while cutting token usage by 28.47%, highlighting its ability
to enhance performance and efficiency at larger model scales. Across all benchmarks, it consistently
achieves the most favorable trade-off between accuracy and output efficiency. Compared to strong
baselines such as DAST (Shen et al., 2025), O1-Pruner (Luo et al., 2025b), Dynasor-CoT (Fu et al.,
2025), and DEER (Xia et al., 2024), DRQA not only matches or surpasses them in length reduction
but, more importantly, maintains state-of-the-art reasoning accuracy.

Overall, DRQA achieves an average accuracy improvement of 1.58 percentage points and an average
token usage reduction of 30.4% across all evaluated benchmarks and all three model variants. These
results provide compelling evidence that DRQA effectively transfers the benefits of “resource com-
petition pressure” from batch inference to single-question settings, establishing a strong foundation
for the efficient and scalable deployment of RLLMs.

4.3 GENERALIZATION TO CODE GENERATION

We further assess DRQA on the LiveCodeBench benchmark (Jain et al., 2024), a contamination-
free suite of code-related tasks collected from competitive programming platforms. Our evaluation
uses 342 newly released Python problems spanning September 2024 and April 2025. As shown in
Table 4, DRQA consistently reduces token usage by about 23%–29% across all three model sizes,
while also improving accuracy. For example, on DeepSeek-R1-Distill-Qwen-7B, DRQA shortens
outputs from 8724.27 to 6648.77 tokens (-23.79%) and improves accuracy by 1.75%, demonstrating
its strong generalizability to the code generation domain.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 4: Performance on LiveCodeBench. Include GRPO and GRPO+Length Penalty as addi-
tional baselines. DRQA achieves the best accuracy across all model sizes while significantly
reducing token usage. While GRPO+Length Penalty achieves extreme shortness, it suffers
from accuracy degradation, whereas DRQA maintains a superior balance.

Method DeepSeek-R1-Distill-Qwen-1.5B DeepSeek-R1-Distill-Qwen-7B DeepSeek-R1-Distill-Llama-8B
Acc Tokens Acc Tokens Acc Tokens

Vanilla 13.16% 11261.72 30.70% 8724.27 31.87% 9012.31
GRPO 13.45% 10845.20 31.29% 8412.33 32.16% 8640.12
GRPO+Length Penalty 11.99% 6514.50 29.24% 5920.45 30.12% 5890.76
DRQA(our) 13.74% 8124.20 32.45% 6648.77 32.75% 6426.68

Table 5: Ablation experiments across different training paradigms.

Method GSM8K MATH-500 AIME 2024 Overall
Acc tokens Acc tokens Acc tokens Acc tokens

Vanilla 91.33% 1735.5 90.40% 5099.95 53.33% 13712.6 78.35% 6849.35
DRQA (Batch-2) 92.67% 1324.24 91.33% 3902.74 54.67% 10007.18 79.58%+1.23 5078.05-25.86%
DRQA (Batch-3) 91.67% 1212.59 90.20% 3311.20 53.33% 8805.24 78.40%+0.05 4443.01-35.13%
DRQA (Batch-5) 90.67% 1158.88 89.80% 2675.81 49.33% 7366.80 76.60%-1.75 3733.83-45.49%
Qwen2.5-7B Data + RL 90.00% 1434.65 89.60% 3313.12 50.67% 12190.59 76.76%-1.60 5646.12-17.57%
Batch-2 Data + CFT 89.67% 1361.00 88.20% 3973.54 49.66% 10012.55 75.84%-2.51 5115.70-25.31%

4.4 ABLATION STUDY

To thoroughly assess the contribution of each core component in DRQA, we conduct a series of
ablation studies that isolate the effects of different training paradigms and input conciseness on
reasoning performance and efficiency. All experiments are performed using the same benchmark
datasets, evaluation metrics, and base model (DeepSeek-R1-Distill-Qwen-7B) as in the main study,
with consistent inference configurations to ensure fair comparison.

Effect of Batch Size in DRQA Data Construction. We investigate the impact of different batch
sizes on model performance. Specifically, we construct preference datasets by prompting DeepSeek-
R1 with batches of 2, 3, or 5 questions, then splitting the outputs into individual reasoning chains
for downstream RL training. This design allows us to analyze how increasing levels of resource
competition influence both answer accuracy and response efficiency within the DRQA framework.

Replacing Batch Reasoning Data with Qwen2.5-7B Concise Chains To evaluate the impor-
tance of batch-induced resource competition, we consider an alternative setting where the prefer-
ence dataset is constructed using concise reasoning chains generated directly by Qwen2.5-7B (Qwen
et al., 2025), without leveraging batch inference. This comparison allows us to disentangle the ef-
fects of resource-driven compression from those achieved solely through the model’s inherent ability
to generate concise outputs.

Critique Fine-Tuning with Preference data Beyond reinforcement learning, we also evaluate
the Critique Fine-Tuning (CFT) paradigm (Wang et al., 2025) as an alternative training strategy,
applying it to the preference data we constructed.

4.4.1 RESULTS AND ANALYSIS

8000 9000 10000 11000 12000 13000 14000 15000
Tokens

44

45

46

47

48

49

50

51

Ac
cu

ra
cy

 (
%

)

Vanilla

DRQA (Batch-2)

DRQA (Batch-3)
DRQA (Batch-5)

Qwen2.5-7B Data + RL

Batch-2 Data + CFT

Figure 4: The efficiency-accuracy trade-off on
GPQA-diamond for DRQA and ablation variants.

Table 5 presents the results of our ablation
study. As batch size increases, the model pro-
duces increasingly concise outputs, with token
usage reduced by up to 45% for larger batches.
However, this efficiency gain comes at the cost
of declining accuracy, highlighting a trade-off
between efficiency and correctness. Notably,
a batch size of 2 achieves the best balance,
improving accuracy while significantly reduc-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

ing token consumption compared to the vanilla
baseline.

When compared to concise reasoning chains generated directly by Qwen2.5-7B Qwen et al. (2025)
without batch inference, we observe that only batch-induced compression achieves both high effi-
ciency and strong accuracy. Similarly, while Critique Fine-Tuning helps reduce output length, it
leads to a notable accuracy drop, underscoring the importance of reinforcement learning for pre-
serving reasoning quality. Figure 4 further supports these insights, showing that DRQA achieves the
best overall trade-off on the OOD dataset GPQA-Diamond, highlighting its robustness across both
in-distribution and out-of-distribution scenarios.

5 RELATED WORK

5.1 REASONING LARGE LANGUAGE MODELS

Recent advances in reasoning large language models (RLLMs), such as OpenAI-O3 (OpenAI,
2025), Deepseek-R1 (DeepSeek-AI et al., 2025), and QwQ (Team, 2025) leverage chain-of-
thought (Wei et al., 2023) for step-by-step reasoning, achieving state-of-the-art performance across
tasks including mathematical reasoning, coding, and complex question answering. CoT allows
these models to leverage inference-time scaling by generating multiple reasoning steps that ex-
plore alternative solution paths, thereby significantly enhancing accuracy over single-pass gener-
ation. To further improve correctness, a variety of methods have been proposed, including self-
consistency (Wang et al., 2023), beam search (Yao et al., 2023), and reinforcement learning-based
post-training (DeepSeek-AI et al., 2025), which encourage iterative self-reflection and help reduce
logical errors. Additional search-based approaches, such as Monte Carlo Tree Search (MCTS) (Gao
et al., 2024), have been employed to expand the scope of exploration in complex problem-solving
scenarios. Our work focuses on further improving the efficiency of such reasoning models.

5.2 EFFICIENT REASONING

Reasoning efficiency in RLLMs (Qu et al., 2025; Sui et al., 2025) refers to balancing task quality
and computational cost. Models like OpenAI-O3 (OpenAI, 2025) and DeepSeek-R1 (DeepSeek-AI
et al., 2025) often generate too long and redundant reasoning chains, over explaining simple prob-
lems while sometimes offering shallow reasoning for complex ones. Main approaches for improving
efficiency include:

• Inference time control: Methods such as TALE (Han et al., 2025), DEER (Yang et al., 2025b)
apply token budgets or early exit strategies inspired by dual-system theory.

• Chain compression and supervised tuning: TokenSkip (Xia et al., 2025), CoT-Valve (Ma et al.,
2025), and AutoL2S (Luo et al., 2025a) use supervised fine-tuning or distillation to shorten rea-
soning chains, often improving conciseness but sometimes at the expense of complex reasoning.

• Reinforcement learning approaches: DAST (Shen et al., 2025), O1-Pruner (Luo et al., 2025b),
and S-GRPO (Dai et al., 2025) introduce reward functions to penalize lengthy outputs and promote
token efficiency, supporting adaptive reasoning with little loss of accuracy.

These methods largely depend on fixed budgets or hand crafted rewards. Our DRQA instead trans-
fers the “resource competition pressure’ observed in batch inference to single-question settings, en-
abling models to automatically adjust reasoning length according to problem complexity, providing
brief responses for simple questions and detailed explanations for challenging ones without manual
constraints.

5.3 BATCH PROMPTING AND RESOURCE COMPETITION

Batch prompting (Cheng et al., 2023) was originally proposed to improve inference throughput and
reduce API costs by grouping multiple samples into a single prompt, allowing shared instructions
and few-shot exemplars. Subsequent works have optimized this paradigm to address stability and
performance issues:

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

• Robustness and ordering: Lin et al. (2024) introduced permutation and self-consistency mecha-
nisms to mitigate position bias and performance degradation often observed in batched inputs.

• Demonstration utilization: Feng et al. (2024) proposed “Auto-Demo Prompting,” which lever-
ages generated outputs from earlier queries within a batch as demonstrations for subsequent ones
to enhance performance.

These methods primarily view batching as an inference-time optimization technique to amortize
computational overhead across multiple queries. Our work draws inspiration from the context con-
straints observed in these studies but fundamentally differs in objective and mechanism. While prior
works aim to maintain performance while maximizing batch size for throughput, DRQA identifies
that the “resource competition” inherent in batching naturally suppresses redundancy in reasoning
chains. Instead of using batching solely for inference speedup, we leverage it as a data generation
mechanism for training. By teaching the model to internalize this concise reasoning pattern via
reinforcement learning, DRQA transfers the efficiency benefits of batching to single-question in-
ference, enabling dynamic reasoning quota allocation without requiring batched inputs at test time.

6 CONCLUSION

This paper introduces Dynamic Reasoning Quota Allocation (DRQA), a novel approach aimed at
addressing the overthinking problem in reasoning large language models (RLLMs). Motivated by
the observation that resource competition pressure in batch inference naturally encourages efficient
reasoning, DRQA leverages batch-generated data and reinforcement learning to transfer the benefits
of resource competition from batch inference to single-question scenarios. Specifically, the model is
trained to develop an internal preference for reasoning processes that balance conciseness with accu-
racy, allowing it to produce short answers for straightforward questions while preserving adequate
reasoning depth when tackling more complex ones. Extensive experimental results and analysis
show that DRQA significantly reduces token consumption while maintaining, or even improving,
accuracy. By effectively alleviating overthinking, DRQA offers a new direction for more efficient
and scalable deployment of RLLMs.

7 ETHICS STATEMENT

This work adheres to the ICLR Code of Ethics and follows responsible research practices. Our study
focuses on improving the efficiency of reasoning in large language models (LLMs) by mitigating
overthinking through the proposed Dynamic Reasoning Quota Allocation (DRQA) framework.

The research does not involve human subjects, personal data, or sensitive information. All datasets
used (e.g., GSM8K, MATH-500, AIME, AMC, GPQA-Diamond, LiveCodeBench, DeepScaleR)
are publicly available, widely adopted in the AI community, and contain no personally identifiable
information; data usage strictly complies with their respective licenses.

Our experiments are performed entirely in silico, and the outputs are automatically generated by
models without human intervention. The proposed method is designed to reduce computational
cost and energy usage by shortening reasoning chains for simple queries while retaining depth for
complex ones, thereby contributing positively to environmental sustainability.

We have considered possible risks, including unintended accuracy degradation in complex tasks or
misuse of the system for harmful automated decision making. Mitigation strategies include thorough
benchmark evaluation across diverse domains, public release of methodology for reproducibility,
and clear documentation of model limitations.

The study promotes fairness and avoids discrimination by focusing on general-purpose mathematical
and scientific datasets with balanced coverage; no content in our dataset or method is intended to
target or disadvantage any demographic group.

All code, data handling, and result reporting are conducted with scientific integrity, transparency,
and reproducibility in mind. We believe this work supports the responsible advancement of AI that
serves the public good, efficiency, and well-being.

10

https://iclr.cc/public/CodeOfEthics

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

8 REPRODUCIBILITY STATEMENT

We have implemented several measures to ensure that all reported results are fully reproducible. A
comprehensive description of the proposed DRQA algorithm, including the procedures for batch
data collection, preference dataset construction, and the reinforcement learning framework, is pro-
vided in 3.2. The precise model variants, datasets, and evaluation metrics are specified in section 4
and in Appendix B. Inference hyperparameters and training configurations, such as the optimizer
type, batch size, learning rate, number of rollouts, and maximum generation length, are detailed in
section 4.1.

Two code modules are provided as supplementary material. The first module, verl/, contains
the implementation of DRQA training using Group Relative Policy Optimization (GRPO). The sec-
ond module, eval/, contains scripts for generating training data via batch inference, conducting
evaluations on all benchmarks, and reproducing the tables and figures reported in the paper.

The supplementary code package includes complete, end-to-end instructions for dataset prepro-
cessing, model training, and evaluation. All datasets used in training and evaluation, including
GSM8K, MATH-500, AIME 2024, AIME 2025, AMC 2023, GPQA-Diamond, DeepScaleR, and
LiveCodeBench, are publicly available. Our preprocessing steps are documented in the supplemen-
tary material.

With the provided source code, configuration files, and dataset references, independent researchers
can exactly reproduce our experiments and validate all results under identical conditions.

REFERENCES

AI-MO. Amc 2023, 2024. URL https://huggingface.co/datasets/AI-MO/
aimo-validation-amc.

Xingyu Chen, Jiahao Xu, Tian Liang, Zhiwei He, Jianhui Pang, Dian Yu, Linfeng Song, Qiuzhi Liu,
Mengfei Zhou, Zhuosheng Zhang, Rui Wang, Zhaopeng Tu, Haitao Mi, and Dong Yu. Do not
think that much for 2+3=? on the overthinking of o1-like llms, 2025. URL https://arxiv.
org/abs/2412.21187.

Zhoujun Cheng, Jungo Kasai, and Tao Yu. Batch prompting: Efficient inference with large language
model apis, 2023. URL https://arxiv.org/abs/2301.08721.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Muzhi Dai, Chenxu Yang, and Qingyi Si. S-grpo: Early exit via reinforcement learning in reasoning
models, 2025. URL https://arxiv.org/abs/2505.07686.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong

11

https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://huggingface.co/datasets/AI-MO/ aimo-validation-amc
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2412.21187
https://arxiv.org/abs/2301.08721
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2505.07686

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Longyu Feng, Mengze Hong, and Chen Jason Zhang. Auto-demo prompting: Leveraging generated
outputs as demonstrations for enhanced batch prompting, 2024. URL https://arxiv.org/
abs/2410.01724.

Yichao Fu, Junda Chen, Yonghao Zhuang, Zheyu Fu, Ion Stoica, and Hao Zhang. Reasoning without
self-doubt: More efficient chain-of-thought through certainty probing. In ICLR 2025 Workshop
on Foundation Models in the Wild, 2025. URL https://openreview.net/forum?id=
wpK4IMJfdX.

Zitian Gao, Boye Niu, Xuzheng He, Haotian Xu, Hongzhang Liu, Aiwei Liu, Xuming Hu, and
Lijie Wen. Interpretable contrastive monte carlo tree search reasoning, 2024. URL https:
//arxiv.org/abs/2410.01707.

Tingxu Han, Zhenting Wang, Chunrong Fang, Shiyu Zhao, Shiqing Ma, and Zhenyu Chen. Token-
budget-aware llm reasoning, 2025. URL https://arxiv.org/abs/2412.18547.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021.
URL https://arxiv.org/abs/2103.03874.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia Yan, Tianjun Zhang, Sida Wang, Armando
Solar-Lezama, Koushik Sen, and Ion Stoica. Livecodebench: Holistic and contamination free
evaluation of large language models for code, 2024. URL https://arxiv.org/abs/
2403.07974.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brah-
man, Lester James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Ma-
lik, Victoria Graf, Jena D. Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris
Wilhelm, Luca Soldaini, Noah A. Smith, Yizhong Wang, Pradeep Dasigi, and Hannaneh Ha-
jishirzi. Tulu 3: Pushing frontiers in open language model post-training, 2025. URL https:
//arxiv.org/abs/2411.15124.

Jianzhe Lin, Maurice Diesendruck, Liang Du, and Robin Abraham. Batchprompt: Accomplish more
with less, 2024. URL https://arxiv.org/abs/2309.00384.

Feng Luo, Yu-Neng Chuang, Guanchu Wang, Hoang Anh Duy Le, Shaochen Zhong, Hongyi Liu,
Jiayi Yuan, Yang Sui, Vladimir Braverman, Vipin Chaudhary, and Xia Hu. Autol2s: Auto long-
short reasoning for efficient large language models, 2025a. URL https://arxiv.org/abs/
2505.22662.

Haotian Luo, Li Shen, Haiying He, Yibo Wang, Shiwei Liu, Wei Li, Naiqiang Tan, Xiaochun Cao,
and Dacheng Tao. O1-pruner: Length-harmonizing fine-tuning for o1-like reasoning pruning,
2025b. URL https://arxiv.org/abs/2501.12570.

Michael Luo, Sijun Tan, Justin Wong, Xiaoxiang Shi, William Tang, Manan Roongta, Colin Cai,
Jeffrey Luo, Tianjun Zhang, Erran Li, Raluca Ada Popa, and Ion Stoica. Deepscaler: Surpassing
o1-preview with a 1.5b model by scaling rl, 2025c. URL https://pretty-radio-b75.
notion.site. Notion Blog.

12

https://arxiv.org/abs/2501.12948
https://arxiv.org/abs/2410.01724
https://arxiv.org/abs/2410.01724
https://openreview.net/forum?id=wpK4IMJfdX
https://openreview.net/forum?id=wpK4IMJfdX
https://arxiv.org/abs/2410.01707
https://arxiv.org/abs/2410.01707
https://arxiv.org/abs/2412.18547
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2403.07974
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2411.15124
https://arxiv.org/abs/2309.00384
https://arxiv.org/abs/2505.22662
https://arxiv.org/abs/2505.22662
https://arxiv.org/abs/2501.12570
https://pretty-radio-b75.notion.site
https://pretty-radio-b75.notion.site

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning, 2025d. URL
https://arxiv.org/abs/2308.08747.

Xinyin Ma, Guangnian Wan, Runpeng Yu, Gongfan Fang, and Xinchao Wang. Cot-valve: Length-
compressible chain-of-thought tuning, 2025. URL https://arxiv.org/abs/2502.
09601.

MAA Committees. Aime problems and solutions. https://artofproblemsolving.com/
wiki/index.php/AIME_Problems_and_Solutions.

OpenAI. Introducing O3 and O4 Mini. https://openai.com/index/
introducing-o3-and-o4-mini/, 2025. Accessed: 2025-04-16.

Xiaoye Qu, Yafu Li, Zhaochen Su, Weigao Sun, Jianhao Yan, Dongrui Liu, Ganqu Cui, Daizong
Liu, Shuxian Liang, Junxian He, Peng Li, Wei Wei, Jing Shao, Chaochao Lu, Yue Zhang, Xian-
Sheng Hua, Bowen Zhou, and Yu Cheng. A survey of efficient reasoning for large reasoning
models: Language, multimodality, and beyond, 2025. URL https://arxiv.org/abs/
2503.21614.

Qwen, :, An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang,
Jianxin Yang, Jiaxi Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin
Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li,
Tianyi Tang, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang,
Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu. Qwen2.5 technical report, 2025.
URL https://arxiv.org/abs/2412.15115.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien
Dirani, Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a
benchmark, 2023. URL https://arxiv.org/abs/2311.12022.

ByteDance Seed. Doubao-seed-1.6, June 2025. URL https://seed.bytedance.com/zh/
seed1_6.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, Y. K. Li, Y. Wu, and Daya Guo. Deepseekmath: Pushing the limits of mathe-
matical reasoning in open language models, 2024. URL https://arxiv.org/abs/2402.
03300.

Yi Shen, Jian Zhang, Jieyun Huang, Shuming Shi, Wenjing Zhang, Jiangze Yan, Ning Wang, Kai
Wang, Zhaoxiang Liu, and Shiguo Lian. Dast: Difficulty-adaptive slow-thinking for large reason-
ing models, 2025. URL https://arxiv.org/abs/2503.04472.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Yang Sui, Yu-Neng Chuang, Guanchu Wang, Jiamu Zhang, Tianyi Zhang, Jiayi Yuan, Hongyi Liu,
Andrew Wen, Shaochen Zhong, Hanjie Chen, and Xia Hu. Stop overthinking: A survey on effi-
cient reasoning for large language models, 2025. URL https://arxiv.org/abs/2503.
16419.

Qwen Team. Qwq-32b: Embracing the power of reinforcement learning, March 2025. URL
https://qwenlm.github.io/blog/qwq-32b/.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models,
2023. URL https://arxiv.org/abs/2203.11171.

Yubo Wang, Xiang Yue, and Wenhu Chen. Critique fine-tuning: Learning to critique is more effec-
tive than learning to imitate, 2025. URL https://arxiv.org/abs/2501.17703.

13

https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2502.09601
https://arxiv.org/abs/2502.09601
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://artofproblemsolving.com/wiki/index.php/AIME_Problems_and_Solutions
https://openai.com/index/introducing-o3-and-o4-mini/
https://openai.com/index/introducing-o3-and-o4-mini/
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2503.21614
https://arxiv.org/abs/2412.15115
https://arxiv.org/abs/2311.12022
https://seed.bytedance.com/zh/seed1_6
https://seed.bytedance.com/zh/seed1_6
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2402.03300
https://arxiv.org/abs/2503.04472
https://arxiv.org/abs/2503.16419
https://arxiv.org/abs/2503.16419
https://qwenlm.github.io/blog/qwq-32b/
https://arxiv.org/abs/2203.11171
https://arxiv.org/abs/2501.17703

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc
Le, and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models,
2023. URL https://arxiv.org/abs/2201.11903.

Bo Xia, Yilun Kong, Yongzhe Chang, Bo Yuan, Zhiheng Li, Xueqian Wang, and Bin Liang. Deer: A
delay-resilient framework for reinforcement learning with variable delays, 2024. URL https:
//arxiv.org/abs/2406.03102.

Heming Xia, Chak Tou Leong, Wenjie Wang, Yongqi Li, and Wenjie Li. Tokenskip: Control-
lable chain-of-thought compression in llms, 2025. URL https://arxiv.org/abs/2502.
12067.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang
Gao, Chengen Huang, Chenxu Lv, Chujie Zheng, Dayiheng Liu, Fan Zhou, Fei Huang, Feng Hu,
Hao Ge, Haoran Wei, Huan Lin, Jialong Tang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin
Yang, Jiaxi Yang, Jing Zhou, Jingren Zhou, Junyang Lin, Kai Dang, Keqin Bao, Kexin Yang,
Le Yu, Lianghao Deng, Mei Li, Mingfeng Xue, Mingze Li, Pei Zhang, Peng Wang, Qin Zhu, Rui
Men, Ruize Gao, Shixuan Liu, Shuang Luo, Tianhao Li, Tianyi Tang, Wenbiao Yin, Xingzhang
Ren, Xinyu Wang, Xinyu Zhang, Xuancheng Ren, Yang Fan, Yang Su, Yichang Zhang, Yinger
Zhang, Yu Wan, Yuqiong Liu, Zekun Wang, Zeyu Cui, Zhenru Zhang, Zhipeng Zhou, and Zihan
Qiu. Qwen3 technical report, 2025a. URL https://arxiv.org/abs/2505.09388.

Chenxu Yang, Qingyi Si, Yongjie Duan, Zheliang Zhu, Chenyu Zhu, Qiaowei Li, Zheng Lin, Li Cao,
and Weiping Wang. Dynamic early exit in reasoning models, 2025b. URL https://arxiv.
org/abs/2504.15895.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, 2023.
URL https://arxiv.org/abs/2305.10601.

Jingyang Yi, Jiazheng Wang, and Sida Li. Shorterbetter: Guiding reasoning models to find opti-
mal inference length for efficient reasoning, 2025. URL https://arxiv.org/abs/2504.
21370.

Jiajie Zhang, Nianyi Lin, Lei Hou, Ling Feng, and Juanzi Li. Adaptthink: Reasoning models can
learn when to think, 2025. URL https://arxiv.org/abs/2505.13417.

14

https://arxiv.org/abs/2201.11903
https://arxiv.org/abs/2406.03102
https://arxiv.org/abs/2406.03102
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2502.12067
https://arxiv.org/abs/2505.09388
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2504.15895
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2504.21370
https://arxiv.org/abs/2504.21370
https://arxiv.org/abs/2505.13417

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A BASELINE METHODS

We consider the following baseline methods in our experiments:

• GRPO: We train a model on the DeepScaleR (Luo et al., 2025c) dataset using the Group Relative
Policy Optimization algorithm, where only answer correctness is used as the reward signal.

• GRPO+Length Penalty: This variant further introduces a length penalty to the reward design:
for correct answers, shorter responses yield higher rewards, while for incorrect answers, longer
responses incur greater penalties. This encourages the model to produce concise and accurate
reasoning.

• SFT (Supervised Fine-Tuning): We perform full-parameter supervised fine-tuning on the
model using question-answer pairs generated via batch inference of Deepseek-R1 on the Deep-
ScaleR (Luo et al., 2025c) dataset.

• AdaptThink (Zhang et al., 2025): This approach encourages adaptive selection between direct
answer and step-by-step reasoning (Chain-of-Thought) based on question difficulty. Training ob-
jectives and sample balancing enable the model to flexibly explore both thinking modes, improv-
ing reasoning efficiency and performance.

• AutoL2S (Luo et al., 2025a): A dynamic, model-agnostic framework that annotates each ques-
tion with both long and short Chain-of-Thought (CoT) solutions. By marking simple questions
with <EASY>, the model is trained to automatically select concise CoT for simple problems and
detailed reasoning for complex ones.Distinct from methods that distill reasoning models, Au-
toL2S is typically trained starting from a base model (e.g., Qwen2.5-7B) to achieve efficient
reasoning.

• DAST (Shen et al., 2025): DAST explicitly quantifies problem difficulty via a token length budget
and employs a reward that penalizes redundant reasoning on simple problems while encouraging
extensive CoT for difficult ones. This preference data is optimized via SimPO, enabling efficient
dynamic control over reasoning path length.

• O1-Pruner Luo et al. (2025b): Based on reinforcement learning, this method rewards shorter
CoT traces without compromising accuracy. It employs an offline PPO-like procedure to prune
redundant reasoning while preserving or even improving correctness.

• ShorterBetter (Yi et al., 2025): This RL-based approach defines the optimal length for each
question as the shortest possible correct response and leverages this dynamic signal as a reward
for GRPO-based training, guiding the model toward concise yet accurate answers.

• Dynasor-CoT (Fu et al., 2025): Without extra training, this method dynamically truncates rea-
soning by probing intermediate answers, monitoring consistency, and detecting hesitancy tokens.
This yields substantial token savings while preserving accuracy.

• DEER (Xia et al., 2024): DEER employs a dynamic early-exit mechanism by monitoring reason-
ing transitions (such as “Wait”) to induce trial answers. Decisions to terminate CoT generation
are based on confidence estimation, reducing reasoning length without additional training.

All baseline models are tested under identical inference configurations and on the same benchmark
datasets to guarantee fair and reliable comparison. For each baseline, we use either the officially
released model or reproduce the method using released data and code.

B DATASET DETAILS

Mathematical Reasoning Datasets

• GSM8K: This dataset contains 8,500 English elementary school single-step math reasoning ques-
tions. It serves as one of the mainstream benchmarks for evaluating the math reasoning abilities
of large language models, focusing on basic arithmetic reasoning skills.

• MATH-500: Includes 500 medium-difficulty mathematical problems covering algebra, geome-
try, number theory, and other areas, designed to test the model’s comprehensive mathematical
reasoning ability.

• AIME 2024/2025: Originating from the American Invitational Mathematics Examination 2024
and 2025, each set contains 30 high-difficulty math questions, mainly assessing complex mathe-
matical reasoning and problem-solving skills.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

• AMC 2023: 40 questions from the American Mathematics Competitions (AMC), covering middle
to high school levels, examining fundamental and advanced mathematics knowledge and problem
solving abilities.

Scientific Reasoning Dataset To evaluate model reasoning performance in other domains, we
use the high-quality GPQA-diamond subset from the GPQA dataset. GPQA-diamond is a refined
version of GPQA, focusing on challenging, high-quality scientific domain questions and designed
to provide a comprehensive assessment of scientific understanding and reasoning ability.

C PROMPT TEMPLATE

Prompt for Batch Inference

Please answer the following math problems in order and summarize all answers at the end:
Your response should be in the following format:
[Solution Process]
Provide a detailed solution for each problem...

[Final Answer]
1. \\boxed{{Answer1}}
2. \\boxed{{Answer2}}
...
n. \\boxed{{Answern}}

Below is the list of questions:
{numbered_questions}

Prompt for Evaluation

{origin_question}\n\n
Please reason step by step, and put your final answer
within \\boxed{}.

D THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we made limited use of publicly available large language
models (specifically GPT-5) solely to improve the clarity, grammar, and readability of the English
text. The LLM was not used for research ideation, hypothesis generation, experiment design, data
analysis, or the production of any scientific content. All technical ideas, experiments, analyzes,
and conclusions presented in this paper are completely authored by the listed human authors. The
authors have carefully reviewed and verified the accuracy of all LLM-assisted edits and take full
responsibility for the final content.

E QUALITATIVE EXAMPLES

In this section, we provide qualitative comparisons between the baseline DeepSeek-R1-Distill-
Qwen-7B (Vanilla) and our DRQA-7B model. We explicitly denote the total token consumption
for each response.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E.1 CASE STUDY 1: GSM8K

Question

A church has 120 members. 40% are adults. The rest are children. How many more
children are there than adults?

DeepSeek-R1-Distill-Qwen-7B (Vanilla) [Total Tokens: 289]

<think> First, I need to determine the number of adults in the church. Since 40% of the 120
members are adults, I’ll calculate 0.40×120, which gives me 48 adults. Next, I’ll find the number
of children by subtracting the number of adults from the total membership. So, 120− 48 equals
72 children. Finally, to find out how many more children there are than adults, I’ll subtract the
number of adults from the number of children: 72− 48, which equals 24. </think>
Solution: Let’s determine how many more children there are than adults in the church. Total

Members: The church has a total of 120 members. Number of Adults: 40% of the members are
adults.

Number of Adults = 0.40× 120 = 48

Number of Children: The rest of the members are children.

Number of Children = 120− 48 = 72

Difference:
Difference = 72− 48 = 24

Final Answer:
24

DRQA-7B (Ours) [Total Tokens: 82]

<think> 1. Adults: 120× 0.4 = 48. 2. Children: 120− 48 = 72. 3. Difference: 72− 48 = 24.
</think> The number of more children than adults is:

24

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

E.2 CASE STUDY 2: MATH-500

Question

How many positive whole-number divisors does 196 have?

DeepSeek-R1-Distill-Qwen-7B (Vanilla) [Total Tokens: 740]

<think> Alright, so I need to find how many positive whole-number divisors 196 has. Hmm,
okay, I remember that to find the number of divisors, I need to factorize the number into its
prime factors first. Let me see, 196 is a number I see a bit often, is it a square? Let me check. 14
squared is 196 because 14 times 14 is 196. Yeah, so that might be useful. Wait, instead of just
stopping there, maybe I should confirm. If 14 times 14 is 196, then 14 is a factor of 196. But since
14 isn’t a prime number, I guess I need to break it down further into prime factors. So, breaking
down 14, it’s 2 times 7, right? So, both 2 and 7 are primes. So, if 196 is 14 squared, then it’s 14
times 14, which is (2 times 7) times (2 times 7). So, putting that together, 2 multiplied by 2 is 22,
and 7 multiplied by 7 is 72. So, 196 is equal to 22×72. Okay, so now in prime factorization form,
196 is written as 22 × 72. I remember that the number of positive divisors is found by taking the
exponents of each prime factor, adding one to each, and then multiplying them together. So, the
formula is, if a number N can be expressed as a product of primes where N = pa1×pb2×· · ·×pkn,
then the number of positive divisors is (a+ 1)(b+ 1) . . . (k + 1). ... (omit) ... </think>
To find the number of positive whole-number divisors of 196, we start by performing the prime
factorization of 196. First, we note that 196 is a perfect square, specifically 142. Breaking down
14 into its prime factors, we get 2× 7. Therefore:

142 = (2× 7)2 = 22 × 72

Using the formula for the number of divisors, if a number N can be expressed as pa1 ×pb2× . . .×
pkn, the number of positive divisors is (a+ 1)(b+ 1) . . . (k+ 1). For 196, the prime factorization
is 22 × 72, so the exponents are 2 and 2. Applying the formula, we get:

(2 + 1)(2 + 1) = 3× 3 = 9

To verify, we list all the divisors of 196: 1, 2, 4, 7, 14, 28, 49, 98, and 196. Counting these, we
find there are 9 divisors. Thus, the number of positive whole-number divisors of 196 is 9 .

DRQA-7B (Ours) [Total Tokens: 165]

<think> We are asked: ”How many positive whole-number divisors does 196 have?” Number:
196. Factorization: 196 = 142 = (2 × 7)2 = 22 × 72. Divisors count formula: (a + 1)(b + 1).
Calculation: (2 + 1)(2 + 1) = 3× 3 = 9. Answer: 9. </think>
Step 1: Prime Factorization

196 = 22 × 72

Step 2: Count the Divisors The number of positive divisors is given by the formula:

(2 + 1)× (2 + 1) = 3× 3 = 9

Final Answer
9

18

	Introduction
	Resource Competition During Batch Inference
	Methodology
	Supervised Fine-Tuning with Batch Data
	Dynamic Reasoning Quota Allocation

	Experiments
	Experimental Setup
	Main Results
	Generalization to Code Generation
	Ablation Study
	Results and Analysis

	Related Work
	Reasoning Large Language Models
	Efficient Reasoning
	Batch Prompting and Resource Competition

	Conclusion
	Ethics Statement
	Reproducibility Statement
	Baseline Methods
	Dataset Details
	Prompt Template
	The Use of Large Language Models (LLMs)
	Qualitative Examples
	Case Study 1: GSM8K
	Case Study 2: MATH-500

