2021 Data Compression Conference (DCC) | 978-1-6654-0333-7/21/$31.00 ©2021 IEEE | DOI: 10.1109/DCC50243.2021.00023

2021 Data Compression Conference (DCC)

DZip: improved general-purpose lossless compression based
on novel neural network modeling

Mohit Goyal?, Kedar Tatwawadi*, Shubham Chandak* and Idoia Ochoa'f

YElectrical and Computer Engineering, University of Illinois, Urbana, IL, USA
*Department of Electrical Engineering, Stanford University, CA, USA
T Department of Electrical Engineering, University of Navarra, Spain
mohit@illinois.edu

Abstract

We consider lossless compression based on statistical data modeling followed by prediction-
based encoding, where an accurate statistical model for the input data leads to substantial
improvements in compression. We propose DZip, a general-purpose compressor for sequen-
tial data that exploits the well-known modeling capabilities of neural networks (NNs) for
prediction, followed by arithmetic coding. DZip uses a novel hybrid architecture based on
adaptive and semi-adaptive training. Unlike most NN-based compressors, DZip does not
require additional training data and is not restricted to specific data types. The proposed
compressor outperforms general-purpose compressors such as Gzip (29% size reduction on
average) and 7zip (12% size reduction on average) on a variety of real datasets, achieves
near-optimal compression on synthetic datasets, and performs close to specialized compres-
sors for large sequence lengths, without any human input. While the main limitation of
NN-based compressors is generally the encoding/decoding speed, we empirically demon-
strate that DZip achieves comparable compression ratio to other NN-based compressors
while being several times faster. The source code for DZip and links to the datasets are
available at https://github.com/mohit1997/Dzip-torch.

1 Introduction

There has been a tremendous surge in the amount of data generated in the past years.
Along with image and textual data, new types of data such as genomic, 3D VR, and
point cloud data are being generated at a rapid pace [1, 2]. Thus, data compression
is critical for reducing the storage and transmission costs associated with these data,
and has been studied extensively from both theoretical and practical standpoints. In
particular, a wide class of (lossless) compressors utilize the “prediction + entropy
coding” approach, wherein a statistical model generates predictions for the upcoming
symbols given the past and an entropy coder (e.g., arithmetic coder [3]) uses the
predicted probabilities to perform compression. In this general framework, a better
prediction model directly induces a better compressor.

In past few years, the interest in neural networks (NN) based compression has been
growing due to their exceptional performance on several modeling and prediction tasks
(e.g., language modeling [4]). NN models can typically learn highly complex patterns
in the data much better than traditional finite context and Markov models, leading
to significantly lower prediction errors. This has led to the development of several
compressors using neural networks as predictors. However, many existing NN based
compression methods have been tailored for compression of certain data types (e.g.,

2375-0359/21/$31.00 ©2021 IEEE 153
DOI 10.1109/DCC50243.2021.00023
Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

text [5] and images [6]), where the prediction model is trained on separate training
data of a specific data type. This approach becomes inapplicable in the absence
of existing training data and domain knowledge, and thus is not appropriate for
general-purpose compression. Nevertheless, there are a few NN-based compressors
that serve as general-purpose compressors, such as CMIX (https://github.com/
byronknoll/cmix) and the recently proposed LSTM-Compress (https://github.
com/byronknoll/lstm-compress) and NNCP (https://bellard.org/nncp/). In
parallel to the work on compression, there has been significant progress in language
modeling (e.g., BERT [4]). In principle, these can be used for compression leading
to significant improvements over the state-of-the-art compressors. However, the NN
model is typically quite large and needs vast amounts of data for training, limiting
their direct applicability to general-purpose compression.

In this work, we propose a general-purpose lossless compressor for sequential data,
DZip, that relies on neural network based modeling. DZip treats the input file as a
byte stream and does not require any additional training datasets. Hence, DZip is a
standalone compressor capable of compressing any dataset (regardless of the alphabet
size), unlike most existing neural network based compressors. We use a novel hybrid
training approach which is ideally suited for such a setting and combines elements of
adaptive and semi-adaptive modeling.

We evaluate DZip on datasets from several domains including text, genomics and
scientific floating point datasets, and show that it achieves on average 29% improve-
ment over Gzip (https://www.gzip.org/), 33% improvement over LSTM-Compress,
12% improvement over 7zip (https://www.7-zip.org/), and 8% improvement over
BSC (http://1libbsc.com/), reducing the gap between general-purpose and special-
ized compressors. In comparison to state-of-the-art NN-based compressors CMIX and
NNCP, we demonstrate that DZip can achieve similar performance on most datasets
of sufficiently large length (more than 60 million symbols) while being 3-4 times faster
than CMIX and 4 times faster than NNCP in encoding speed. We note that, in con-
trast to traditional compressors, NN-based compressors suffer from slower encoding
and decoding speeds due to the computationally intensive nature of neural networks.

Our results also indicate that for some datasets, the performance of DZip is close
to that of specialized compressors, which are highly optimized for the specific data
types. In addition, our evaluation on certain synthetic datasets of known entropy
highlights the ability of the proposed compressor to learn long-term patterns better
than the other general-purpose compressors. DZip is available as an open source
tool at https://github.com/mohit1997/Dzip-torch, also providing a framework
to experiment with several neural network models and training methodologies. We
note that DZip is an extension of DeepZip [7][8] (which is similar to the bootstrap
only mode discussed in Section 3). An older version of DZip (without GPU based
encoding) was presented as a poster at DCC 2020 [9)].

2 Background

Consider a data stream SV = {S},S5,...,Sx} over an alphabet S which we want
to compress losslessly. We consider the statistical coding approach consisting of a
prediction model followed by an arithmetic coder. For a sequence SV, the aim of

154

Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

Compressed
Output
Trained

Bootstrap

model
(Sr—l Sr—K) ‘.

Trained Suppgr:er

Sequence — Bootstrap mode
model Combined model
(S1,....Sv) Bootstrap model
training .SI',- ~~~~~~~~ -» Updates
Stage I Stage II

Figure 1: DZip compression overview: In Stage I, the boostrap model is trained by scanning
the sequence multiple times. In Stage II, the bootstrap model is combined with the sup-
porter model to predict the conditional probability of the current symbol given the past K
symbols (K = 64 by default). The current symbol and the predicted probabilities are then
fed into the arithmetic coder followed by updates to combined model. The final compressed
output consists of the trained bootstrap model and the arithmetic coder’s output.

the model is to estimate the conditional probability distribution of the r*® symbol S,
based on the previously observed K symbols, denoted as P(S,|S,_1,...,S,_k), where
K is a hyperparameter. An estimate of this probability and S, are then fed into the
arithmetic encoding block which recursively updates its state. This state serves for
the compressed representation at the end of this process. The compressed size using
this approach is equivalent to the cross entropy (C'E) loss shown in Eq. 1, where |S]
is the alphabet size, y , § (vectors of size |S|) are the one-hot encoded ground truth
and the predicted probabilities, respectively, and N is the sequence length.

N N |8

L= Z CE(y,.g,)= Z Zyrk log,

r=1 r=1 k=1

.)
Yrk

The model that estimates the probability P(S,|S,_1,...,S,—k), where r € {K +
1,..., N}, should be trained to minimize the cross entropy loss on the data to be
compressed. This training can be performed in three ways [10] as discussed below:
1. Static: Here the model is first trained on some external training data and is made
available to both the compressor and the decompressor. This approach requires access
to similar training data and is not directly applicable to general-purpose compression.
2. Adaptive: In this case, both the compressor and the decompressor are initial-
ized with the same random model. This model is updated adaptively based on the
sequence seen up to some point and does not require additional training data. For
complex models, this approach may pose difficulties in training the model in a single
pass and adapting to changing statistics (e.g., for non-stationary data).

3. Semi-adaptive: Here the model is first trained on the input sequence and can
involve multiple passes through the input data. The trained model parameters are
saved as a part of the compressed file, along with the arithmetic coding output,
as they need to be used for decompression. The additional cost is expected to be
compensated by the better quality of predictions made by the trained model, which

155

Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

would result in a smaller arithmetic coding output. There is however a trade-off,
since a larger model can lead to better compression but the gains might be offset by
the size of the model itself, particularly for smaller datasets.

3 Methods

The proposed compressor DZip utilizes a hybrid training scheme that combines semi-
adaptive and adaptive training approaches by means of two models, a bootstrap model
and a supporter model, as shown in Figure 1. The bootstrap model is a parameter effi-
cient recurrent neural network (RNN) based model that is trained in a semi-adaptive
fashion by performing multiple passes on the sequence to be compressed (prior to
compression). To further improve the compression, we use a larger randomly initial-
ized supporter model which is combined with the bootstrap model. This combined
model is updated in an adaptive manner during encoding (symmetrically during de-
coding) and generates the final predictions used for compression. Due to the use of
adaptive training, the supporter model parameters do not need to be stored as part
of the compressed file.

3.1 Model architecture

1. Bootstrap model: Its architecture is designed keeping in consideration the
trade-off between model size and prediction capability, leading to the choice of an
RNN-based design with parameter-sharing across time steps. The model is as shown
in the top half of Figure 2 and consists of an embedding and two biGRU layers (bidi-
rectional gated recurrent units [11]) followed by linear and dense (fully connected)
layers. The output of every m'" time step after the biGRU layers is stacked and
flattened out into a vector (m = 16 by default). Choosing only every m' output
helps in reducing the number of parameters in the next layer while still allowing the
network to learn long-term dependencies. The output of the dense layer (with ReL.U
activation) and the flattened vector are added together after linear layers to generate
the unscaled probabilities (logits) denoted as logits, (of dimension equal to the vo-
cabulary size). This dense layer is important for learning long-term relationships in
the inputs and showed improved performance on synthetic datasets. The layer widths
of the bootstrap model are automatically chosen depending on the vocabulary size of
the input sequence, since a higher vocabulary size demands larger input and output
sizes. As the vocabulary size varies, the embeddings’ dimensionality varies from 8 to
16; hidden state for biGRU varies from 8 to 128; and the dense layer’s width (prior
to logits) varies from 16 to 256. The above hyperparameters were chosen empirically
based on experimental results.

2. Supporter model: The supporter model architecture is designed to adapt quickly
and provide better probability estimates than the bootstrap model, without any con-
straints on the model size itself. The input to this model consists of the embeddings
and the intermediate representations from the bootstrap model (see Figure 2). The
supporter model consists of three sub-NNs which act as independent predictors of
varying complexity. The first sub-NN is linear, the second sub-NN has two dense
layers and the third sub-NN uses residual blocks [12] for learning more complex pat-

156

Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

Bootstrap model ol [inear \—
1 I

biGRU H
‘ = Flatten

! ‘L Linear
Dense . ,
D Residual
ense
Supporter model Block (x2)

Figure 2: Combined model architecture consisting of bootstrap and supporter models.
Dense layers correspond to fully connected layers with ReLU activation. Linear layers
are also fully connected layers but do not incorporate a non linear transformation. Concat
block denotes concatenation of all the input vectors.

sbuippaquig

Input

logits,
Convex Probabilities
Combination

Concat

sBuippaqui3

terns [4]. We employ ReLU activation in all dense layers and the residual blocks.
Then, each of the output vectors from these sub-NNs are linearly downsized into a
vector of dimensionality equal to the vocabulary size and added together. The re-
sult of this operation is interpreted as the logits for the supporter model, denoted as
logits,. Based on empirical evaluation, the widths for the dense and residual layers
are automatically set to 1024 or 2048 depending on the vocabulary size.

3. Combined model: The combined model takes the logits from the bootstrap
model (logits,) and the output logits from the supporter model (logitss) to generate
the final logits (logits.) through a convex sum as shown below.

logits, = X * logits, + (1 — \) x logitss , s.t. A €0, 1],

where A is a learnable parameter (restriced to [0, 1] through sigmoid activation). This
allows the combined model to weigh the logits from the two models appropriately
[13]. Since the prediction of supporter model can be expected to be poor initially,
this combination allows the model to give more weight to logits, as compared to
logitss. The final output logits, is scaled to probabilities through softmax activation,
and then input to the arithmetic coding.

3.2 Model training

The first stage of DZip involves reading the input file byte-by-byte and, based on
the vocabulary size!, automatically selecting the hyperparameters for the bootstrap
and supporter models. The second stage consists of training the bootstrap model
by performing multiple passes through the sequence. The model is trained for 8
epochs with a batch size of 2048, gradient clipping, context length K = 64 and Adam
optimizer [14] (learning rate 0.005, 5; = 0.9 and Sy = 0.999) with learning rate decay,
while minimizing categorical cross entropy loss (Eq. 1). Once the training is finalized,
this model is saved as part of the compressed file after being losslessly compressed
with general-purpose compressor BSC. DZip can then be used in two modes which
trade-off compression ratio with encoding/decoding speed.

'In this case, the maximum vocabulary size can be 256 which would correspond to byte symbols.

157

Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

Combined mode (hybrid): Here, the prediction is done using the combined model,
where the trained bootstrap model serves as a prior. The supporter model parame-
ters are pseudo-randomly initialized whereas the bootstrap model parameters remain
fixed. For fast encoding, we divide the sequence into 64 equally sized parts, and pre-
dictions for all parts are generated simultaneously in a batch. After encoding symbol
y (a one-hot vector), the combined model parameters are optimized by minimizing
the following loss,

Leom = CE(y, fs(logits.)) + CE(y, fs(logits,)),

where fs denotes the softmax activation, and C'E is the cross entropy loss defined
earlier. The second term in this loss function forces the supporter model to learn
even if the logits. are assigning more weight to the logits,. The weight updates are
performed after encoding/decoding every 20 symbols (per part) with a learning rate
of 0.0005 using Adam optimizer with §; = 0 and S = 0.999 to quickly adapt to the
non-stationary sequence statistics. This is the default mode of DZip.

Bootstrap only mode: The sequence is divided into 1024 parts and the first K
symbols of each part are encoded using uniform probabilities. Then we encode each
part, starting from the (K + 1)™ symbol using the probability estimates from the
bootstrap model, where the prediction for each part is done in a single batch (with a
batch size of 1024). This procedure is repeated until all parts are successfully encoded.
Reproducibility: Since DZip utilizes a GPU to reduce runtime, its current imple-
mentation requires encoding and decoding to be performed on the same hardware (a
limitation of the PyTorch library).? DZip can be fairly easily adapted to the appro-
priate deep learning framework once reproducibility across GPUs becomes available.

4 Experiments

We benchmark the performance of our neural network based compressor DZip on real
and synthetic datasets, and compare it with state-of-the-art general-purpose compres-
sors Gzip, BSC (BWT-based compressor), 7zip, and ZPAQ (http://mattmahoney.
net/dc/zpaq.html), as well as with RNN-based compressors LSTM-Compress, NNCP
and CMIX. ZPAQ is a general purpose compressor which is specialized for text data,
where it achieves better performance. LSTM-Compress uses an LSTM (Long Short
Term Memory Cells) model to adaptively learn the source distribution while encod-
ing with an arithmetic coder. CMIX, the current state-of-the-art NN-based general-
purpose lossless compressor, uses several thousand context models followed by an
LSTM byte level mixer (to combine predictions) and a bit level NN-based context
mixer. The context models and the mixers are then trained through backpropaga-
tion adaptively while encoding the input data. CMIX is specialized for text and
executable data. NNCP is also an LSTM-based compressor which adaptively com-
presses the input sequence while simultaneously updating the weights of the RNN.
NNCP uses seven stacked LSTM layers which incorporate feature normalisation lay-
ers, further adding to the overall runtime. Moreover, the compressor only supports

2See https://pytorch.org/docs/stable/notes/randomness.html. Nevertheless, the DZip
framework also supports CPU based encoding and decoding.

158

Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

Table 1: Bits per character (bpc) achieved by the tested compressors on the real datasets.
Best results are boldfaced. log, |S| represents the bpc achieved assuming an independent
uniform distribution over the alphabet of size |S|. For DZip, we specify the total bpc and
the size of the model (in % space occupied). Spec. Comp. stands for specialized compressor.

File Len/logs|S| Gzip BSC 7zip ZPAQ c::ri?:gss NNCP CMIX prD‘?\I/E) 3 g(;:;cp

webster 41.1M/6.61 2.32 1.29 1.70 1.09 1.23 0.98 0.83 |1.44 31.33% | 0.83
mozilla 51.2M/8.00 2.97 252 2.11 1.88 2.05 1.63 1.39 |2.15 25.37% | 1.39
h.chr20 64.4M/2.32 2.05 1.73 1.77 1.68 7.82 1.66 1.62 | 1.63 0.92% | 1.62
h. chrl 100M/2.32 2.14 1.78 1.83 1.74 7.36 1.67 1.67 | 1.67 0.58% | 1.65
c.e. genome 100M/2.00 2.15 1.87 1.89 1.80 7.51 1.80 174 | 1.81 0.53% | 1.72
dl-quality 100M/2.00 0.50 0.35 0.35 0.34 6.48 0.34 0.33 |0.34 2.79% | 0.51
teats 100M/4.75 2.64 1.68 1.93 1.52 1.76 148 131 |1.74 9.38% | 1.31
np-bases 300M/2.32 216 1.86 1.93 1.79 7.34 170 1.73 | 173 0.19% | 1.75
np-quality 300M/6.51 5.95 5.69 5.71 5.53 5.51 550 5.49 |556 1.13% | 5.35
enwiki9 500M/7.69 272 1.64 1.94 1.43 1.66 1.21 105 | 1.47 3.67% | 1.05
num-control 159.5M/8.00 7.57 7.66 7.41 6.96 6.82 6.72 6.63 | 6.83 2.67% | 7.12
obs-spitzer 198.2M/8.00 6.50 2.51 2.27 2.20 2.87 173 158 |2.18 6.70% | 7.74
msg-bt 266.4M/8.00 7.08 6.96 5.76 6.29 6.22 536 5.24 |521 2.08% | 6.67

audio 264.6M/8.00 575 4.63 4.98 4.17 4.92 3.49 344 |3.40 3.20% | N/A

CPU based training and inference, resulting in extremely slow encoding speed. We
also provide a comparison with specialized compressors for the real datasets when
available. Unless otherwise stated, all results corresponding to DZip are obtained
using the combined model (default setting). DZip results are reported on a 16 GB
NVIDIA Tesla P100 GPU. Gzip, BSC, 7zip, ZPAQ, LSTM-Compress, NNCP (on 8
cores) and CMIX results are reported on Intel Xeon Gold 6146 CPUs.
Datasets: We consider a wide variety of real datasets with different alphabet sizes
and sequence lengths, including genomic data (h. chrl, h. chr20, c.e. genome, np-
bases, np-quality, ill-quality), text (webster, text8, enwiki9), executable files (mozilla),
double precision floating point data (num-control, obs-spitzer, msg-bt), and audio
data (audio). Furthermore, we also test it on synthetic datasets with known entropy
rate and increasing complexity. Dataset sources and descriptions are provided at
https://github.com/mohit1997/Dzip-torch/blob/master/Datasets.md.
Results on real data: We first analyze the performance of DZip on the real datasets
(Table 1). On each dataset, we include results for specialized compressors (when
available) as their performance serve as a baseline for achievable compression. In
particular, we use CMIX for webster, mozilla, text8, and enwiki9, GeCo [15] for h.
chr20, h. chrl, c.e. genome, and np-bases®, DualCtx [16] for np-quality*, QVZ [17]
for dll-quality®, and FPC [18] for msg-bt, num-control, and obs-spitzer datasets. Since
ZPAQ is also specialized for text data, we discuss its comparison with DZip on webster,
textS and enwiki9. We do not consider any specialized compressors for audio since
we generate the binary audio file by concatenating multiple audio files together.
When compared against traditional compressors Gzip, BSC and 7zip, DZip offers
the best compression performance for all datasets except for webster and mozilla, in
which BSC or 7zip perform better than DZip. Specifically, DZip offers on average

3GeCo is not optimized for nanopore genomic read bases (np-bases).
4Unlike DZip, DualCtx uses read bases as an additional context for quality value compression.
®QVZ is optimized for lossy compression, but also provides a mode for lossless compression.

159

Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

about 29% improvement over Gzip, 12% improvement over 7zip and 9.4% improve-
ment over BSC. ZPAQ), which is specialized for text datasets, consistently outperforms
DZip on webster, mozilla, text§ and enwiki9. Note however that the gap decreases
with the increase in length of the sequence, as the overhead of storing the bootstrap
model is reduced. On other datasets, DZip always outperforms ZPAQ (except for
np-quality and c.e. genome where the performance is similar).

With respect to NN-based compressors, we observe that DZip consistently out-
performs LSTM-Compress (33% improvement) on datasets of length larger than 60
million. In comparison to NNCP and CMIX, DZip performs either worse or similar
on most datasets. Specifically, NNCP performs better than DZip on the text and
executable datasets with roughly 20% improvement, while the performance on the
remaining datasets is near-identical. Finally, CMIX was observed to perform con-
sistently better than all other compressors on all datasets except msg-bt and audio,
where DZip performs slightly better. Since CMIX is specialized for text and exe-
cutable files, the bpc is significantly better for webster, mozilla, text§8 and enwiki9
datasets. On genomic datasets, CMIX provides on average approximately 3-4% im-
provement over DZip. Note that CMIX is expected to outperform DZip, as it uses
several thousand context models specialized for specific data types. In contrast, DZip
uses a single model and does not incorporate any data type specific knowledge.

With respect to specialized compressors, we observe that they outperform DZip
in all cases, except for the genomic files and scientific floating point datasets where
DZip offers improved performance. This may be explained because QVZ, GeCo and
FPC are not optimized for lossless compression of quality data, nanopore bases and
scientific floating point data, respectively.

Finally, it is important to note that the performance of DZip is sensitive to the

alphabet size and the sequence length because of the overhead associated with storing
the bootstrap model parameters. Specifically, for small length and large alphabet
sequences such as webster and mozilla datasets, the bootstrap model size occupies
31% and 25% of the compressed file size, respectively, hurting the overall compression
ratio. However, as the sequence length increases, this model size contribution gets
amortized. For example, on np-bases, np-quality, msg-bt and audio datasets, DZip is
able to achieve a performance close to that of NNCP and CMIX.
Results on synthetic data: We also evaluate DZip on two sequence classes with
known entropy rates, XOR-k (entropy rate 0) and HMM-k (entropy rate 0.469), where
k represents the memory of the sequence. We consider values of k ranging from 20
to 70. We observe that DZip achieves the best compression performance in all cases,
almost achieving the entropy rate of the corresponding sequences when k < 70, with
slight overhead due to the bootstrap model size. Since DZip uses 64 previous symbols
for prediction, it becomes impossible to learn dependencies beyond this range. Note
that this hyperparameter can be changed at the cost of increased encoding/decoding
runtime. On the contrary, Gzip, BSC, ZPAQ, 7zip, LSTM-Compress, NNCP and
CMIX fail to achieve meaningful compression, except for k£ = 20 in which case BSC
and ZPAQ are able to capture the dependency to some extent.5

6Results not shown due to space constraints.

160

Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

Table 2: Compression in bpc obtained by (i) only the bootstrap model and (ii) DZip
(combined model). Improv. stands for the improvement of the combined model with
respect to the bootstrap model (in bpc).

FILE webster mozilla h. chrl text8 np-bases np-quality enwiki9 obs-spitzer msg-bt audio
Length 41.1M 51.2M 100M 100M 300M 300M 500M 198.2M 266.4M 264.6M
Bootstrap Only 1.474 2.233 1.720 1.789 1.755 5.588 1.596 2.445 5.259 3.405
DZip 1.443 2.150 1.673 1.737 1.725 5.562 1.470 2.181 5.214 3.389
Improv. 0.031 0.083 0.047 0.052 0.03 0.026 0.126 0.264 0.045 0.016

Trade-off between “bootstrap only” and combined modeling approaches:
As an ablation study, we compare the two compression modes: (i) using only the
trained bootstrap model and (ii) using the combined DZip hybrid model with adaptive
training (default setting) on selected real datasets (Table 2). On average, we observe
that using the proposed combined model improves the compression by 0.072 bpc on
the real datasets. DZip in bootstrap only mode still outperforms Gzip, 7zip, BSC
and LSTM-Compress on most of the selected datasets, while being more practical
due to its reduced running time. For example, we observe 27% improvement with
respect to Gzip, 31% improvement with respect to LSTM-Compress, 9% improvement
with respect to 7zip, and 6% improvement over BSC. Hence, depending on speed and
performance requirements, one mode may be preferred over the other.
Computational requirements: The first stage of DZip, which consists on training
the bootstrap model, requires 2-5 minutes/MB (depending on the alphabet size). In
the bootstrap only /combined mode, the encoding and decoding typically take 0.4/2.5
minutes per MB and 0.7/2.8 minutes per MB, respectively. DZip outperforms other
NN-based compressors in terms of computational performance because it relies on
simpler models and it uses GPU along with various parallelization schemes adopted
during both training and encoding. LSTM-Compress is 2/3 times faster in encoding
speed and 5/1.3 times slower in decoding speed than DZip in bootstrap only/combined
mode. Compared to NNCP, DZip compresses 5-6/3-4 times faster and decompresses
60/15 times faster in bootstrap only/combined mode. We also implemented NNCP
compressor on GPU and observed that NNCP still encodes 2/4 times slower and
decodes 20/15 times slower as compared to bootstrap only/combined mode for DZip.
CMIX uses specific preprocessing transformations based on the data type and has
variable encoding/decoding speed. On average, DZip compresses more than 4/5 times
and decompresses 25/10 times faster than CMIX in bootstrap only/combined mode.
In comparison, Ggzip, 7zip, BSC and ZPAQ take just a few seconds per MB for
compression and less than a second per MB (except ZPAQ which employs a few
seconds) for decompression. The difference in compression speeds is expected since
training and inference for NNs are expensive, but they can provide better compression
rates due to superior modeling capabilities.

5 Conclusion

In this work, we introduce a general-purpose neural network prediction based frame-
work for lossless compression of sequential data. The proposed compressor DZip uses
a novel NN-based hybrid modeling approach that combines semi-adaptive and adap-

161

Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

tive modeling. We show that DZip achieves improvements over Gzip, 7zip, BSC,
ZPAQ and LSTM-Compress for a variety of real datasets and near optimal compres-
sion for synthetic datasets. DZip also compares favorably with the state-of-the-art
NN-based compressors CMIX and NNCP, achieving similar compression while being
substantially faster. Although the practicality of DZip is currently limited due to
the required encoding/decoding time, we believe the proposed framework and exper-
iments can shed light into the potential of neural networks for compression, as well
as serve to better understand the neural network models themselves.

References

[1] Adam Auton et al., “A global reference for human genetic variation,” Nature, vol.
526, no. 7571, pp. 68-74, 2015.

[2] I. Armeni et al., “Joint 2D-3D-Semantic Data for Indoor Scene Understanding,” ArXiv
e-prints, Feb. 2017.

[3] Tan H. Witten et al., “Arithmetic Coding for Data Compression,” Commun. ACM,
vol. 30, no. 6, pp. 520-540, June 1987.

[4] Jacob Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for Lan-
guage Understanding,” arXiww preprint arXiv:1810.04805, 2018.

5] Q. Liu, Y. Xu, and Z. Li, “DecMac: A Deep Context Model for High Efficiency
Arithmetic Coding,” in 2019 (ICAIIC), Feb 2019, pp. 438-443.

[6] Friso H. Kingma, Pieter Abbeel, and Jonathan Ho, “Bit-swap: Recursive bits-
back coding for lossless compression with hierarchical latent variables,” CoRR, vol.
abs/1905.06845, 2019.

[7] M. Goyal, K. Tatwawadi, S. Chandak, and I. Ochoa, “Deepzip: Lossless data com-
pression using recurrent neural networks,” arXiv preprint arXiv:1811.08162, 2018.

[8] M. Goyal, K. Tatwawadi, S. Chandak, and I. Ochoa, “Deepzip: Lossless data compres-
sion using recurrent neural networks,” in 2019 Data Compression Conference (DCC),
2019, pp. 575-575.

[9] M. Goyal, K. Tatwawadi, S. Chandak, and I. Ochoa, “Dzip: Improved general-purpose
lossless compression based on novel neural network modeling,” in 2020 Data Compres-
sion Conference (DCC), 2020, pp. 372-372.

[10] Timothy Bell et al., “Modeling for Text Compression.,” ACM Comput. Surv., vol. 21,
pp- 557-591, 12 19809.

[11] K. Cho et al., “Learning phrase representations using RNN encoder—decoder for statis-
tical machine translation,” in 2014 (EMNLP), Doha, Qatar, Oct. 2014, pp. 1724-1734.

[12] Kaiming He et al., “Deep residual learning for image recognition,” CoRR, vol.
abs/1512.03385, 2015.

[13] Matthew V. Mahoney, “Adaptive weighing of context models for lossless data com-
pression,” in Tech. Rep. CS-2005-16, Florida Tech., 2005.

[14] Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimization,”
CoRR, vol. abs/1412.6980, 2014.

[15] Diogo Pratas et al., “Efficient compression of genomic sequences,” in 2016 Data
Compression Conference (DCC). IEEE, 2016, pp. 231-240.

[16] Guillermo Dufort y Alvarez et al., “Compression of Nanopore FASTQ Files,” in Inter.
Work-Conference on Bioinformatics and Biomedical Engineering. Springer, 2019.

[17] Greg Malysa et al., “QVZ: lossy compression of quality values,” Bioinformatics, vol.
31, no. 19, pp. 3122-3129, 2015.

[18] M. Burtscher and P. Ratanaworabhan, “FPC: A High-Speed Compressor for Double-
Precision Floating-Point Data,” IFEE Transactions on Computers, vol. 58, 2009.

162

Authorized licensed use limited to: GOOGLE. Downloaded on September 22,2025 at 18:45:19 UTC from IEEE Xplore. Restrictions apply.

		2022-08-24T17:41:32-0400
	Preflight Ticket Signature

