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Abstract

Large language models (LLMs) are a transformational capability at the frontier
of artificial intelligence and machine learning that can support decision-makers in
addressing pressing societal challenges such as extreme natural hazard events. As
generalized models, LLMs often struggle to provide context-specific information,
particularly in areas requiring specialized knowledge. In this work we propose a
retrieval-augmented generation (RAG)-based multi-agent LLM system to support
analysis and decision-making in the context of natural hazards and extreme weather
events. As a proof of concept, we present WildfireGPT, a specialized system
focused on wildfire hazards. The architecture employs a user-centered, multi-agent
design to deliver tailored risk insights across diverse stakeholder groups. By inte-
grating natural hazard and extreme weather projection data, observational datasets,
and scientific literature through an RAG framework, the system ensures both the
accuracy and contextual relevance of the information it provides. Evaluation across
ten expert-led case studies demonstrates that WildfireGPT significantly outperforms
existing LLM-based solutions for decision support.

Introduction

Natural hazards and extreme weather events such as wildfires, floods, and hurricanes present sig-
nificant operational and management challenges across sectors, particularly in the management of
critical infrastructure systems [l 2,13} 14} 5]. Although scientific research provides the building blocks
for a wide range of solutions to address the increasing risk from natural hazards, the complexity and
volume of published research often hinder the efficient translation of scientific knowledge into risk
reduction policies and programs [6]. This disconnect is particularly problematic for professionals at
the forefront of managing hazard-related risks, such as urban planners, emergency managers, and
infrastructure operators, who may have limited access to the latest knowledge and methods to mitigate
these threats. Recent advances in natural language processing, especially large language models
(LLMs), present an innovative solution for democratizing science on natural hazard resilience and
facilitating knowledge transfer [[7, [8]. LLMs possess the potential to process and synthesize vast
amounts of textual information and explain them through conversations, making crucial information
accessible to people from diverse backgrounds [9} 10, [11]].

Nonetheless, existing LLM research for natural hazard decision support faces fundamental limitations
in personalization, data utilization, and evaluation. The spatial heterogeneity of natural hazards and
infrastructure vulnerability demands location-specific analyses at granular resolution. The pronounced
lack of textual (i.e., scientific papers and reports) and data-based (i.e., projections and observational
data) knowledge integration in existing research [12} 13} [14} [11} [15, 16, [17] hinders the ability to
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Figure 1: Overview of WildfireGPT architecture comprising an LLM agent integrated with the multi-
agent RAG framework. The WildfireGPT prototype focuses on enhancing consulting interactions
using LLM agents stepping through a multistage approach. Its user profile agent engages the user
with a tailored questionnaire to create a detailed profile; the planning agent formulates a customized
action plan addressing the user’s queries and concerns, ensuring alignment with their evolving needs;
and the analyst agent aids in accessing and interpreting relevant data and literature and providing
recommendations.

synthesize comprehensive evidence grounded in local contexts [18]]. Our comparative analysis with
existing alternatives such as ChatClimate [12] and Perplexity Al [19] shows that standard LLM
applications fail to reliably interpret complex grid-structured data formats, critically limiting their
utility for location-specific risk assessment and infrastructure planning. To address these limitations,
we introduce an innovative multi-agent LLLM prototype, WildfireGPT, designed as a co-pilot for
understanding natural hazards and developing adaptation strategies. The agents are designed to
engage users in a series of questions to understand their professional background, location of interest,
and specific concerns about natural hazards. Based on this input, the system develops a strategic plan
for analysis, determining which datasets to examine, what literature to review, and the appropriate
scope for recommendations. Moreover, we combine location-specific projections, hazard history,
census characteristics, and scientific literature to augment LLM responses using a retrieval-augmented
generation (RAG) approach [20, 21]]. Moreover, our system integrates interactive visualizations of
geospatial data with textual outputs, enabling nuanced user exploration of multidimensional risk
factors. We assess the performance of WildfireGPT through 10 case studies covering a diverse range
of topics and locations and provide a modular comparison against ChatClimate [12] and Perplexity
Al [19] for data and literature retrieval effectiveness.

Methodology

User-Centered Multi-Agent Transition

An overview of the WildfireGPT system is shown in Figure [I] We developed a multi-agent RAG
[22] system as a collaborative framework designed to streamline complex decision-making tasks by
leveraging specialized agents for different stages of the workflow. From an end-user perspective,
WildfireGPT linearly transitions through three main agents—the user profile agent, the planning agent,
and the analyst agent to guide users through a seamless, interactive, and personalized experience
(Figure [I). We designed a task orchestrator agent to serve as the central coordinator in the multi-
agent system, ensuring seamless interaction between the user and the specialized agents for efficient
task execution. The orchestrator does not act as a decision-maker; rather, it facilitates the flow of
information by passing outputs from one agent to the next.

The user profile agent is prompted to follow a structured dialogue designed to gather essential
information to prepare for generating actionable wildfire risk insights later. It begins with five
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Figure 2: Interactive visualizations in the WildfireGPT user experience, illustrated here with three
representative views from the case study themed "Current Wildfire Risk Analysis." The complete
set of visualizations (including autumn, winter, wildfire incident maps, temporal trends, and census
overlays) is provided in Appendix @

predefined questions that capture critical user details: the user’s professional background, primary
concerns, location of interest, time-frame for addressing concerns, and the scope of interest to refines
the focus of the risk assessment. Then, the agent generates a detailed user profile and prompts the
user to review and confirm the profile’s accuracy.

Based on the user profile, the planning agent formulates a step-by-step action plan outlining the
datasets to be analyzed, the focus of the literature review, and how the recommendations will be
formulated by the analyst agent. The user can provide feedback on the plan, allowing for refinements
until it meets the user’s expectations, ensuring transparency and oversight. The prompt to the planning
agent leverages one-shot learning by including an example plan that act as a demonstration, guiding
the model to understand the desired structure and format of the output. In addition to the example,
the prompt includes detailed dataset descriptions, outlining the characteristics and scope of the three
available wildfire data sources to constrain the model’s data selection. The prompt also integrates the
user profile for the agent to make informed decisions.

The analyst agent guides the user through the analysis process outlined in the plan, by leveraging the
RAG framework to conduct analyses, integrating diverse data sources and domain knowledge. This
agent maintains the summarized user profile and action plan within its prompt context to ensure that
WildfireGPT adheres to the plan and addresses user follow-ups, offering to explore specific topics or
proceed to the next step.

The data retrieval and visualization functionality of the analyst agent is designed to assess wildfire
risk by leveraging geospatial data and fire trends. The process begins with location-based data
retrieval, based on the location information collected by the user profile agent. For all datasets, data
within a 36-kilometer radius of the specified coordinate is retrieved and presented. The results are
visualized through interactive maps, tables, and statistical plots. The map-based visualization employs
GeolJsonLayer rendering to display the data points. A pin-layer visualization is also integrated to mark
the exact user-specified location. To facilitate decision-making, the system dynamically generates
a structured report summarizing the statistics. For scientific literature, the analyst agent queries
a corpus developed by Argonne National Laboratory for the CIACC tool [23| 24]. All abstracts
of the papers in this corpus are pre-embedded using the al1-MinilLM-L6-v2 embedder from the
SentenceTransformers library [25] and stored in a Faiss vector store [26]. The literature search query
is processed by the same embedding model and undergoes a k-nearest neighbor search, identifying
the top k-most relevant abstract based on cosine similarity between the query vector and stored paper
embeddings in the FAISS vector database. To enhance the reliability of the retrieved results, the
system attempts to validate DOIs (Digital Object Identifiers) by cross-referencing them with CrossRef
metadata. The final output is structured as a ranked list of the three most relevant papers, displaying
each paper’s title, authors, publication year, and abstract, with a direct DOI link if verified.

To generate tailored recommendations, the analyst agent is provided with an augmented prompt
that incorporates context from the ongoing conversation to provide actionable recommendations. If



Table 1: Case studies conducted with domain experts to evaluate the performance and applicability
of WildfireGPT across various professions, geographic locations, and wildfire management themes.
Each case study represents either a location-specific inquiry derived from experts’ ongoing research
projects or a stakeholder perspective based on established regional collaborations. The description
column outlines the specific focus of each case. The studies span different time horizons and
incorporate a range of data types and analytical approaches to assess wildfire risk, impact, and
mitigation strategies. Case studies are listed in alphabetical order. We present the first three case
studies in the main text; the remaining cases are provided in Appendix@

Theme Profession | Location Description
Climate Im- | Atmospheric| Boston, Exploring medium-term (10-30 years) impact of climate on
pact on U.S. | Scientist MA wildfire occurrences and intensity in the U.S. Analyzing studies
Wildfires showing an increase in wildfire occurrences in Boston. Identify-
ing and addressing uncertainties affecting future wildfire risks.
Comprehensive | Engineer Mount Exploring long-term (50+ years) wildfire frequency, intensity,
Wildfire Im- Bigelow, and impacts. Investigating mitigation strategies, ecological and
pact AZ economic effects, and infrastructure considerations.
Current Wild- | Data Ana- | Chico, CA | Analyzing current wildfire data, causes, and forest management
fire Risk Anal- | lyst practices. Exploring predictive models incorporating real-time
ysis variables. Gathering detailed demographic and socioeconomic
profiles to assess risk and impact.

additional clarification or exploration is required, the analyst agent iterates the retrieval and response
process, continuously refining the output to address the user’s evolving needs.

In our study we employ GPT-4 Turbo [27] as the backbone of WildfireGPT, enabling it to dynamically
invoke different agents via function calling through the OpenAl Assistant API [28]]. The user interacts
with WildfireGPT through a chat interface built on the Streamlit-based web app [29]. More details of
the multi-agent architecture can be found in the Appendix.

Diverse Data Sources WildfireGPT combines natural hazard projections, observational data, so-
cioeconomic indicators, and scientific literature to deliver a multifaceted analysis of wildfire risks.
Location-specific datasets include FWI [30]) projections from the ClimRR portal [31]], recent wildfire
incident records (2015 to 2023) from the Wildland Fire Interagency Geospatial Services Group
[320133]], tree-ring and sediment-based fire history records from the International Multiproxy Paleofire
Database [34], and census data on poverty rates and housing units from the 2022 American Commu-
nity Survey 5-year estimates [35]]. Furthermore, a vast collection of abstracts of scientific literature
on wildfires, developed by Argonne National Laboratory for the Community and Infrastructure
Adaptation to Climate Change tool, is also integrated [23],24].

Interactive Visualizations WildfireGPT provides interactive geospatial visualizations of the location-
specific data within a 36 km radius of the user’s area of interest, allowing the user to explore and
analyze the data. For instance, the FWI displayed in Figure 2]uses a color scale ranging from yellow
(low risk) to red (very extreme). By hovering over a specific grid, the user can view the exact FWI
value for that location; by selecting different seasons and time periods, the user can comprehend the
changing landscape of the FWI. When visualizing recent wildfire history, the locations of all fire
records are displayed as red dots on the map, and the temporal trend of wildfire incidents is shown
in line graphs. Socioeconomic data, such as poverty rates and housing units, can be explored by
hovering over census block groups. This comprehensive spatial visualization facilitates insights into
the interplay among natural hazards, wildfire risk, and socioeconomic factors, enabling informed
decision-making and risk assessment.

Evaluating WildfireGPT: A Framework Built on Real-World Case Studies Evaluating con-
versational systems in the natural hazard domain presents unique challenges, including validating
information from diverse datasets, handling diverse user queries across varying levels of expertise
and backgrounds, assessing hazard conditions and their impact on different critical infrastructure,
ensuring the accuracy and reliability of responses based on the user’s profile and background, and
maintaining contextual relevance. While conversational systems are often evaluated by using lex-
ical similarity metrics (e.g., BLEU [36], ROUGE [37]), they correlate poorly with human expert
assessment of domain-specific content generation [38}139]]. To address this limitation, we adopted
an evaluation approach that prioritizes expert judgment over purely automated metrics. As part
of this effort, we conducted 10 in-depth case studies with domain experts from Argonne National



Laboratory specializing in natural hazard resilience, wildfire risk management, and infrastructure
vulnerability assessment. These domain experts participated in one-hour structured interviews, during
which they directly interacted with WildfireGPT through a facilitated interface. The experts either
posed questions from their ongoing projects or represented stakeholder perspectives based on their
regional collaborations, providing real-time feedback on system performance. These case studies
encompassed a diverse range of wildfire-related topics and locations across the United States, with
details summarized in Table[T}

Our evaluation of WildfireGPT employs three complementary stages. First, we conducted a modular
comparison of the analyst agent’s data and literature retrieval effectiveness against two alterna-
tives—ChatClimate and Perplexity AI —using controlled simulations based on our case studies.
ChatClimate is a conversational Al platform developed to enhance understanding of natural haz-
ard risks by providing accessible information grounded in the IPCC reports; Perplexity Al is an
Al-powered answer engine that delivers real-time responses by summarizing information from mul-
tiple web sources. Specifically, we extract 20 prompts from our case studies to test whether each
method is able to (i) retrieve and interpret location-specific wildfire data (n = 10) and (ii) provide
evidence-based answers to domain-specific questions (n = 10). The evaluation metrics for data
analysis include data provision (successful retrieval of relevant data), location specificity (geograph-
ical precision of retrieved data), and data accuracy (alignment between retrieved data and prompt
requirements). Similarly, we compare the integration of external knowledge, the citation practices,
the authority of the source, and the contextual relevance of responses to domain-specific questions.
We report the results of this comparison in the following section and the corresponding case study of
each prompt is detailed in the Appendix.

Additionally, we performed a qualitative ablation study examining how different levels of user profile
specificity impact the specificity and actionability of WildfireGPT’s responses, also through controlled
simulations derived from case study topics. Moreover, we evaluated the actual responses produced
during expert case studies through: (1) expert assessment of response relevance, entailment, and
accessibility and (2) exploration of scaling the human-in-the-loop evaluation using LLM-as-a-judge.
The results of these evaluations are included in the Appendix.

Results

The comparative data analysis in Table [2|reveals distinct performance patterns across the three models
WildfireGPT, ChatClimate, and Perplexity Al in the categories of (1) data provision—successful
retrieval of wildfire data; (2) location specificity—geographical precision of retrieved data; and (3)
data accuracy—correctness of the retrieved data values when compared with reference datasets,
evaluable only for WildfireGPT (with direct database access) and Perplexity Al (where external
data files could be uploaded for analysis). In the data provision category, WildfireGPT significantly
outperforms the others, succeeding in 9 out of 10 prompts, indicating strong capability in retrieving
relevant wildfire-related data. Perplexity Al follows with 7/10, while ChatClimate trails with just
5/10. In terms of location specificity, WildfireGPT again leads with 9/9, demonstrating precise
geographic referencing in its responses. Perplexity Al achieves moderate performance with 4/9,
whereas ChatClimate fails entirely in this category (0/6). For data accuracy, WildfireGPT shows a
clear advantage, with 8/9 correct outputs compared with Perplexity AI’s 2/8, indicating a substantial
gap in the factual correctness of retrieved data. Note that while our initial evaluation framework
included 10 test prompts, the effective sample size varies across categories because of dependencies
between evaluation criteria. For instance, location specificity could be assessed only when data
provision was successful, and accuracy could be evaluated only when the provided data contained
specific locations. Overall, WildfireGPT consistently shows the highest performance across all three
categories, making it the most robust tool for wildfire data analysis among those compared.

WildfireGPT demonstrated superior performance in location-specific data retrieval due to the system’s
user profile agent, which systematically verifies exact geographical coordinates with users prior
to data retrieval attempts. This feature ensures precise location identification, enabling successful
data retrieval whenever the requested information exists within the database. The failure occurred
in the Infrastructure Wildfire Risk case study (Denver, CO), where WildfireGPT provided Fire
Weather Index analysis using RCP 4.5 rather than the requested RCP 8.5 projections because RCP
4.5 was the only scenario available in the dataset, although this limitation was not acknowledged
when WildfireGPT interacted with the user—an issue that could be addressed in future iterations.



Table 2: Comparison of wildfire analysis tools for data analysis. WGPT = WildfireGPT, CC =
ChatClimate, PAI = Perplexity Al. Data accuracy could not be evaluated for ChatClimate because
there is no way to upload data files to its interface. Each row represents a specific prompt or task
related to wildfire analysis. For each metric, a v indicates that the tool met the criteria for that prompt,
while a x indicates it did not. NA means the metric was not applicable or could not be evaluated,
typically because of the previous criteria not being met; for example, when data is not provided, it
is not applicable to discuss the specificity or accuracy of the data. The superscript ! indicates that
although no specific number was mentioned, ChatClimate nonetheless interprets the increase in fire
risks in words.

Prompt Data Provision Location Specificity | Data Accuracy
WGPT CC PAI | WGPT CC PAI | WGPT PAI

(1) Analyze future climate data to understand v Ve v v X v v X

potential trends in fire danger in Boston, Mas-

sachusetts

(2) Analyze the recent fire incident data for Mora Ve X v v NA v v X

County, New Mexico, reviewing wildfire fre-
quency, intensity, and timing from 2015 to 2023
(3) Review the long-term fire history records to v X X v NA NA v v
assess the frequency and intensity of past wild-
fires over the last 50+ years in Mount Bigelow,
Arizona

(4) Analyze demographic and socioeconomic v v v v X v v v
profiles of the Chico area in California to un-
derstand which groups are most vulnerable in
wildfire scenarios

(5) Analyze long-term fire history records to X X X NA NA NA NA NA
assess wildfire events over the past 150 years
in the Naperville, Illinois, region

(6) Examine climate models and projections un- v v v v X X X NA
der the RCP 8.5 scenario to forecast potential
future wildfire risks in the medium term (10-30
years) in Denver, Colorado

(7) Analyze the recent fire incident data from the v X X v NA NA v X
Wildland Fire Interagency Geospatial Services
Group to assess the frequency, intensity, and
locations of recent wildfires in Sangre de Cristo

Mountains

(8) Analyze the recent fire incident data from the Ve X v Ve X V4 v X
last five years in Covington, Virginia

(9) Analyze the FWI focusing on both current v v v v X X v X

trends and projections for the mid-century period
(2045-2054) to assess the potential increase in
fire danger due to climate change in Beaverton,
Oregon

(10) Analyze projected wildfire risk data for the v V1 v v X X v X
mid-century period (2045-2054) to understand
the potential trends in fire danger in Las Vegas,
New Mexico

Overall Success Rate 9/10 5/10  7/10 9/9 0/6  4/7 8/9 2/8

ChatClimate exhibited significant analytical constraints, as its responses systematically defaulted to
broad climatological generalizations without geographical precision, consistently failing to tailor
information to the location in user queries. For example, in analyzing Boston’s fire danger trends,
ChatClimate inappropriately expanded its analytical scope to Arctic and Western U.S. fire patterns.
This systematic geographical decontextualization significantly compromised the system’s utility
for location-specific wildfire risk assessment. This issue stems in part from ChatClimate’s primary
reliance on IPCC reports and a limited repository of studies within its database, which prioritize
global or regional-scale climate insights over localized, granular data. Perplexity Al demonstrated
reasonable performance in data provision but exhibited substantial limitations in location specificity
when the corresponding data file was not provided by the user. The system primarily leverages
publicly accessible information rather than conducting direct data analysis, resulting in significant
geographical variance in performance based on public data availability. In regions with robust public
documentation, such as Chico, CA, the system successfully integrated multiple data sources including
local hazard mitigation plans. Conversely, analysis of areas with limited public records resulted in



either null responses or inappropriate source application: for example, the system erroneously applied
European wildfire danger reports to analyze local fire risk in Beaverton, OR. When the user uploads
the data file, Perplexity Al incorrectly represents data extracted at geographical coordinates different
from those specified in the query while claiming spatial correspondence or claims that the provided
data does not include the requested information.

The Ecosystem Fire Management case study (Naperville, IL) provides a particularly instructive
methodological comparison when confronting identical data limitations. When prompted to analyze
150-year fire history records for Naperville, all three systems encountered data unavailability. Wild-
fireGPT’s response demonstrated adaptability by explicitly acknowledging the absence of historical
data and proposing alternatives—specifically recommending the user to explore recent fire incident
data and FWI projections to maintain analytical continuity despite the constraint. ChatClimate
responded with generalization, discussing broad climatic shifts and anthropogenic interventions
affecting wildfire patterns over the last 150 years without any Naperville-specific information, ef-
fectively abandoning the geographical aspects within the query. Perplexity Al acknowledged the
data limitation but methodologically pivoted to institutional historiography, discussing the Naperville
Fire Department’s organizational history rather than wildfire patterns—a response that maintained
geographical specificity while deviating from the analytical framework of the original query. These
differential responses to identical data constraints reveal distinct epistemological approaches to
knowledge gaps that systematically influence analytical utility.

For evidence-based question answering, we employed four metrics: (1) external knowledge in-
tegration—incorporation of relevant information beyond vanilla language generation; (2) cita-
tion practices—provision of complete, verifiable bibliographic information; (3) source author-
ity—utilization of peer-reviewed scientific literature versus non-academic sources; and (4) contextual
relevance—application of information to the specific geographical, ecological, and socioeconomic
characteristics of query locations. Table [3|shows distinct patterns in scientific literature integration
and source validation. By design, all methods demonstrated strong integration of external knowledge
(7/10 to 10/10). When external knowledge was integrated, both WildfireGPT and Perplexity Al pro-
vided complete citations of the sources, while ChatClimate exhibited bibliographic deficiencies (7/10
in citation provision). Despite using authoritative sources, ChatClimate uses only in-text parenthetical
citations—author surname and year for scientific literature and standardized section references for
IPCC documents (e.g., “TIPCC_AR6_WGII_Chapter13, p.20")—without providing complete biblio-
graphic lists. While readers familiar with climate science literature might recognize and locate IPCC
citations, most scientific sources remain difficult to verify without full bibliographic information.
WildfireGPT and ChatClimate relied on authoritative sources (7/7). Perplexity Al, on the other hand,
demonstrated variable source authority (6/10), frequently incorporating non-peer-reviewed content
including commercial publications, news media, non-profit organizations, and social media sources.

Contextual relevance varied substantially across systems. WildfireGPT maintained high contextual
relevance (10/10), providing literature and analyses that shared characteristics with the specified loca-
tions, whether through direct geographical proximity (same state or region) or ecological similarity
(comparable forest types, fire regimes, or climate patterns). For example, in responses to queries
about Sangre de Cristo Mountains and Mount Bigelow, WildfireGPT identified studies conducted
in comparable montane forest ecosystems with similar elevation profiles and fire history patterns.
Perplexity Al similarly achieved high contextual relevance (10/10), although with variable levels of
authority in source selection. The contextual relevance can be attributed to both WildfireGPT and
Perplexity Al integrating a large set of sources to allow rich information to be retrieved, although
we identify areas for improvement in the following sections. In contrast, ChatClimate demonstrated
substantial contextual relevance limitations (4/10), frequently defaulting to continental or hemispheric
climate trends without establishing clear applicability to the specified locations. This geographical
generalization was particularly evident in responses to queries about Las Vegas, NM, and Covington,
VA, where the system referenced broad North American climate patterns without demonstrating
specific relevance to the distinctive fire regimes of the southwestern high desert or Appalachian forest
ecosystems, respectively.

Overall, WildfireGPT demonstrated precise geographical analysis with methodological adaptation
when confronting data limitations. ChatClimate exhibited geographical imprecision. Perplexity Al
demonstrated comprehensive information retrieval with significant limitations in source validation
and data interpretation accuracy. These performance patterns highlight fundamental distinctions
in the analytical architecture of the three models. Furthermore, they demonstrate that having a



Table 3: Comparison of Wildfire analysis tools for evidence-based question gnswering. WGPT =
WildfireGPT, CC = ChatClimate, PAI = Perplexity Al. Each row represents a specific prompt or
task related to wildfire analysis. For each metric, a v indicates that the tool met the criteria for
that prompt, while a x indicates it did not. NA means the metric was not applicable or could not
be evaluated, typically because of the previous criteria not being met; for example, when external
knowledge is not retrieved, no citation would be provided. For ChatClimate, when it refers to studies
outside of IPCC reports, it fails to provide the full title/link to the cited study. Contextual relevance
means that the response is related to the location to the best specificity possible and tries to address
the prompt. The main reason behind ChatClimate’s failures is that it often references general trends
in large countries without a clear clue as to whether the information could be relevant/transferred to
the location-specific queries in the prompt. The superscript numbers indicate the following issues
with PAI: 'Used articles from non-profit organizations, 2Included articles from news media, >Used
articles from commercial sources, “Referenced a Reddit post.

External Knowledge Retrieved Citation Provision Authoritative Sources | Contextual Relevance

Prompt WGPT _CC PAT WGPT CC_PAI | WGPT CC__ PAI | WGPT CC__ PAI
Is FWI a robust estimate of the fire dan- X v v NA v v NA v v v v v
ger risk?

What universities would make good X X v NA NA v NA NA v v v v

partners to undertake studies on fire be-
havior and effective mitigation strate-
gies in Mora County, NM?

‘What are the wildfire mitigation strate- v v v v X v v v xT v X v
gies, ecological impacts, and economic
effects in forested areas similar to
Mount Bigelow, AZ?

Please provide sources on how to obtain X v v NA v v NA v v v v v
data for Vegetation Type and Density,
Previous Burn History, Human Activ-
ity Levels, Topography, Weather Con-
ditions, Land Management Practices,
Infrastructure and Accessibility, Socio-
Economic Factors, and Climate Change
Indicators

It looks like March is the time folks im- v x v v NA v v NA v v x v
plement a controlled burn in Naperville,
IL. What do you think?

Let’s dive deeper into Firebreaks and v v v v X v v v v v X v
Buffer Zones. I'm interested in learn-
ing about approaches to establish fire-
breaks around the critical infrastructure
and vegetation management practices.
Can you provide more detail with evi-
dences?

Search for scientific literature on effec- v v v v x v v v X v x v
tive post-wildfire recovery strategies, fo-
cusing on public safety and environ-
mental restoration in Sangre De Cristo
Mountains.

Is fire common in this region prior to v X v v NA v v NA v v X v
1900s in Covington, VA? What is the
natural fire regime?

Are there supporting literature for v v v
Buffer Zones that communities can im-
plement to manage wildfire risk?

Are there good examples of similar v v v v v v v v x7 v x v
cities to Las Vegas, NM that might ex-
perience similar shifts in wildfire risk?
What mitigation strategies are those
cities implementing?

Overall Success Rate

710 7710 10/10 i 3/7  10/10 i 7/7  6/10 | 10/10 4/10 10/10

wide but curated range of valid scientific resources with efficient retrieval mechanisms is critical for
location-specific wildfire risk assessment and evidence-based domain-specific inquiry.

Conclusion

Natural-hazard-informed decision-making requires the integration of multiple location-specific data
sources and scientific findings to capture its multifaceted nature. Unlike baseline alternatives such as
ChatClimate and Perplexity Al, which demonstrated significant limitations in geographical precision
and data accuracy, respectively, our multi-agent prototype, WildfireGPT addresses these challenges
by integrating location-specific projections and observational data, socioeconomic indicators, and
scientific literature from trusted sources to deliver an extensive analysis of wildfire risks. WildfireGPT
represents a step forward in leveraging language models for specialized scientific domains and
shows great potential in transforming user queries into actionable insights, by offering a customized



interactive experience through strategic questioning and planning, and combining scientific data and
literature.
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A Extended Visualizations from WildfireGPT

In this appendix, we provide the full set of interactive visualization outputs introduced in Figure 2]
including the remaining seasonal maps and socio-demographic overlays.

B Extended Case Studies Table

We provide the full set of case studies introduced in Table[I] including the remaining rows that were
omitted from the main text for brevity.

C Overview of the WildfireGPT User Experience

Figure ] provides an overview of the user experience as WildfireGPT transitions through the three
agents, with screenshots from one of the case studies themed Comprehensive Wildfire Impact.

D Details of the WildfireGPT Multi-Agent Architecture

Task Orchestrator We designed the task orchestrator agent to serve as the central coordinator in
the multi-agent system, ensuring seamless interaction between the user and the specialized agents for
efficient task execution. The orchestrator includes key functions to enable its role through the OpenAl
function calling API. The get_response function processes user inputs, invokes the appropriate
agent based on the context, and manages outputs or follow-up actions to keep the interaction smooth
and efficient. The update_assistant function allows the orchestrator to dynamically transition
between agents, ensuring that the most relevant agent is assigned to handle the current task based on
user input and workflow requirements. The resume_conversation function is designed to restore
context in cases of interrupted or paused conversations by replicating the thread’s messages into a
new thread, allowing for seamless continuation. Together, these functions are designed to empower
the task orchestrator agent to manage workflows, prioritize user-centric engagement, and deliver a
cohesive experience across various stages of decision-making and analysis.

User Profile Agent The user profile agent is designed to collect and refine user-specific inputs for
wildfire risk assessment through a structured, interactive, and iterative approach. This agent helps
WildfireGPT produce outputs tailored to the unique needs of each user in a later stage of the interaction.
To achieve this, we employed prompting techniques to guide users through individualized questions
presented one at a time, enabling a systematic completion of a checklist covering personalized
information about the user. Once all questions are answered, the system compiles the responses into
a structured checklist and presents a summary to the user for verification, ensuring both accuracy
and alignment with the user’s expectations. The design also incorporates flexibility, allowing users
to respond with "I don’t know" if they are uncertain about any question, accommodating varying
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Figure 3: Interactive visualizations in the WildfireGPT user experience. This example is taken from
the case study themed "Current Wildfire Risk Analysis." Users can select the season and time period
to view the corresponding Fire Weather Index (FWI) map (left of first row), which displays risk levels
using a color scale. Location-specific FWI values are accessible by hovering over the map (center of
first row). By selecting different seasons and time period, the users can comprehend the changing
landscape of the FWI (center of first row to center of second row). The wildfire incident map (right
of the second row) shows the spatial distribution of recent fires, while the line graph (bottom left)
presents the temporal trend of incidents. Socioeconomic data is visualized through census block
group overlays (bottom right), providing insights into poverty rates and housing units in each area.

levels of expertise and familiarity with wildfire risk topics. The agent operates in two distinct stages,
predefined inquiry and summary verification, working together to provide understanding of the user’s
background and concerns.

The user profile agent in WildfireGPT uses a structured dialogue designed to gather essential infor-
mation to prepare for generating actionable wildfire risk insights later. It begins with five predefined
questions that capture critical user details: profession, concern, location, time, and scope.

* Profession: The profession question collects the user’s professional background and exper-
tise. This information will act as a proxy for WildfireGPT to tailor its recommendations and
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Table 4: Case studies conducted with domain experts to evaluate the performance and applicability
of WildfireGPT across various professions, geographic locations, and wildfire management themes.
Each case study represents either a location-specific inquiry derived from experts’ ongoing research
projects or a stakeholder perspective based on established regional collaborations. The description
column outlines the specific focus of each case. The studies span different time horizons and
incorporate a range of data types and analytical approaches to assess wildfire risk, impact, and

mitigation strategies. Case studies are listed in alphabetical order.

Theme Profession | Location Description

Climate Im- | Atmospheric| Boston, Exploring medium-term (10-30 years) impact of climate on wild-

pact on U.S. | Scientist MA fire occurrences and intensity in the U.S. Analyzing studies show-

Wildfires ing an increase in wildfire occurrences in Boston. Identifying and
addressing uncertainties affecting future wildfire risks.

Comprehensive Engineer Mount Exploring long-term (50+ years) wildfire frequency, intensity,

Wildfire Im- Bigelow, and impacts. Investigating mitigation strategies, ecological and

pact AZ economic effects, and infrastructure considerations.

Current Data Ana- | Chico, CA | Analyzing current wildfire data, causes, and forest management

Wildfire Risk | lyst practices. Exploring predictive models incorporating real-time

Analysis variables. Gathering detailed demographic and socioeconomic
profiles to assess risk and impact.

Ecosystem Landscape | Naperville, | Analyzing wildfire frequency and impacts on vegetation with

Fire Manage- | Manager IL a focus on oak ecosystems. Developing strategies to balance

ment fire use for oak ecosystem management with risk reduction for
residential areas.

Hazard Mit- | Hazard Mora Assessing wildfire likelihood, frequency, intensity, and timing

igation Plan- | Mitigation | County, over the next 15 years for community hazard mitigation planning.

ning Planner NM

Infrastructure | Climate Denver, Analyzing historical wildfire data and future projections to assess

Wildfire Risk | Change CcO risks to energy sector infrastructure, considering land use changes

Risk Ana- and climate models (RCP 8.5 scenario).
lyst

Post- Public Sangre Focusing on short-term (1-10 years) mitigation strategies after a

Wildfire Safety De Cristo | high-intensity fire. Assessing emergency services readiness, com-

Public Safety | Manager Mountains, | munity preparedness programs, and environmental restoration

NM initiatives with the U.S. Army Corps of Engineers on erosion and

flooding mitigations.

Private Homeowner| Near Cov- | Developing a 5—-10-year plan for managing forest health, maxi-

Property ington, VA | mizing marketable species (focus on oak and cherry), and pro-

Protection tecting properties from wildfires.

Urban Urban Beaverton, | Developing a 30-year community plan focused on building codes

Wildfire Planner OR and infrastructure resilience to mitigate fire-related hazard risks.

Mitigation

Wildland Ur- | Risk Man- | Las Vegas, | Assessing medium-term (10-30 years) wildfire risks to housing

ban Interface | ager NM and water resources in the wildland-urban interface. Exploring

Impact historical data, predictive models, current housing structures,
future development plans, and wildfire impact on water quality
and availability. Examining existing and proposed mitigation
strategies.

technical depth to the user’s knowledge level, whether engineer, urban planner, emergency
manager, or infrastructure operator.

Concern: The concern question identifies the user’s key motivations or queries surrounding
wildfire risks, such as community safety, infrastructure resilience, or ecological preservation.
This information will be used to help the system target the relevant aspects of wildfire
management to the user.

Location: The location of interest question identifies the geographic area for wildfire risk
assessment, allowing users to input locations as place names, geographic coordinates, or
descriptive details. When a user specifies a location in natural language, the system is
designed to leverage the LLM to convert the input into geographic coordinates (latitude and
longitude). To ensure accuracy, we integrated a map-based verification system that enables
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Step 2 Examine the Fire Weather Index (FWI)

wildfies

Step 4: Develop Recommendations

+ Based on the analyss o the datasets and the findings from the terature search, | will

rneeds, These will

Sampson, Atkinson,

activties, which could be similarly applied to the Mount Bigelow area (Ager etal, 2013).

+ DellaSala, D. etal. (2015). Flightof the Phoenix: Coexsting with Mixed-Severly Fires. DOL

Figure 4: Overview of the WildfireGPT user experience. The screenshots are taken from one of the
case studies themed Comprehensive Wildfire Impact. The user profile agent (top left) engages the
user in a conversation to understand the user’s background and concerns. The planning agent (top
middle) generates a tailored analysis plan based on the user’s profile. The analyst agent then executes
the plan, analyzing Fire Weather Index data (top right and bottom left), conducting a literature review
(bottom middle), and generating personalized recommendations (bottom right) to address the user’s
wildfire risk concerns.

users to visually confirm or refine their input. The specified coordinate is then saved to
help retrieve structured data and enable robust and geographically grounded wildfire risk
assessments.

* Timeframe: The timeframe question defines the temporal scope of interest, offering options
for short-term (1-10 years) mitigation strategies, medium-term (10-30 years) resilience
planning, or long-term (30-80+ years) resilience adaptation. Historical analysis is also
available, including recent (1-10 years), past (10-50 years), or long-term (50+ years) fire
patterns.

* Scope: The scope of interest question refines the focus of the risk assessment, covering
areas such as infrastructure vulnerability, emergency preparedness, ecological impacts, and
insurance planning, with guided examples provided for users who are unsure. After gathering
responses, WildfireGPT compiles the information into a structured checklist, which is shared
with the user for review to ensure accuracy and alignment with their expectations.

Upon completing and confirming the finalized checklist, the agent saves the information and tran-
sitions to the planning agent, where WildfireGPT begins generating actionable insights and rec-
ommendations. This transition marks the shift from information gathering to solution generation,
ensuring that the outputs are tailored to the user’s specific needs and the context of their wildfire risk
assessment.

Planning Agent We designed the planning agent prompt in WildfireGPT to guide the system in
creating a structured and user-centered wildfire risk assessment plan. By embedding step-by-step
instructions into the prompt, we enable the planning agent to systematically address user concerns,
integrate user feedback, and leverage relevant datasets effectively. The prompt for the planning agent
comprises the following components:
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* Step-by-Step Engagement Plan: The prompt instructs the system to create a short, clear plan
to engage with the user effectively. This plan includes leveraging the most relevant datasets
to address the user’s concerns through data analysis and a literature search. The system
is guided to select datasets based on the user’s specific needs—such as analyzing trends
in wildfire risk, understanding historical patterns, or focusing on immediate mitigation
strategies.

» Feedback Integration: Once the plan is drafted, the system is prompted to pause and share
the plan with the user. This ensures that the user is fully informed about the proposed
approach and has the opportunity to provide feedback or request modifications. The prompt
explicitly instructs the system to ask whether the user would like to include additional
information or datasets, while also clarifying that the wildfire analysis is limited to the three
available datasets: FWI, long-term fire history records, and recent fire incident data. This
step ensures transparency and active collaboration between the system and the user.

* Finalization and Execution: After incorporating user feedback and securing the user’s
agreement, the system transitions to finalizing the plan. The prompt ends with a specific
instruction to call the function plan_complete () with the completed plan, signaling the
readiness to move to the execution phase.

The planning prompt also leverages one-shot learning by including an example plan that act as a
demonstration, guiding the model to understand the desired structure and format of the output. In
addition to the example, the prompt includes detailed dataset descriptions, outlining the characteristics
and scope of the three available wildfire data sources to constrain the model’s data selection. The
prompt also integrates the user profile for the agent to make informed decisions.

During the user interaction, WildfireGPT shares brief descriptions of the available datasets, before
presenting the proposed plan. From the user’s perspective, this plan comprises three key steps: (1)
data retrieval: WildfireGPT identifies the most relevant wildfire datasets from the three available
sources and explains the reasoning behind the selection; (2) literature review: WildfireGPT outlines
the thematic focus of the literature to be examined; and (3) recommendation development: based on
the data analysis and literature review, WildfireGPT develops personalized recommendations.

Analyst Agent The analyst agent leverages the RAG framework [20} 21]] to conduct analyses by
integrating diverse data sources and domain knowledge. This agent maintains the summarized user
profile and action plan within its prompt context to ensure that WildfireGPT adheres to the plan and
addresses user follow-ups, offering to explore specific topics or proceed to the next step. The analyst
agent functions as an information processor, ensuring that outputs are grounded in scientific research
articles and wildfire data. Its structured approach enables it to process volumes of information
efficiently while maintaining accuracy and relevance. The analysis consists of three main stages:

* Wildfire data retrieval and visualization: The data retrieval and visualization functionality
in our system is designed to assess wildfire risk by leveraging geospatial data and fire trends.
The process begins with location-based data retrieval, based on the location information
collected by the user profile agent. For all datasets, data within a 36-kilometer radius of the
specified coordinate is retrieved and presented. The results are visualized through interactive
maps, tables, and statistical plots. The map-based visualization employs GeoJsonLayer
rendering to display the data points. A pin-layer visualization is also integrated to mark
the exact user-specified location. To facilitate decision-making, the system dynamically
generates a structured report summarizing the statistics.

Recent Wildfire Incident Record Data: Historical wildfire locations (2015-2023) are visual-
ized as individual red markers on the GeoJsonLayer, with each incident precisely geolocated
within a 36-kilometer analysis radius. In addition, two complementary line plots are pre-
sented for temporal analysis: an annual frequency plot revealing incident patterns over the
years and a monthly distribution highlighting seasonal variations. The report contextualizes
total incident frequency per year and aggregated monthly distributions into risk assessments,
analyzing temporal clustering patterns to identify periods of elevated fire activity.

Tree-Ring and Sediment-Based Fire History Record Data: The system retrieves and ranks
the three nearest paleofire study locations using a geodesic distance algorithm, integrating
site-specific metadata from the International Multiproxy Paleofire Database. Each identified
site is presented as an individual red marker on the GeoJsonLayer. Additionally, for each
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site, the system provides the user with the research metadata including site names, precise
coordinates, and associated publication records.

Fire Weather Index Data: Unlike the other data sources, the FWI data is structured on a grid
system and referenced by using Crossmodel indices. Thus, we developed a process to map
the user-specified geographic coordinates to the corresponding Crossmodel reference. This
process begins by transforming the latitude and longitude into a spatial reference system
compatible with the grid model. The geographic coordinates, initially expressed in degrees,
are converted into the coordinate reference system used by the FWI data, typically employing
projected coordinates for spatial accuracy. Using spatial operations such as buffering and
intersecting, the transformed geographic point is compared against the grid cells in the
model. The system retrieves the associated Crossmodel indices if they fall within a radius
of 36 kilometers of the specified coordinate. This mapping establishes a direct connection
between the user-defined location and the corresponding grid cell in the FWI data. By
designing this mapping mechanism, we ensured that WildfireGPT can seamlessly integrate
user-specified locations with grid-based FWI data, providing precise and scientifically
accurate insights tailored to the specified area. The retrieval process integrates historical
(1995-2004), mid-century (2045-2054), and end-of-century (2085-2094) projections to
offer a temporal perspective on fire weather trends. The retrieved FWI values are aggregated
and analyzed to compute mean wildfire indices and standard deviations across seasons,
ensuring a statistically robust representation of fire risk. The system then categorizes FWI
values into six risk classes (low, medium, high, very high, extreme, and very extreme) based
on the Canadian Forest Fire Weather Index classification system [40]]. The GeoJsonLayer
displays fire weather indices across spatial grids, with each grid cell color-coded according
to its FWI classification. Additionally, the module provides a table presenting the seasonal
comparisons of historical, mid-century, and end-of-century projections, enabling users to
track long-term fire risk evolution. Lastly, the module is prompted to provide a structured
summary report detailing past and projected wildfire risks in the region.

Census Data for Socioeconomic Analysis: If location-specific wildfire data is retrieved,
users are informed of an additional analysis capability: demographic and socioeconomic
impact assessments from census datasets. This can help provide an understanding of wildfire
risks beyond environmental factors, by incorporating population vulnerabilities, economic
conditions, and housing density. If wildfire data is not available, the system shares a
prewritten cautionary message, emphasizing the preliminary nature of its recommendations
and encouraging users to seek further investigation or expert advice before implementing
significant changes.

The census data retrieval functionality extracts demographic and socioeconomic statistics for
regions surrounding a user-specified location, with each census block group data retrieved
from the American Community Survey (ACS5) dataset. Key indicators such as total
population, poverty distribution, and housing unit counts are aggregated to generate a
demographic summary, highlighting the number of individuals below the poverty line
and those with income less than half the poverty threshold. Each census block group
is visualized on the GeoJsonLayer for interactive spatial understanding. Additionally, a
structured table presents aggregated population and housing statistics, allowing users to
explore socioeconomic factors in detail.

By integrating real-time geospatial data analysis, interactive visualization, and RAG tech-
niques, WildfireGPT ensures that wildfire risk assessments are data-driven, context-aware,
and easily interpretable for end users.

Literature retrieval: For scientific literature, WildfireGPT queries a corpus developed by
Argonne National Laboratory for the CIACC tool [23}124]. All abstracts of the papers in
this corpus are pre-embedded using the al1-MiniLM-L6-v2 embedder from the Sentence-
Transformers library [25]] and stored in a Faiss vector store [26]]. The literature search query
is processed by the same embedding model and undergoes a k-nearest neighbor search,
identifying the top k-most relevant abstract based on cosine similarity between the query
vector and stored paper embeddings in the FAISS vector database. To enhance the reliability
of the retrieved results, the system attempts to validate DOIs (Digital Object Identifiers) by
cross-referencing them with CrossRef metadata. This validation process includes retrieving
DOIs based on the paper title, checking for title and author consistency, and computing a
similarity score to confirm accuracy. If discrepancies such as title mismatches or incorrect
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author attributions are detected, the DOI is discarded to maintain data integrity and prevent
misinformation. The final output is structured as a ranked list of the three most relevant
papers, displaying each paper’s title, authors, publication year, and abstract, with a direct
DOI link if verified. This integration of FAISS-based vector search, semantic similarity
ranking, and DOI validation ensures the provision of high-quality, research-backed insights
for scientists, policymakers, and decision-makers in wildfire risk assessment and mitigation
planning.

Generation of tailored recommendations: To generate tailored recommendations, the
system constructs an augmented prompt that incorporates context from the ongoing conver-
sation to provide actionable recommendations. If additional clarification or exploration is
required, the system iterates the retrieval and response process, continuously refining the
output to address the user’s evolving needs. In this way, the system contextualizes data
retrieval and recommendation generation based on the user’s profession, ensuring that risk
assessments, mitigation strategies, and policy suggestions align with their specific safety

priorities and operational responsibilities.

Case Study

Prompt

Climate Impact on U.S. Wildfire
Occurrences and Intensity

Analyze future climate data to understand potential trends in fire
danger in Boston, Massachusetts, USA

Comprehensive Wildfire Impact

Review the long-term fire history records to assess the frequency
and intensity of past wildfires over the last 50+ years in Mount
Bigelow, AZ

Current Wildfire Risk Analysis

Analyze demographic and socio-economic profiles of the Chico
area in California to understand which groups are most vulnerable
in wildfire scenarios

Ecosystem Fire Management

Analyze the Long Term Fire History Records to assess wildfire
events over the past 150 years in the Naperville region

Hazard Mitigation Planning

Analyze the recent fire incident data for Mora County, reviewing
wildfire frequency, intensity, and timing from 2015 to 2023

Infrastructure Wildfire Risk

Examine climate models and projections under the RCP 8.5 sce-
nario to forecast potential future wildfire risks in the medium-term
(10-30 years) in Denver, Colorado

Post-Wildfire Public Safety and En-
vironmental Restoration

Analyze the recent fire incident data from the Wildland Fire Intera-
gency Geospatial Services Group to assess the frequency, intensity,
and locations of recent wildfires in Sangre de Cristo Mountains

Private Property Protection

Analyze the recent fire incident data from the last five years in
Covington, VA

Urban Wildfire Mitigation

Analyze the FWI focusing on both current trends and projections
for the mid-century (2045-2054) to assess the potential increase
in fire danger due to climate change in Beaverton, Oregon

Wildland Urban Interface Impact
on Housing and Water Resources

Analyze projected wildfire risk data for the mid-century period
(2045-2054) to understand the potential trends in fire danger in
Las Vegas, NM

Table 5: Prompts Used in for Modular Comparison in Data Retrieval

E Comparison against Baseline Models

To evaluate the effectiveness of data retrieval and evidence-based query response capabilities, we
conducted systematic comparisons between WildfireGPT and two baseline models: ChatClimate
and Perplexity Al Our experimental framework comprised two distinct analytical modules drawn
from our case studies (Tables [5|and [6): (i) data retrieval and analysis tasks, which examined each
model’s capacity to process and interpret location-specific wildfire data across diverse geographical
and temporal scales, and (ii) evidence-based query responses, which assessed the models’ ability
to provide evidence-based answers to domain-specific questions. The evaluation metrics for data
analysis encompass data provision (successful retrieval of relevant data), location specificity (geo-
graphical precision of retrieved data), and data accuracy (alignment between retrieved data and prompt
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Case Study

Prompt

Climate Impact on U.S. Wildfire
Occurrences and Intensity

Is FWI a robust estimate of the fire danger risk?

Comprehensive Wildfire Impact

What are the wildfire mitigation strategies, ecological impacts,
and economic effects in forested areas similar to Mount Bigelow,
AZ?

Current Wildfire Risk Analysis

Please provide sources on how to obtain data for Vegetation Type
and Density, Previous Burn History, Human Activity Levels, To-
pography, Weather Conditions, Land Management Practices, In-
frastructure and Accessibility, Socio-Economic Factors, and Cli-
mate Change Indicators

Ecosystem Fire Management

It looks like March is the time folks implement a controlled burn
in Naperville, IL. What do you think?

Hazard Mitigation Planning

What universities would make good partners to undertake studies
on fire behavior and effective mitigation strategies in Mora County,
NM?

Infrastructure Wildfire Risk

Let’s dive deeper into Firebreaks and Buffer Zones. I'm interested
in learning about approaches to establish firebreaks around the
critical infrastructure and vegetation management practices. Can
you provide more detail with evidences?

Post-Wildfire Public Safety and En-
vironmental Restoration

Search for scientific literature on effective post-wildfire recovery
strategies, focusing on public safety and environmental restoration
in Sangre De Cristo Mountains.

Private Property Protection

Is fire common in this region prior to 1900s in Covington, VA?
What is the natural fire regime?

Urban Wildfire Mitigation

Are there supporting literature for Buffer Zones that communities
can implement to manage wildfire risk?

Wildland Urban Interface Impact
on Housing and Water Resources

Are there good examples of similar cities to Las Vegas, NM that
might experience similar shifts in wildfire risk? What mitigation
strategies are those cities implementing?

Table 6: Prompts Used in for Modular Comparison in Question and Answer

requirements). Similarly, question-answering response assessment examined external knowledge
integration, source authority, citation practices, and contextual relevance. Below is an example of the
responses provided in the by each model. The full set of responses can be accessed in the provided

GitHub repository.

E.1 Examples

Case Study: Wildland Urban Interface Impact on Housing and Water Resources

Prompt: Analyze projected wildfire risk data for the Mid-Century period (2045 - 2054) to understand
the potential trends in fire danger in Las Vegas, NM.

ChatClimate: Based on the information provided, the projected wildfire risk data for the Mid-Century
period (2045 - 2054) suggests that there will be an increase in fire danger in Las Vegas, NM. Climate
change is expected to drive future increases in North American fire weather, particularly in the
southwest, with a significant increase in the Fire Weather Index (FWI) before 2050 under the RCP8.5
scenario. This increase includes the frequency of 95th-percentile FWI days, peak seasonal FWI
average, fire weather season length, and maximum fire weather index. The fire season across North
America is projected to expand dramatically beyond 2°C global warming levels. Additionally, there
will be more conducive conditions for lightning-ignited fires in the southeastern USA by mid-century,
and warming conditions in Alaska will push temperatures above a threshold for fire danger across
Alaska’s tundra and boreal forest. Therefore, the trends indicate a heightened risk of wildfires in Las
Vegas, NM during the Mid-Century period due to the projected increases in fire danger driven by
climate change. (Page: 66, Reference: IPCC_AR6_WGI_Chapter12)

Perplexity: Las Vegas, NM is likely to face increased wildfire risk by mid-century (2045-2054) due

to several factors:
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1. Increased potential for very large fires: The risk of very large fires (top 10% of fires)
could increase up to sixfold in parts of the West, including New Mexico, by mid-century
(2041-2070) compared to the recent past (1971-2000)[3].

2. Climate change impacts: Warming temperatures, more frequent heat waves, and diminished
soil moisture during the dry season are expected to contribute to increased fire danger[3].
These conditions, combined with historic fire suppression practices, may lead to more
frequent large fire events.

3. Extended fire seasons: Climate change is projected to both intensify fire-friendly weather
conditions and lengthen the season during which very large fires tend to spread[3].

4. Drought and fuel conditions: The combination of warming temperatures and below-normal
precipitation in the Southwest may lead to drier fuels and increased fire potential[1].

5. Watershed vulnerability: Las Vegas, NM relies on a single surface water source (the Gallinas
River watershed), making it particularly vulnerable to wildfire impacts on its water supply[2].
The 2022 Hermit’s Peak/Calf Canyon Fire demonstrated the severe consequences of large-
scale fires on the city’s water resources.

While specific data for Las Vegas, NM is not provided, the overall trend for the western United States
suggests a significant increase in fire danger. To mitigate these risks, it will be crucial for Las Vegas
to implement preventive measures, such as watershed management, infrastructure upgrades, and
improved emergency response planning.

Citations
1. https://www.nifc.gov/nicc-files/predictive/outlooks/monthly_seasona
1_outlook.pdf

2. https://www.circleofblue.org/2023/world/new-mexicos-largest-fire-wre
cked-this-citys-water-source/

3. https://www.climate.gov/news-features/featured-images/risk-very-lar
ge-fires-could-increase-sixfold-mid-century-us

4. https://wuw.nifc.gov/nicc-files/predictive/outlooks/NA_Qutlook.pdf
5. https://srs.fs.usda.gov/pubs/gtr/gtr_srs243.pdf
6. https://pmc.ncbi.nlm.nih.gov/articles/PMC9076366/
Perplexity (when provided with the data file for FWI): Chose crossmodels "R382C(098",

"R438C055", "R395C128", "R411C070", "R418C086" in the dataset. However, the correct cross-
models are around "R110C303."

WildfireGPT: The Fire Weather Index (FWI) data for Las Vegas, NM, reveals a concerning trend in
fire danger levels over the next few decades. Historically, from 1995 to 2004, the FWI values indicated
a medium risk during spring, summer, and autumn, with lower risks in the winter. Specifically:

* Spring: 13.1 (Medium)

¢ Summer: 17.04 (Medium)

¢ Autumn: 19.31 (Medium)

¢ Winter: 6.98 (Low)
Looking ahead to the mid-century period (2045-2054), the projections show a slight increase in the
FWTI values, especially in the spring:

* Spring: 17.31 (Medium)

e Summer: 18.26 (Medium)

e Autumn: 16.25 (Medium)

¢ Winter: 8.49 (Low)

By the end of the century (2085-2094), the spring season is expected to experience a significant
increase in fire danger:
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* Spring: 23.82 (High)

¢ Summer: 20.43 (Medium)
e Autumn: 20.5 (Medium)
¢ Winter: 11.52 (Medium)

This trend suggests an increasing risk of wildfires, particularly in the spring, which will necessitate
enhanced fire management and urban planning strategies to mitigate risks to housing and water
resources. The higher FWI values indicate drier and potentially windier conditions, which can
facilitate the rapid spread of wildfires.

Given these projections, it is crucial to integrate robust wildfire risk management strategies into urban
development plans for Las Vegas, NM. These should include considerations for fire-resistant building
materials, strategic water resource management, and emergency response planning.

[Data Source: Climate Risk & Resilience Portal (ClimRR)](https://disgeoportal.egs.anl.g
ov/ClimRR/)

F Evaluating Personalization

To investigate the effects of the user profile agent, we conduct a qualitative, two-phase ablation
study to systematically evaluate the impact of user profile granularity and diversity on WildfireGPT’s
recommendations. Inspired by the Private Property Protection case study, for both phases we use the
prompt “Develop recommendations to enhance forest resilience against wildfires" to elicit a response
from WildfireGPT. In the first phase, we systematically test three levels of user profile specificity
provided to the agent: no profile information provided, location plus timeline, and the full profile of a
power grid manager focused on maintaining transmission line clearance and grid resilience for power
distribution reliability and access. In the second phase, we hold location and timeline constant and
test five distinct professional profiles—homeowner, civil engineer, ecologist, emergency manager,
and power grid manage—each with minimally distinct concerns and the respective scopes. Table
summarizes the differences in primary concerns and scopes across these professional profiles, with
more detailed profile descriptions available in the Methodology section. We conduct a controlled
simulation for each profile by passing the profile directly into WildfireGPT’s planning and analyst
agents, allowing us to observe how the same prompt generated tailored recommendations across
different user types. Outputs are analyzed across three dimensions: plan generation, literature
retrieval, and recommendation specificity.

Evaluation Methodology We carry out a two-phase ablation study to evaluate the impact of user
profile granularity on WildfireGPT’s responses. In the first phase, we use the prompt “Develop
recommendations to enhance forest resilience against wildfires” to elicit recommendations from
WildfireGPT, with three levels of user profile details:

1. Generic: No contextual details.

2. Location + Timeline: Added geospatial (Covington, VA; 37.7935°N, 79.9939°W) and
temporal (5-10 year implementation window) parameters.

3. Full Profile: Integrated profession-specific attributes (e.g., power grid manager), operational
concerns (e.g., grid resilience, transmission line clearance), and scope (e.g., infrastructure
protection).

In the second phase, we hold location and timeline constant and test five distinct professional profiles
(homeowner, civil engineer, ecologist, emergency manager, power grid manager). For each profile,
we modify three variables—profession, concern, and scop—in the template user profile shown in
Figure[5

Table [I0] provides the full details on the comparative analysis across three profile specificity tiers.
The full experiment results can be accessed in the provided GitHub repository.

Below we enumerate the plans generated by WildfireGPT for each different user profile in the second
phase of our ablation study.

21


https://disgeoportal.egs.anl.gov/ClimRR/
https://disgeoportal.egs.anl.gov/ClimRR/

Table 7: User profile variations and literature search queries in Phase 2 of the WildfireGPT person-
alization ablation study. We hold location and timeline constant and test five distinct professional
profiles, with changes in the concerns and the respective scopes. The search query represents the
resulting literature retrieval query automatically generated by WildfireGPT’s analyst agent.

Profession| Primary Concern | Scope Search Query
Homeowner Maximizing mar- | Health and mar- | “Strategies for managing forests to maintain
ketable species ketable species health, maximize marketable species, and
minimize wildfire risks in Virginia”
Civil En- | Ensuring structural | Drainage  effi- | “Wildfire risks and climate change impacts
gineer and infrastructural | ciency and slope | on forest management near Covington, VA;
resilience stability Strategies for enhancing drainage efficiency
and slope stability; Structural resilience
against wildfires in forested areas”
Ecologist | Maintaining biodi- | Ecological re- | “Wildfire management and ecological re-
versity and ecosys- | silience and | silience in forest ecosystems near Covington,
tem services habitat connec- | VA”
tivity
Emergency| Establishing de- | Emergency “Effective forest management practices, de-
Manager | fendable space | access and | fendable space creation, evacuation pro-
and  evacuation | response capabil- | tocols, and property protection measures
corridors ities against wildfires near Covington, VA”
Power Maintaining trans- | Power distribu- | “Effective strategies for vegetation manage-
Grid mission line clear- | tion reliability | ment, forest health maintenance, and wildfire
Manager | ance and grid re- | and access risk mitigation around power grids near Cov-
silience ington, VA”

Table 8: Comparative analysis across three profile specificity tiers. WildfireGPT responses demon-
strate progressive domain adaptation from generic principles to stakeholder-specific protocols when
provided with increasing user profile granularity. Representative outputs shown for vegetation
management, technology implementation, and role-specific interventions demonstrate systematic
enhancement of recommendation precision with profile enrichment. Italicized text highlights power-
grid-specific recommendations emergent only with comprehensive user profiling.

Aspect

No Profile Information

+ Location and Timeline

+ Power-Grid Manager Profile

Vegetation
Manage-
ment

“Thinning and Pruning: Re-
duce forest density through
thinning and pruning [...]
Controlled Burns: Imple-
ment controlled burns to re-
duce available fuels.”

“Develop and promote fire-
adapted ecosystems by in-
corporating native species
[...] Practice selective cut-
ting to reduce fire risk.”

“Establish routine schedules for
pruning and removing trees that
pose a risk to power lines. Utilize
drones or satellite imagery to mon-
itor vegetation growth for timely
intervention.”

Technology

“Employ technologies like
satellite imaging and drones
[...] Use artificial intelli-
gence to predict fire pat-
terns.”

“Invest in enhanced surveil-
lance systems [...] satellite
imagery, drones, and remote
sensors to detect early signs
of fire.”

“Utilize Geographic Information
Systems (GIS) and remote sens-
ing [...] Install sensors and ad-
vanced monitoring systems along
the grid to detect temperature
changes, smoke, or increased hu-
midity levels indicating the risk
of fire. Use drones for real-time
surveillance [...] of power lines, es-
pecially in hard-to-reach areas.”

Role-
Specific
Actions

“International cooperation
[...] Reduce carbon foot-
prints.”

“Encourage  Responsible
Logging Practices [...]
Climate Adaptation Strate-
gies.”

“Expand the Right-of-Way (ROW)
clearance around transmission
lines beyond standard regulations
[...] Implement an IVM program
that combines mechanical, biologi-
cal, and chemical methods to man-
age vegetation”

Emergency Manager Step 1: I will analyze the Fire Weather Index (FWI) dataset to assess the trends in fire
danger over time, focusing particularly on future projections around your area. This will
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Table 9: Distribution of Recommendation Categories Across Five Stakeholder Profiles. We use
checkmarks to indicate which recommendations appear in each stakeholder’s profile.

Recommendation Category Emergency Ecologist | Civil En- | Homeowner Power

Manager gineer Grid
Manager

Fuel Management

Regular thinning/pruning/fuel re- | v/ v v v v

duction

Controlled/prescribed burns v v v v v

Infrastructure and Planning

Defendable space creation v v v

Fire-resistant materi- | v v v v

als/infrastructure

Emergency access/water sources v v v v

Community Engagement

Evacuation planning v v v

Public education/awareness pro- | v v v v v

grams

Collaboration and Management

Cross-boundary coordination v v v

Monitoring systems/technology v v v v v

Research v v v

Ecological Considerations

Fire-resistant species promotion v v

Natural fire regime maintenance v

Ecological monitoring v v v

Figure 5: Template user profile used in user profile agent.

1. Profession: {profession} in Virginia.

2. Concern: Managing the forest, keeping it healthy, while
{concern}, and protecting properties from potential
wildfires.

3. Location: Near Covington, VA with Latitude 37.7935 and
Longitude -79.9939.

4. Time: Recommendations to be implemented within the next 5 to
10 years.

5. Scope: Management of the forest and properties to maximize
{scope}, and protect against potential wildfires.

help understand the potential increase in fire risks facing the Covington area in upcoming
years, aiding in strategic planning for emergency responses and forest management.

Step 2: I will delve into the Long Term Fire History Records to extract data relevant to the
historical wildfire activity around Covington, VA. Analyzing these trends will provide a
contextual understanding of the periodicity and severity of wildfires, which is crucial for
planning long-term forest management and fire prevention strategies.

Step 3: As your timeframe concerns the next 5 to 10 years, it is critical to also analyze
Recent Fire Incident Data. This will highlight the most immediate risks and recent trends in
wildfire occurrences. Insights from this will be pivotal in adjusting current practices and
preparing immediate response strategies.

Step 4: I will conduct a comprehensive literature search focusing on similar geographical
areas with comparable forest compositions and climate to Covington, VA. This research
will look into effective forest management practices, successful defendable space creations,
evacuation protocols, and property protection measures against wildfires.

23



Table 10: Comparative analysis across three profile specificity tiers. WildfireGPT responses demon-
strate progressive domain adaptation from generic principles to stakeholder-specific protocols when
provided with increasing user profile granularity. Representative outputs shown for vegetation
management, technology implementation, and role-specific interventions demonstrate systematic
enhancement of recommendation precision with profile enrichment. Italicized text highlights power-
grid-specific recommendations emergent only with comprehensive user profiling.

Aspect

No Profile Information

+ Location and Timeline

+ Power-Grid Manager Pro-
file

Vegetation
Manage-
ment

“Thinning and Pruning: Re-
duce forest density through
thinning and pruning [...] Con-
trolled Burns: Implement con-
trolled burns to reduce avail-
able fuels.”

“Develop and promote fire-
adapted ecosystems by incor-
porating native species [...]
Practice selective cutting to re-
duce fire risk.”

“Establish routine schedules
for pruning and removing
trees that pose a risk to power
lines. Utilize drones or satel-
lite imagery to monitor vege-
tation growth for timely inter-
vention.”

Infrastructure

“Enforce fire-resistant materi-
als in construction [...] Main-
tain and expand firebreaks.”

“Build and maintain natural
and artificial firebreaks such
as roads [...] or barriers devoid
of vegetation.”

“Retrofit existing infrastructure
with fire-resistant materials
[...] replace wooden poles
with those made from steel or
reinforced concrete to enhance
fire resilience.”

Technology

“Employ technologies like
satellite imaging and drones
[...] Use artificial intelligence
to predict fire patterns.”

“Invest in enhanced surveil-
lance systems [...] satellite im-
agery, drones, and remote sen-
sors to detect early signs of
fire.”

“Utilize Geographic Informa-
tion Systems (GIS) and remote
sensing [...] Install sensors
and advanced monitoring sys-
tems along the grid to detect
temperature changes, smoke,
or increased humidity levels
indicating the risk of fire. Use
drones for real-time surveil-
lance [...] of power lines, espe-
cially in hard-to-reach areas.”

Role-
Specific
Actions

“International cooperation [...]
Reduce carbon footprints.”

“Encourage Responsible Log-
ging Practices [...] Climate
Adaptation Strategies.”

“Expand the Right-of-Way
(ROW)  clearance around
transmission lines beyond
standard regulations [...]
Implement an IVM program
that combines mechanical,
biological, and chemical meth-
ods to manage vegetation”

Collaboration

“Foster coordination among
forestry services, firefighting
agencies, and wildlife organi-
zations [...] International Co-
operation: Exchange knowl-
edge [...] with international
bodies.”

“Forge partnerships with local
universities, environmental or-
ganizations, and governmental
agencies.”

“Collaborate with local govern-
ment agencies, environmental
organizations, and other util-
ities to share resources, in-
formation, and strategies for
effective forest and wildfire
management.”

Policy &
Funding

“Enforce building codes [...]
Integrate fire risk into land use
planning decisions.”

“Seek federal and state grants
aimed at forest conservation
[...] fire management.”

“Advocate for local and state
policies that support sustain-
able forest management [...]
Seek state and federal grants
for implementing advanced
technologies [...] in infras-
tructure resilience and environ-
mental management.”

Community
Education

“Train local firefighters and
communities in fire suppres-
sion techniques and evacua-
tion procedures.”

“Develop community aware-
ness and educational programs
[...] Workshops, training ses-
sions, and school curricula can
focus on how individuals can
reduce wildfire risks through
proper land management.”

“Regularly communicate with
local communities about main-
tenance schedules, controlled
burns, and emergency proce-
dures to enhance public aware-
ness and cooperation.”
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Ecologist

Civil Engineer

Homeowner

Step 5: Based on data analysis and findings from scientific literature, I will provide tailored
recommendations. These will address creating or refining defendable spaces, designing
evacuation routes, improving property resilience against wildfires, and enhancing overall
emergency preparedness and forest health.

Step 1: I will begin by analyzing the Fire Weather Index (FWI) dataset. This will focus on
understanding the future trends in fire danger, particularly for the Mid-Century period (2045
- 2054). Analyzing these future projections, and comparing them against the historical period
(1995 - 2004), will help us anticipate changes in wildfire risk near your area in Virginia.
Step 2: Next, [ will examine the Long term fire history records. This dataset will provide
vital insights into the historical patterns and cycles of wildfire activity in the broader North
American region over centuries. Understanding these long-term trends will help in assessing
the natural fire regimes and their impacts on ecosystems, which is crucial for managing
forest landscapes effectively.

Step 3: Concurrently, I will conduct a literature search focused on wildfire management
and ecological resilience in forest ecosystems. This will include finding scientific studies
that discuss successful strategies for vegetation management, biodiversity preservation, and
wildfire prevention in areas with similar ecological and climatic conditions to Covington,
VA.

Step 4: Based on the insights obtained from the data analyses and scientific literature, I will
develop a set of tailored recommendations. These will be aimed at enhancing the ecological
resilience of your forest, improving habitat connectivity, and implementing effective wildfire
risk mitigation strategies to protect properties within the next 5 to 10 years.

This plan will help ensure that your forest management strategy aligns well with the evolving
dynamics of wildfire risks and ecological demands.

Step 1: Analyze the Fire Weather Index (FWI) dataset to measure future fire danger trends,
focusing on the Mid-Century period (2045 - 2054). This data will give insight into how fire
risk is likely to change and escalate, allowing for forward-thinking preparations.

Step 2: Examine the Long Term Fire History records to understand centuries-long patterns
and cycles in wildfire activity. This historical data analysis will contextualize the specific
wildfire risks in your region and assist in predicting future trends more accurately.

Step 3: Conduct a thorough literature search of scientific papers focused on wildfire risks and
climate change. This search will particularly emphasize studies related to forest management
practices, resilience of structures against wildfires, and comparison of geographically similar
areas to Covington, VA.

Step 4: Leverage insights from the aforementioned data analyses and literature search to
formulate strategic recommendations. These will focus on enhancing forest and property
management to improve drainage efficiency, slope stability, and overall resilience against
future wildfire threats.

This strategic approach will ensure that all aspects of wildfire risks are comprehensively
addressed, aligning with your needs to protect and sustainably manage the forest area around
Covington, VA.

Step 1: I will analyze the Fire Weather Index (FWI) dataset to assess the potential trends
in fire danger around your location near Covington, VA, for both the Mid-Century (2045
- 2054) and the historical period (1995 - 2004). This will help us understand how the fire
danger is expected to evolve over time, which is crucial for long-term forestry and property
management planning.

Step 2: I will explore the Long term fire history records to extract and analyze historical
wildfire activity patterns in your region. This analysis will focus on identifying any recurring
wildfire events and the conditions associated with high fire risks. This information will be
vital in predicting future wildfire tendencies and planning effective management practices
for your forest.

Step 3: I will conduct a literature search to find scientific studies and successful strategies for
managing forests to maintain health, maximize marketable species, and minimize wildfire
risks. This will include examining case studies from areas with similar geographical and
climatic conditions as near Covington, VA.

Step 4: Based on the compiled data and insights from the literature, I will provide recommen-
dations tailored to your specific concerns and goals. These will include actionable strategies
for forest management, species selection and cultivation practices, alongside measures for
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enhancing wildfire resistance and property protection. All recommendations will aim for
implementation within the next 5 to 10 years to align with your timeline.

Power Grid Manager Step 1: Analyze the Recent fire incident data to understand recent trends and specific areas
of higher fire incidence near Covington, VA. This will help in assessing the most vulnerable
spots along the transmission lines and around residential areas that need urgent attention for
vegetation management and infrastructure protection.

Step 2: Use the Long term fire history records to gather insights into historical wildfire
patterns in the area. This can offer a broader context of fire behavior over centuries, helping
to predict potential future hotspots and periods of higher risk, which is crucial for long-term
planning and resilience strategies.

Step 3: Conduct a literature search focusing on effective strategies for vegetation manage-
ment, forest health maintenance, and wildfire risk mitigation around power grids. This will
include exploring practices such as controlled burns, vegetation clearance standards, and
innovations in infrastructure design that enhance resilience to wildfires.

Step 4: Based on the data analysis and best practices identified in scientific literature, provide
recommendations tailored to improving forest management and enhancing the resilience of
power transmission lines. This will include specific measures to ensure effective clearance
around lines, techniques for early fire detection, and community engagement strategies to
reduce the overall fire risk.

Results Our two-phase ablation study explores the impact of user profile granularity and diversity
on WildfireGPT’s recommendations. In the first phase, we progressively test three levels of user
profile specificity provided to the agent: no profile information provided, location plus timeline,
and the full profile of a power grid manager focused on maintaining transmission line clearance
and grid resilience for power distribution reliability and access. In the second phase, we hold
location and timeline constant and test five distinct professional profiles—homeowner, civil engineer,
ecologist, emergency manager, and power grid manage—each with minimally distinct concerns and
the respective scopes. We report the results from both phases below.

Hierarchical Specificity from Profile Granularity Table[8|demonstrates the tiered progression in
recommendation specificity provided by WildfireGPT in the first phase of our ablation study. The
table focuses on three key aspects of wildfire resilience—vegetation management, technology imple-
mentation, and role-specific action—and demonstrates how recommendations become increasingly
targeted and context-aware as input specificity increases. For example, a generic prompt without
profile information yields broad guidance such as thinning and pruning or the use of satellite imaging
and drones. When location and timeline details are included, the system generates more ecologically
informed and time-sensitive strategies, such as "develop and promote fire-adapted ecosystems by
incorporating native species." With a complete power grid manager profile, the recommendations
become more specific and operational, with recommendations prioritizing "sensors and advanced
monitoring systems along the grid" and "expand the Right-of-Way (ROW) clearance around transmis-
sion lines," synthesizing ecological approaches with sector-specific operational requirements. Most
notably, technological recommendations progressed from general "satellite imaging and drones" to
grid-specific applications for "real-time surveillance of power lines, especially in hard-to-reach areas."
This stratification demonstrates how increasing profile granularity introduced by the user profile agent
enables WildfireGPT to align general resilience principles with the operational needs of distinct pro-
fessional roles, particularly in critical infrastructure contexts where vegetation management intersects
with operational reliability requirements.

Professional Identity as a Recommendation Filter For the second phase, we summarize Wild-
fireGPT’s adaptation to different professional roles and priorities across three dimensions: plan
generation, literature retrieval and recommendation specificity.

First, our analysis shows that the planning agent adapts to the user’s professional role and concerns.
For example, when a power grid manager expresses primary concern about maintaining transmission
lines and grid resilience, WildfireGPT proposes to search for literature about vegetation management
and wildfire protection strategies around power grids. Similarly, when a homeowner indicates a
focus on marketable species, WildfireGPT targets research about economically valuable tree species
and property protection methods. This pattern continues across all profiles—emergency managers
receive evacuation-focused plans, civil engineers get infrastructure-centered recommendations, and
ecologists receive biodiversity-oriented strategies. In each case WildfireGPT maintains the same
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basic framework (analyzing fire data, reviewing literature, developing recommendations) but tailors
the specific content to match the user’s professional needs and objectives. This alignment between
user profiles and generated plans is by design, as the planning agent’s primary function is to establish
clear expectations and a structured pathway through which the analyst agent can deliver personalized
insights relevant to each stakeholder’s specific context.

Second, the analyst agent uses search queries calibrated to professional priorities when conducting
literature retrieval, with details provided in Table[/| For each profession, the search queries effectively
capture their unique concerns and scope—homeowners’ focus on marketable species, civil engineers’
emphasis on structural resilience, ecologists’ focus on ecological resilience, emergency managers’
priority on defendable space, and power grid managers’ concentration on grid resilience. These
search queries distinctly different literature being retrieved, and we report the literature retrieval
results based on these queries. When a power grid manager’s profile emphasized transmission line
clearance and grid resilience, the system yielded studies such as Hvenegaard’s (2014) [41] analysis
of fuel treatment monitoring and Dale’s (2006) [42] critique of fire suppression policies. Conversely,
when responding to a civil engineer’s profile, the system retrieved Stevens et al.’s (2020) [43] findings
on vegetation structure and soil moisture dynamics. This pattern of query-response alignment extends
across all professional identities: emergency management queries yielded Ager et al.’s (2019) [44]
work on community wildfire exposure, while the ecologist’s profile resulted in Schoennagel et al.’s
(2017) [43] research on adaptive resilience and Waltz et al.’s (2014) [46] findings on ecological
impacts of fuel reduction treatments.

This adaptation pattern extends to recommendation development. As shown in Table[9] WildfireGPT
generates distinct recommendation sets across the five professional profiles while maintaining core
wildfire management principles. The table uses checkmarks to indicate which recommendations
appear in each stakeholder’s profile—for example, all profiles receive recommendations for regular
thinning and prescribed burns, while only the ecologist receives natural fire regime maintenance
recommendations. Although certain fundamental strategies—such as regular thinning/pruning and
controlled burns—are universally recommended across all profiles, significant variations emerge
in other categories based on professional priorities. For civil engineers, recommendations pivot
toward drainage efficiency and slope stability considerations, incorporating Stevens et al.’s (2020)
[43] findings on soil moisture dynamics. Notably, civil engineers are the only profession not
recommended to implement fire-resistant materials/infrastructure, instead focusing on ecological
monitoring and emergency access solutions. Emergency managers receive the most comprehensive
recommendation set, with checks in nearly all categories and exclusive emphasis on defendable
space creation and evacuation planning. Ecologists uniquely receive recommendations for natural
fire regime maintenance, reflecting their biodiversity conservation priorities, while being the only
group besides civil engineers not advised on defendable space creation. Emergency management
profiles elicit recommendations heavily weighted toward evacuation planning and defendable space
creation, drawing on Ager et al.’s (2019) [44] community exposure analyses. Homeowners and
power grid managers show similar recommendation patterns in infrastructure planning but diverge
significantly in community engagement—homeowners receive evacuation planning advice while
power grid managers do not. Interestingly, power grid managers share the research recommendation
with emergency managers and ecologists, highlighting the technical expertise common to these roles.

This pattern of differential adaptation suggests that user profiles serve as effective filters for distilling
broadly applicable wildfire management principles into professionally actionable, context-specific
recommendations. The profile-specific recommendations reflect the granularity in both tactical
precision and implementation feasibility, aligned with each stakeholder’s operational priorities while
maintaining scientific rigor in the underlying management principles.

Though the user profile agent help successfully retrieve thematically-relevant literature at a profession-
specific level, the specificity of matches invites further refinement that goes beyond the user profile
agent. First, when matching papers to user concerns, it might not align exactly with the specific
scope. For example, when the power grid manager requested information about protecting power
lines, the system identified Hvenegaard’s (2014) [41] paper on fuel treatment. This is valuable for
fire management, but does not specifically address power grid infrastructure. Second, regarding
location-specificity, searches for Covington, Virginia yielded Schoennagel et al.’s work in western
North America or Hansen’s research in Grand Teton National Park [47]]—which could still offer
applicable insights despite the geographic mismatch. These patterns reflect two areas for enhancement
for the analyst agents: (i) the finite scope of the available literature database where closely aligned
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research may not exist for highly specialized user needs (such as power grid protection in specific
geographic contexts); and (ii) inherent limitations in literature search mechanism as a part of the
analyst agent. We explore these limitations and potential solutions in greater detail in the Discussion
section.

G Information Fidelity of WildfireGPT’s Reported Wildfire Statistics

We verify whether the reported data and citation in WildfireGPT’s responses originate from the
retrieved source. The fidelity verification process does not require domain expert knowledge but
simply needs to match statistics in the responses to those in the retrieved data. We use precision
scores to quantify the proportion of correct statistics reported by the language model; the formula is

.. Number of correctly reported statistics
Precision =

ey

Total number of statistics reported by the language model.

In the context of data analysis, if the textual response by WildfireGPT mentions a data point verbatim,
then it is considered a correctly reported statistic. For example, consider the following sentence from
a WildfireGPT response:

“The wildfire incident data for Mora County from 2015 to 2022 shows a notable increase in
fire occurrences, particularly in 2018 with 29 incidents. The most active months for wildfires
are during the summer, peaking in July with 21 incidents."

In this case we would verify whether the numbers 29 (incidents in 2018) and 21 (incidents in July) are
true based on the extracted data. If both numbers match the data, they would be counted as correctly
reported statistics. Similarly, in the context of retrieving scientific literature, if WildfireGPT discusses
three papers and two of them match the papers returned from the literature retrieval tool, the precision
would be 2/3 or 66.7%.

For the literature review, we also calculate the Sentence-BERT (SBERT) [48]] cosine similarity score
between the retrieved papers and the generated response of WildfireGPT. The SBERT score ranges
from -1 to 1, with higher scores indicating greater semantic similarity. A score above 0.5 is generally
considered a good match [25]. A high SBERT cosine similarity score suggests that the language
model is not only citing the correct papers but also capturing the main ideas and concepts from the
literature.

We note that information fidelity between the retrieved sources and WildfireGPT’s outputs is not the
same as independently validating claims against the broader scientific literature; this stringent view
allow us to cleanly verify the model’s capacity to accurately synthesize information from credible
sources

As shown in Table [TT] WildfireGPT achieves high fidelity scores across all case studies (overall
success rates of 98.94% for data analysis and 100% for literature review, respectively) and high
semantic similarity between the papers discussed by the language model and the abstracts of the
retrieved papers (0.8559 average SBERT score). This is expected given that our design explicitly
incorporates retrieved material, with prompts that specifically direct the language model to accurately
summarize the data. Nevertheless, instances of ambiguity occasionally emerge. In the Community
Hazard Mitigation Planning case, WildfireGPT stated that "spring FWI projections for the mid-
century (2045-2054) and the end of the century (2085-2094) show a gradual increase, particularly
notable during the spring season, where the FWI is projected to rise significantly from medium to
potentially high-risk levels." According to the retrieved data, however, the projections for the spring
seasons were classified as medium risk for both the mid-century (2045-2054) and the end of the
century (2085-2094), despite showing an increasing trend, which led to a relatively lower fidelity
score.

'While SBERT is used to find relevant sources by matching queries to our database, we separately use
SBERT to check whether the system’s final responses actually align with the content of those retrieved sources.
This separate evaluation step is necessary since retrieving relevant sources does not guarantee the system will use
them appropriately when generating responses. Additionally, while verifying that sources are properly included
is a basic requirement (as opposed to hallucinated), it remains an important check for system reliability.
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Table 11: Fidelity scores and SBERT scores for each case study. The fidelity scores are represented
as precision percentages, calculated as the number of correctly reported statistics divided by the total
number of statistics reported by WildfireGPT. The raw counts of correctly reported statistics and total
statistics are provided. The SBERT scores are reported as average values across all retrieved papers
for each case study, along with the number of times papers were retrieved (in parentheses). "N/A"
indicates that the case study did not involve a literature review component. Case studies are listed in
alphabetical order.

Case Study Data Analysis | Literature Review | Avg. SBERT Score
Climate Impact on U.S. Wildfires 5/5 N/A N/A
Hazard Mitigation Planning 10/11 N/A N/A
Comprehensive Wildfire Impact 16/16 5/5 0.8529 (2)
Current Wildfire Risk Analysis 11/11 N/A N/A
Ecosystem Fire Management 6/6 3/3 0.9150 (1)
Infrastructure Wildfire Risk 10/10 3/3 0.8398 (1)
Post-Wildfire Public Safety 1/1 3/3 0.7742 (1)
Private Property Protection 1/1 17/17 0.8694 (6)
Urban Wildfire Mitigation 8/8 9/9 0.8556 (3)
Wildland Urban Interface Impact 12/12 3/3 0.8844 (1)
Average Across All Percentages or 98.09% 100.00% 0.8559
Scores

Overall Success Rate 98.94% (80/81) | 100.00% (45/45) N/A

H Domain Expert Evaluation

Table 12: Domain expert evaluation criteria and corresponding questions used to assess WildfireGPT’s
performance in generating responses. Each question was rated on a three-point scale: "Yes" (1),
"Could be better" (0.5), and "No" (0).

Criteria Questions

(1) Does my response answer your last question?

(2) Is my response relevant to your profession?

(3) Is my response relevant to your concern?

(4) Is my response relevant to your location?

(5) Is my response relevant to your timeline?

(6) Is my response relevant to your scope?

Entailment (1) Do my analyses or recommendations logically follow from the
information (data, literature) provided?

(1) Does my response contain too much jargon?

Accessibility | (2) Does my response provide enough explanation?

(3) Does my response contain redundant or useless information?

Relevance

During the case studies, whenever WildfireGPT generates a response, domain experts from Argonne
National Laboratory’s Environmental Science Division and Decision and Infrastructure Sciences
Division are asked to evaluate its relevance, entailment, and accessibility using a structured question-
naire. These experts are scientists and engineers specializing in natural hazards and wildfire control
with different detailed concentrations or other related professions as listed in Table[I] Each question
is rated on a three-point scale, with "Yes" receiving a score of 1, "Could be better" a score of 0.5,
and "No" a score of 0. The valuation criteria and corresponding questions are presented in Table [I2]
Relevance assesses whether the model’s responses appropriately address the user’s last question and
are relevant to the user’s profession, concerns, location, timeline, and scope. Entailment evaluates the
logical coherence between the model’s analyses/recommendations and the provided data or literature.
Accessibility examines the clarity and concision of the model’s language, considering factors such as
jargon, explanatory detail, and redundancy. We report the total scores for each criterion across all
case studies. To complement the quantitative analysis, we also report qualitative insights from the
expert evaluations to provide a more nuanced understanding of WildfireGPT’s performance.
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We additionally verify whether the reported data and citations in WildfireGPT’s responses originate
from the retrieved sources.

Table 13: Relevance scores for each case study, representing the percentage of responses that
appropriately addressed the user’s context and needs. Raw scores are shown (score/total times the
domain expert opinion was collected to evaluate a response).

Case Study Last Profession Concern Location Time Scope
Ques-
tion
Climate Impact on U.S. Wild- | 17/18 18/18 18/18 18/18 18/18 18/18
fires
Comprehensive Wildfire Im- | 6/6 777 77 11 717 17
pact
Current Wildfire Risk Analy- | 5/5 6/6 6/6 6/6 5.5/6 6/6
sis
Ecosystem Fire Management | 3/3 2.5/3 3/3 3/3 3/3 3/3
Hazard Mitigation Planning 5/5 77 77 77 77 77
Infrastructure Wildfire Risk 77 77 77 77 77 77
Post-Wildfire Public Safety 3/3 4/4 4/4 3.5/4 4/4 4/4
Private Property Protection 6.5/7 8/9 9/9 8/9 9/9 9/9
Urban Wildfire Mitigation 3.5/4 4/4 4/4 4/4 4/4 4/4
Wildland Urban Interface Im- | 2/2 4/4 4/4 4/4 3.5/4 4/4
pact
Average across All Percent- | 97.48%  97.22% 100.00% 97.64%  97.92% 100.00%
ages
Overall Success Rate 96.67%  97.83%  100.00% 97.83%  98.55%  100.00%
(58/60) (67.5/69) (69/69) (67.5/69) (68/69) (69/69)

Table 14: Entailment and accessibility scores for each case study. Entailment indicates the percentage
of responses where the model’s analyses and recommendations logically followed from the provided
information (data, literature). Accessibility assesses the clarity and concision of the model’s language.
Scores represent the percentage of responses that avoided jargon, provided sufficient explanation,
and minimized redundancy. Raw scores are shown (score/total times the domain expert opinion was
collected to evaluate a response).

. Accessibilit
Case Study Entailment No Jargon Enough Explanati(};n No Redundancy
Climate Impact on U.S. Wildfires 11/13 17/17 16/17 14.5/17
Comprehensive Wildfire Impact 77 7 7 7
Current Wildfire Risk Analysis 5.5/6 6/6 5.5/6 6/6
Ecosystem Fire Management 3/3 3/3 3/3 3/3
Hazard Mitigation Planning 6/6 7 7 /17
Infrastructure Wildfire Risk 6.5/7 7 7117 /7
Post-Wildfire Public Safety 3/3 4/4 4/4 4/4
Private Property Protection 6/6 8/8 /8 778
Urban Wildfire Mitigation 1.5/2 4.5/5 2.5/5 5/5
Wildland-Urban Interface Impact 2.5/3 4/4 4/4 4/4
Average Across All Percentages 92.75% 99.00% 92.33% 97.28%
Overall Success Rate 92.86% 99.26% 92.65% 94.85%
(52/56) (67.5/68) (63/68) (64.5/68)

Relevance: Domain experts generally found WildfireGPT’s responses contextually appropriate (a
success rate of 96.67% to 100% across all relevance categories, Table @, but there are areas for
improvement. For the "Last Question" and "Profession" categories (Table[I2] Q1 & Q2), domain
experts noted occasional misalignments, such as offering broad advice when specific zoning changes
are requested or making impractical recommendations such as suggesting that homeowners host
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community workshops. The "Location" category revealed potential limitations in the literature corpus
(Table Q4), such as offering recommendations for homeowners in Virginia based on studies
from the West Coast. WildfireGPT sometimes failed to specify which strategies could be reasonably
implemented within given timeframes (Table@ Q5).

Entailment: With an overall success rate of 92.86% (Table [I4), WildfireGPT generally remained
logically consistent; but experts noted some issues when WildfireGPT provided recommendations,
such as a lack of transparency in tracing the sources of its recommendations and a failure to present
recommendations in a logical hierarchy from most important to least important. These situations
could lead to long-winded responses that lack focus.

Accessibility: WildfireGPT generally performed well in avoiding jargon (99.26% overall success rate)
and redundancy (92.65% overall success rate), with most responses providing sufficient explanation
(94.85% overall success rate); see Table However, the interpretation of these scores varied
by audience. Urban planners and homeowners frequently requested more detailed explanations
and examples as well as clearer definitions of technical terms and contextual information for data
interpretation. In contrast, climate scientists preferred more concise responses, with less detail and
more direct answers to their questions. These findings point to the challenge of balancing detail and
concision to meet diverse user needs.

Overall, the domain expert evaluation demonstrates that WildfireGPT is capable of generating relevant,
logically sound, and accessible responses to user queries across a range of wildfire-related scenarios.
However, the results also highlight potential areas for improvement, such as improving the relevance
of responses to the user’s last question in certain cases and ensuring differing levels of explanation to
maximize clarity and utility for different domain experts.

Qualitative Feedback on WildfireGPT’s Recommendations To better understand the nuance and
practical value of WildfireGPT’s recommendations, we sought qualitative feedback from domain
experts as they evaluated the system’s responses via the structured questionnaire reported above.

One notable example of WildfireGPT’s effectiveness in integrating data analysis with domain-specific
knowledge is demonstrated in the Ecosystem Fire Management case study (Figure[6). When asked
for suggestions on adapting fire management strategies to maintain oak ecosystems while minimizing
risks to residential areas, WildfireGPT analyzed recent wildfire data, revealing that controlled burns
typically occur in March. It validated this response by citing literature such as that of Stan, Rigg,
and Jones (2006) [49]], which emphasizes the importance of March fires for white oak regeneration.
WildfireGPT also analyzed seasonal FWI data, identifying lower-risk periods in early spring and
late autumn. Synthesizing these insights from more than one data source, it recommended timing
controlled burns to coincide with historically low FWI values, balancing ecological management
goals with safety. The domain expert praised WildfireGPT’s nuanced approach, emphasizing its
ability to balance ecological management goals with safety considerations.

The Wildland Urban Interface Impact case study (Figure [/) further demonstrates WildfireGPT’s
practical utility. When the domain expert asked questions from the perspective of a risk manager
from Las Vegas, NM, WildfireGPT provided recommendations on water resource protection that
aligns well with actual challenges faced in the field. Furthermore, it identifies California as a relevant
comparison due to similar fire characteristics. The retrieved study by Moritz and Stephens (2008)
[SO] recommends strategies such as risk-based frameworks, controlled burns, and reevaluating urban
planning—approaches the domain expert recognizes as potentially valuable for Las Vegas, NM.

The Private Property Protection case study (Figure [8) highlights WildfireGPT’s ability to provide
insightful ideas that might not be immediately apparent to users. When a domain expert, assuming the
role of a Virginia homeowner, sought advice on managing oak and cherry trees while reducing wildfire
risks, WildfireGPT not only suggested standard strategies such as fire monitoring and defensible
spaces but also raised an interesting point about the potential for landowners to benefit from carbon
credits by investing in oaks. Additionally, WildfireGPT emphasized the importance of mixing oak
species with other native, fire-resistant trees to promote ecological balance and adaptability. The
domain expert praised these points, noting that they might not immediately come to mind for many
but offer valuable economic and ecological benefits.

Similarly, in the Infrastructure Wildfire Risk case study (Figure [J), a risk and resilience analyst
discussed strategies for mitigating wildfire risks with WildfireGPT, focusing on the use of FWI
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Case Study: Ecosystem Fire Management

Context: WildfireGPT analyzed recent wildfire incident data and found that from 2018 to
2021, the months with recorded incidents were March (2 incidents) and July (1 incident),
suggesting that March may be when controlled burns are typically implemented. To confirm
this point, WildfireGPT retrieved a study by Stan, Rigg, and Jones (2006) [49], which
highlighted the importance of reintroducing fire in March for white oak regeneration in
northeastern Illinois. Additionally, WildfireGPT analyzed seasonal FWI data, identifying
lower-risk periods during spring.

User Query: Please suggest specific adaptations to fire management strategies (to balance
the utilization of fire for managing oak ecosystems and reducing the risk to residential and
human developments.)

WildfireGPT Response (Snapshot):

Optimized Timing for Controlled Burns:

¢ Continue to utilize controlled burns in March when the FWI (Fire Weather Index)
historically shows lower values, minimizing the risk of uncontrollable wildland fires.

* Schedule additional controlled burns during early spring or late autumn to take
advantage of similarly low FWI scores, ensuring burns are conducted under optimal
conditions for controlling spread and smoke dispersal.

Expert Comment: The answer effectively addresses a key concern: whether to continue
conducting controlled burns in March. It confirms that March remains a suitable time for
burns due to historically lower Fire Weather Index (FWI) values, which reduce the risk
of uncontrolled fires. The response also provides a nuanced suggestion by recommending
additional burn periods in early spring and late autumn. This approach takes advantage
of similarly low FWI scores during these times, allowing for burns at both the beginning
and end of the dormant season. This strategy demonstrates a nuanced understanding of fire
management, as it balances the need for regular burns with the importance of conducting them
under optimal weather conditions for safety and control. The suggestion to utilize multiple
burn windows throughout the year shows a thoughtful approach to ecosystem management
while minimizing risks to nearby developments.

Figure 6: Ecosystem Fire Management: WildfireGPT demonstrates its ability to integrate data analysis
and domain knowledge to provide actionable recommendations for ecosystem fire management. By
analyzing wildfire incident data, retrieving relevant literature, and examining seasonal FWI trends,
WildfireGPT suggests optimizing the timing of controlled burns to minimize risks while maintaining
oak ecosystem health. The domain expert’s positive feedback highlights WildfireGPT’s nuanced
approach and its potential to support informed decision-making in wildfire management.

projections and firebreaks. When asked about the factors that contribute to an area being considered
high risk for wildfires, WildfireGPT not only mentioned ecological importance but also highlighted
the often-overlooked aspect of cultural significance. The domain expert commended the system’s
recognition of this intangible factor, noting that it reminds users of the broader, non-quantifiable
impacts that wildfires can have on communities and their heritage.

The Community Hazard Mitigation Planning case study (Figure [I0) further demonstrates Wild-
fireGPT’s ability to generate nuanced and context-specific recommendations by integrating both
explicitly discussed information and implicit knowledge about the unique needs of the target com-
munity. When a hazard mitigation planner for Mora County, NM, sought guidance on wildfire risk
adaptation strategies tailored to the community’s demographics, WildfireGPT suggested developing a
multilingual alert system and focusing on community-based approaches. Despite the census data only
including poverty rates and housing units, the system drew on broader knowledge to generate these
insightful recommendations, indicating its awareness of the significant Spanish-speaking population
in the region. This case study showcases WildfireGPT’s potential to offer nuanced decision support
that extends beyond mere brainstorming, ultimately enhancing the effectiveness of wildfire risk
adaptation efforts.
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These case studies collectively underscore WildfireGPT’s value in providing insightful, context-
specific recommendations that consider the multifaceted nature of wildfire risk management. By
integrating diverse information sources and accounting for the ecological, cultural, and socioeconomic
dimensions of the communities it serves, the system demonstrates its ability to offer tailored guidance
that can inform more effective and feasible wildfire risk mitigation strategies. These case studies
highlight WildfireGPT’s potential to stimulate innovative thinking and support informed decision-
making by generating recommendations that extend beyond conventional approaches, ultimately
enhancing the effectiveness of wildfire risk adaptation efforts across various contexts.

I Scaling Up Evaluation by LLLM-as-a-Judge

To explore the potential for scalable, automated evaluation that could maintain quality assurance
during deployment without constant human oversight, we implemented an LLM-as-a-judge approach.
This method involves using a separate GPT-4 [27] query to assess the quality of WildfireGPT’s
responses based on the same criteria used in the expert evaluation. We report the agreement of
the LLM-as-a-judge evaluation with the expert evaluation to determine the feasibility of using this
approach. Each case study involved a unique interaction between the user and WildfireGPT, resulting
in varying uses of data sources and different numbers of rounds of follow-up interactions. Our
evaluation framework was designed to accommodate this variability, ensuring that the assessment
remained meaningful and relevant to each specific case.

To evaluate GPT-4’s [27, 51] feasibility as an automated judge for WildfireGPT, we compared GPT-4
assessments with human judgments on relevance, entailment, and accessibility. We applied LLM-
as-a-judge to evaluate WildfireGPT’s responses only immediately after data or literature retrieval
to manage context length and maintain performance. Agreement rates varied: relevance (62.99%),
entailment (75.00%), and accessibility (66.67%). Disagreements primarily occurred when experts
rated responses positively ("Yes"), whereas GPT-4 suggested improvements ("Could be Better"),
reflecting GPT-4’s stricter evaluative criteria.

Table 15: Agreement between human evaluation and LLM-as-a-Judge evaluation of WildfireGPT
responses. Most misalignments occur when domain experts respond with "Yes" while GPT-4 tends to
give a more critical judgment, saying "Could be better" instead of a larger disagreement like "Yes" vs
"NO_"

Category Agree Disagree Yes vs Could be better
Relevance 97/154 (62.99%) 57/154 (37.01%) 51/57 (89.47%)
Entailment 15/20 (75.00%) 5/20 (25.00%) 2/5 (40.00%)
Accessibility  56/84 (66.67%)  28/84 (33.33%) 22/28 (78.57%)

The moderate 62.99% agreement in WildfireGPT relevance evaluations is largely due to nuanced
differences rather than fundamental disagreements, often due to the data availability issues since
retrieved data may not exactly match user-specified timelines or locations, whereas experts were
more lenient, acknowledging these constraints.

In most entailment disagreements, domain experts found responses satisfactory ("Yes"), while GPT-
4 flagged them as needing improvement ("Could be better" or "No"). These discrepancies often
stemmed from WildfireGPT extrapolating beyond available data. For example, based on FWI data
showing minimal change over time, WildfireGPT described wildfire risk as "relatively stable"; GPT-4
criticized this, arguing that it can be misleading and that there are possibilities for wildfire risk to
increase. In another case, when asked about fire controls for cherry trees, the retrieved literature did
not directly address this specific species but rather the same family of trees in general; experts found
this reasonable given the limitations of the available literature, but GPT-4 criticized it as unsupported.
Experts appeared more forgiving of such extrapolations, likely because of the experts filling in gaps
with their own background knowledge.

Accessibility disagreements highlighted differing standards: GPT-4 recommended simpler wording
or more detailed explanations. However, experts’ satisfaction varied with their specific expertise
and familiarity with the topic. For example, In areas of deep knowledge they may prefer concise,
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technical responses, while in less familiar areas they require more detailed explanations. GPT-4’s
critiques do not fully account for this spectrum of expertise.

In summary, the results reveal moderate agreement between GPT-4 and human evaluations. While
GPT-4 can provide scalable and cost-effective evaluations, it may not fully capture the nuanced ex-
pectations and information needs of domain experts, leading to discrepancies in relevance, entailment,
and accessibility assessments.
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Case Study: Wildland-Urban Interface Impact

Context: In Las Vegas, NM, a risk manager developing urban plans for 2050 is concerned
about the increasing wildfire risks and their impact on water resources. Previous analysis of
Fire Weather Index (FWI) data indicated an increasing trend in fire danger levels, particularly
during the spring season.

User Query: Proceed with the recommendations (on urban planning strategies to minimize
wildfire risks and methods to protect water resources from the adverse effects of wildfires)
WildfireGPT Response (Snapshot):

Water Resource Management

» Water Supply Resilience: Increase the resilience of water supply systems to ensure
availability during and after wildfire events. This could involve constructing new
reservoirs, enhancing existing water treatment facilities, and establishing emergency
water supply locations.

* Protect Water Quality: Develop strategies to protect water quality from the effects
of wildfires, such as increased sedimentation and contamination. These might
include erosion control measures and enhanced filtration systems at water treatment
facilities.

Expert Comment: The recommendation to protect water quality from increased sedimenta-
tion and contamination is highly relevant. This issue was a central concern when we initially
developed this case study, and it remains a significant challenge for the area. The local
water treatment plant is struggling to handle the fine-grained sediment that is now flowing
downstream in much larger quantities than before. The plant’s processes are overwhelmed by
the volume of material, which far exceeds what they typically dealt with from normal erosion.
It’s very good that the answer highlights the need to address water quality issues, specifically
mentioning sedimentation and contamination. The suggestion to implement erosion control
measures and enhance filtration systems directly addresses the problems we encountered.
In our modeling work, we aimed to predict the sediment load to help design appropriate
mitigation measures. The recommendation aligns well with the actual challenges faced in the
field and the solutions we were exploring.

User Query: Are there good examples of similar cities that might experience similar shifts
in wildfire risk? What mitigation strategies are those cities implementing?

WildfireGPT Response (Snapshot):

Here’s a look at some of the approaches highlighted in recent research:[...] California is a
prime example of a region adapting to increased wildfire risks. The study by Moritz and
Stephens (2008) emphasizes the need for a sustainable coexistence with wildfire through
policy, planning, and management changes. Key strategies include the following:

* Risk-Based Framework: Implementing a risk-based framework for fire-related
decisions to address natural hazards systematically.

* Reintroduction of Fire: Using controlled burns to reintroduce fire in a managed way
to fire-prone ecosystems.

* Urban Planning Reevaluation: Reevaluating urban planning and building in fire-
prone locations to make future cities less susceptible to wildfire damage.

References:

Moritz, M., & Stephens, S. (2008). Fire and sustainability: considerations for California’s
altered future climate. https://doi.org/10.1007/s10584-007-9361-1

Expert Comment: The WildfireGPT response effectively identifies California as a region
experiencing similar shifts in wildfire risk to Las Vegas, NM. Despite some differences in fire
characteristics, California remains a relevant comparison. The strategies highlighted, such
as implementing a risk-based framework, reintroducing controlled burns, and reevaluating
urban planning, could provide valuable guidance for Las Vegas.

Figure 7: Wildland Urban Interface Impact: WildfireGPT demonstrates its effectiveness in addressing
the complex challenges posed by the wildland-urban interface. Wildfire’s recommendations regarding
water quality protection align well with the actual challenges faced by domain experts in the field.
WildfireGPT’s ability to identify relevant case studies from other areas with similar shifts in wildfire
risk and to highlight pertinent mitigation strategies showcases its potential to support informed
decision-making in wildfire risk management ang 5urban planning.



Case Study: Private Property Protection

Context: A Virginia homeowner near Covington seeks advice on forest management, focus-
ing on oak and cherry tree health, while mitigating wildfire risks. After analyzing recent fire
data, noting an increase in wildfire incidents, especially during spring and fall, WildfireGPT
suggests strategies like fire monitoring, fuel management, controlled burns, defensible spaces,
and reforestation with fire-resistant species. Oak trees are highlighted for their fire resilience,
making them a smart reforestation investment.

User Query: Could you please provide a more detailed summary for investing in oak species?
WildfireGPT Response (Snapshot):

» Carbon Sequestration: As large and long-lived trees, oaks are effective at capturing
and storing carbon dioxide, which could potentially qualify landowners for carbon
credits under emerging environmental regulations and markets.

» Mixing Species for Resilience: While investing predominantly in oaks, it is advisable
to include a mix of other native, fire-resistant species to ensure ecological balance
and adaptability to changing climate conditions.

Expert Comment: Carbon sequestration is an insightful point that might not immediately
come to mind for many. It’s valuable to remind people that trees, especially long-lived
species like oaks, offer more than just timber value. They can also serve as carbon sinks,
potentially providing landowners with additional income through carbon credits in emerging
environmental markets. Mixing species for resilience is also a crucial aspect to highlight.
While the focus is on oak species, it’s important to emphasize that a diverse planting strategy
is more beneficial. Encouraging a mix of native, fire-resistant species alongside oaks promotes
greater ecological resilience and adaptability to changing climate conditions. This approach
aligns with best practices in forest management and conservation. Both points add depth to
the investment strategy, considering both economic and ecological factors.

Figure 8: Private Property Protection: WildfireGPT showcases its ability to provide tailored advice
to individual property owners seeking to balance wildfire risk mitigation with their specific land
management goals.
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Case Study: Infrastructure Wildfire Risk

Context: A risk and resilience analyst discussed strategies for mitigating wildfire risks
with WildfireGPT, particularly focusing on the use of FWI projections and firebreaks. The
conversation has detailed the implementation of firebreaks to protect transmission lines,
including site assessment, types, and maintenance of firebreaks. They explored integrating
these with other mitigation measures and engaging with local communities for effective
implementation.

User Query: What goes in to being a critical area as an high-risk areas prone to wildfires.
Can you explain?

WildfireGPT Response (Snapshot):

Ecological and Cultural Significance

» Protected Areas: Wildlife reserves, national parks, and other protected lands are
often considered high-risk areas due to their ecological importance.

* Cultural Heritage: Areas with cultural or historical significance may also be priori-
tized for protection against wildfires.

Expert Comment: The inclusion of cultural significance is a crucial aspect in explaining the
impact of natural disasters, particularly wildfires. This intangible factor is often overlooked
in decision-making processes for natural hazard mitigation, yet it remains highly important.
Highlighting cultural significance reminds users of the broader, non-quantifiable impacts that
wildfires can have on communities and their heritage. It’s good that the answer recognizes
this often undervalued dimension of wildfire risk assessment.

Figure 9: Infrastructure Wildfire Risk: WildfireGPT demonstrates its ability to provide fresh perspec-
tives and consider often-overlooked dimensions of wildfire risk assessment.

Case Study: Hazard Mitigation Planning

Context: A hazard mitigation planner for Mora County, NM, is assessing wildfire risks over
the next 15 years. In the previous discussion, WildfireGPT found a notable increase in fire
occurrences from 2015 to 2022 and a clear trend of increasing wildfire risk in the coming
decades due to climate change impacts. From the U.S. census data, the community, with a
population of about 10,297, is particularly vulnerable due to high poverty levels.

User Query: Let’s explore specific adaptation strategies tailored to these demographics (in
Mora County, NM).) WildfireGPT Response (Snapshot):

Enhanced Emergency Communication Systems:

* Develop a multilingual alert system that provides real-time updates on wildfires via
SMS, social media, and local radio stations to ensure that all community members
receive timely information.

* Set up community billboards in key areas to display emergency information and tips
on wildfire preparedness.

Expert Comment: The suggestion to develop a multilingual alert system is insightful,
particularly given the significant Spanish-speaking population in the area. Interestingly, this
demographic detail wasn’t explicitly mentioned in the provided census data, which only
included poverty rates and housing units. This indicates that the Al model is drawing on
broader knowledge about the region to make this recommendation. It’s noteworthy that
the model suggests community-focused strategies rather than individual-based ones. This
approach is particularly relevant for a lower-income community like Mora County, where
collective efforts may be more effective and feasible for wildfire mitigation. The model’s
ability to integrate both explicitly provided information and implicit knowledge about the
area demonstrates its capacity for nuanced and context-appropriate recommendations.

Figure 10: Community Hazard Mitigation Planning: WildfireGPT demonstrates its ability to generate
nuanced and context-specific recommendations by integrating both explicitly discussed information
and implicit knowledge about the unique needs of the target community.
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