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Abstract

We consider the standard K-armed bandit problem under a distributed trust model
of differential privacy (DP), which enables to guarantee privacy without a trustwor-
thy server. Under this trust model, previous work largely focus on achieving privacy
using a shuffle protocol, where a batch of users data are randomly permuted before
sending to a central server. This protocol achieves (ε, δ) or approximate-DP guar-

antee by sacrificing an additive O

(
K log T

√
log(1/δ)

ε

)
factor in T -step cumulative

regret. In contrast, the optimal privacy cost to achieve a stronger (ε, 0) or pure-DP
guarantee under the widely used central trust model is only Θ

(
K log T

ε

)
, where,

however, a trusted server is required. In this work, we aim to obtain a pure-DP
guarantee under distributed trust model while sacrificing no more regret than that
under central trust model. We achieve this by designing a generic bandit algorithm
based on successive arm elimination, where privacy is guaranteed by corrupting
rewards with an equivalent discrete Laplace noise ensured by a secure computation
protocol. We numerically simulate regret performance of our algorithm, which
corroborates our theoretical findings.

1 Introduction
The multi-armed bandit (MAB) [1] problem provides a simple but powerful framework for sequential
decision-making under uncertainty with bandit feedback, which has attracted a wide range of practical
applications such as online advertising [2], product recommendations [3], clinical trials [4], to name a
few. Along with its broad applicability, however, there is an increasing concern of privacy risk in MAB
due to its intrinsic dependence on users’ feedback, which could leak users’ sensitive information [5].

To alleviate the above concern, the notion of differential privacy, introduced by Dwork et al. [6] in
the field of computer science theory, has recently been adopted to design privacy-preserving bandit
algorithms (see, e.g., [7–9]). Differential privacy (DP) provides a principled way to mathematically
prove privacy guarantees against adversaries with arbitrary auxiliary information about users. To
achieve this, a differentially private bandit algorithm typically relies on a well-tuned random noise to
obscure each user’s contribution to the output, depending on privacy levels ε, δ – smaller values lead
to stronger protection but also suffer worse utility (i.e., regret). For example, the central server of a
recommendation system can use random noise to perturb its statistics on each item after receiving
feedback (i.e., clicks/ratings) from users. This is often termed as central model [10], since the central
server has the trust of its users and hence has a direct access to their raw data. Under this model,
an optimal private MAB algorithm with a pure DP guarantee (i.e., when δ = 0) is proposed in [11],
which only incurs an additive O

(
K log T

ε

)
term in the cumulative regret compared to the standard

setting when privacy is not sought after [12]. However, this high trust model is not always feasible in
practice since users may not be willing to share their raw data directly to the server. This motivates
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Table 1: Best-known performance of private MAB under different privacy models (K = number of
arms, T = time horizon, ∆a= reward gap of arm a w.r.t. best arm, ε, δ, α = privacy parameters)

Trust Model Privacy Guarantee Best-Known Regret Bounds

Central (ε, 0)-DP Θ
(∑

a∈[K]:∆a>0
log T
∆a

+ K log T
ε

)
[11, 9]

Local (ε, 0)-DP Θ
(

1
ε2

∑
a∈[K]:∆a>0

log T
∆a

)
[14]

Distributed (ε, δ)-DP O

(∑
a∈[K]:∆a>0

log T
∆a

+
K log T

√
log(1/δ)

ε

)
[22]

Distributed (ε, 0)-DP O
(∑

a∈[K]:∆a>0
log T
∆a

+ K log T
ε

)
(Thm. 1)

to employ a local model [13] of trust, where DP is achieved without a trusted server as each user
perturbs her data prior to sharing with the server. This ensures a stronger privacy protection, but leads
to a high cost in utility due to large aggregated noise from all users. As shown in [14], under the local
model, private MAB algorithms have to incur a multiplicative 1/ε2 factor in the regret rather than the
additive one in the central model.

In attempts to recover the same utility of central model without a trustworthy server like the local
model, an intermediate DP trust model called distributed model has gained an increasing interest,
especially in the context of (federated) supervised learning [15–19]. Under this model, each user first
perturbs her data via a local randomizer, and then sends the randomized data to a secure computation
function. This secure function can be leveraged to guarantee privacy through aggregated noise
from distributed users. There are two popular secure computation functions: secure aggregation
(SecAgg) [20] and secure shuffling [21]. The former often relies on cryptographic primitives to
securely aggregate users’ data so that the server only learns the aggregated result, while the latter
securely shuffle users’ messages to hide their source. To the best of our knowledge, distributed DP
model is far less studied in online learning as compared to supervised learning, with only known
results for standard K-armed bandits in [22] where only secure shuffling is adopted. Despite being
pioneer work, the results obtained in this paper have several limitations: (i) The privacy guarantee is
obtained only for approximate DP (δ > 0) – a stronger pure DP (δ = 0) guarantee is not achieved;
(ii) The cost of privacy is a multiplicative

√
log(1/δ) factor away from that of central model, leading

to a higher regret bound; (iii) The secure protocol works only for binary rewards (or communication
intensive for real rewards). All of these lead to the following primary question:

Is there a communication-efficient MAB algorithm that satisfies pure DP in the distributed model
while attaining the same regret bound as in the central model?

Our contributions. We answer this in the affirmative (see Table 1) by overcoming several key
challenges that arise in the distributed DP model for bandits. First, although secure aggregation
protocol offers a benefit in communication cost, it works only in the integer domain due to an inherent
modular operation [20]. This immediately requires substantial changes to existing private bandit
algorithms, including data quantization, distributed discrete privacy noise and modular summation
arithmetic. Second, compared to supervised learning where typically a bound on the noise variance
is sufficient to analyse utility, regret analysis of private bandits require a tight tail bound. This gets
challenging due to aforementioned requirements and communication constraints in the distributed
model. We take a systematic approach to address these challenges, which is summarized below:

1. We propose a private bandit algorithm using a batch-variant of the successive arm elimination
technique as a building block. We ensure distributed DP via a private protocol P = (R,S,A) tailored
to discrete noise and modular operation (see Algorithm 1). It consists of a local randomizer R at
each user, a generic secure computation function S, and an analyzer A at the server. This template
protocol enables us to achieve different privacy guarantees by tuning the noise in R.

2. To achieve pure DP guarantee, we instantiate R at each user with an appropriate Pólya random
noise so that the total noise seen by the server is a discrete Laplace. Using tail properties of discrete
Laplace, we show that the cumulative regret of our algorithm matches the one in the central model,
achieving the minimax rate under pure DP (see Theorem 1). Moreover, the communication bits per-
user scale only logarithmicaly with the number of participating users in each batch. We numerically
evaluate the regret performance of our algorithm, which corroborate our theoretical results.
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2 Preliminaries
In this section, we formally introduce the distributed differential privacy model in bandits. Before
that we recall the learning paradigm in multi-armed bandits and basic differential privacy definitions.

Learning Model and Regret in MAB. At each time slot t ∈ [T ] := {1, . . . , T}, the agent (e.g.,
recommender system) selects an arm a ∈ [K] (e.g., an advertisement) and obtains an i.i.d reward rt
from user t (e.g., a rating indicating how much she likes it), which is sampled from a distribution
over [0, 1] with mean given by µa. Let a∗ := argmaxa∈[K] µa be the arm with the highest mean and
denote µ∗ := µa∗ for simplicity. Let ∆a := µ∗ − µa be the gap of the expected reward between the
optimal arm a∗ and any other arm a. Further, let Na(t) be the total number of times that arm a has
been played in the first t rounds. The goal of the agent is to maximize its total reward, or equivalently
to minimize the cumulative expected pseudo-regret, defined as

E [Reg(T )] := T · µ∗ − E
[∑T

t=1
rt

]
= E

[∑
a∈[K]

∆aNa(T )

]
.

Differential Privacy. Let D = [0, 1] be the data universe, and n ∈ N be the number of unique users.
we say D,D′ ∈ Dn are neighboring datasets if they only differ in one user’s reward Di for some
i ∈ [n]. With this, we have the following standard definition of differential privacy [6].
Definition 1 (Differential Privacy). For ε, δ > 0, a randomized mechanism M satisfies (ε, δ)-DP if
for all neighboring datasets D,D′ and all events E in the range of M, we have

P [M(D) ∈ E ] ≤ eε · P [M(D′) ∈ E ] + δ.

The special case of (ε, 0)-DP is often referred to as pure differential privacy, whereas, for δ > 0,
(ε, δ)-DP is referred to as approximate differential privacy.

Distributed Differential Privacy. A distributed bandit learning protocol P = (R,S,A) consists of
three parts: (i) a (local) randomizer R at each user’s side, (ii) an intermediate secure protocol S , and
(iii) an analyzer A at the central server. Each user i first locally apply the randomizer R on its raw
data (i.e., reward) Di, and sends the randomized data to a secure computation protocol S (e.g., secure
aggregation or shuffling). This intermediate secure protocol S takes a batch of users’ randomized
data and generates inputs to the central server, which utilizes an analyzer A to compute the output
(e.g., action) using received messages from S.

The secure computation protocol S has two main variations: secure shuffling and secure aggregation.
Both of them essentially work with a batch of users’ randomized data and guarantee that the central
server cannot infer any individual’s data while the total noise in the inputs to the analyzer provides a
high privacy level. To adapt both into our MAB protocol, it is natural to divide participating users
into batches. For each batch b ∈ [B] with nb users, the outputs of S is given by S ◦ Rnb(D) :=
S(R(D1), . . . ,R(Dnb

)). The goal is to guarantee that the the view of all B batches’ outputs satisfy
DP. To this end, we define a (composite) mechanism

MP = (S ◦ Rn1 , . . . ,S ◦ RnB ),

where each individual mechanism S ◦Rnb operates on nb users’ rewards, i.e., on a dataset from Dnb .
With this notation, we have the following definition of distributed differential privacy.
Definition 2 (Distributed DP). A protocol P = (R,S,A) is said to satisfy DP in the distributed
model if the mechanism MP satisfies Definition 1.

In the central DP model, the privacy burden lies with a central server (in particular, analyzer A),
which needs to inject necessary random noise to achieve privacy. On the other hand, in the local
DP model, each user’s data is privatized by local randomizer R. In contrast, in the distributed DP
model, privacy without a trusted central server is achieved by ensuring that the inputs to the analyzer
A already satisfy differential privacy. Specifically, by properly designing the intermediate protocol S
and the noise level in the randomizer R, one can ensure that the final added noise in the aggregated
data over a batch of users matches the noise that would have otherwise been added in the central
model by the trusted server. Through this, distributed DP model provides the possibility to achieve
the same level of utility as the central model without a trustworthy central server.

3 A Generic Algorithm for Private Bandits
In this section, we propose a generic algorithmic framework for multi-armed bandits under the
distributed privacy model.
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Batch-Based Successive Elimination Algorithm. Our generic algorithm (Algorithm 1) builds upon
the classic idea of successive arm elimination [23] with the additional incorporation of batches and a
black-box protocol P = (R,S,A) to achieve distributed differential privacy. More specifically, it
divides the time horizon T into batches of exponentially increasing size and eliminates sub-optimal
arms successively. To this end, for each active arm a at batch b, it first prescribes arm a to a batch of
l(b) new users.2 After pulling the prescribed action a, each user applies the local randomizer R to her
reward and sends the randomized reward to the intermediary function S , which runs a secure protocol
(e.g., secure aggregation or secure shuffling) over the total l(b) number of randomized rewards. Then,
upon receiving the outputs of S , the server applies the analyzer A to compute the the sum of rewards
for batch b when pulling arm a, which gives the new mean estimate µ̂a(b) of arm a after being
divided by the total pulls l(b). Then, upper and lower confidence bounds, UCBa(b) and LCBa(b),
respectively, are computed around the mean estimate µ̂a(b) with a properly chosen confidence width
β(b). Finally, after the iteration over all active arms in batch b (denoted by the set Φ(b)), it adopts the
standard arm elimination criterion to remove all obviously sub-optimal arms, i.e., it removes an arm
a from Φ(b) if UCBa(b) falls below LCBa′(b) of any other arm a′ ∈ Φ(b). It now remains to design
a distributed DP protocol P , which will be explored at length in the next section.

Distributed DP Protocol via Discrete Privacy Noise. In this section, inspired by [24, 25], we provide
a general template protocol P for the distributed DP model, which rely only on discrete privacy noise.
The motivation behind using discrete noise is three-fold: (i) Practical secure aggregation (SecAgg)
functions work only on the integer domain [20]; (ii) A real-value noise is often difficult to encode
on finite computers in practice [26, 17] and a naive use of finite precision approximation may lead
to a possible failure of privacy protection [27]; (iii) Discrete noise enables communication via bits
rather than real numbers, hence reducing communication overheads. The detail of our template
protocol P = (R,S,A) for distributed DP model is as follows. The local randomizer R receives
user’s real-valued reward and encodes it as an integer via a fixed-point encoding with precision
g > 0 and randomized rounding. Then, it generates a discrete noise, which depends on the specific
privacy-regret trade-off requirement (to be discussed later under specific mechanisms). Next, it
adds the random noise with encoded reward, modulo clips the sum and sends the final integer as
input to S. We leave S as a black-box function that implements secure aggregation. Engineering
implementations of this function is beyond the scope of this paper. Instead, a high-level idea behind
this technique is to ensure that after receiving messages from S, the server cannot distinguish each
individual’s message. Finally, the job of the analyzer A in our template protocol is to calculate the
sum of rewards within a batch as accurately as possible. To this end, it directly corrects for possible
underflow due to modular operation and bias due to encoding by g. To sum it up, the end goal of our
protocol P is to ensure that it provides the required privacy protection while guaranteeing an output
z ≈∑n

i=1 xi with high probability, which is the key to our privacy and regret analysis.

4 Achieving Pure DP in the Distributed Model
In this section, we show that Algorithm 1 with a specific instantiation of the template protocol
P is able to achieve pure-DP in the distributed DP model via secure aggregation. As mentioned
before, we will treat SecAgg as a black-box function, which implements the following procedure:
given n users and their randomized messages yi ∈ Zm (i.e., integer in {0, 1, . . . ,m− 1}) obtained
via R, the SecAgg function S faithfully computes the modular sum of the n messages, that is,
ŷ = (

∑n
i=1 yi) mod m (i.e., it is perfectly correct), while revealing no further information (e.g.,

individual message) to a potential attacker (i.e., it is perfectly secure). Now, to guarantee privacy in
the distributed model, we need to carefully determine the amount of (discrete) noise in R so that the
total noise in a batch provides (ε, 0)-DP. One natural choice is the discrete Laplace noise.

Definition 3 (Discrete Laplace Distribution). Let b > 0. A random variable X has a discrete Laplace
distribution with scale parameter b, denoted by LapZ(b), if it has a probability mass function given by

∀x ∈ Z, P [X = x] =
e1/b − 1

e1/b + 1
· e−|x|/b.

A key property of discrete Laplace that we will use is its infinite divisibility, which allows us to
simulate it in a distributed way [28, Theorem 5.1].

2In contrast, the classic successive elimination algorithm prescribes each arm to a single user.
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Algorithm 1 Private Batch-Based Successive Arm Elimination

1: Parameters: # arms K, Time horizon T , privacy level ε > 0, Confidence radii {β(b)}b≥1

2: Initialize: Batch count b=1, Active arm set Φ(b)={1, . . . ,K}, Estimate µ̂a(1)=0, ∀a∈ [K]
3: for batch b=1, 2, . . . do
4: Set batch size l(b)=2b

5: for each active arm a ∈ Φ(b) do
6: for each new user i from 1 to l(b) do
7: Pull arm a and generate reward ria(b)
8: Send randomized data yia(b)=R(ria(b)) to S // randomizer
9: If total number of pulls reaches T , exit

10: end for
11: Send messages ŷa(b)=S({yia(b)}1≤i≤l(b)) to A // secure computation
12: Compute the sum of rewards Ra(b)=A(ŷa(b)) // analyzer
13: Compute mean estimate µ̂a(b)=Ra(b)/l(b)
14: Compute confidence bounds UCBa(b)= µ̂a(b)+β(b) and LCBa(b)= µ̂a(b)−β(b)
15: end for
16: Update active set of arms: Φ(b+1)=

{
a∈Φ(b) : UCBa(b)≥maxa′∈Φ(b) LCBa′(b)

}
17: end for
18: Subroutine: Local Randomizer R (Input: xi ∈ [0, 1], Output: yi)
19: Require: precision g ∈ N, modulo m ∈ N, batch size n ∈ N, privacy level ε
20: Encode xi as x̂i = ⌊xig⌋+ Ber(xig − ⌊xig⌋)
21: Generate discrete noise ηi (depending on n, ε, g) // random noise generator
22: Add noise and modulo clip yi = (x̂i + ηi) modm
23: Subroutine: Secure Aggregation S (Input: y1, . . . , yn, Output: ŷ)
24: Require: modulo m ∈ N
25: Securely compute ŷ = (

∑n
i=1 yi) modm // black-box function

26: Subroutine: Analyzer A (Input: ŷ, Output: z)
27: Require: precision g ∈ N, modulo m ∈ N, batch size n ∈ N, accuracy level τ ∈ R
28: if ŷ > ng + τ then
29: set z = (ŷ −m)/g // correction for underflow
30: else set z = ŷ/g

Fact 1 (Infinite Divisibility of Discrete Laplace). A random variable X has a Pólya distribution with
parameters r>0, β∈ [0, 1], denoted by Pólya(r, β), if it has a probability mass function given by 3

∀x ∈ N, P [X = x] =
Γ(x+ r)

x!Γ(r)
βx(1− β)r.

Now, for any n ∈ N, let {γ+
i , γ−

i }i∈[n] be 2n i.i.d samples from Pólya(1/n, e−1/b), then the random
variable

∑n
i=1(γ

+
i − γ−

i ) is distributed as LapZ(b).

Further, to analyze privacy and regret, we will rely on the following fact on discrete Laplace [26].
Fact 2 (Discrete Laplace Mechanism). Let ∆, ε > 0. Let q : Dn → Z satisfy |q(D)− q(D′)| ≤ ∆
for all D,D′ differing on a single user’s data. Define a mechansim M : Dn → Z by M(D) =
q(D) + Y , where Y ∼ LapZ(∆/ε). Then, M satisfies (ε, 0)-DP. Moreover, for all m ∈ N,

P [Y > m] = P [Y < −m] =
e−

εm
∆

e
ε
∆ + 1

.

Armed with these facts, we are able to obtain the following main theorem, which shows that the same
regret as in the central model is achieved under the distributed model via SecAgg.
Theorem 1 (Pure-DP via SecAgg). Fix any ε > 0. Let P = (R,S,A) be a protocol such that the
noise in R is given by ηi = γ+

i − γ−
i , where γ+

i , γ−
i ∼i.i.d. Pólya(1/n, e−ε/g). For each batch b ≥ 1,

choose n = l(b), g = ⌈ε√n⌉, τ = ⌈ g
ε log(2/p)⌉, p = 1/T and m = ng+2τ +1. Then, Algorithm 1

instantiated with protocol P and confidence radius β(b) =O
(√

log(|Φ(b)|b2/p)
2l(b) + 2 log(|Φ(b)|b2/p)

εl(b)

)
,

3One can sample from Pólya as follows. First, sample λ ∼ Gamma(r, β/(1− β)) and then use it to sample
X ∼ Poisson(λ), which is known to follow Pólya(r, β) distribution [28].
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(a) ε = 0.1,K = 10
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(b) ε = 0.5,K = 10
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(c) ε = 0.1,K = 10

Figure 1: Comparison of time-average regret for Dist-DP-SE, Dist-RDP-SE, and DP-SE in Gaussian bandit
instances under (a, b) large reward gap (easy instance) and (c) small reward gap (hard instance).

achieves (ε, 0)-DP in the distributed model. Moreover, it enjoys the expected regret

E [Reg(T )] = O

(∑
a∈[K]:∆a>0

log T

∆a
+

K log T

ε

)
.

Theorem 1 achieves optimal regret under pure DP. Theorem 1 achieves the same regret bound as
the one achieved in Sajed and Sheffet [11] under the central trust model with continuous Laplace
noise. Moreover, it also matches the lower bound obtained under pure DP [9], indicating the bound
is indeed tight Note that, we achieve this rate under distributed trust model – a stronger notion of
privacy protection than the central model – while using only discrete privacy noise.

Communication bits. Algorithm 1 needs to communicate O(logm) bits per user to the secure
protocol S, i.e., communicating bits scales logarithmically with the batch size. In contrast, the
number of communication bits required in existing distributed DP bandit algorithms that work with
real-valued rewards (as we consider here) scale polynomially with the batch size [29, 30].

MAB with distributed RDP guarantee. In addition to pure DP, it is of natural interest to offer a
slightly weaker privacy guarantee (but, still stronger than approximate DP) in the hope of gaining
improvement in utility. One such notion of privacy is Rényi differential privacy (RDP) [31]. To
this end, we obtain RDP in the distributed model by instantiating R at each user with a Skellam
random noise. Proving a novel tail-bound for Skellam distribution, we show that a tighter regret
bound compared to pure DP can be achieved (see Theorem 2)

5 Simulation Results
In this section, we empirically evaluate the regret performance of our successive elimination scheme
with SecAgg protocol (Algorithm 1) under distributed trust model, which we abbreviate as Dist-DP-
SE and Dist-RDP-SE when the randomizer R is instantiated with Pólya noise (achieves pure DP)
and Skellam noise (achieves RDP), respectively. We compare them with the DP-SE algorithm of
[11] that works only with continuous Laplace noise and achieves optimal regret under pure DP in the
central model. We fix confidence level p = 0.1 and study comparative performances under varying
privacy levels ε < 1. Similar to [32], we consider easy and hard MAB instances: in the former, arm
means are sampled uniformly in [0.25, 0.75], while in the latter, those are sampled in [0.45, 0.55].
We consider real rewards – sampled from Gaussian distribution with aforementioned means and
projected to [0, 1]. We plot time-average regret Reg(T )/T in Figure 1 by averaging results over 20
randomly generated bandit instances. We observe that as T becomes large, the regret performance of
Dist-DP-SE matches the regret of DP-SE. The slight gap in small T regime is the cost that we pay to
achieve distributed privacy using discrete noise without access to a trusted server (for higher ε value,
this gap is even smaller). In addition, we find that a relatively small scaling factor (s = 10) provides
a considerable gain in regret under RDP compared to pure DP, especially when ε is small (i.e., when
the cost of privacy is not dominated by the non-private part of regret). The experimental findings are
consistent with our theoretical results. Here, we note that our simulations are proof-of-concept only
and we did not tune any hyperparameters. More details and additional plots are given in Appendix E.

6 Conclusion
We show that MAB under distributed trust model can achieve pure DP while maintaining the same
regret under central model. In addition, RDP is also achieved in MAB udner distributed trust model
for the first time. Both results are obtained via a unified algorithm design and performance analysis.
More importantly, our work also opens the door to a promising research direction – private online
learning with distributed DP guarantees, including contextual bandits and reinforcement learning.
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A A General Regret Bound of Algorithm 1
In this section, we first present a generic regret bound for private MAB, see Lemma 1 below.

Recall that na(b) := Ra(b)−
∑l(b)

i=1 r
i
a(b) is the total noise injected in the sum of rewards for arm a

during batch b. We consider the following tail property on na(b).

Assumption 1 (Concentration of Private Noise). Fix any p ∈ (0, 1], a ∈ [K], b ≥ 1, there exist
non-negative constants σ, h (possibly depending on b) such that, with probability at least 1− 2p,

|na(b)| ≤ σ
√

log(2/p) + h log(2/p).

We remark that this assumption naturally holds for a single (σ2, h)-sub-exponential noise and a single
σ2-sub-Gaussian noise where h = 0 (cf. Lemma 4 and Lemma 3 in Appendix D) with constants
adjustment.

Lemma 1. Let Assumption 1 hold and choose confidence radius

β(b) =

√
log(4|Φ(b)|b2/p)

2l(b)
+

σ
√
log(2|Φ(b)|b2/p)

l(b)
+

h log(2|Φ(b)|b2/p)
l(b)

, (1)

where |Φ(b)| is the number of active arms in batch b. Then, for any p ∈ (0, 1], with probability at
least 1− 3p, the regret of Algorithm 1 satisfies

Reg(T ) = O

 ∑
a∈[K]:

log(KT/p)

∆a
+Kσ

√
log(KT/p) +Kh log(KT/p)

 .

Taking p = 1/T and assuming T ≥ K, yields the expected regret

E [Reg(T )] = O

 ∑
a∈[K]:∆>0

log T

∆a
+Kσ

√
log T +Khlog T

 .

Proof. Let Eb be the event that for all active arms |µ̂a(b)− µa| ≤ β(b) and E = ∪b≥1Eb. Then, we
first show that with the choice of β(b) given by (1), we have P [E ] ≥ 1− 3p for any p ∈ (0, 1] under
Assumption 1. To see this, we note that

µ̂a(b)− µa =
na(b) +

∑l(b)
i=1 r

i
a(b)

l(b)
− µa.

By Hoeffeding’s inequality (cf. Lemma 5), we have for any p ∈ (0, 1), with probability at least 1− p,∣∣∣∣∣
∑l(b)

i=1 r
i
a(b)

l(b)
− µa

∣∣∣∣∣ =
√

log(2/p)

2l(b)
.

Then, by the concentration of noise na(b) in Assumption 1 and triangle inequality, we obtain for a
given arm a and batch b, with probability at least 1− 3p

|µ̂a(b)− µa| =
√

log(2/p)

2l(b)
+

σ
√

log(1/p)

l(b)
+

h log(1/p)

l(b)
.

Thus, by the choice of β(b) and a union bound, we have P [E ] ≥ 1− 3p.

In the following, we condition on the good event E . We first show that the optimal arm a∗ will always
be active. We show this by contradiction. Suppose at the end of some batch b, a∗ will be eliminated,
i.e., UCBa∗(b) < LCBa′(b) for some a′. This implies that under good event E

µa∗ ≤ µ̂a∗(b) + β(b) < µ̂a′(b)− β(b) ≤ µa′ ,

which contradicts the fact that a∗ is the optimal arm.

Then, we show that at the end of batch b, all arms such that ∆a > 4β(b) will be eliminated. To show
this, we have that under good event E

µ̂a(b) + β(b) ≤ µa(b) + 2β(b) < µa∗(b)− 4β(b) + 2β(b) ≤ µ̂a∗(b)− β(b),

9



which implies that arm a will be eliminated by the rule. Thus, for each sub-optimal arm a, let b̃a be
the last batch that arm a is not eliminated. By the above result, we have

∆a ≤ 4β(b̃a) = O

(√
log(KT/p)

l(b̃a)
+

σ
√
log(KT/p)

l(b̃a)
+

h log(KT/p)

l(b̃a)

)
.

Hence, we have for some absolute constants c1, c2, c3,

l(b̃a) ≤ max

{
c1 log(KT/p)

∆2
a

,
c2σ
√

log(KT/p)

∆a
,
c3h log(KT/p)

∆a

}
Since the batch size doubles, we have Na(T ) ≤ 4l(b̃a) for each sub-optimal arm a. Therefore,
Reg(T ) =

∑
a∈[K] Na(T )∆a ≤ 4l(b̃a)∆a. Moreover, choose p = 1/T and assume T ≥ K, we

have that the expected regret satisfies

Reg(T ) = E

 ∑
a∈[K]

∆aNa(T )


≤ P

[
Ē
]
· T +O

 ∑
a∈[K]:∆>0

log T

∆a

+O
(
Kσ
√
log T

)
+O (Khlog T )

= O

 ∑
a∈[K]:∆>0

log T

∆a
+Kσ

√
log T +Khlog T

 .

Remark 1. In stead of a doubling batch schedule, one can also set l(b) = ηb for some absolute
constant η > 1 while attaining the same order of regret bound.

B Appendix for Pure DP in Section 4
In this section, we provide proofs for Theorem 1, which show that pure DP can be achieved under the
distributed model via SecAgg. The result builds on the generic regret bound in Lemma 1.

B.1 Proof of Theorem 1
Proof. Privacy: We need to show that the server’s view at each batch has already satisfies (ε, 0)-DP,
which combined with the fact of unique users and parallel composition, yields that Algorithm 1
satisfies (ε, 0)-DP in the distributed model. To this end, in the following, we fix a batch b and arm a,
and hence xi = ria(b) and n = l(b). Note that the server’s view for each batch is given by

ŷ
(a)
=

∑
i∈[n]

yi

 modm
(b)
=

∑
i∈[n]

x̂i + ηi

 modm, (2)

where (a) holds by SecAgg function; (b) holds by the distributive property: (a + b) mod c =
(a mod c+ b mod c) mod c for any a, b, c ∈ Z. Thus, the view of the server can be simulated as a
post-processing of a mechanism H that accepts an input dataset {x̂i}i and outputs

∑
i x̂i +

∑
i ηi.

Hence, it suffices to show that H is (ε, 0)-DP by post-processing of DP. To this end, we note that the
sensitivity of

∑
i x̂i is g, which, by Fact 2, implies that

∑
i ηi needs to be distributed as LapZ(g/ε)

in order to guarantee ε-DP. Finally, by Fact 1, it suffices to generate ηi = γ+
i − γ−

i , where γ+
i and

γ−
i are i.i.d samples from Pólya(1/n, e−ε/g).

Regret: Thanks to the generic regret bound in Lemma 1, we only need to verify Assumption 1. To
this end, fix any batch b and arm a, we have ŷ = ŷa(b), xi = ria(b) and n = l(b). Then, in the
following we will show that with probability at least 1− 2p∣∣∣∣∣A(ŷ)−

∑
i

xi

∣∣∣∣∣ ≤ O

(
1

ε

√
log(1/p) +

1

ε
log(1/p)

)
, (3)

which implies that Assumption 1 holds with σ = O(1/ε) and h = O(1/ε).
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Inspired by [25, 24], we first divide the LHS of (3) as follows.∣∣∣∣∣A(ŷ)−
∑
i

xi

∣∣∣∣∣ ≤
∣∣∣∣∣A(ŷ)− 1

g

∑
i

x̂i

∣∣∣∣∣︸ ︷︷ ︸
Term (i)

+

∣∣∣∣∣1g∑
i

x̂i −
∑
i

xi

∣∣∣∣∣︸ ︷︷ ︸
Term (ii)

,

where Term (i) captures the error due to private noise and modular operation, and Term (ii) captures
the error due to random rounding.

To start with, we will bound Term (ii). More specifically, we will show that for any p ∈ (0, 1], with
probability at least 1− p,

Term (ii) ≤ O

(
1

ε

√
log(1/p)

)
. (4)

Let x̄i := ⌊xi ·g⌋, then x̂i = x̄i+Ber(xig− x̄i) = xig+ x̄i+Ber(xig− x̄i)−xig = xig+ιi, where
ιi := x̄i + Ber(xig − x̄i)− xig. We have E [ιi] = 0 and ιi ∈ [−1, 1]. Hence, ιi is 1-sub-Gaussian
and as a result, 1

g

∑
i x̂i −

∑
i xi =

1
g

∑
i ιi is n/g2-sub-Gaussian. Therefore, by the concentration

of sub-Gaussian (cf. Lemma 3), we have

P

[∣∣∣∣∣∑
i

1

g
· x̂i −

∑
i

xi

∣∣∣∣∣ >
√
2
n

g2
log(2/p)

]
≤ p.

Hence, by the choice of g = ⌈ε√n⌉, we establish (4).

Now, we turn to bound Term (i). Recall the choice of parameters: g = ⌈ε√n⌉, τ = ⌈ g
ε log(2/p)⌉,

and m = ng + 2τ + 1. We would like to show that

P

[∣∣∣∣∣A(ŷ)− 1

g

∑
i

x̂i

∣∣∣∣∣ > τ

g

]
≤ p, (5)

which implies that for any p ∈ (0, 1], with probability at least 1− p

Term (i) ≤ O

(
1

ε
log(2/p)

)
. (6)

To show (5), the key is to bound the error due to private noise and handle the possible underflow
carefully. First, we know that the total private noise

∑
i ηi is distributed as LapZ(g/ε). Hence, by

the concentration of discrete Laplace (cf. Fact 2), we have

P

[∣∣∣∣∣∑
i

ηi

∣∣∣∣∣ > τ

]
≤ p.

Let Enoise denote the event that
∑

i x̂i + ηi ∈ [
∑

i x̂i − τ,
∑

i x̂i + τ ], then by the above inequality,
we have P [Enoise] ≥ 1− p. In the following, we condition on the event of Enoise to analyze the output
A(ŷ). As already shown in (2), the input ŷ = (

∑
i x̂i + ηi) mod m is already an integer and hence

y = ŷ. We will consider two cases of y.

Case 1: y > ng + τ . We argue that this happens only when
∑

i x̂i + ηi ∈ [−τ, 0), i.e., underflow.
This is because for all i ∈ [n], x̂i ∈ [0, g], m = ng + 2τ + 1 and the total privacy noise is at most τ
under Enoise. Therefore,

y −m =

((∑
i

x̂i + ηi

)
modm

)
−m

=

(
m+

∑
i

x̂i + ηi

)
−m

=
∑
i

x̂i + ηi.

That is, y −m ∈ [
∑

i x̂i − τ,
∑

i x̂i + τ ] with high probability. In other words, we have show that
when y > ng + τ , A(ŷ) = y−m

g satisfies (5).

Case 2: y ≤ ng + τ . Here, we have noisy sum
∑

i x̂i + ηi ∈ [0, ng + τ ]. Hence, y =
∑

i x̂i + ηi
since m = ng + 2τ + 1, which implies that A(ŷ) = y

g satisfies (5).
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Hence, we have shown that the output of the analyzer under both cases satisfies (5), which implies (6).
Combined with the bound in (4), yields the bound in (3). Finally, plugging in σ = O(1/ε), h =
O(1/ε) into the generic regret bound in Lemma 1, yields the required regret bound and completes
the proof.

C Appendix for RDP
In the section, we will present the details of achieving Rényi differential privacy (RDP) [31] in the
distributed DP model.
Definition 4 (Rényi Differential Privacy). For α > 1, a randomized mechanism M satisfies (α, ε(α))-
RDP if for all neighboring datasets D,D′, we have Dα(M(D),M(D′)) ≤ ε(α), where Dα(P,Q)
is the Rényi divergence (of order α) of the distribution P from the distribution Q, and is given by

Dα(P,Q) :=
1

α− 1
log

(
Ex∼Q

[(
P (x)

Q(x)

)α])
.

To achieve RDP guarantee using discrete noise, instead of discrete Laplace distribution in the
previous section, we consider the Skellam distribution – which has recently been applied in federated
learning [16]. In the multi-armed bandit setting, a key challenge in the regret analysis is to characterize
the tail property of Skellam distribution. This is different from [16], where characterizing the variance
of Skellam distribution is sufficient. In Proposition 1, we prove that Skellam has sub-exponential
tails, which not only is the key to our regret analysis, but also could be of independent interest.
Definition 5 (Skellam Distribution). A random variable X has a Skellam distribution with mean µ
and variance σ2, denoted by Sk(µ, σ2), if it has a probability mass function given by

∀x ∈ Z, P [X = x] = e−σ2

Ix−µ(σ
2),

where Iν(·) is the modified Bessel function of the first kind.

To sample from Skellam distribution, one can rely on existing procedures for Poisson samples. This
is because if X = N1 −N2, where N1, N2 ∼i.i.d. Poisson(σ2/2), then X is Sk(0, σ2) distributed.
Moreover, due to this fact, Skellam is closed under summation, i.e., if X1 ∼ Sk(µ1, σ

2
1) and

X2 ∼ Sk(µ2, σ
2
2), then X1 +X2 ∼ Sk(µ1 + µ2, σ

2
1 + σ2

2).

Proposition 1 (Sub-exponential Tail of Skellam). Let X ∼ Sk(0, σ2). Then, X is (2σ2,
√
2
2 )-sub-

exponential. Hence, for any p ∈ (0, 1], with probability at least 1− p,

|X| ≤ 2σ
√

log(2/p) +
√
2 log(2/p).

With the above result, we can establish the following privacy and regret guarantee of Algorithm 1.
Theorem 2 (RDP via SecAgg). Fix any ε > 0. Let P = (R,S,A) be a protocol such that
the noise in R is given by ηi ∼ Sk(0, g2

nε2 ). Fix a scaling factor s ≥ 1. For each batch b ≥
1, choose n = l(b), g = ⌈sε√n⌉, τ = ⌈ 2g

ε

√
log(2/p) +

√
2 log(2/p)⌉, p = 1/T and m =

ng + 2τ + 1. Then, Algorithm 1 instantiated with protocol P and confidence radius β(b) =

O
(√

log(|Φ(b)|b2/p)
2l(b) + (1+1/s) log(|Φ(b)|b2/p)

εl(b)

)
, achieves (α, ε̂(α))-RDP in the distributed model for

all α = 2, 3, . . ., with ε̂(α) = αε2

2 + min
{

(2α−1)ε2

4s2 + 3ε
2s3 ,

3ε2

2s

}
. Moreover, it enjoys the regret

bound

E [Reg(T )] = O

(∑
a∈[K]:∆a>0

log T

∆a
+

K
√
log T

ε
+

K log T

sε

)
.

Privacy-Regret-Communication Trade-off. Observe that the scaling factor s allows us to achieve
different trade-offs. If s increases, both privacy and regret performances improve. In fact, for a
sufficiently large value of s, the third term in the regret bound becomes sufficiently small, and we
obtain an improved regret bound compared to Theorem 1. Moreover, the RDP privacy guarantee
improves to ε̂(α) ≈ αε2

2 , which is the standard RDP rate for Gaussian mechanism [31]. However, a
larger s leads to an increase of communicating bits per user, but only grows logarithmically, since
Algorithm 1 needs to communicate O(logm) bits to the secure protocol S.

RDP to Approximate DP. To shed more insight on Theorem 2, we convert our RDP guarantee to
approximate DP for a sufficiently large s. It holds that under the setup of Theorem 2, for sufficiently
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large s, one can achieve (O(ε), δ)-DP with regret O
(∑

a∈[K]:∆a>0
log T
∆a

+
K
√

log T log(1/δ)

ε

)
(via

Lemma 7). The implication of this conversion is three-fold. First, this regret bound is O(
√
log T )

factor tighter than that achieved by Tenenbaum et al. [22] using a shuffle protocol with same (ε, δ)-DP
guarantee. Second, it yields a better regret performance compared to the bound achieved under
(ε, 0)-DP in Theorem 1 when the privacy budget δ > 1/T . This observation is consistent with the
fact that a weaker privacy guarantee typically warrants a better utility bound. Third, this conversion
via RDP also yields a gain of O(

√
log(1/δ)) in the regret when dealing with privacy composition

(e.g., when participating users across different batches are not unique) compared to [22] that can only
rely on approximate DP. This results from the fact that RDP provides a tighter composition compared
to approximate DP.

C.1 Proof of Proposition 1
Proof. We first establish the following result.

Claim 1. For all λ ∈ R, we have

cosh(λ) ≤ eλ
2/2.

To show this, by the infinite product representation of the hyperbolic cosine function, we have

cosh(λ) =

∞∏
k=1

(
1 +

4λ2

π2(2k − 1)2

)
(a)

≤ exp

( ∞∑
k=1

4λ2

π2(2k − 1)2

)
(b)
= exp(λ2/2),

where (a) holds by the fact that 1 + x ≤ ex for all x ∈ R and (b) follows from
∑∞

k=1
1

(2k−1)2 = π2

8 .

Then, note that X ∼ Sk(0, σ2), then its moment generating function (MGF) is given by E
[
eλX

]
=

exp(σ2(cosh(λ)− 1)). Hence, by the above claim, we have E
[
eλX

]
≤ exp(σ2(eλ

2/2 − 1). Further,
note that ex − 1 ≤ 2x for x ∈ [0, 1]. Thus, for |λ| ≤

√
2, we have

E
[
eλX

]
≤ eλ

2σ2

= e
λ22σ2

2 .

Hence, by the definition of sub-exponential random variable (cf. Lemma 4), X is (2σ2,
√
2
2 )-sub-

exponential, which again by Lemma 4 implies the required concentration result, i.e., for any p ∈ (0, 1],
with probability at least 1− p,

|X| ≤ 2σ
√

log(2/p) +
√
2 log(2/p).

C.2 Proof of Theorem 2
We will leverage the following result in [16, Theorem 3.5 ] to prove privacy guarantee.
Lemma 2. For α ∈ Z, α > 1, let X ∼ Sk(0, σ2). Then, an algorithm M that adds X to a
sensitivity-∆ query satisfies (α, ε(α))-RDP with ε(α) given by

ε(α) ≤ α∆2

2σ2
+min

{
(2α− 1)∆2 + 6∆

4σ4
,
3∆

2σ2

}
.

Proof of Theorem 2. Privacy: As before, we fix any batch b and arm a, for simplicity, we let xi =

ria(b) and n = l(b). Then, it suffices to show that the mechanism H that accepts an input dataset
{x̂i}i and outputs

∑
i x̂i +

∑
i ηi is private. To this end, since each local randomizer R generates

noise ηi ∼ Sk(0, g2

nε2 ) and Skellam is closed under summation, we have that the total noise
∑

i ηi ∼
Sk(0, g2

ε2 ). Thus, by Lemma 2 with ∆ = g, we have that for each batch b with n = l(b) and
g = ⌈sε√n⌉, Algorithm 1 is (α, ε̂n(α))-RDP with ε̂n(α) given by

ε̂n(α) =
αε2

2
+ min

{
(2α− 1)ε2

4s2n
+

3ε

2s3n3/2
,

3ε2

2s
√
n

}
.

Since n = l(b) > 1, we have that for all batches b ≥ 1,

ε̂n(α) ≤ ε̂(α) :=
αε2

2
+ min

{
(2α− 1)ε2

4s2
+

3ε

2s3
,
3ε2

2s

}
.

13



Regret: We will establish the following high probability bound so that we can apply our generic regret
bound in Lemma 1 ∣∣∣∣∣A(ŷ)−

∑
i

xi

∣∣∣∣∣ ≤ O

(
1

ε

√
log(1/p) +

1

sε
log(2/p)

)
, (7)

where ŷ := ŷa(b) for each batch b and arm a.

We again divide the LHS of (7) into∣∣∣∣∣A(ŷ)−
∑
i

xi

∣∣∣∣∣ ≤
∣∣∣∣∣A(ŷ)− 1

g

∑
i

x̂i

∣∣∣∣∣︸ ︷︷ ︸
Term (i)

+

∣∣∣∣∣1g∑
i

x̂i −
∑
i

xi

∣∣∣∣∣︸ ︷︷ ︸
Term (ii)

.

In particular, Term (ii) can be bounded by using the same method before, i.e.,

P

[∣∣∣∣∣∑
i

1

g
· x̂i −

∑
i

xi

∣∣∣∣∣ >
√
2
n

g2
log(2/p)

]
≤ p.

Hence, by the choice of g = ⌈sε√n⌉, we establish that with high probability

Term (ii) ≤ O

(
1

ε · s
√
log(1/p)

)
.

For Term (i), as in the previous proof, the key is to show that

P

∣∣∣∣∣∣
∑
i∈[n]

ηi

∣∣∣∣∣∣ > τ

 ≤ p.

To this end, we will utilize our established result in Proposition 1. Note that the total noise
∑

i ηi ∼
Sk(0, g2

ε2 ), and hence by Proposition 1 and the choice of τ = ⌈ 2g
ε

√
log(2/p) +

√
2 log(2/p)⌉, we

have the above result. Following previous proof, this result implies that with high probability

Term (i) ≤ τ

g
≤ O

(
1

ε

√
log(1/p) +

1

sε
log(1/p)

)
.

Combining the bounds on Term (i) and Term (ii), we have that the private noise satisfies Assumption 1
with constants σ = O(1/ε) and h = O( 1

sε ). Hence, by the generic regret bound in Lemma 1, we
have established the required result.

D Auxiliary Lemmas
In this section, we summarize some useful facts that have been used in the paper.

Lemma 3 (Concentration of sub-Gaussian). A mean-zero random variable X is σ2-sub-Gaussian if
for all λ ∈ R

E
[
eλX

]
≤ exp

(
λ2σ2

2

)
.

Then, it satisfies that for any p ∈ (0, 1], with probability at least 1− p,

|X| ≤
√
2σ
√
log(2/p).

Lemma 4 (Concentration of sub-exponential). A mean-zero random variable X is (σ2, h)-sub-
exponential if for |λ| ≤ 1/h

E
[
eλX

]
≤ exp

(
λ2σ2

2

)
.

Then, we have

P [|X| > t] ≤ 2 exp

(
−min

{
t2

2σ2
,
t

2h

})
.

Thus, it satisfies that for any p ∈ (0, 1], with probability at least 1− p,

|X| ≤
√
2σ
√

log(2/p) + 2h log(2/p).
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Lemma 5 (Hoeffding’s Inequality). Let X1, . . . , Xn be independent and identically distributed (i.i.d)
random variables and Xi ∈ [0, 1] with probability one. Then, for any p ∈ (0, 1], with probability at
least 1− p, ∣∣∣∣∣ 1n

n∑
i=1

Xn − E [X1]

∣∣∣∣∣ ≤
√

log(2/p)

2n
.

Lemma 6 (Sum of sub-exponential). Let {Xi}ni=1 be independent zero-mean (σ2
i , hi)-sub-

exponential random variables. Then,
∑

i Xi is (
∑

i σ
2
i , h∗)-sub-exponential, where h∗ := maxi hi.

Thus, we have

P

[∣∣∣∣∣∑
i

Xi

∣∣∣∣∣ > t

]
≤ 2 exp

(
−min

{
t2

2
∑

i σ
2
i

,
t

2h∗

})
.

In other words, for any p ∈ (0, 1], if v ≥ max{
√

2
∑

i σ
2
i log(2/p), 2h∗ log(2/p)}, with probability

at least 1− p, |∑i Xi| ≤ v.
Lemma 7 (Conversion Lemma). If M satisfies (α, ε(α))-RDP, then for any δ ∈ (0, 1), M satisfies
(ε, δ)-DP where

ε = inf
α>1

ε(α) +
log(1/(αδ))

α− 1
+ log(1− 1/α).

If M satisfies 1
2ε

2-CDP, then for for any δ ∈ (0, 1), M satisfies (ε′, δ)-DP where

ε′ = inf
α>1

1

2
ε2α+

log(1/(αδ))

α− 1
+ log(1− 1/α) ≤ ε ·

(√
2 log(1/δ) + ε/2

)
.

Moreover, if M satisfies (ε, 0)-DP, then it satisfies (α, 1
2ε

2α)-RDP simultaneously for all α ∈ (1,∞).

Theorem 3 (Advanced composition). Given target privacy parameters ε′ ∈ (0, 1) and δ′ > 0,
to ensure (ε′, kδ + δ′)-DP for the composition of k (adaptive) mechanisms, it suffices that each
mechanism is (ε, δ)-DP with ε = ε′

2
√

2k log(1/δ′)
.

E More Details on Simulations
We numerically compare the performance of Algorithm 1 under pure-DP and RDP guarantees in the
distributed model (named Dist-DP-SE and Dist-RDP-SE, respectively) with the DP-SE algorithm of
Sajed and Sheffet [11], which achieves pure-DP under the central model. We vary the privacy level
as ε ∈ {0.1, 0.5, 1}, where a lower value of ε indicates higher level of privacy.

In Figure 2, we consider the easy instance, i.e., where arm means are sampled uniformly in [0.25, 0.75].
In Figure 3, we consider the hard instance, i.e., where arm means are sampled uniformly in
[0.45, 0.55]. The sampled rewards are Gaussian distributed with the given means and truncated
to [0, 1]. We plot results for K = 10 arms.

We see that, for higher value of time horizon T , the time-average regret of Dist-DP-SE is order-wise
same to that of DP-SE, i.e., we are able to achieve similar regret performance in the distributed trust
model as that is achieved in the central trust model. As mentioned before, we observe a gap for small
value of T , which is the price we pay for discrete privacy noise (i.e., additional data quantization
error on the order of O( 1ε

√
log(1/p))) and not requiring a trusted central server. Hence, if we lower

the level of privacy (i.e., higher value of ε), this gap becomes smaller, which indicates an inherent
trade-off between privacy and utility.

We also observe that if we relax the requirement of privacy from pure-DP to RDP, then we can achieve
a considerable gain in regret performance; more so when privacy level is high (i.e., ε is small). This
gain depends on the scaling factor s – the higher the scale, the higher the gain in regret.

In Figure 4, we compare regret achieved by our generic batch-based successive arm elimination
algorithm (Algorithm 1) instantiated with different protocols P under different trust models and
privacy guarantees: (i) central model with pure-DP (CDP-SE), (ii) local model with pure-DP (LDP-
SE), (iii) Distributed model with pure-DP (Dist-DP-SE), Renyi-DP (Dist-RDP-SE) and Concentrated-
DP (Dist-CDP-SE). First, consider the pure-DP algorithms. We observe that regret performance
of CDP-SE and Dist-DP-SE is similar (with a much better regret than LDP-SE). Now, if we relax
the pure-DP requirement, then we achieve better regret performance both for Dist-RDP-SE and
Dist-CDP-SE. Furthermore, Dist-CDP-SE performs better in terms of regret than Dist-RDP-SE. This
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is due to the fact that under CDP, we use discrete Gaussian noise (which has sub-Gaussian tails) as
opposed to the Skellam noise (which has sub-exponential tails) used under RDP.

Experiment on Real Data We evaluate the performance of our algorithm on bandit instances
generated from Microsoft Learning to Rank dataset MSLR-WEB10K [33]. The dataset consists of
1200192 rows and 138 columns, where each row corresponds to a query-url pair. The first column is
relevance label 0, 1, ... , 4 of the pair, which we take as rewards. The second column denotes the
query id, and the rest 136 columns denote contexts of a query-url pair. We cluster the data by running
K-means algorithm with K = 50. We treat each cluster as a bandit arm with mean reward as the
empirical mean of the individual ratings in the cluster. This way, we obtain a bandit setting with
number of arms K = 50. We average over 10 parallel runs and plot the results in Figure 5 for privacy
levels ε ∈ {1, 5, 10}. Similar to synthetic data experiments, we observe that as T becomes large, the
regret performance of our algorithm (Dist-DP-SE) under distributed model matches the regret of the
state-of-the-art algorithm (DP-SE) under central model. Furthermore, consistent with observations
on synthetic data, we also observe a considerable gain in regret under RDP compared to pure DP.
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Figure 2: Comparison of time-average regret for Dist-DP-SE, Dist-RDP-SE, and DP-SE in Gaussian
bandit instances under large reward gap (easy instance) with privacy level ε = 0.1 (top), ε = 0.5
(mid) and ε = 1 (bottom)
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Figure 3: Comparison of time-average regret for Dist-DP-SE, Dist-RDP-SE, and DP-SE in Gaussian
bandit instances under small reward gap (hard instance) with privacy level ε = 0.1 (top), ε = 0.5
(mid) and ε = 1 (bottom)
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Figure 4: Comparison of time-average regret for CDP-SE, LDP-SE, Dist-DP-SE, Dist-RDP-SE and
Dist-CDP-SE in Gaussian bandit instances under large reward gap (easy instance) with privacy level
ε = 0.1 (top), ε = 0.5 (mid) and ε = 1 (bottom)
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Figure 5: Comparison of time-average regret for Dist-DP-SE, Dist-RDP-SE, and DP-SE in bandit instances
generated from real dat with privacy level ε = 1 (top), ε = 5 (mid) and ε = 10 (bottom)
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