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Abstract

Benchmark scores for Large Language Models (LLMs) can be inflated by memo-
rization of test items or near duplicates. We present a simple, protocol that probes
generalization by re-evaluating models on paraphrased versions of benchmark
questions. Using Mistral-7B-Instruct and Qwen2.5-7B-Instruct, we measure the
accuracy gap between original and paraphrased items on ARC-Easy and ARC-
Challenge. Our pipeline controls decoding, enforces multiple-choice output format,
and includes a robust paraphrase-cleaning step to preserve semantics. We find that
paraphrasing induces a non-trivial accuracy drop (original vs. paraphrased), consis-
tent with prior concerns about contamination and brittle surface-form shortcuts.

1 Introduction

Recent work shows that LLMs can regurgitate training data [Carlini et al.,[2021]], and that duplication
in pretraining corpora amplifies this effect [Kandpal et al.l [2022]]. As a result, static benchmarks
may overestimate model capability, especially when test items or near duplicates leak into training
sets [Dong et al., 2024]]. A complementary perspective focuses on behavioral robustness to sur-
face perturbations—if a model relies on phrasing, small paraphrases can cause large performance
swings [Ribeiro et al.,2020]]. Code-evaluation work reinforces this: evolved or mutated prompts can
sharply reduce apparent competence [Liu et al., 2023].

Contributions. (1) A protocol to measure generalization via paraphrase stress tests; (2) a para-
phrase—cleaning pipeline that preserves semantics while removing formatting artifacts; (3) a fully
specified setup (Benchmark: ARC-Easy/Challenge [Clark et al.l 2018, Models: Mistral-7B-Instruct,
Qwen2.5-7B-Instruct for answering and paraphrasing) using 4-bit inference on a single A100; (4)
empirical findings that paraphrasing induces a measurable accuracy drop, suggesting residual memo-
rization/brittleness; (5) released code for reproducibility.

2 Related Work

Memorization and privacy. Training-data extraction and memorization in LMs are well docu-
mented [Carlini et al.| 2021]]; deduplication mitigates leakage and privacy risk [Kandpal et al.,[2022].
Contamination and trustworthy eval. Methods to detect contamination and separate memorization
from generalization continue to emerge [Dong et al.| [2024]]. Behavioral robustness. CheckList
formalizes capability/behavior tests with perturbations [Ribeiro et al., 2020]. Evolved tests. For code,
augmented or mutated tests (e.g., EvalPlus) expose spurious success [Liu et al.|[2023]]. We adopt a
minimal paraphrase-only variant that applies across QA benchmarks.
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3 Method

We assess surface—form robustness with a paraphrase stress test. We use surface—form robustness to
mean that, under meaning—preserving rewordings (paraphrases, light syntactic changes, formatting
tweaks), a model’s predictions remain unchanged. For each multiple—choice item, we evaluate
an instruction—tuned LLLM once on the original question and once on a semantically equivalent
paraphrase, then report the paired accuracy gap A between the two conditions.

3.1 Task and Data

We consider multiple—choice question answering (MCQ). Each item ¢ comprises a question g;, an
option set C; = {¢;1, ..., i, }» and a ground—truth answer letter a; € {A, ... }. Our experiments
use the ARC benchmark [Clark et al., 2018]] (Hugging Face distribution [Allen Al,|2025])), evaluating
both ARC-EASY and ARC—CHALLENGE on their validation splits. We evaluate a fixed subset
(ARC-Easy: 300, ARC—Challenge: 299) selected deterministically with a fixed random seed. Only
questions are paraphrased; answer options C; are kept verbatim to preserve label mappings.

3.2 Models and Inference

Roles and cross—pairing. We use two instruction—tuned decoder—only LLMs and assign disjoint
roles: Answerer (produces the MCQ choice) and Paraphraser (rewrites only the question stem).
To discourage style echo and self—consistency artifacts, the paraphraser is always a different model
family than the answerer.

We evaluate mistralai/Mistral-7B-Instruct-v0.3 [Mistral Al, 2025 Jiang et al.,|2023]] and
Qwen2.5-7B-Instruct [Qwen Team) 2025 |Yang et al.,[2024]. The paraphraser always uses the
model not acting as the answerer in that run (cross—family separation). We report both cross—pairings:
(Mistral-7B-Instruct — answerer, Qwen2.5-7B-Instruct — paraphraser) and (Qwen2.5-7B-Instruct
— answerer, Mistral-7B-Instruct — paraphraser).

Compute and environment. All runs are executed on a single NVIDIA A100-SXM4-80GB
(CUDA 12.4, driver 550.54.15). Models are loaded via transformers with 4-bit quan-
tization (bitsandbytes NF4) using device_map="auto". Randomness is controlled via
random. seed (1337) and torch.manual_seed(1337). No few—shot examples, chain—of-thought,
tools, or retrieval are used.

Quantization. We follow a standard 4-bit inference recipe: load_in_4bit=True,
bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", and
bnb_4bit_compute_dtype=torch.bfloat16. This yields stable, memory—efficient infer-
ence on the A100 while preserving accuracy in our setting.

Prompts. Answering. We format each item with the question followed by lettered options A, B,
C, ... and require a single—letter decision. When force_letter=True, the instruction requires a
one—object JSON: {"answer": "LETTER", "explanation": "1-2 sentences"}, and for-
bids any extra text.

Paraphrasing. We use a constrained rewrite prompt that (i) rewrites the question stem only, (ii)
preserves all meaning and details verbatim (numbers/units/entities), (iii) outputs only the rewritten
stem without labels or commentary.

Decoding. Answering (deterministic): max_new_tokens=32, temperature=0.0, top_p=1.0,
do_sample=False. Determinism ensures fair comparisons across original vs. paraphrased con-
ditions.

Paraphrasing (light sampling): max_new_tokens=128, temperature=0.7, top_p=0.95,
do_sample=True. Mild diversity avoids trivial restatements while remaining close to the source;
fidelity checks (below) prevent semantic drift.

Output parsing and formatting guardrails. For the answerer, we parse the JSON field answer
when present and validate it against the option set. If the model emits residual text, we fall back to



a strict letter extractor that (i) prefers the JSON key when available, (ii) otherwise searches for a
leading pattern like "Answer: <LETTER>" and (iii) rejects spurious matches (e.g., picking the first
uppercase letter encountered). This avoids the common failure mode where generic capital letters
(e.g., “A” at the start of “Answer: C”) are misread as the choice. We score with exact letter agreement
against the gold key.

Paraphrase fidelity checks and retries. We paraphrase the stem once and run a sequence of
automatic checks; if a check fails, we retry up to K=3 times with the same decoding settings: (i)
nonempty output after cleaning (trim quotes/bullets, strip prefixes); (ii) output differs from the original
stem case—insensitively; (iii) minimum length threshold: len(§) > max(10, 0.6len(g)) to avoid
fragmentary rewrites. Only stems that pass all checks are accepted; otherwise we fall back to the
original stem to keep the item count fixed. Answer options are never paraphrased to preserve label
mappings.

Dataset slice and evaluation protocol. Unless stated otherwise, we evaluate ARC validation splits
with a fixed, deterministic subset size (e.g., 300 for ARC-EASY, 299 for ARC-CHALLENGE). For
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4 Results

Overall trends. Across both ARC splits, paraphrasing consistently reduces accuracy (A > 0).
Table[I]shows drops ranging from 0.06 to 0.10, confirming that surface—form changes measurably
degrade performance even when semantic content is preserved. The effect is robust across cross—
pairings: regardless of whether Mistral-7B-Instruct or Qwen2.5-7B-Instruct is the answerer, accuracy
on paraphrased items is lower than on the original items.

Dataset difficulty. Absolute accuracy is higher on ARC-EASY than on ARC-CHALLENGE for
both models, consistent with the benchmark design. However, relative brittleness is not uniform: the
largest drop occurs for Mistral-7B-Instruct answering ARC-EASY (A = 0.10), while both models
show more moderate drops on ARC-CHALLENGE (A = 0.06-0.07). This suggests that even “easier”
items are fragile under rewording.

Cross—model comparison. When acting as the answerer, Qwen2.5-7B-Instruct achieves higher
baseline accuracy (0.90 on Easy, 0.89 on Challenge) than Mistral-7B-Instruct (0.84 and 0.75 respec-
tively). Yet both exhibit similar paraphrase sensitivity (A in the same 0.06-0.10 band), indicating
that brittleness is not confined to a single model family but is a shared vulnerability.

Qualitative flips. We observe two categories of changes: (i) original—incorrect, where a para-
phrase induces an error despite a correct original response; (ii) incorrect—correct, where paraphrasing
helps the model recover the right answer. The former dominates, but the latter occurs in a nontrivial
minority of cases, highlighting that paraphrasing does not simply act as uniform noise but can also
reshape decision boundaries in helpful ways.

Table 1: Accuracy on original vs. paraphrased items using Mistral-7B-Instruct and Qwen2.5-7B-
Instruct. A quantifies brittleness to paraphrase.

Answerer Paraphraser Dataset n Acc (orig)  Acc (para) A (drop)
Qwen2.5-7B-Instruct ~ Mistral-7B-Instruct ARC-Easy 300 0.90 0.84 0.06
Qwen2.5-7B-Instruct ~ Mistral-7B-Instruct ~ ARC-Challenge 299 0.89 0.83 0.07

Mistral-7B-Instruct ~ Qwen2.5-7B-Instruct ARC-Easy 300 0.84 0.74 0.10
Mistral-7B-Instruct ~ Qwen2.5-7B-Instruct ~ ARC-Challenge 299 0.75 0.69 0.06




5 Discussion

Contamination vs. robustness. The observed accuracy drop under paraphrase indicates that
models may be relying on brittle surface—form patterns rather than robust semantic generalization.
This raises the question of contamination: if benchmark items or near duplicates appeared in
pretraining corpora, high performance on the original phrasing may reflect memorization rather than
reasoning. Paraphrasing disrupts such surface matches, exposing whether the model has internalized
underlying concepts or simply memorized familiar strings. While our study does not perform explicit
contamination auditing, methods such as n-gram overlap checks or retrieval-based similarity [Dong
et al.,[2024]| could strengthen causal attribution in future work.

Instruction tuning sensitivity. Instruction tuning strongly conditions both the answerer and the
paraphraser. On the answering side, small prompt variations can flip predictions, suggesting that
instruction templates may inadvertently favor one phrasing style over another. On the paraphrasing
side, instruction tuning interacts with the model’s generative priors, sometimes yielding paraphrases
that are formally valid but less faithful semantically. Thus, prompt design and instruction alignment
are not neutral components of the pipeline, but active factors shaping robustness outcomes.

Paraphrase fidelity. Despite targeted prompts and automated cleaning, occasional semantic drift
occurs in paraphrases. Manual inspection revealed cases where models introduced or omitted
information, which neither cleaning heuristics nor retries could fully correct. Because the framework
relies on an LLM to generate paraphrases, paraphrase quality becomes a limiting factor for evaluation
fidelity. Improving this component—for example by using human-in-the-loop filtering, specialized
paraphrasing models, or multi-pass verification—would increase confidence that measured drops
stem from answerer brittleness rather than paraphrase artifacts.

Joint influence of answerer and paraphraser. By design, the paraphraser is always from a
different model family than the answerer, avoiding leakage through stylistic self-imitation. However,
this also means that results reflect the interaction of two models, not the answerer in isolation. If
the paraphraser generates awkward or biased rewrites, measured brittleness may partially reflect its
limitations. Future protocols could disentangle these roles more cleanly, for example by evaluating
answerers against a fixed, high-fidelity paraphrase set.

Format dependence. Forcing a letter-only output format simplifies scoring but also interacts with
instruction tuning. Some errors appear to arise from rigid formatting constraints, rather than from the
model’s underlying knowledge. Although our strict parser reduces spurious matches, output-format
sensitivity highlights that evaluation design decisions can influence reported robustness.

Scope and generalization. Our study is limited to the ARC benchmark, which targets grade-school
science. While useful for controlled analysis, these results may not directly transfer to broader
tasks such as open-domain QA, multi-turn dialogue, or reasoning-intensive benchmarks. Extending
paraphrase stress tests across domains and task formats is an important direction for future work.

6 Conclusion

We evaluated two 7B instruction models (Mistral-7B-Instruct, Qwen2.5-7B-Instruct) under a para-
phrase stress test and found consistent accuracy drops of 6-10 points on ARC—Easy and ARC-
Challenge. This indicates that strong benchmark scores may partly reflect memorization or reliance
on brittle surface patterns rather than robust reasoning. The results underscore the importance of
paraphrase-aware evaluation and point to future work on higher-fidelity paraphrasing, contamination
auditing, and extending stress tests beyond ARC to broader tasks and domains.
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