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Abstract

Large Language Models (LLMs) have revo-001
lutionized various domains, including natural002
language processing, data analysis, and soft-003
ware development, by enabling automation. In004
software engineering, LLM-powered coding005
agents have garnered significant attention due006
to their potential to automate complex develop-007
ment tasks, assist in debugging, and enhance008
productivity. However, existing approaches of-009
ten struggle with sub-optimal decision-making,010
requiring either extensive manual intervention011
or inefficient compute scaling strategies. To012
improve coding agent performance, we present013
Dynamic Action Re-Sampling (DARS), a novel014
inference time compute scaling approach for015
coding agents, that is faster and more effective016
at recovering from sub-optimal decisions com-017
pared to baselines. While traditional agents ei-018
ther follow linear trajectories or rely on random019
sampling for scaling compute, our approach020
DARS works by branching out a trajectory at021
certain key decision points by taking an alter-022
native action given the history of the trajectory023
and execution feedback of the previous attempt024
from that point. We evaluate our approach on025
SWE-Bench Lite benchmark, demonstrating026
that this scaling strategy achieves a pass@k027
score of 55% with Claude 3.5 Sonnet V2. Our028
framework achieves a pass@1 rate of 47%,029
outperforming state-of-the-art (SOTA) open-030
source frameworks.1031

1 Introduction032

Software engineering (SWE) has become increas-033

ingly critical in modern technology development,034

with developers spending countless hours writ-035

ing, reviewing, and maintaining code, creating036

an urgent need for automation to improve pro-037

ductivity (Wang et al., 2024d). Large language038

1Our codes are at https://github.com/darsagent/
DARS-Agent, datasets and models at https://huggingface.
co/AGENTDARS, and a demo of our trajectory analysis tool at
https://darsagent.github.io/DARS-Agent/

models (LLMs) have emerged as promising tools 039

for automating various software engineering tasks, 040

with breakthrough works like SWE-bench (Jimenez 041

et al., 2023) establishing evaluation frameworks 042

and datasets, leading to widespread adoption of 043

tools such as Yang et al. (2024b); Wang et al. 044

(2024c) 045

There are three primary approaches to develop- 046

ing SWE agents based on LLMs. The first follows 047

a sequential ReAct (Yao et al., 2022) loop, where 048

agents such as SWE-Agent (Yang et al., 2024b) 049

and OpenDevin (Wang et al., 2024c) interact with 050

development tools and incorporate execution feed- 051

back to refine their predictions. The second ap- 052

proach generates multiple candidate solutions us- 053

ing temperature-based sampling and then selects 054

the best one through ranking (Arora et al., 2024) 055

or majority voting (Xia et al., 2024). The third ap- 056

proach, exemplified by SWE-Search (Antoniades 057

et al., 2024), leverages Monte Carlo Tree Search 058

(MCTS) (Kocsis and Szepesvári, 2006) to system- 059

atically explore the solution space. 060

However, each method has limitations: (1) Se- 061

quential agents struggle to recover from suboptimal 062

decisions due to context length constraints (Kura- 063

tov et al., 2024; Li et al., 2024). (2) Multi-solution 064

approaches lack efficient mechanisms for knowl- 065

edge sharing between independently generated so- 066

lutions. (3) Tree search methods, such as SWE- 067

Search (Antoniades et al., 2024), rely on scalar 068

value functions and suffer from slow execution 069

speeds, making them less effective for long-horizon 070

planning. 071

To address these challenges, we propose Dy- 072

namic Action Re-Sampling (DARS), which en- 073

hances coding agents by dynamically re-sampling 074

actions based on prior execution results. Instead 075

of generating multiple independent trajectories, 076

DARS selectively branches at key decision points, 077

using a depth-first strategy to fully explore a tra- 078

jectory before branching. This offers two advan- 079
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tages: a) Long Horizon Feedback: Our experi-080

ments show improved pass@1 rates 3 by provid-081

ing complete trajectory feedback before branching.082

b) Efficiency: Depth-first search reduces memory083

overhead by reusing the current environment state084

without simulating future states. Finally, we in-085

troduce a trajectory selection pipeline leveraging086

proprietary and preference-optimized models to087

identify the most promising solution (Kim et al.,088

2024).089

Across the experiments, our DARS method090

achieves up to 47 % pass@1 rate, which is open-091

source SOTA performance on the SWE-Bench Lite092

benchmark (Jimenez et al., 2023).093

In conclusion, the main contributions of our ap-094

proach are as follows:095

1. We introduce DARS, an inference-time com-096

pute scaling method for coding agents that097

rapidly recovers from suboptimal decisions,098

achieving an open source SOTA pass@1 rate099

of 47% on the SWE-Bench Lite benchmark.100

2. We propose a patch preference data generation101

and supervised fine-tuning pipeline to select102

the most promising solution among multiple103

attempts.104

3. We release our complete codebase, a 500M-105

token execution feedback critique dataset,106

model checkpoints (7B, 14B, and 32B), and107

a trajectory analysis tool to support future re-108

search.109

2 Related Work110

LLM Agents for Software Engineering. Large111

Language Model (LLM) agents have been increas-112

ingly employed to automate software engineering113

tasks such as bug fixing and code generation. These114

agents integrate tools for code editing, search, nav-115

igation, and execution (Yang et al., 2024b). En-116

hancements in this domain include diff-based edit-117

ing (Aider, 2024), execution with Jupyter and web118

search capabilities (Wang et al., 2024c), and opti-119

mized repository search (Aider, 2024; Zhang et al.,120

2024c; Ouyang et al., 2024; Orwall, 2024). Some121

approaches further modularize functionalities to122

improve efficiency (Xia et al., 2024; Arora et al.,123

2024).124

Recent studies have explored generating multi-125

ple solutions to enhance accuracy. For instance,126

Brown et al. (2024) demonstrated that sampling127

250 solutions can increase accuracy by 250%.128

However, methods like those proposed by Xia et al.129

(2024) and Arora et al. (2024) rely on inefficient130

random sampling. To address this, Antoniades et al. 131

(2024) introduced an approach that improves effi- 132

ciency through Monte Carlo Tree Search (MCTS) 133

(Kocsis and Szepesvári, 2006; Coulom, 2007), bal- 134

ancing computational resources with scalar rewards 135

and textual feedback. Despite these advancements, 136

their reliance on retrospective feedback limits early 137

guidance, and frequent environment resets can slow 138

execution. 139

DARS improves efficiency by branching only at 140

critical decisions and providing long-horizon feed- 141

back, reducing resets and accelerating execution. 142

We discuss about Inference Time Compute Scal- 143

ing and LLM as Code Reviewers in Appendix A.1 144

3 Our DARS Method 145

The main motivation behind DARS is to enhance 146

the agent’s ability to recover and learn from sub- 147

optimal decisions by taking alternative actions 148

while minimizing redundancy. However, errors 149

also scale with scaling trajectories, therefore, we 150

optimize our backbone SWE-Agent first by im- 151

proving its editing capabilities and adding various 152

actions to it. We then identify the most promising 153

action types by optimizing the trade-off between 154

increase in resolve rate and increase in cost due to 155

branching the trajectory at that point. We define 156

this process of branching the tree as expansion. We 157

finally select the most promising trajectory from 158

all the attempts. We go over the details of each of 159

these steps in the following sections. 160

3.1 Improving the Base SWE Agent 161

3.1.1 Editing Capabilities 162

We build on the SWE-Agent (Yang et al., 2024b) 163

which uses a ReAct loop to iteratively generate a 164

thought and an action and receive feedback from 165

the sandbox environment. By default, the agent 166

uses a whole style of editing where it needs to gen- 167

erate the start and end line numbers of the edit 168

followed by the content of edit. This type of edit 169

often results in numerous syntax and semantic er- 170

rors (see Section A.3), as the agent fails to account 171

for both the targeted and adjacent code, leading to 172

issues such as indentation errors. We enhance the 173

editing process using Aider (Aider, 2024), a diff- 174

based tool. In this approach, the agent generates 175

both the content to be replaced and its replacement. 176

Additionally, to facilitate content addition without 177

replacement, Aider introduces two new actions: 178

append and insert. 179

Append adds content at the end of a file, while 180
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Figure 1: Overview of our DARS scaling method. DARS processes issue-related information and generates multiple
patches using the Expansion mechanism. These patches are then evaluated by our Reviewer LLM, which assigns
scores based on predefined Score Rubrics, ultimately selecting the best patch for output.

Insert requires a line number and the content to181

be inserted at that specific location. This approach182

compels the model to better consider the existing183

code. Moreover, we enhance the editing process184

by having the agent output both the to_replace185

and replace_with contents, each followed by a $186

character to properly escape special characters (e.g.,187

newlines, quotes) as described in Section A.14.1.188

3.1.2 New Actions189

In addition to editing, we introduce several new190

actions to enhance each of the three stages of our191

bug-fixing process. We add the following actions192

to the agent:193

Execute Server. The sandbox environment limits194

the execution of iterative or long-running scripts.195

To address this, we add the execute server action196

with persistent memory. Instead of retrieving code197

output directly, the agent uses get_logs to access198

execution logs. This action is especially effective199

during the reproduction stage for efficiently repli-200

cating bugs (see Section A.14.1).201

Execute IPython. This action enables the agent202

to run Python code within an IPython environment,203

streamlining bug reproduction by eliminating the204

need to create, write, and execute a separate file. 205

Search Repo. Search repo command uses a 206
cached RepoGraph (Ouyang et al., 2024)—a hier- 207

archical structure where nodes represent code defi- 208

nitions and edges represent dependencies between 209

them. By utilizing sub-graph retrieval algorithms, 210

RepoGraph extracts ego-graphs (Hu et al., 2024) 211

centered around specific keywords. This action al- 212

lows the agent to search for a specific keyword in 213

the repo and get all the files with corresponding line 214

numbers where the keyword is present, to aid in 215

precise bug localization. Undo Edit. Often times, 216
the agent makes a mistake in the edit and needs 217

to undo it. However, due to inherent limitations 218

of editing abilities of the agent, the agent some- 219

times outputs syntactically incorrect code which 220

degrades its reasoning (Kuratov et al., 2024) capa- 221

bilities and takes up its computational budget. This 222

action allows the agent to directly undo the last edit 223

efficiently (Anthropic, 2024b) 224

3.2 DARS Scaling 225

DARS begins by completing a trajectory in a depth- 226

first manner while storing key decision nodes in a 227
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priority queue, sorted in ascending order by node228

depth. Once the current trajectory reaches a ter-229

minal state—either by a submit command (see230

A.14.1) or upon reaching a predefined maximum231

depth—these nodes are expanded. During expan-232

sion, we sample k alternative actions and select the233

best one. We define key decision points as those234

actions that significantly enhance the resolve rate235

at minimal cost. As shown in Table 13, expanding236

the trajectory at edit actions is particularly effec-237

tive. This approach allows the agent to learn from238

previous mistakes and recover from suboptimal239

decisions, which is crucial for long-horizon tasks240

like programming. Finally, if no branch submits241

code before reaching the maximum depth, the code242

is auto-submitted. Issues that fail to execute the243

expected trajectory due to runtime errors or other244

anomalies within the SWE-Agent environment are245

re-run.246

3.2.1 Branching Strategy247

The main improvement in DARS lies in the avoid-248

ance of branching out trajectory at all actions,249

which costs exponential compute and its redun-250

dancy leads to a low accuracy for the trajectory251

selection pipeline. We use a causal analysis in Ta-252

ble 13 to identify four key actions with the largest253

causal impact on the model performance: edit, ap-254

pend, create, and submit and further perform quali-255

tative analysis in Appendix A.12 to understand the256

reasons behind the results.257

Create.258

Reproduction scripts are essential for debugging.259

Insufficient details can hinder their effectiveness260

and lead to incorrect fixes. By first localizing and261

analyzing the relevant code, the model improves262

bug resolution.263

A key issue is that models often fail to refine264

reproduction scripts during bug fixing. While some265

cases improve, others show overconfidence, with266

flawed scripts being repeated. Prioritizing localiza-267

tion is crucial for accurate reproduction.268

The create action differs from append in repro-269

duction scripts. Though both evaluate and fix bugs,270

append actions generally produce better scripts.271

Models are often biased by previous actions, mak-272

ing only minor script changes instead of explor-273

ing new paths. Early sampling of solutions during274

create allows better exploration (see ref 10).275

Should issue localization always precede repro-276

duction? Not always. Early localization can bypass277

reproduction, leading to weaker solutions or mis-278

interpretations of the bug, as shown in Figure 11. 279

Reproducing the bug first enables a clearer under- 280

standing and more accurate fixes. 281

Append. The append action improves reproduc- 282

tion scripts by refining previous attempts, ensuring 283

tests sufficiently verify code edits (see 13) 284

Runtime errors arise when the model lacks code- 285

base or environment knowledge, hindering issue 286

reproduction and exhausting its reasoning context. 287

Expansion in append actions mitigates this by ac- 288

celerating the reproduction phase, reducing turns 289

needed for localization. This allows more iterations 290

for editing and testing, improving bug resolution. 291

The benefit occurs in two ways: direct bug identifi- 292

cation during expansion or improved reproduction 293

scripts enabling better localization. (see 14) 294

Edit. The agent sometimes generates semantically 295

incorrect code, leading to an edit-Python loop. As 296

context length grows, its reasoning weakens, trap- 297

ping it in an unproductive cycle without a clear exit 298

(see 15) 299

The agent frequently produces code with basic 300

syntax errors, such as mismatched parentheses or 301

incorrect indentation, leading to a cycle of repet- 302

itive fixes. Due to reasoning flaws, it often gets 303

stuck applying the same ineffective edits—such as 304

repeatedly adding a closing bracket—even when 305

the fix has already failed (see 16). 306

Submit. While the model can fix bugs, it some- 307

times introduces regressions. To prevent this, it 308

should verify changes by running tests and refining 309

edits based on results. Expansion in this action 310

prompts the model to reassess its fixes and correct 311

issues before submission. For example, in the fol- 312

lowing case, the model fixes a bug but introduces a 313

regression. By reevaluating its changes, it catches 314

and resolves the issue (see 12). 315

We further cut down the redundancy by consider- 316

ing second-degree expansions. The above actions 317

namely create, append, edit, and submit usually 318

occur in the same order. The higher the action in 319

the tree, the higher the impact of expanding the tree 320

at that action. Therefore, if a branch is expanded 321

at create, we only expand the tree at append, edit, 322

and submit the next time. Similarly, a branch ex- 323

panded at edit is only expanded at submit the next 324

time. We follow this rule with an exception in the 325

case of append, since empirically it has found that 326

this has led to a high resolve rate for the extra cost 327

incurred. Finally, for each branch, we put a cap on 328

the number of expansions of each type to prevent 329

the tree from growing exponentially. 330
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3.2.2 Expansion Strategy331

We use a depth-first strategy to explore the cur-332

rent trajectory before branching out, which has333

two main advantages: Speed and Long-Horizon334

Feedback. After reaching a terminal condition, we335

continue from the node with the lowest depth in336

the priority queue. In Figure 8, we find that low-337

est depth-first is the most effective strategy, as the338

flexibility to explore decreases with node depth.339

3.3 Best Trajectory Selection340

After the agent has generated multiple trajectories,341

we select the most promising trajectory from all the342

attempts in two stages namely trajectory pruning343

and trajectory selection. We begin by cleaning the344

patches submitted by each trajectory by removing345

any bug reproduction files from it. We then prune346

any redundant trajectories which lead to the same347

cleaned patch. In the second stage, we use off-348

the-shelf open and close source models as well as349

our custom supervised-fine-tuned models to choose350

the best trajectory based on custom rubrics namely351

reproduction, fix, and potential to introduce new352

bugs motivated by (Kim et al., 2024).353

Patch Preparation. We begin with cleaning the354

patches by removing everything except the bug fix355

part. This includes removing the bug reproduction356

script, readme / documentation changes, pycache357

files etc. We then generate critiques for each patch358

based on the three rubrics namely reproduction, fix,359

and potential to introduce new bugs. To ground the360

predictions of the model, we use the execution out-361

put obtained from running the tests after applying362

the patch.363

Patch Sampling. For a given issue, based on364

the distribution of number of patches generated by365

DARS for that issue, we sample all combinations366

of patches from 2 to 6 patches. We further do a367

fine-grained sampling of negative patches by di-368

viding all the negative patches in buckets based on369

the combinations of tests that fail after applying370

the patch, to get a balanced dataset. For positive371

patches, we sample from the set of all the positive372

patches if there are any. For cases where there are373

no positive patches, we just use the ground truth374

patch.375

4 Experimental Setup376

4.1 DARS Scaling377

Dataset. We use the SWE-Bench Lite benchmark,378

a widely used subset of the SWE-Bench dataset379

(Jimenez et al., 2023). It comprises 300 GitHub380

Framework Base Model Pass@1
SWE-Agent GPT-4o 18.3
SWE-Agent Claude 3.5 Sonnet V2 23.0
Moatless Tools GPT-4o 24.7
Aider GPT-4o & Claude 3 Opus 26.3
Moatless Tools Claude 3.5 Sonnet V2 38.3
MASAI GPT-4o 27.3
Agentless-1.5 GPT-4o 27.3
Moatless Tools Claude 3.5 V2 38.3
Agentless-1.5 Claude-3.5 V2 40.7
OpenHands CodeAct v2.1 41.7
SWE-Search GPT-4o 31.0
Kodu-v1 Claude-3.5 Sonnet V2 44.7
DARS (Ours) Claude 3.5 Sonnet + Deepseek R1 47.0

Table 1: Comparative analysis of various software en-
gineering agents’ performance on SWE-Bench Lite
dataset. We present results only for the language models
that were used by the respective authors, as evaluating
every possible combination of models and frameworks
is highly resource-intensive.

issues from 12 real-world software projects, each 381

containing an issue report and the corresponding 382

codebase. 383

7B 14B 32B

Vanilla FT Vanilla FT Vanilla FT R1
GPT-4o 33.0 33.3 35.7 37.0 36.0 36.7 37.0
Gemini-1.5-pro 26.3 26.3 27.0 27.7 29.7 29.0 33.0
Gemini-2.0-flash 26.7 27.0 26.3 27.7 28.0 28.7 28.3
Claude 3.5 Sonnet 35.7 38.7 39.7 41.7 41.3 42.0 47.0

Table 2: Performance Comparison across 7B, 14B, and
32B parameter DeepSeek R1 Distill Qwen reviewer
models

Evaluation Metrics. We evaluate model per- 384

formance using multiple metrics. Resolve Rate 385

(Pass@1) measures the fraction of instances fixed 386

on the first attempt, while Pass@k represents the 387

expected success rate within k attempts. To as- 388

sess efficiency, we track the Average Cost per 389

Instance (in dollars) and the Cost Scaling Factor, 390

which compares scaled resource costs to the base 391

agent. Lastly, we record the Number of Attempts 392

required for a successful fix. 393

Method Overall Pass@1 Precision
Complete 10 9 0.51
5 look aheads 5 2 0.54
10 look aheads 8 5 0.68
Path Summary 9 5 0.54
Only Sibling Action 8 5 0.72

Table 3: Variation of performance with horizon of con-
text during expansion.

Baselines. We test our approach against various 394

SWE agents including SWE-Agent (Yang et al., 395
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2024b), Moatless Tools (Orwall, 2024), and Open-396

Hands (Wang et al., 2024c), MASAI (Arora et al.,397

2024), Large Language Monkeys (Brown et al.,398

2024), Agentless (Xia et al., 2024), and SWE-399

Search (Antoniades et al., 2024). In terms of LLMs,400

we test our approach with various models includ-401

ing GPT-4o (OpenAI, 2025), Claude 3.5 Sonnet V2402

(Anthropic, 2024a), Gemini 2.0 Flash, and Gemini403

1.5 Pro (Team et al., 2023).404

Hyperparameters. The DARS algorithm relies405

on several key hyperparameters. Num Expansions406

is set to 2, defining the number of expansions per407

decision point, while Expansion Temperature (0.8)408

controls the sampling temperature for alternative409

actions. The algorithm runs for 300 iterations (Num410

Iterations), with a maximum branch depth of 50411

(Max Branch Depth). Action limits are defined by412

Expansion Limit Edit, Append, Submit, and Create,413

each set to 1 which caps the number of times those414

actions can be expanded within a branch. Num Ex-415

pansion Sampling (3) specifies the number of sam-416

pled actions per expansion, and Num Lookahead417

(50) determines how many steps from previous tra-418

jectory are considered during tree expansion.419

4.2 Model Training420

Dataset. We use Nebius’s trajectory dataset421

(Badertdinov et al., 2024), comprising 80K trajec-422

tories from 3K unique issues across 1,077 open-423

source software repositories. These issues are en-424

tirely disjoint from SWE-Bench Lite. After clean-425

ing and filtering redundant patches, we obtain 42K426

unique patches (7.3K positive, 34.7K negative),427

with 837 unique issues correctly solved. Using428

GPT-4o (OpenAI, 2025), we generate critiques for429

all patches, leading to 150K training examples con-430

taining approximately 500M tokens.431

Model Setup. We fine-tune open-weight LLMs432

on the generated dataset. The model architecture433

follows Qwen 2.0 (Yang et al., 2024a), a Mixture-434

of-Experts (MoE) model utilizing Rotary Positional435

Embeddings (Su et al., 2024), SwiGLU (Dauphin436

et al., 2017) activation, QKV bias (Su, 2023) for437

attention, and RMSNorm (Jiang et al., 2024) nor-438

malization.439

Training Setup. We use Deepseek’s Distilled440

Qwen-2.5 (et al., 2025) checkpoint as the base441

model for 7B, 14B, and 32B parameter variants,442

fine-tuning them with 8 H100 GPUs. Training is443

distributed via DeepSpeed (Aminabadi et al., 2022),444

with LoRA (Hu et al., 2021) adapters for memory445

efficiency and FlashAttention 2 (Dao, 2023) for446

acceleration. 447

We conduct a learning rate sweep over 1e-6, 5e- 448

6, and 1e-5, selecting optimal values for the 32B, 449

14B, and 7B models, respectively. The batch size 450

is set to 48 for 7B/14B models and 32 for 32B. 451

Training runs for 1 epoch over the dataset with a 452

max sequence length of 14K tokens, a warmup of 453

100 steps, and weight decay of 0.0. 454

LoRA Configuration: We use rank r = 8, alpha 455

= 32, and a dropout rate of 0.1. 456

Optimization: We apply AdamW (Loshchilov 457

and Hutter, 2019) with a cosine learning rate sched- 458

uler, BF16 mixed precision, and ZeRO stage 3. 459

Reviewer Model Inference. We infer all 460

pre-trained and fine-tuned reviewer models using 461

vLLM (Kwon et al., 2023). A temperature sweep 462

over 0, 0.5, and 0.6 is performed, as recommended 463

by Deepseek authors. We set a top-p of 0.95. 464

5 Experiments 465

In this section, we first demonstrate the perfor- 466

mance of our DARS model against various base- 467

lines, and then explore two key research questions 468

(RQs) to analyze various aspects of its optimality. 469

5.1 Overall Performance 470

In this section, we compare the performance of 471

our approach against various baselines and mod- 472

els. We summarize the results in Table 1. We 473

find that our approach achieves a pass@1 rate of 474

47.0% with Claude 3.5 V2 Sonnet and Deepseek 475

R1 as Reviewer which is the open-source SOTA 476

performance on the SWE-Bench Lite benchmark at 477

the time of this submission.2 We further compare 478

various vanilla and fine-tuned models reviewer in 479

Table 2. We see an average increase of 2.6% across 480

fine-tuned models with maximum increase of 4.15 481

% in case of the 14B model. However, 40% of 482

examples have perfect precision (all the patches are 483

correct), which diminishes the gain in performance 484

due to fine-tuning. We compare the accuracy of all 485

the reviewers for trajectories generated by various 486

models after removing such examples in Table 6 487

5.2 RQ1: How efficient is the compute scaling 488

of DARS? 489

The goal of this research question is to evaluate 490

the efficiency of DARS in terms of compute scal- 491

ing and its impact on solution quality. Specifi- 492

2Deepseek R1 family of models often fail to generate the
solution in the desired format, therefore, we use GPT-4o to
parse the outputs in such cases.
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Framework Model Cost Scaling Factor # Attempts Single Rollout Coverage ∆ Precision
Agentless GPT-4o – 40 – 42 – –
MASAI GPT-4o – 5 23 35 34.28 –
Large Language Monkeys DeepSeek-Coder 250 250 15.9 56 71 14
SWE-Search GPT-4o 14.00 5.00 25.70 34.00 24.41 20.00
DARS (Ours) GPT-4o 7.60 5 21.67 43.34 50.00 75.00

Table 4: Compute Scaling Efficiency comparison across various frameworks and metrics. Here Single Rollout
represents the performance of the agent when a single trajectory is generated.

SWE-Agent Improved SWE-Agent DARS

Model Resolve Rate (%) Cost ($) Resolve Rate (%) Cost ($) Score Cost ($)

Gemini 1.5 pro 14.33 0.56 18.67 0.58 33.00 9.85
Gemini 2.0 flash 16.33 0.05 15.67 0.06 28.33 0.70
GPT-4o 18.33 0.89 21.67 0.80 37.0 7.92
Claude 3.5 Sonnet V2 - - 32.67 1.61 47 12.24

Table 5: Comparison of effectiveness and efficiency of SWE-Agent, Improved SWE-Agent, and DARS

cally, we report the cost-vs-reward trade-off by an-493

alyzing key efficiency metrics such as cost scaling494

factor, accuracy per attempt, number of attempts,495

coverage, and precision. Our findings indicate496

that DARS achieves the most optimal cost scal-497

ing while maintaining high coverage and precision,498

outperforming baselines in redundancy reduction.499

Notably, while Large Language Monkeys achieve500

the highest coverage, this comes at an impracti-501

cal compute cost, making DARS the more feasible502

approach.503

Methodology. We compare the performance vs.504

cost trade-off of DARS against various baselines505

that scale compute at inference time. The evalua-506

tion is conducted through five key efficiency met-507

rics: (a) cost scaling factor, (b) accuracy per at-508

tempt, (c) number of attempts, (d) coverage of the509

solution set, and (e) precision of the solution set.510

Results. Table 4 summarizes our findings. While511

DARS ranks second to Large Language Monkeys512

in terms of coverage improvement per attempt, the513

latter achieves this by scaling compute by a factor514

of 250, which is infeasible in real-world scenarios.515

Additionally, DARS exhibits significantly higher516

precision, enhancing the effectiveness of the tra-517

jectory selection pipeline. We also observe that518

hindsight feedback is less effective, as completely519

random sampling methods like MASAI outperform520

search-based approaches like SWE-Search in cov-521

erage improvement.522

5.3 RQ2: How important is long-horizon 523

planning? 524

The goal of this research question is to assess the 525

impact of long-horizon planning on the perfor- 526

mance of DARS in coding tasks. Specifically, we 527

report how varying the lookahead value affects the 528

agent’s ability to generate effective patches. Our 529

findings show that increasing the lookahead value 530

improves solution coverage, with the complete tra- 531

jectory approach achieving the highest success rate. 532

However, certain lookahead strategies, such as sib- 533

ling action expansion, exhibit high precision while 534

suffering from limited adaptability. 535

Methodology. We investigate the importance of 536

long-horizon planning by varying the lookahead 537

value, which determines how many steps from the 538

previous trajectory are considered during tree ex- 539

pansion. We evaluate five configurations: (a) 0- 540

lookahead (random sampling), (b) 5-lookahead, (c) 541

10-lookahead, (d) complete trajectory, and (e) sum- 542

marized trajectory. Additionally, we test the sibling 543

action expansion, where only sibling actions are 544

provided without any lookahead. The experiment 545

is conducted on 20 randomly selected issues. 546

Results. Table 3 summarizes our findings. We 547

observe a strong correlation between lookahead 548

depth and solution coverage. The complete tra- 549

jectory approach achieves the highest success rate, 550

resolving 10 out of 20 issues (50%), while the sum- 551

marized variant reaches a 45% success rate (9/20). 552

This highlights the importance of maintaining full 553

trajectory context for effective problem-solving. 554

Although the sibling action approach yields high 555
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Reviewers GPT-
4o

Gemini
1.5 Pro

Gemini
2.0 Flash

Claude
3.5 Sonnet

Closed Source
GPT-4o 62.12 48.19 50.00 51.02
Open Source
R1 71.64 78.31 64.06 74.49
R1-Distill-7B 53.73 54.22 56.25 41.84
R1-Distill-14B 65.67 56.63 54.69 54.08
R1-Distill-32B 67.16 66.27 62.50 59.18
Fine-tuned
R1-Distill-7B 55.22 54.22 57.81 51.02
R1-Distill-14B 71.64 59.04 60.94 60.20
R1-Distill-32B 70.15 63.86 65.62 61.22

Table 6: This table presents the classification accuracy
of various reviewer models for trajectories generated by
different models. To depict the true potential of reviewer
models, we remove the cases, where all the patches for
generated for a given issue resolve the issue.

precision, this result is skewed by a small subset556

of cases where it performed exceptionally well. In557

contrast, the complete trajectory method, despite558

lower precision, demonstrates superior Pass@1 ac-559

curacy—aligning with DARS’s objective of gener-560

ating diverse and effective patches.561

The single lookahead approach resolves two562

fewer issues than the complete trajectory method,563

primarily due to trajectory depth limitations. This564

issue arises in cases where the agent falls into bug-565

fixing and reproduction loops (edit-python loops),566

repeatedly encountering the same obstacles without567

historical context.568

The 5-lookahead configuration performs the569

worst, as the restricted context provides only phase-570

specific errors (e.g., reproduction phase errors in571

append expansions, bug-fixing errors in edit expan-572

sions) without access to prior trajectory outcomes.573

This lack of context hinders the model’s reasoning574

and decision-making capabilities.575

6 Ablation Studies576

6.1 Improved SWE-Agent577

We evaluate our enhanced SWE-Agent, featur-578

ing advanced editing capabilities and new actions,579

against the base model on the SWE-Bench Lite580

benchmark. As shown in Table 5, the improved581

SWE-Agent achieves an average 14.7% higher re-582

solve rate across all models while maintaining a583

similar cost per instance.584

6.2 DARS Stage Analysis585

This section presents deep insights into individual586

stages of DARS and their performance. There are587

two key stages in DARS: multi trajectory gener-588

Figure 2: This figure presents coverage variation vs k.
Here ∞ corresponds to submission of all the patches
generated for an issue.

Orig Filt
Model Cov #Att Prec #Att Prec

GPT-4o 43.33 8.00 0.70 4.00 0.71
Gem 1.5P 39.00 8.21 0.62 6.23 0.61
Gem 2.0F 36.00 6.34 0.64 3.77 0.61
Claude 3.5S 55 10.07 0.71 6.62 0.72

Table 7: This table presents the initial coverage, Number
of Attempts (#Att), and Precision (Prec) before (Orig)
and after patch filtering (Flit) stage

ation, best trajectory selection which further has 589

two stages namely trajectory pruning and trajectory 590

selection for various models and summarize the 591

results in Table 7. We first analyze the recall and 592

precision for multi trajectory generation to under- 593

stand the effect of compute scaling on performance 594

and redundancy for each model. We then analyze 595

the capabilities of various models in final trajec- 596

tory selection tested on the trajectories generated 597

by Claude 3.5 Sonnet in Table 6. 598

6.3 Coverage vs k 599

In previous sections, we analyzed pass@1 or 600

pass@k. Here, we study coverage versus k by 601

prompting our reviewer model for the top k patches 602

(with k = 1, 3, 5; see Figure 2). Notably, at k = 5, 603

the coverage nearly reaches its maximum. 604

7 Conclusion 605

We introduced DARS, a novel method that re- 606

samples actions at key decision points to recover 607

from suboptimal choices more effectively than 608

linear or random sampling. On the SWE-Bench 609

Lite benchmark, DARS achieves a state-of-the-art 610

pass@1 rate of 47% with Claude 3.5 Sonnet V2. 611

We release our code, datasets, and models to sup- 612

port further research. 613
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8 Limitations614

We currently allocate compute using a static615

method with fixed depth and no early stopping,616

which limits our efficiency. A reward model (simi-617

lar to MCTS) could evaluate and prioritize promis-618

ing paths, enabling smarter exploration and early619

stopping decisions. While BFS might seem intu-620

itive, its inefficiency with limited lookaheads and621

path history makes it impractical. We propose to622

implement absolute path scoring to guide explo-623

ration depth and stopping decisions, while main-624

taining an upper depth limit.625

9 Ethical Considerations626

The use of Large Language Models (LLMs) in627

software engineering carries security and ethical628

risks. To mitigate these, DARS executes all LM-629

generated code in isolated, ephemeral environ-630

ments to prevent unintended system modifications.631

We employ a structured verification pipeline to re-632

duce biased or unsafe outputs and ensure adher-633

ence to best coding practices. While AI-driven au-634

tomation can be misused, we release our work un-635

der responsible AI guidelines and encourage safe-636

guards against malicious applications. Our code,637

datasets, and models are open-source to promote638

transparency and responsible AI research.639
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A Appendix 899

A.1 More Related Works 900

Inference Time Compute Scaling. Scaling com- 901

pute at inference time has been shown to enhance 902

LLM performance across various tasks. For in- 903

stance, Silver et al. (2016, 2017) improve decision- 904

making by searching game states before selecting 905

a move. Similarly, LLM-focused approaches Wei 906

et al. (2023); Tian et al. (2024); Nye et al. (2021); 907

Kojima et al. (2022) enhance reasoning by sam- 908

pling additional tokens. Graph-based methods Yao 909

et al. (2024); Besta et al. (2024); Luo et al. (2024); 910

Zhang et al. (2024a); Qi et al. (2024) further opti- 911

mize planning and exploration of the solution space, 912

enabling more structured and efficient problem- 913

solving. 914

LLMs as Code Reviewers. LLMs have 915

demonstrated strong judgment capabilities Son 916

et al. (2024); Tsvilodub et al. (2024); Ankner et al. 917

(2024). Some approaches leverage LLMs directly 918

to generate critiques and feedback Wang et al. 919

(2024b); Kim et al. (2024). However, in structured 920

domains like coding and math, feedback can be 921

sampled from the environment, as seen in Wang 922

et al. (2024a); Guan et al. (2025), where LLMs 923

are augmented with external feedback to improve 924

critique generation. This feedback is then used to 925

train models to act as reviewers for selecting opti- 926

mal solutions. Two primary training strategies ex- 927

ist: supervised fine-tuning Tsvilodub et al. (2024); 928
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Ankner et al. (2024); Wang et al. (2024a); Zhang929

et al. (2024b); Mitra et al. (2024) and reinforce-930

ment learning methods such as Direct Preference931

Optimization Rafailov et al. (2024) and Proximal932

Policy Optimization Schulman et al. (2017), used933

by Wu et al. (2024); Gehring et al. (2024).934

A.2 Agent Performance Across Repositories935

This section analyzes model performance across936

different repositories using the SWE-Bench Lite937

benchmark. Our goal is to identify biases in how938

models handle code from various sources.939

We summarize our findings in Figure 3 and ob-940

serve that models perform best on Seaborn and Re-941

quests, achieving 65-75% accuracy, while scientific942

computing libraries (e.g., sympy, xarray, SciKit-943

learn) and web frameworks (e.g., Flask, Django)944

show moderate performance (40-60%). In con-945

trast, Astropy and Sphinx consistently rank lowest946

(30-40%), indicating that models struggle more947

with specialized scientific tools and documentation948

systems than with visualization and HTTP client949

libraries.950

These findings highlight domain-specific varia-951

tions in model effectiveness, guiding improvements952

in generalization across repositories.953
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Figure 3: Repo-wise coverage of for each model

A.3 Improved Editing954

We compare the performance of the agent when it955

uses the whole style of editing and the diff style of956

editing. We analyze the number of various types957

of syntactic errors committed by the agent while958

editing the code in both the styles of editing. We959

perform our analysis across two models namely960

GPT-4o-mini Gemini 1.5 (Pro)
Whole Diff Whole Diff

Total Edits 11,931 8,507 3,605 4,113
Success Samples 4,905 3,090 1,995 2,590
Success Rate (%) 41.1 36.3 55.3 62.9
Error Types
No Match 0 1,159 0 655
Content Error 0 1,640 0 143
Syntax Error 7,003 2,600 1,610 706
File Error 0 18 0 19
Pass@1 (%) 7 8.67 14.38 21.44

Table 8: Comparison of various types of syntactical
errors committed in whole and diff setting.

Gemini 2.0 Flash and Gemini 1.5 Pro. Here No 961

Match error pertains to the situation in diff editing 962

where the text to be replaced does not match text in 963

the file. File Error occurs when the model tries to 964

make an edit when no file is opened. Syntax Error 965

is thrown by the linter in cases like indentation 966

error or erroneous variable referencing. Finally, 967

Content Error occurs in case of diff editing, when 968

the agent provides the new content in edit, append, 969

or insert command as an empty string or provides 970

the content to replace and new content as the same 971

string. 972

We summarize the results in Table 8. In both 973

the styles of editing, the major source of errors is 974

syntax errors. We find that the diff style of editing 975

leads to 1% less errors compared to the whole style 976

of editing. However, this effect is much more pro- 977

nounced in terms of semantics as diff style achieves 978

36% higher pass@1 rate. 979

A.4 Localization Analysis 980

We analyze the ability of the agent to correctly lo- 981

calize the bug in the codebase. We find the overlap 982

between the predicted location and the actual loca- 983

tion based on the git patch of the proposed solution 984

vs the actual solution patch and calculate the per- 985

centage of correct localizations. We summarize 986

the results in Table 9. Average correct localization 987

across all models is 72.3 %, which shows that the 988

agent is usually able to correctly localize the bug 989

in the codebase. 990

A.5 Variation of Performance with Max 991

Depth and Number of Iterations 992

We analyze the optimality of two key search hyper- 993

parameters: max depth and number of iterations. 994

We simulate the trajectories of our agent for differ- 995

ent values of these hyperparameters and analyze 996
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Model Correct Localization (%)

GPT-4o 74.37
Claude 3.5 Sonnet 80.70
Gemini 2.0 Flash 69.44
Gemini 1.5 Pro 64.82

Table 9: Various models’ ability to correctly localize
issues.

the coverage of the agent for each value.997

We summarize the results in Figure 4 and Fig-998

ure 5 for variation with depth and iterations respec-999

tively. We find that both the curves show a decaying1000

trend with increasing values of the hyperparame-1001

ters and saturate for our values of 50 and 300 for1002

max depth and number of iterations respectively1003

which shows that our values are optimal for the1004

agent.1005

Figure 4: Variation of coverage with maximum branch
depth

Figure 5: Variation of coverage vs number of iterations

A.6 Issues vs Models1006

Model-Specific Issue Resolution. Venn diagram of1007

resolved issues by model. Each model can solve1008

a handful of unique instances. We summarize the1009

results in Figure 6.1010

Figure 6: Venn diagram of resolved issues by model.
Each model can solve a handful of unique instances.

A.7 Left-Right Branch Analysis 1011

We study the effectiveness of our expansions by 1012

comparing the depths of branches before and after 1013

expansion, focusing on cases where both the left 1014

and right branches reach a conclusion, meaning 1015

they terminate when the agent returns a submit ac- 1016

tion. Additionally, we analyze how different expan- 1017

sion paths lead to conclusions by comparing two 1018

scenarios: (1) when the right-side expansion suc- 1019

cessfully reaches a conclusion while the left-side 1020

fails to do so, and (2) when the left-side expan- 1021

sion reaches a conclusion while the right-side does 1022

not. We summarize our findings in Table 11 and 1023

Table 10. 1024

Submit expansions rarely achieve convergence, 1025

which is anticipated given their terminal position in 1026

the sequence. To accurately assess the efficacy of 1027

Submit expansions, an increased maximum depth 1028

threshold specifically for Submit operations would 1029

be necessary. Create expansions demonstrate sig- 1030

nificant effectiveness in reaching conclusions, sug- 1031

gesting that initial localization strategies can fa- 1032

cilitate convergence in specific scenarios. Expan- 1033

sions in edit and append operations successfully 1034

break edit-python iteration cycles, leading to more 1035

efficient conclusion paths. Analysis reveals a con- 1036

sistent pattern where dual-path conclusions and 1037

right-path iterations exhibit lower counts compared 1038

to left-path iterations, aligning with the hypothesis 1039

that expansions reduce errors. However, append 1040

operations demonstrate elevated average iterations 1041

because the model now creates a more comprehen- 1042

sive testing script that involves additional editing 1043
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and validation steps, resulting in increased overall1044

depth 17. Contrary to expectations, in edit, cre-1045

ate, and append expansion operations, left-path1046

expansions frequently achieve conclusions while1047

right-path expansions do not. For edit and append:1048

The model creates a more complicated reproduc-1049

tion script which leads to an error, which the model1050

is not able to to resolve 19. In create, the agent1051

finds it easy to locate the issue after reproduction.1052

While, in the expanded branch, could not localize1053

it 18. Another reason for this pattern is that the1054

agent sometimes submits prematurely (often after1055

reproduction). In the right path, it recognizes this1056

mistake and corrects it.1057

Action After Expansion Before Expansion

Edit 32 39
Create 41 27
Append 34 36
Submit - 24

Table 10: Comparison of path reaches by action type.
Here, before and after expansion pertain to cases where
conclusion is only reached before and after expansion
respectively

Action Avg Dep
Bef Exp

Avg Dep
Aft Exp

Edit 21.2 20.8
Create 22.4 21.4
Append 22.1 22.6
Submit 16.9 22.1

Table 11: Comparison of action path depths before and
after expansion

A.8 Error Scaling Analysis1058

In this section, we present the scaling of various1059

error types as we scale compute. We summarize1060

the results in Table 12.1061

A.9 How to effectively expand the tree?1062

Understanding how to expand the search tree effi-1063

ciently is crucial for balancing computational cost1064

and solution quality in our coding agent. We in-1065

vestigate this research question to determine which1066

actions should be prioritized for branching and in1067

what order they should be expanded. Specifically,1068

we report the trade-off between branching cost and1069

resolution rate for different actions, as well as the1070

impact of various branching strategies on search1071

efficiency. Our findings show that branching at key1072

actions like edit, create, and append leads to the1073

Action Type Error Types SWE
Agent DARS

Search
File

File Not Found 108 446
Syntax Error 0 3
Success 727 2635

Create
Directory Error 132 131
File Exists 4 22
Success 361 1276

Append Content Error 0 3
File Error 0 4
Syntax Error 9 214
Success 359 2518

Edit

No Match 382 884
Content Error 367 724
Syntax Error 422 1820
File Error 150 311
Success 1296 7206

Search
Repo

Syntax Error 74 268
Success 528 2581

Search
Dir

Dir Not Found 4 107
Syntax Error 3 29
Success 114 814

Find
File

Dir Not Found 8 17
No Match Found 32 214
Success 63 385

Insert Syntax Error 30 659
Success 114 1857

Execute
IPython

Connection Error 8 56
Response Error 44 2
Success 40 396

Execute
Server

Server Error 3 125
Success 131 1542

Undo
Edit

No Edit Made 5 27
Success 0 38

Table 12: Error scaling comparison between SWE-
Agent and DARS
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Action Coverage Avg Iter
Search Dir 14.3 38
Insert 14.7 39
Search File 15.3 44
Open 14.3 49
Goto 15.3 47
Find File 16.7 58
Append 22.3 88
Edit 31.3 272

Table 13: Compute-coverage trade-off of expanding
in various actions. Here Avg Iter pertains to average
number of iterations across issues which indicates the
amount of compute spent in that issue.

highest resolve rates, and that a Lowest Depth First1074

approach improves early-stage exploration but con-1075

verges with other strategies over time. Finally we1076

understand the compute-cost trade-off of number of1077

expansions of a type in a branch Figure 7 and find1078

that it is inefficient to do more than one expansion1079

of a given type.1080

A.9.1 Action Selection1081

Methodology. We analyze the computational cost1082

vs resolve rate trade-off of branching various ac-1083

tions in the trajectory. We first run the agent to1084

expand at eight different actions namely search_dir,1085

insert, search_file, open, goto, find_file, append,1086

and edit. We then perform a causal analysis to de-1087

termine the most promising actions by comparing1088

decrease in resolve rate and number of iterations1089

for each action. We then analyze the impact of1090

branching at different actions on the performance1091

of the agent.1092

Results. We find that branching at actions that are1093

typically used in the reproduction and fix stages1094

like edit, create, append leads to the highest resolve1095

rate. We summarize the results in Table 13.1096

A.9.2 Order of Action Selection1097

Methodology. We explore various strategies to1098

expand the tree at different actions. We use the1099

runs in the previous section and simulate strategies1100

pertaining to the order of branching at different ac-1101

tions. We experiment with three different strategies1102

namely First In First Out (FIFO), Last In First Out1103

(LIFO), and Lowest Depth First. We plot the cover-1104

age vs number of iterations curve for each strategy1105

to determine the most promising strategy.1106

Results. In Figure 8 we find that the Lowest Depth1107

First strategy early on as it promotes exploration1108

at the lower depths of the tree. This allows the1109

agent to explore more possibilities and make better1110

Figure 7: Percent increase in number of iterations per
percent increase in resolve rate vs number of expansions
in a branch.

decisions. But if the agent is run for long enough, 1111

all the strategies converge to the same point as all 1112

the possible states are explored eventually. 1113

A.10 How to effectively select the best 1114

trajectory? 1115

Optimizing our agent requires effective tree expan- 1116

sion, trajectory selection, and action evaluation. 1117

Due to computational constraints and LLM con- 1118

text limitations, we adopt a structured approach to 1119

improve efficiency. 1120

We first analyze tree expansion, studying how 1121

different actions—edit, append, create, and sub- 1122

mit—impact coverage and performance. Next, we 1123

tackle trajectory selection, implementing a two- 1124
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Figure 8: Variation of coverage of traversal strategies
with iterations

stage pipeline: filtering to remove irrelevant infor-1125

mation and ranking to identify the best trajectory.1126

We compare pairwise and global ranking methods1127

across different filtering configurations. Finally,1128

we quantify the impact of expansion actions, isolat-1129

ing their contributions to coverage, accuracy, and1130

efficiency.1131

A.10.1 Trajectory Content Filtering1132

A trajectory contains several components like1133

command descriptions, various actions and their1134

thoughts, observations to each action etc., not all1135

of which are relevant to determine if a particular1136

trajectory is would solve the bug. Therefore, we ex-1137

periment with various components of the trajectory1138

to determine the best combination.1139

Methodology. Based on the three key stages of1140

the bug fixing process - Reproduction, Localiza-1141

tion, and Fix, we identify certain key components1142

of the trajectory that are relevant to each of these1143

stages. These components include the reproduc-1144

tion script, the edited files, the output after running1145

the reproduction script, and the final patch. We1146

then experiment with various combinations of these1147

components to determine the best combination.1148

A.10.2 Trajectory Ranking1149

Methodology. To find the best trajectory, we1150

experiment with two different ranking methods:1151

pairwise knockout ranking and global ranking. In1152

pairwise knockout ranking, we compare each pair1153

of trajectories and eliminate the one that is worse1154

until we are left one. In global ranking, we rank all1155

the trajectories based on our rubricks.1156

Results. We summarize the results of the trajec-1157

tory ranking in Table 14 for each type of filtering1158

pipeline and ranking strategy. We find that only the1159

final patch is the most effective component to deter-1160

mine the best trajectory. This result is significant1161

for two reasons. First, it makes our trajectory se- 1162

lection model applicable to any coding agents as a 1163

git patch is a common output format for all agents. 1164

Moreover, it also makes the trajectory selection 1165

pipeline more efficient as it only needs to consider 1166

the final patch to determine the best trajectory. 1167

Combination Pairwise Ranking Global Ranking
RS + EF + RO + FP 30.67 33.00
RS + EF + FP 30.67 33.67
RS + RO + FP 30.67 33.67
RS + FP 30.67 34.00
FP 30.67 34.67

Table 14: Performance comparison of different scoring
combinations using pairwise and global ranking meth-
ods. The combinations use the following components:
RS (Final reproduction scripts), EF (Final edited files),
RO (Final reproduction output), and FP (Final Patch).

A.11 Contribution of expansion in each 1168

Action 1169

We quantify the contribution of each action in the 1170

trajectory to the final performance of the agent. We 1171

analyze the performance of the agent by simulating 1172

expansions for certain combinations of actions and 1173

studying its variation with the coverage. We sum- 1174

marize the results in Table 15. We can see that edit 1175

actions (edit and append) and reproduction actions 1176

(create) lead to the highest increase in performance. 1177

While expansion in submit command leads to min- 1178

imal increase in performance, it does not lead to 1179

much redundancy either. While append leads to 1180

highest solve rate, it also leads to highest cost. Edit 1181

and create actions lead to a good balance between 1182

performance and cost. 1183

Exp Actions Cov Avg
Iter Acc #

Att Pre

Edit, Append, Submit, Cre-
ate

54.7 194 81 10.72 0.72

Edit, Append, Create 54.3 177 46 0.72 0.72
Append, Create 51.0 146 35 0.70 0.70
Edit, Create 49.3 81 23 0.70 0.70
Edit, Append 47.6 96 23 0.70 0.70
Append 42.7 80 22 0.66 0.66
Create 41.3 51 12 0.66 0.66
Edit 39.3 44 12 0.66 0.66
No Expansion 31.0 27 11 0.57 0.57

Table 15: Performance of DARS for various combina-
tion of expansion actions (Exp Actions). We compare
across several metrics such as coverage (Cov), average
number of iterations across issues (Avg Iter), accuracy
of reviewer model (Acc), average number of attempts
(# Att), and precision (Pre)
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In the previous analysis, we focus on the con-1184

tributions of different combinations of expansion1185

actions on the final coverage. However, in the anal-1186

ysis, the results depend on all the actions in the1187

combination. To de-couple the effect of each ex-1188

pansion type, we perform another analysis where,1189

for each expansion action, we contrast the number1190

of cases where a) the branch before expansion does1191

not resolve the issue, but the branch after expansion1192

does, b) the branch before the expansion resolve1193

the issue but the branch after the expansion does1194

not resolve the issue, and c) both branches resolve1195

the issue. We summarize our results in Figure 9.1196

We can still see that majority of expansions are1197

lead to solutions on both branches which shows1198

that our approach still has a considerable amount1199

of redundancy. We see highest efficiency for edit1200

and append expansions and lowest for submit ex-1201

pansions.1202

60.4%

21.3%
18.4%

60%

21.9%
18.1%

70.1%

17.1%
12.8%

95.6%

3.4%

 Append

Submit

Edit

Create

Figure 9: These figures present the proportions marked
by ● for the cases where the branch before expansion
does not resolve the issue, but the branch after expan-
sion does, ● for the cases where the branch before the
expansion resolve the issue but the branch after the ex-
pansion does not resolve the issue, and ● for the cases
where both branches resolve the issue.

A.12 Expansion Qualitative Analysis1203
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Before Expansion

+import matplotlib.pyplot as plt

+from matplotlib.colors import LogNorm

+import numpy as np

+print("Starting test script...")

+# Create test data with known values

+img = np.logspace(0, 4, 50*50).reshape(50, 50)

+print(f"Image range: {img.min():.2f} to {img.max():.2f}")

+fig, ax = plt.subplots(1, 1)

+plot = ax.imshow(img, cmap='gray')

+cb = fig.colorbar(plot, ax=ax)

+print("Initial plot created, now changing norm...")

+plot.norm = LogNorm(vmin=img.min(), vmax=img.max())

+print(f"New norm created with vmin={img.min():.2f}, vmax={img.max():.2f}")

+print("Attempting update_normal...")

+cb.update_normal(plot)

+# update_bruteforce is not available in current matplotlib version

+# using draw() to ensure updates are applied

+plt.draw()

+print("Verifying colorbar norm...")

+print(f"Plot norm type: {type(plot.norm)}")

+print(f"Colorbar norm type: {type(cb.norm)}")

+print(f"Plot norm range: {plot.norm.vmin:.2f} to {plot.norm.vmax:.2f}")

+print(f"Colorbar norm range: {cb.norm.vmin:.2f} to {cb.norm.vmax:.2f}")

+print("Test completed successfully if norms match")

+plt.show(

After Expansion

+import matplotlib.pyplot as plt

+from matplotlib.colors import LogNorm

+import numpy as np

+img = 10**np.random.normal(1, 1, size=(50, 50))

+fig, ax = plt.subplots(1, 1)

+plot = ax.imshow(img, cmap='gray')

+cb = fig.colorbar(plot, ax=ax)

+# Create new norm with proper bounds from the data

+data = plot.get_array()

+new_norm = LogNorm(vmin=data.min(), vmax=data.max())

+plot.norm = new_norm

+# Test the fixed update_normal method

+print("Testing update_normal with LogNorm...")

+cb.update_normal(plot) # should now work correctly with the new norm

+plt.savefig("test_output.png")

+print("Test completed successfully")

Figure 10: Improved reproduction script due to create expansion

After Expansion Before Expansion

+from sympy import MatrixSymbol, init_printing, pprint

+from sympy.abc import n

+init_printing()

+# Create matrix symbols

+x = MatrixSymbol("x", n, n)

+y = MatrixSymbol("y*", n, n)

+# Try to pretty print their sum

+print("Attempting to pretty print x + y:")

+pprint(x + y)

+print("Script completed successfully.")

+from sympy.abc import n

+# Test cases

+tests = [

+ MatrixSymbol("x", n, n) + MatrixSymbol("y*", n, n),

+ -MatrixSymbol("x", n, n) + MatrixSymbol("y*", n, n),

+ MatrixSymbol("x", n, n) - MatrixSymbol("y*", n, n)

+]

+for i, expr in enumerate(tests, 1):

+ print(f"\nTest {i}:")

+ try:

+ print("Expression:")

+ pprint(expr)

+ except Exception as e:

+ print(f"Error occurred: {type(e).__name__}")

+ print(f"Error message: {str(e)}")

+print("\nScript completed.")

Figure 11: Poor reproduction script because the model misunderstands the bug when localizing the issue before
reproducing it
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Before Expansion

Test Patch:

+from sympy import MatrixSymbol, init_printing, pprint

+from sympy.abc import n

+init_printing()

+# Create matrix symbols

+x = MatrixSymbol("x", n, n)

+y = MatrixSymbol("y*", n, n)

+# Try to pretty print their sum

+print("Attempting to pretty print x + y:")

+pprint(x + y)

+print("Script completed successfully.")

Fix Patch:

@@ -501,10 +501,13 @@ def _f(rv):

if not (rv.is_Pow and rv.base.func == f):

return rv

- if (rv.exp < 0) == True:

- return rv

- if (rv.exp > max) == True:

+ if rv.exp.is_complex:

return rv

+ if rv.exp.is_real:

+ if (rv.exp < 0) == True:

+ return rv

+ if (rv.exp > max) == True:

After Expansion

Test Patch:

+from sympy import *

+from sympy.simplify.fu import TR6

+

+def test_powers():

+ x = Symbol("x")

+ print("Testing various power cases...")

+ # Test complex power

+ print("\n1. Complex power:")

+ result = TR6(cos(x)**I)

+ print("cos(x)**I =", result)

+

+ # Test original cases

+ print("\n2. Regular cases:")

+ print("cos(x)**2 =", TR6(cos(x)**2))

+ print("cos(x)**4 =", TR6(cos(x)**4))

+ print("cos(x)**(-2) =", TR6(cos(x)**(-2)))

+

+if __name__ == "__main__":

+ test_powers()

Fix Patch:

@@ -501,9 +501,16 @@ def _f(rv):

if not (rv.is_Pow and rv.base.func == f):

return rv

- if (rv.exp < 0) == True:

+ # First handle complex non-real exponents

+ if rv.exp.is_complex and not rv.exp.is_real:

return rv

- if (rv.exp > max) == True:

+ # Then handle real exponents with proper error handling

+ try:

+ if (rv.exp < 0) == True:

+ return rv

+ if (rv.exp > max) == True:

+ return rv

+ except TypeError: # catches invalid comparison of complex numbers

return rv

if rv.exp == 2:

return h(g(rv.base.args[0])**2)

Figure 12: Re-evaluating the trajectory after submitting leads to the model finding out about certain corner cases
and fixing them
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After ExpansionBefore Expansion

Expansion Analysis

Action:

append $’from django.db import models
from collections import namedtuple

from django.test import TestCase

class TestModel(models.Model):

  value = models.IntegerField()

Range = namedtuple("Range", ["near", "far"])

print("Setting up test...")

try:

 # Create a range with named tuple

 range_tuple = Range(near=1, far=10)

 from django.db.models.sql.query import Query

 query = Query(TestModel)

 result = query.resolve_lookup_value(range_tuple)

 print("ERROR: Expected to fail but didn't")

except TypeError as e:

 if "missing 1 required positional argument: 'far'" in str(e):

  print("Successfully reproduced the error: ", str(e))                                         

 else:

  print("Unexpected error:", str(e))’

THOUGHT
1. Previous Action Summary: - Created a test script to reproduce named tuple handling issue in Django - Implemented basic Django settings configuration - Successfully
demonstrated the fix works with a simple test case
2. Key Issues: - Test only covers basic case with a single named tuple - No edge cases or complex scenarios tested - No validation of SQL query generation - Minimal error handling
3. Potential Improvements: - Add multiple named tuple types with different field counts - Test nested named tuples - Verify behavior with empty/None values - Include SQL query
validation - Test with actual database operations
4. Impact on Trajectory: - More comprehensive testing would provide better confidence - SQL validation would ensure query correctness - Edge cases would prevent future
regressions DISCUSSION I'll create an enhanced version of the test script that includes more comprehensive testing scenarios. This version will test multiple named tuple types,
nested structures, and verify SQL query generation.

Action:

append $'import os
import sys

from collections import namedtuple

from django.conf import settings 

from django.db import models 

# Configure minimal Django settings 

settings.configure( 

 DEBUG=True, 

 DATABASES={ 

 "default": { 

 "ENGINE": "django.db.backends.sqlite3", 

 "NAME": ":memory:", 

   } 

  }, 

 INSTALLED_APPS=["django.contrib.contenttypes"], 

)

import django 

django.setup() 

# Create a test model 

class TestModel(models.Model): 

 value = models.IntegerField() 

 class Meta: 

  app_label = "test_app" 

# Create a named tuple 

Range = namedtuple("Range", ["near", "far"]) 

Figure 13

After ExpansionBefore Expansion

Reproduction Analysis

Action:

search_repo "URLResolver"

Action:

open django/urls/resolvers.py

Action:

search_file "to_python" django/urls/resolters.py

Action:

search_file "to_python" django/urls/resolvers.py

Action:

goto 260

THOUGHT
The error output shows that we’ve successfully reproduced the issue. The problem occurs in the URL resolver when handling Http404 exceptions from path converters. Let’s look at
the relevant code in Django’s URL resolver. Based on the traceback, we need to examine ‘djangourlsresolvers.py‘ around line 260 where the converter’s ‘to_python‘ method is called.

Action:

open django/urls/resolvers.py 260

Figure 14: Append expansion leads to better reproduction script which leads to better localization.
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After ExpansionBefore Expansion

Expansion Analysis

Action:

edit $”from django.db import models\nfrom django.conf import settings ...”
$”from django.db import models ...”

Thought:

The error indicates that the Django app registry is not properly initialized before

defining the model. I'll fix this by ensuring the Django setup is completed before

defining the `SimpleModel` class.

Action: 

python reproduce_delete_issue.py

Thought:

The script has been updated to properly initialize Django before defining the model. I'll

now execute the script again to verify if the fix works as intended. 

Action:

edit $”from django.db import models\nfrom django.conf import settings ...”
$”from django.db import models ...”

Thought:

The error indicates that the database table for the `SimpleModel` class has not been

created. This is because the database schema was not migrated. I'll fix this by adding

the necessary migration steps to create the table before running the test.

Action:

python reproduce_delete_issue.py

Thought:

The script has been updated to include database migration steps. I'll now execute the

script again to verify if the fix works as intended.

 Action:

edit $' INSTALLED_APPS=["__main__"],' $' INSTALLED_APPS=["__main__",
"django.contrib.contenttypes"],'

Thought:

The error persists because the migrations are being created but not applied correctly.

This might be due to the `INSTALLED_APPS` configuration or the way the migration

commands are being executed. I'll explicitly include the `SimpleModel` in the migration

process by ensuring the app registry is properly initialized and the migrations are

applied correctly.

.

.

.

.

.

Thought
The previous action attempted to address issues with Django's app label and migration
paths by setting a custom AppConfig and adjusting the `INSTALLED_APPS` to include
`reproduce_delete_issue.MainAppConfig`. However, the attempt to migrate the
database still fails with the error `"App '__main__' does not have migrations."`

### Key Issues:
1. The `app_label` for the `SimpleModel` class is still set to `"__main__"`, which might not
align with the configuration changes (e.g., `reproduce_delete_issue.MainAppConfig`). 
2. Even though migrations were generated and moved to the `__main__/migrations/`
folder, Django still fails to recognize them, likely due to mismatched configurations
between the app label and the migration path.
3. The custom `AppConfig` `name = "__main__"` might not align with Django's
expectations for a valid app name.

### Improvements:
1. Update the `app_label` in the `Meta` class of `SimpleModel` to match the updated app
configuration (`reproduce_delete_issue`).
2. Adjust the `AppConfig` name to use `"reproduce_delete_issue"` instead of
`"__main__"`.
3. Ensure the migration folder structure (`reproduce_delete_issue/migrations`) and the
`app_label` are aligned correctly.

### Potential Impact: These changes should allow Django to properly recognize the
app and its migrations, enabling successful migration and resolution of the issue.

DISCUSSION I will update the `app_label` in the `Meta` class of `SimpleModel` to match
the updated app configuration (`reproduce_delete_issue`) and adjust the `AppConfig`
name to ensure alignment with Django's expectations. 

Action:

edit $' class Meta:\n app_label = "__main__"' $' class Meta:\n app_label =
"reproduce_delete_issue"'

Observation:

[File updated (edited at line 1589). Please review the changes and make

sure they are correct (correct indentation, no duplicate lines, etc). Edit

the file again if necessary.]

Figure 15: Expanding in edit helps the model break out of edit-python loop.
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After ExpansionBefore Expansion

Expansion Analysis

Action:

edit $”'invalid': _("'%(value)s' value has an invalid format. It must be in
[DD] [HH:[MM:]]ss[.uuuuuu] format.")”  $”'invalid': _(\"'%(value)s' value
has an invalid format. It must be in [DD] [[HH:]MM:]ss[.uuuuuu] format.\")”

Observation:

[No exact match found in

/django__django/django/db/models/fields/__init__.py. Did you mean: ```

'invalid': _("'%(value)s' value has an invalid format. It must be in " ```

]

.

.

.

.

.

THOUGHT
The repeated syntax errors indicate that the `$"..."` notation is not being interpreted correctly. I'll switch to using `$'...'` notation, which is the correct format for escaping special
characters like parentheses and quotes. Additionally, I'll include the exact continuation line to ensure the `to_replace` string matches the source code. 

Action:

edit $”'invalid': _("'%(value)s' value has an invalid format. It must be in
[DD] [HH:[MM:]]ss[.uuuuuu] format.")”  $”'invalid': _(\"'%(value)s' value
has an invalid format. It must be in [DD] [[HH:]MM:]ss[.uuuuuu] format.\")”

Observation:

[File updated (edited at line 1589). Please review the changes and make

sure they are correct (correct indentation, no duplicate lines, etc). Edit

the file again if necessary.]

Figure 16: Model often hallucinates by repeatedly outputting the same action. The model realizes that during
expansion and fixes it.

22



Thought:

The previous script focused on two test cases but could be more comprehensive in testing edge cases and different types of expressions. The current test cases show that our fix

for the alignment works in simple cases, but we should also test:

1. More complex nested sums

2. Sums with different types of terms (products, powers, etc.)

3. Multiple sums in sequence

4. Cases with parentheses and without

5. Different types of expressions added to sums

The current trajectory shows that we've improved the alignment by adjusting baselines, but we should verify this works consistently across all cases.

DISCUSSION

I'll create a more comprehensive test script that covers additional cases including nested sums, multiple terms, and different expression types. This will help ensure our fix works

universally.

Action
python reproduce.py

Thought:

Let's run our test script again to see if the alignment has been improved with our changes. The modification adjusts the baseline for simple terms (Mul and Symbol) to better align

with the sum.

Action:

edit $'        prettyF.baseline = max_upper + sign_height//2\n        if isinstance(expr.function, Add):\n            prettyF.baseline =
prettyF.baseline + 1' $'        prettyF.baseline = max_upper + sign_height//2\n        if isinstance(expr.function, Add):\n            # Adjust baseline
based on expression height\n            h = prettyF.height()\n            if h > 2:\n                prettyF.baseline = (h + sign_height)//2'

Thought:

Looking at the output, we can see that our change has improved some cases but not all. The alignment is still not perfect. Let's try a different approach by adjusting the baseline

calculation based on the height of the expression. We'll modify the code to take into account both the sum's height and the expression's complexity.

Action:

edit $'                # change F baseline so it centers on the sign\n                base_adjust = d - (prettyF.height()//2 - prettyF.baseline) -
adjustment\n                if isinstance(expr.function, Add):\n                    base_adjust -= 1  # Lower Add expressions slightly\n

prettyF.baseline -= base_adjust\n                first = False' $'                # change F baseline so it centers on the sign\n
base_adjust = d - (prettyF.height()//2 - prettyF.baseline) - adjustment\n                if isinstance(expr.function, Add):\n

base_adjust -= 2  # Lower Add expressions more\n                prettyF.baseline -= base_adjust\n                first = False'

Thought: 

Looking at the output, we've made good progress. The alignment is better in most cases, but we still need to handle the final baseline adjustment differently. Let's modify both

adjustments to work together better:

Action:

submit

Thought:

Looking at the output, we've achieved good alignment in all test cases. The changes have successfully addressed the alignment issues:

1. Test case 1: Simple sum + constant - Perfect alignment

2. Test case 2: Sum + product - Well aligned

3. Test case 3: Nested sums + constant - Properly aligned

4. Test case 4: Multiple sums + constant - Good alignment between sums and terms

5. Test case 5: Sum of polynomial + product - Much better alignment with parenthesized expression

The combination of our adjustments:

- Different baseline adjustments for parenthesized vs. non-parenthesized expressions

- Coordinated initial and final baseline calculations

- Proper handling of Add expressions

has successfully resolved the alignment issues described in the PR. Let's submit our changes.

Figure 17: Model Produces a more comprehensive test script after expansion leading to more steps in the expanded
branch.
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After ExpansionBefore Expansion

Action:

python reproduce.py

Thought:

Now let's run the script again to see if we can reproduce the issue. This should

show us the error where the view function is receiving too many arguments. 

Action:

search_repo "URLResolver"

Thought:

Perfect! We've successfully reproduced the issue. The error shows that our view

function is receiving 3 arguments when it expects only 1 or 2. This is happening

because Django is trying to pass both the matched groups and named groups from

the URL pattern. Let's search the repository to find where URL pattern matching is

handled.

Action:

open django/urls/resolvers.py

Thought:

DISCUSSION Let's look at the URL resolver code in django/urls/resolvers.py since

that's where the URL pattern matching is handled. We'll open this file to

understand how the arguments are being passed to the view. 

Action: 

find_file "urls.py" django

Thought:

Since this issue is related to URL pattern handling and view functions, we should look

in the core URL handling code in Django. The error occurs when Django is trying to

pass arguments to a view function, so we should look in the URL resolver or view

handling code. Let's search for relevant files in the django directory.

Action:

search_repo "get_response"

Thought:

The issue seems to be related to how Django handles view function arguments from

URLs. Let's search for code that handles view function calls using search_repo to find

relevant functions.

Action:

search_repo "wrapped_callback"

Thought:

Let's search more specifically for code that handles view function calls. Since the error

is about argument handling in views, let's search for "wrapped_callback" which was

mentioned in the error trace.

Action:

find_file "resolvers.py" django

Thought:

The issue appears to be in how Django handles optional URL parameters. Let's look at

the URL resolver code since that's where the `callback_args` and `callback_kwargs`

are being created. Let's search for the URL resolver code.

.

.

.

Figure 18: The agent finds it easy to locate the issue after reproduction. While, in the expanded branch, could not
localize it.
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After ExpansionBefore Expansion

Action:

python reproduce.py

Thought:

Now let's run the script again to see if we can reproduce the issue. This should

show us the error where the view function is receiving too many arguments. 

Action:

search_repo "URLResolver"

Thought:

Perfect! We've successfully reproduced the issue. The error shows that our view

function is receiving 3 arguments when it expects only 1 or 2. This is happening

because Django is trying to pass both the matched groups and named groups from

the URL pattern. Let's search the repository to find where URL pattern matching is

handled.

Action:

open django/urls/resolvers.py

Thought:

DISCUSSION Let's look at the URL resolver code in django/urls/resolvers.py since

that's where the URL pattern matching is handled. We'll open this file to

understand how the arguments are being passed to the view. 

Action: 

find_file "urls.py" django

Thought:

Since this issue is related to URL pattern handling and view functions, we should look

in the core URL handling code in Django. The error occurs when Django is trying to

pass arguments to a view function, so we should look in the URL resolver or view

handling code. Let's search for relevant files in the django directory.

Action:

search_repo "get_response"

Thought:

The issue seems to be related to how Django handles view function arguments from

URLs. Let's search for code that handles view function calls using search_repo to find

relevant functions.

Action:

search_repo "wrapped_callback"

Thought:

Let's search more specifically for code that handles view function calls. Since the error

is about argument handling in views, let's search for "wrapped_callback" which was

mentioned in the error trace.

Action:

find_file "resolvers.py" django

Thought:

The issue appears to be in how Django handles optional URL parameters. Let's look at

the URL resolver code since that's where the `callback_args` and `callback_kwargs`

are being created. Let's search for the URL resolver code.

.

.

.

Figure 19: The model creates a more complicated reproduction script which leads to an error, which the model is
not able to to resolve.
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A.13 Trajectory Analysis Tool1204
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Figure 20: Overview of the entire trajectory

Figure 21: Problem Statement Node
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Figure 22: System Node

Figure 23: User Node
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Figure 24: Assistant Node

Figure 25: Assistant Node
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A.14 Prompts1205

A.14.1 Backbone Agent Prompts1206

This is the system prompt for the backbone agent. This contains the abstract commands, their usage and1207

general guidelines for the agent. The agent is expected to follow these commands to interact with the1208

environment and solve the issues in the repository.1209

System Prompt

SETTING: You are an autonomous programmer working in a command-line interface with a
special file editor. Your task is to solve issues within a repository by analyzing, editing, and testing
code.
Available Commands:
<command_docs>

open:
docstring: opens the file at the given path in the editor. If
line_number is provided, the window will be move to include that line
signature: open <path> [<line_number>]
arguments:
- path (string) [required]: the path to the file to open
- line_number (integer) [optional]: the line number to move the window
to (if not provided, the window will start at the top of the file)

goto:
docstring: moves the window to show <line_number>
signature: goto <line_number>
arguments:
- line_number (integer) [required]: the line number
to move the window to

scroll_down:
docstring: moves the window down 100 lines
signature: scroll_down

scroll_up:
docstring: moves the window down 100 lines
signature: scroll_up

create:
docstring: creates and opens a new file with the given name
signature: create <filename>
arguments:
- filename (string) [required]: the name of the file to create

submit:
docstring: submits your current code and terminates the session
signature: submit

search_dir:
docstring: searches for search_term in all files in dir. If dir is
not provided, searches in the current directory
signature: search_dir <search_term> [<dir>]

1210

30



arguments:
- search_term (string) [required]: the term to search for
- dir (string) [optional]: the directory to search in (if
not provided,
searches in the current directory)

search_file:
docstring: searches for search_term in file. If file is not provided,
searches in the current open file
signature: search_file <search_term> [<file>]
arguments:
- search_term (string) [required]: the term to search for
- file (string) [optional]: the file to search in (if not provided,
searches in the current open file)

find_file:
docstring: finds all files with the given name in dir. If dir is not
provided, searches in the current directory
signature: find_file <file_name> [<dir>]
arguments:
- file_name (string) [required]: the name of the file to search for
- dir (string) [optional]: the directory to search in (if
not provided,
searches in the current directory)

edit:
docstring: Replaces occurrence of $<to_replace> with $<new_content> in
the currently open file.
signature: edit $<to_replace> $<new_content>
arguments:
- to_replace (string) [required]: The text to be replaced in the file.
- new_content (string) [required]: The new text to replace with.

undo_edit:
docstring: Reverts the last edit made to the specified file. If no
file is provided, reverts the last edit on the currently open file.
signature: undo_edit [file_path]
arguments:
- file_path (string) [optional]: The path to the file to undo the
last edit for.

insert:
docstring: Inserts $<content> at the given <line_number> in the
currently open file.
signature: insert <line_number> $<content>
arguments:
- line_number (int) [required]: The line number where the content
should be inserted.
- content (string) [required]: The content to insert at the specified
line number.

1211
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append:
docstring: Appends $<content> to the end of the currently open file.
signature: append $<content>
arguments:
- content (string) [required]: The content to append to the end of the
file.

execute_ipython:
docstring: Executes Python code in a persistent cell, returning its
output. Variables persist between executions.
signature: execute_ipython $<code>
arguments:
- code (string) [required]: Python code to execute in the cell.

execute_server:
docstring: To run long-lived processes such as server or daemon. It runs
the command in the background and provides a log of the output.
signature: execute_server <command>
arguments:
- command (string) [required]: Bash command to execute in the shell.

search_repo:
docstring: searches in the current repository with a specific function
or class, and returns the def and ref relations for the search term.
signature: search_repo <search_term>
arguments:
- search_term (string) [required]: function or class to look for in
the repository.

</command_docs>
General Guidelines:

1. One command at a time: Always execute a single command and wait for feedback before
proceeding.

2. Proper indentation: When editing files, ensure correct indentation for each line.

3. File awareness: Pay attention to the currently open file and working directory.

4. Search functionality: Use search_repo command to gather information when needed.

5. For interactive sessions: Start it using execute_server command.

You need to format your output using two fields; discussion and command. Your output should
always include one discussion and one command field EXACTLY as in the following example:
DISCUSSION
First I’ll start by using ls to see what files are in the current directory. Then maybe we can look at
some relevant files to see what they look like.

ls -a
1212

The following is the first user prompt for the agent. This prompt is used to describe the issue to the1213

agent and provides special instructions regarding the use of various commands described in the system1214
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prompt. 1215

Tool Instructions

instance_template:
Here’s the issue you need to address, as described in the PR:
<pr_description>
{issue}
</pr_description>
You’re in the repository’s root directory. Can you help me implement the necessary changes to the
repository so that the requirements specified in the <pr_description> are met?
Start by creating a minimal script to replicate and verify the bug described in the issue.
Ensure the bug is reproducible before making any changes. After implementing a fix,
use the same script to confirm the issue is resolved. Include debugging messages, like
print("Script completed successfully."), to indicate successful execution. The script
should be focused on verification and ensuring no new errors are introduced.
Your task is to make the minimal changes to non-tests files to ensure the <pr_description> is
satisfied.
If a command fails, do not repeat it. It will not work the second time unless you modify it. Always
adapt or use a different command.
Note: Please give only single tool call in a single step.
Follow these steps to resolve the issue:

1. Explore the repository structure to familiarize yourself with its layout.

2. Create a script to reproduce the error and execute it using the BashTool.

3. Edit the source code to resolve the issue, making minimal changes.

4. Rerun your reproduce script to confirm the error is fixed.

5. Consider edge cases and ensure your fix handles them.

Important Instructions for Command Usage:

1. File Navigation:

• Always be aware of the currently open file and the current working directory.
• The currently open file might be in a different directory than the working directory.
• Some commands, like ’create’, may change the current open file.
• For efficient navigation to specific lines (e.g., line 583), use ’goto’ instead of multiple

scroll_down commands.

2. Code Editing Commands (edit, append, insert):

• If the assistant would like to add the line ’ print(x)’, it must fully write the line
out, with all leading spaces before the code!

• Prefix content with $ to ensure the string is treated as a literal, avoiding the need for escape
characters.

• Use $'...' Notation: Always use $'...' for strings in edit, append, and insert commands
to correctly interpret escape sequences like \n.

• Avoid $"..." as it treats escape sequences literally.
• To add characters like \n or \t as literal strings within code, use double backslashes.
• Escape single or double quotes within code as \' or \".

1216
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• Line numbers are for reference only—do not include them in content for edit, append, or
insert commands.

3. Edit Command:

• The to_replace argument must exactly match the existing source code.
• Select the minimal number of lines necessary to uniquely identify the content.
• Prefix to_replace and new_content with $.
• Ensure new_content includes correct indentation.
• To remove lines, set new_content to an empty string.
• Note that to_replace and new_content must be different.

4. Insert Command:

• Specify the exact line number for insertion.
• This command will not modify content before or after the specified line.

5. Append Command:

• Use append to add content to the end of a file.
• This is ideal after a create_file command.

6. Search Command:

• search_repo searches the current repository for specified functions or classes.
• It provides definition (def) and reference (ref) relationships for the search term.
• search_term is the function or class name to search for.

7. Execute_server Command:

• Use the execute_server command to run a server or process in the background.
• Usage: execute_server 'Your_Command'. Make sure to use quotes.
• execute_server get_logs: Retrieves the last 100 lines of the server / process logs.
• execute_server stop: Stops the background Bash server process.

(Open file: {open_file})
(Current directory: {working_dir})
bash-$

1217

Here is a demonstration prompt for the backbone agent. This prompt is used to demonstrate the correct1218

usage of the commands and the interface to the agent.1219

Demonstration Template

Here is a demonstration of how to correctly accomplish this task. It is included to show you how
to correctly use the interface. You do not need to follow exactly what is done in the demonstration.

--- DEMONSTRATION ---
We're currently solving the following issue within our repository.
Here's the issue text:
ISSUE:
Fix: TimeDelta Precision Errors
Use microsecond integer arithmetic to fix high precision

1220
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timedelta errors.

Fixes #1865
Let's first start by reproducing the results of the issue. The issue
includes some example code for reproduction, which we can use. We'll
create a new file called `reproduce.py` and paste the example code
into it.
```
create reproduce.py
```
[File: /marshmallow-code__marshmallow/reproduce.py (1 lines total)]
1:
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
Now let's paste in the example code from the issue.\n
```
append $'from marshmallow.fields import
TimeDelta\nfrom datetime import timedelta\n\ntd_field =
TimeDelta(precision="milliseconds")\n\nobj = dict()\nobj["td_field"] =
timedelta(milliseconds=345)\n\n
print(td_field.serialize("td_field", obj))'
```
[File: /marshmallow-code__marshmallow/reproduce.py
(9 lines total after edit)]
(this is the beginning of the file)
1:from marshmallow.fields import TimeDelta
2:from datetime import timedelta
3:
4:td_field = TimeDelta(precision="milliseconds")
5:
6:obj = dict()
7:obj["td_field"] = timedelta(milliseconds=345)
8:
9:print(td_field.serialize("td_field", obj))
(this is the end of the file)
[File updated (edited at line 1). Please review the changes and
make sure they are correct (correct indentation, no duplicate lines,
etc). Edit the file again if necessary.]
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
Now let's run the code to see if we see the same output as the issue.\n
```
python reproduce.py
```
344
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
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We are indeed seeing the same output as the issue.The issue suggests
that we should look at line 1474 of the `fields.py` file to see
if there is a rounding issue. Let's open the `fields.py` file and
navigate to line 1474 to see the relevant code. First we should
find the `fields.py` file in the repository. It is likely to be in
the `src/marshmallow` directory, but we
should check to be sure.\n
```
ls -F
```
AUTHORS.rst
CHANGELOG.rst
CODE_OF_CONDUCT.md
CONTRIBUTING.rst
LICENSE
MANIFEST.in
NOTICE
README.rst
RELEASING.md
azure-pipelines.yml
docs/
examples/
performance/
pyproject.toml
reproduce.py
setup.cfg
setup.py
src/
tests/
tox.ini
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
It looks like the `src` directory is present, which
suggests that the `fields.py` file is likely to be
in the `src` directory. Let's use find_file to see where it is.\n
```
find_file "fields.py" src
```
Found 1 matches for "fields.py" in /marshmallow-code__marshmallow/src:
/marshmallow-code__marshmallow/src/marshmallow/fields.py
(Open file: /marshmallow-code__marshmallow/reproduce.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
It looks like the `fields.py` file is present in the
`./src/marshmallow/` directory. The issue also points to a
specific URL with line number 1474.
We should navigate to that line in fields.py to see the relevant
code for the `TimeDelta` serialization.\n
```
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open src/marshmallow/fields.py 1474
```
[File: /marshmallow-code__marshmallow/src/marshmallow/fields.py
(1997 lines total)]
(1458 more lines above)
1459: self.WEEKS,
1460: )
1461:
1462: if precision not in units:
1463: msg = 'The precision must be {} or "{}".'.format(
1464: ", ".join([f'"{each}"' for each in units[:-1]]),

units[-1]
1465: )
1466: raise ValueError(msg)
1467:
1468: self.precision = precision
1469: super().__init__(**kwargs)
1470:
1471: def _serialize(self, value, attr, obj, **kwargs):
1472: if value is None:
1473: return None
1474: base_unit = dt.timedelta(**{self.precision: 1})
1475: return int(value.total_seconds() / base_unit.total_seconds())
1476:
1477: def _deserialize(self, value, attr, data, **kwargs):
1478: try:
1479: value = int(value)
1480: except (TypeError, ValueError) as error:
1481: raise self.make_error("invalid") from error
1482:
1483: kwargs = {self.precision: value}
1484:
1485: try:
1486: return dt.timedelta(**kwargs)
1487: except OverflowError as error:
1488: raise self.make_error("invalid") from error
1489:
1490:
1491:class Mapping(Field):
1492: """An abstract class for objects with key-value pairs.
1493:
1494: :param keys: A field class or instance for dict keys.
1495: :param values: A field class or instance for dict values.
1496: :param kwargs: The same keyword arguments that :class:`Field`

receives.
1497:
1498: .. note::
1499: When the structure of nested data is not known,

you may omit the
1500: `keys` and `values` arguments to prevent content validation.
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1501:
1502: .. versionadded:: 3.0.0rc4
1503: """
1504:
1505: mapping_type = dict
1506:
1507: #: Default error messages.
1508: default_error_messages = {"invalid": "Not a valid mapping type."}
1509:
1510: def __init__(
1511: self,
1512: keys: typing.Optional[typing.Union[Field, type]] = None,
1513: values: typing.Optional[typing.Union[Field, type]] = None,
1514: **kwargs,
1515: ):
1516: super().__init__(**kwargs)
1517: if keys is None:
1518: self.key_field = None
1519: else:
1520: try:
1521: self.key_field = resolve_field_instance(keys)
1522: except FieldInstanceResolutionError as error:
1523: raise ValueError(
1524: '"keys" must be a subclass or instance of '
1525: "marshmallow.base.FieldABC."
1526: ) from error
1527:
1528: if values is None:
1529: self.value_field = None
1530: else:
1531: try:
1532: self.value_field = resolve_field_instance(values)
1533: except FieldInstanceResolutionError as error:
1534: raise ValueError(
1535: '"values" must be a subclass or instance of '
1536: "marshmallow.base.FieldABC."
1537: ) from error
1538: if isinstance(self.value_field, Nested):
1539: self.only = self.value_field.only
1540: self.exclude = self.value_field.exclude
1541:
1542: def _bind_to_schema(self, field_name, schema):
1543: super()._bind_to_schema(field_name, schema)
1544: if self.value_field:
1545: self.value_field = copy.deepcopy(self.value_field)
1546: self.value_field._bind_to_schema(field_name, self)
1547: if isinstance(self.value_field, Nested):
1548: self.value_field.only = self.only
1549: self.value_field.exclude = self.exclude
1550: if self.key_field:
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1551: self.key_field = copy.deepcopy(self.key_field)
1552: self.key_field._bind_to_schema(field_name, self)
1553:
1554: def _serialize(self, value, attr, obj, **kwargs):
1555: if value is None:
1556: return None
1557: if not self.value_field and not self.key_field:
1558: return self.mapping_type(value)
(439 more lines below)
(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
We are now looking at the relevant section of the `fields.py` file
where the `TimeDelta` serialization occurs. The issue suggests that
there is a rounding problem near line 1474. The current implementation
uses integer division, which truncates the decimal part and can lead
to incorrect rounding on line 1475.To fix this issue, we should ensure
that the division results in a float, and then round the result to
the nearest integer before converting it to an int. This should
preserve the milliseconds precision as expected. Let's make the
necessary edit to the code.\n
```
edit $' return int(value.total_seconds() /
base_unit.total_seconds())'
$' return int(round(value.total_seconds() /
base_unit.total_seconds()))'
```
[File: /marshmallow-code__marshmallow/src/marshmallow/fields.py
(1997 lines total after edit)]
(1424 more lines above)
1425:
1426: :param precision: Influences how the integer is interpreted

during
1427: (de)serialization. Must be 'days', 'seconds', 'microseconds',
1428: 'milliseconds', 'minutes', 'hours' or 'weeks'.
1429: :param kwargs: The same keyword arguments that :class:`Field`

receives.
1430:
1431: .. versionchanged:: 2.0.0
1432: Always serializes to an integer value to avoid rounding

errors.
1433: Add `precision` parameter.
1434: """
1435:
1436: DAYS = "days"
1437: SECONDS = "seconds"
1438: MICROSECONDS = "microseconds"
1439: MILLISECONDS = "milliseconds"
1440: MINUTES = "minutes"
1441: HOURS = "hours"
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1442: WEEKS = "weeks"
1443:
1444: #: Default error messages.
1445: default_error_messages = {
1446: "invalid": "Not a valid period of time.",
1447: "format": "{input!r} cannot be formatted as a timedelta.",
1448: }
1449:
1450: def __init__(self, precision: str = SECONDS, **kwargs):
1451: precision = precision.lower()
1452: units = (
1453: self.DAYS,
1454: self.SECONDS,
1455: self.MICROSECONDS,
1456: self.MILLISECONDS,
1457: self.MINUTES,
1458: self.HOURS,
1459: self.WEEKS,
1460: )
1461:
1462: if precision not in units:
1463: msg = 'The precision must be {} or "{}".'.format(
1464: ", ".join([f'"{each}"' for each in units[:-1]]),

units[-1]
1465: )
1466: raise ValueError(msg)
1467:
1468: self.precision = precision
1469: super().__init__(**kwargs)
1470:
1471: def _serialize(self, value, attr, obj, **kwargs):
1472: if value is None:
1473: return None
1474: base_unit = dt.timedelta(**{self.precision: 1})
1475: return int(round(value.total_seconds() /

base_unit.total_seconds()))
1476:
1477: def _deserialize(self, value, attr, data, **kwargs):
1478: try:
1479: value = int(value)
1480: except (TypeError, ValueError) as error:
1481: raise self.make_error("invalid") from error
1482:
1483: kwargs = {self.precision: value}
1484:
1485: try:
1486: return dt.timedelta(**kwargs)
1487: except OverflowError as error:
1488: raise self.make_error("invalid") from error
1489:
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1490:
1491:class Mapping(Field):
1492: """An abstract class for objects with key-value pairs.
1493:
1494: :param keys: A field class or instance for dict keys.
1495: :param values: A field class or instance for dict values.
1496: :param kwargs: The same keyword arguments that :class:`Field`

receives.
1497:
1498: .. note::
1499: When the structure of nested data is not known, you may
1500: omit the `keys` and `values` arguments to prevent content

validation.
1501:
1502: .. versionadded:: 3.0.0rc4
1503: """
1504:
1505: mapping_type = dict
1506:
1507: #: Default error messages.
1508: default_error_messages = {"invalid": "Not a valid mapping type."}
1509:
1510: def __init__(
1511: self,
1512: keys: typing.Optional[typing.Union[Field, type]] = None,
1513: values: typing.Optional[typing.Union[Field, type]] = None,
1514: **kwargs,
1515: ):
1516: super().__init__(**kwargs)
1517: if keys is None:
1518: self.key_field = None
1519: else:
1520: try:
1521: self.key_field = resolve_field_instance(keys)
1522: except FieldInstanceResolutionError as error:
1523: raise ValueError(
1524: '"keys" must be a subclass or instance of '
1525: "marshmallow.base.FieldABC."
(472 more lines below)
[File updated (edited at line 1475). Please review the changes and make
sure they are correct (correct indentation, no duplicate lines, etc).
Edit the file again if necessary.]
(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
The code has been updated to use the `round` function, which should fix
the rounding issue. Before submitting the changes, it would be prudent
to run the reproduce.py code again to ensure that this change has
the desired effect. I see that "Current directory" is still
`/marshmallow-code__marshmallow`, so we can just run `reproduce.py`
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directly.\n
```
python reproduce.py
```
345
(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
The output has changed from 344 to 345, which suggests that the rounding
issue has been fixed. Let's remove the reproduce.py file since it is no
longer needed.\n
```
rm reproduce.py
```
Your command ran successfully and did not produce any output.
(Open file: /marshmallow-code__marshmallow/src/marshmallow/fields.py)
(Current directory: /marshmallow-code__marshmallow)
bash-$
rm doesn't have any output when it deletes successfully, so that must
have worked. Now that we have fixed the issue, we should submit our
changes to the code base. Let's submit the changes using the `submit`
command.\n
```
submit
```
--- END OF DEMONSTRATION ---

1228

Here is a template for the next step prompt. Observations from the environment are provided to the1229

agent using this template.1230

Next Step Template

{observation}
(Open file: {open_file})
(Current directory: {working_dir})
bash-$

1231

This template is used to indicate that the last command the agent executed was successful and did not1232

produce any output.1233

Next Step no Output Template

Your command ran successfully and did not produce any output.
(Open file: {open_file})
(Current directory: {working_dir})
bash-$

1234

This template is specifically tailored for the search_repo command. It is used to display the search1235

results to the agent.1236
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Search Results

Your command ran successfully and produced the following related
functions/classes for {search_term}:
For each item, `fname` denotes the source file, `line`
denotes the line number, `kind` means whether it
is definition or reference, and `info` contains the specific content.
{codegraph_context}
(Open file: {open_file})
(Current directory: {working_dir})
bash-$

1237

A.14.2 Expansion Prompts 1238

This section provides templates for the expansion prompts. These prompts are used to guide the agent in 1239

suggesting improved alternate actions using execution feedback from the previous trajectory. 1240

Edit Expansion Template

You will be given information about a previous action and its trajectory.
Your goal is to suggest a refined or alternative action that better resolves
the issue at hand.
Here is the information about the previous modification:

Previous action:
<previous_action>
{action}
</previous_action>

Trajectory after the action:
<previous_trajectory>
{prev_traj}
</previous_trajectory>

Instructions:
1. Analyze the previous action and its trajectory.
2. Suggest a replacement action that improves upon the previous one.
3. Focus on refining the current edit, modifying different sections,
or making small insertions as needed.
4. Keep your suggestion concise and directly related to the file
modification.

Before providing your final suggestion, wrap your analysis
process in <analysis> tags. In this analysis:
1. Summarize the previous action and its trajectory
2. Identify the key issues or shortcomings in the previous action
3. List potential improvements or alternative approaches
4. Consider how these changes might affect the trajectory

You need to format your output using three fields; analysis,
discussion and command.

1241
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Insert Expansion Template

You will be given information about a previous action and its trajectory.
Your goal is to suggest a single, concise improvement that replaces the
previous action. Here's the information about the previous modification:

Previous action:
<action>
{action}
</action>

Trajectory after the action:
<prev_traj>
{prev_traj}
</prev_traj>

Your task is to analyze this information and suggest one improvement.
This improvement should replace the previous action, not be a next step.
Focus on one of these approaches:
1. A different insertion with varied content
2. An insertion in a new location
3. Editing existing content for a more effective resolution

Before providing your final suggestion, wrap your analysis process in
<analysis> tags. In this analysis:
1. Summarize the previous action and its trajectory
2. Identify the key issues or shortcomings in the previous action
3. List potential improvements or alternative approaches
4. Consider how these changes might affect the trajectory

You need to format your output using three fields; analysis,
discussion and command.

1242

Append Expansion Template

Your goal is to suggest alternative content for appending to a file,
based on a previous action and its outcome.
Here's the information about the previous operation:

<previous_action>
{action}
</previous_action>

<previous_trajectory>
{prev_traj}
</previous_trajectory>

Your task is to suggest a replacement for the previous append action, not to
provide the next action in the sequence. The reproduction script you've
written may lack completeness on its own. Would you like to review
it and write a more comprehensive version of the script, incorporating

1243
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the context of the previous trajectory?

1. Analyze the previous action:
- What specific content was appended?
- What was the likely purpose of this content?

2. Brainstorm at least three alternative content ideas:
- Describe each alternative and how it differs from the original.
- Number each alternative for easy reference.

3. Evaluate each alternative:
- How does it potentially improve exploration?
- What new insights might it provide?

4. Select the best alternative:
- Which option do you think is most promising?
- Justify your choice in 1-2 sentences.

Before providing your final suggestion, wrap your analysis process in
<analysis> tags. In this analysis:
1. Summarize the previous action and its trajectory
2. Identify the key issues or shortcomings in the previous action
3. List potential improvements or alternative approaches
4. Consider how these changes might affect the trajectory

You need to format your output using three fields; analysis, discussion and
command.

1244

Submit Expansion Template

You are about to submit the changes. Have you double-checked that your
changes don't affect other test cases or have any unintended consequences or
completely fix the issue? Please review once more before submitting.

1245

Create Expansion Template

Before trying to reproduce the bug, let's first try to localize the issue,
we can test the issue after the fix.

1246

Critic Prompt Template

You are an AI system tasked with selecting the best alternative action to
replace a previously executed action in a process or workflow. Your goal is
to evaluate the given alternatives and choose the most effective
replacement.
Here is the previously executed action:
<previous_action>

{previous_action}
</previous_action>

1247
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Here is the list of alternative actions to consider:
<alternative_actions>
{actions}
</alternative_actions>

Instructions:
1. Evaluate each action in the list of alternative actions based on the
following criteria:

a. It must be different from the previous action.
b. It should replace the previous action, not be implemented after it.
c. It should be more effective than the previous action.

2. Analyze each action inside <action_analysis> tags, following this
structure:

- List each action with a number.
- For each action, explicitly state whether it meets each of the three
criteria.
- Provide a brief explanation for why the action does or doesn't meet
each criterion.
- If the action meets all criteria, give it a numerical
effectiveness score (1-10).

3. After evaluating all actions, select the best one that meets all the
criteria and is the most effective replacement for the previous action.

4. Provide the index of the best action using <best_action_index>
tags starting from 0.

Example output format:
<action_analysis>
[All actions analysis one by one]
</action_analysis>

<best_action_index>[Your selected best action index]</best_action_index>
1248

A.14.3 Trajectory Selection Prompts1249

This prompt is used to get the best patch among all the patches generated by the agent. It two rubrics to1250

evaluate the patches and select the best one.1251

Patch Analysis Guidelines

SETTING: You are an expert software engineering evaluator analyzing patches for GitHub issues.
Your task is to evaluate and select the most effective solution patch.
Evaluation Criteria:

1. Bug Fixing Score (0-2):
0: Incorrect changes that won't fix the issue
1: Partially correct changes (might fix some cases)
2: Correct changes that fully fix the issue

2. Regression Risk (0-2):
1252
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0: High regression risk
1: Moderate regression risk
2: Low regression risk

Analysis Format:
<patch_analysis>

<patch_number>[Number]</patch_number>
<bug_fixing_analysis>
[Analysis of fix approach]
<score>[0-2]</score>

</bug_fixing_analysis>
<regression_risk_analysis>
[Analysis of risks]
<score>[0-2]</score>

</regression_risk_analysis>
</patch_analysis>

Key Considerations:

1. Core issue resolution effectiveness

2. Potential regression impacts

3. Edge case handling

4. Implementation quality

Your analysis should include:

• Detailed patch changes evaluation

• Side-by-side comparison

• Edge case consideration

• Independent assessment

Final Output Format:
<best_patch>[Selected patch number]</best_patch>

1253

This prompt is used to critique a generated patch based on the output of running test cases after applying 1254

the patch. 1255

Critique Generation Template

SETTING: You are an expert software engineer evaluating a proposed patch for a GitHub issue.
Your task is to analyze and critique the effectiveness of the solution.
Evaluation Steps:

1. Examine patch content in: <patch>[patch content]</patch>

2. Review issue details in: <github_issue>[issue description]</github_issue>

3. Consider patch status in: <patch_status>[status details]</patch_status>

4. Apply scoring criteria:
1256
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Bug Fixing Score (0-2):
0: Incorrect changes
1: Partially correct changes
2: Correct changes

Regression Risk (0-2):
0: High regression risk
1: Moderate regression risk
2: Low regression risk

5. Review test results in: <bug_fixing_tests>[test results]</bug_fixing_tests>
<regression_risk_tests>[risk results]</regression_risk_tests>

Analysis Format:
<evaluation>

[Detailed analysis including:
- Relevant patch/issue quotes
- Solution explanation
- Effectiveness assessment
- Risk-benefit analysis]

</evaluation>
Critique Format:
<critique>

[Concise (<100 words) summary focusing on:
- Key effectiveness points
- Critical impact factors
Note: Positive for solved status,

negative for unsolved status]

</critique>
Important Notes:

• Avoid mentioning specific test names

• Maintain clear, focused language

• Analyze as if status and test results were unknown

• Keep critique concise and impactful
1257
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