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Abstract

We present LLoVi, a simple yet effective
Language-based Long-range Video question-
answering (LVQA) framework. Our method
decomposes short and long-range modeling
aspects of LVQA into two stages. First, we
use a short-term visual captioner to generate
textual descriptions of short video clips (0.5-
8s in length) densely sampled from a long in-
put video. Afterward, an LLM aggregates the
densely extracted short-term captions to answer
a given question. Furthermore, we propose a
novel multi-round summarization prompt that
asks the LLM first to summarize the noisy
short-term visual captions and then answer a
given input question. To analyze what makes
our simple framework so effective, we thor-
oughly evaluate various components of our
framework. Our empirical analysis reveals that
the choice of the visual captioner and LLM
is critical for good LVQA performance. The
proposed multi-round summarization prompt
also leads to a significant LVQA performance
boost. Our method achieves the best-reported
results on the EgoSchema dataset, best known
for very long-form video question-answering.
LLoVi also outperforms the previous state-of-
the-art by 4.1% and 3.1% on NExT-QA and In-
tentQA. Finally, we extend LLoVi to grounded
VideoQA which requires both QA and tempo-
ral localization, and show that it outperforms
all prior methods on NExT-GQA. Our code
is available at: https://github.com/CeeZh/
LLoVi.

1 Introduction

Recent years have witnessed remarkable
progress in short video understanding (5-15s
in length) (Wang et al., 2022a; Ye et al., 2023;
Fu et al., 2021; Yang et al., 2022a; Wang et al.,
2023¢g). However, extending these models to long
videos (e.g., several minutes or hours in length)
is not trivial due to the need for sophisticated
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Question: What were the key steps the camera wearer took in cleaning
the dog mat from start to finish?

LLoVi

Answer: The camera wearer picks

up a dog mat, puts it in the sink, Answer: The camera wearer
washes it with soap and water, washes the dog mat.

and then rinses it off. J x

I

FrozenBiLM

.

Figure 1: Comparison between LLoVi (ours) and the re-
cent FrozenBiLM (Yang et al., 2022a) video QA method.
Like most prior methods, FrozenBiLM is best suited for
short-range video understanding. Thus, as illustrated in
the figure, it fails to answer a question that requires rea-
soning about complex human activities in a long video.
In comparison, our method effectively reasons over long
temporal extents and produces a correct answer.

long-range temporal reasoning capabilities. Most
existing long-range video models rely on costly
and complex long-range temporal modeling
schemes, which include memory queues (Wu
et al., 2022; Chen et al., 2020; Lee et al., 2021,
2018), long-range feature banks (Wu et al,
2019; Cheng and Bertasius, 2022; Zhang et al.,
2021), space-time graphs (Hussein et al., 2019b;
Wang et al., 2021), state-space layers (Islam and
Bertasius, 2022; Islam et al., 2023; Wang et al.,
2023a) and other complex long-range modeling
modules (Hussein et al., 2019a; Bertasius et al.,
2021; Yang et al., 2023).

Recently, Large Language Models (LLMs) have
shown impressive capability for long-range rea-
soning on a wide range of tasks such as document
understanding (Sun et al., 2023; Wang et al., 2023e;
Gur et al., 2023) and long-horizon planning (Liu
et al., 2023a; Hao et al., 2023; Song et al., 2023a).
Motivated by these results in the natural language
and decision-making domain, we explore using
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LLMs for long-range video question answering
(LVQA). Specifically, we propose LLoVi, a sim-
ple yet effective language-based framework for
long-range video understanding. Unlike prior long-
range video models, our approach does not require
specialized long-range video modules (e.g., mem-
ory queues, state-space layers, etc.) but instead
uses a short-term visual captioner coupled with
an LLM, thus exploiting the long-range temporal
reasoning ability of LLMs. Our simple two-stage
framework tackles the LVQA task by decomposing
it into short and long-range modeling subproblems:

1. First, given a long video input, we segment
it into multiple short clips and convert them
into short textual descriptions using a pre-
trained frame/clip-level visual captioner (e.g.,
BLIP2 (Li et al., 2023c¢), LaVilLa (Zhao et al.,
2023), LLaVa (Liu et al., 2023b)).

2. Afterwards, we concatenate the temporally or-
dered captions from Step 1 and feed them into
an LLM (e.g., GPT-3.5, GPT-4, LLaMA) to
perform long-range reasoning for LVQA.

To further enhance the effectiveness of our
framework, we also introduce a novel multi-round
summarization prompt that asks the LLM first
to summarize the short-term visual captions and
then answer a given question based on the LLM-
generated video summary. Since the generated
captions may be noisy or redundant, such a sum-
marization scheme enables filtering out potentially
distracting/irrelevant information and eliminating
redundant sentences, which significantly improves
the reasoning ability of the LLM for LVQA.

We also conduct an empirical study to investi-
gate the factors behind our framework’s success.
Specifically, we study (i) the selection of a visual
captioner, (ii) the choice of an LLM, (iii) the LLM
prompt design, (iv) few-shot in-context learning,
(v) optimal video processing configurations (i.e.,
clip length, sampling rate, etc.), and (vi) the gen-
eralization of our framework to other datasets and
tasks. Our key empirical findings include:

* The multi-round summarization prompt leads
to the most significant boost in performance
(+5.8%) among the prompts we have tried (e.g.,
zero-shot CoT, Self-Consistency).

* GPT-4 as an LLM provides the best performance,
while GPT-3.5 provides the best trade-off be-
tween the accuracy and the cost.

* LaViLa (Zhao et al.,, 2023) as a visual cap-
tioner produces best results (51.8%) followed

by BLIP-2 (Li et al., 2023c) (46.7%) and
EgoVLP (Qinghong Lin et al., 2022) (46.6 % ).

* Few-shot in-context learning leads to a large
improvement on both the variant of our model
with a standard prompt (+4.7%) and our best-
performing variant with our proposed multi-
round summarization prompt (+4.1%).

* Densely Extracting visual captions from consec-
utive 1-second video clips of the long video input
leads to the best results.

e LLoVi outperforms all prior approaches on
EgoSchema, NeXT-QA, IntentQA and NeXT-
GQA LVQA benchmarks.

Overall, our framework is simple, effective and

training-free. Furthermore, it is agnostic to the ex-

act choice of a visual captioner and an LLM, which
allows it to benefit from future improvements in
visual captioning and LLM model design. We hope
that our work will encourage new ideas and a sim-
pler model design in LVQA. We will release our
code to enable the community to build on our work.

2 Related Work

Long-range Video Understanding. Modeling
long-range videos (e.g., several minutes or longer)
typically requires models with sophisticated tem-
poral modeling capabilities, often leading to com-
plex model design. LF-VILA (Sun et al., 2022)
proposes a Temporal Window Attention (HTWA)
mechanism to capture long-range dependency in
long-form video. MeMViT (Wu et al., 2022) and
MovieChat (Song et al., 2023b) adopt a memory-
based design to store information from previously
processed video segments. Several prior methods
use space-time graphs (Hussein et al., 2019b; Wang
etal., 2021) or relational space-time modules (Yang
et al., 2023) to capture spatiotemporal dependen-
cies in long videos. Lastly, the recently introduced
S4ND (Nguyen et al., 2022), ViS4mer (Islam and
Bertasius, 2022) and S5 (Wang et al., 2023a) use
Structured State-Space Sequence (S4) (Gu et al.,
2021) layers to capture long-range dependencies
in the video. Unlike these prior approaches, we do
not use any complex long-range temporal modeling
modules but instead develop a simple and strong
LLM-based framework for zero-shot LVQA.

LLMs for Video Understanding. The recent
surge in large language models (LLMs) (Brown
et al., 2020; OpenAl, 2023; Touvron et al., 2023;
Raffel et al., 2020; Chung et al., 2022; Tay et al.,
2022) has inspired many LL.M-based applications



in video understanding. Methods like Socratic
Models (Zeng et al., 2022) and VideoChat (Li
et al., 2023e) integrate pretrained visual models
with LLMs for extracting visual concepts and
applying them to video tasks. Video ChatCap-
tioner (Chen et al., 2023) and ChatVideo (Wang
et al., 2023b) leverage LLMs for video represen-
tation and dialog-based user interaction, respec-
tively. VidIL (Wang et al., 2022b) employs LLMs
for adapting image-level models to video tasks us-
ing few-shot learning. Beyond short-term video un-
derstanding, the works in (Lin et al., 2023a; Chung
and Yu, 2023; Bhattacharya et al., 2023) explored
LLMs for long-range video modeling. The work
in (Lin et al., 2023a) uses GPT-4 for various long-
range video modeling tasks but lacks quantitative
evaluation. Meanwhile, (Chung and Yu, 2023) fo-
cuses on movie datasets, requiring limited visual
analysis (Mangalam et al., 2023) and mostly rely-
ing on non-visual speech/subtitle inputs. In contrast
to these prior methods, we focus on the LVQA task
and provide an extensive empirical analysis of vari-
ous design choices behind our LLM framework.

Video Question Answering. Unlike image
question-answering, video question-answering
(VidQA) presents unique challenges, requiring
both spatial and temporal reasoning. Most ex-
isting VidQA methods, either using pretraining-
finetuning paradigms (Cheng et al., 2023; Lei et al.,
2021; Yu et al., 2023), zero-shot (Yang et al.,
2022b; Surfs et al., 2023; Lin et al., 2023b; Yu
et al., 2023), or few-shot learning (Wang et al.,
2022b), focus on short-term video analysis (5-30s).
To overcome the limitations of short-term VidQA,
new benchmarks have been proposed: ActivityNet-
QA (Yu et al., 2019), TVQA (Lei et al., 2018),
How2QA (Yang et al., 2021), MovieQA (Tapaswi
et al., 2016), and DramaQA (Choi et al., 2021)
ranging from 100s to several minutes in video dura-
tion. Despite longer video lengths, the analysis in
(Mangalam et al., 2023; Yang et al., 2020; Jasani
et al., 2019) found that many of these benchmarks
can be solved by analyzing only short clips (i.e.,
not requiring long-range video modeling) or by
using pure text-only methods that ignore visual
content. To address these issues, the EgoSchema
benchmark (Mangalam et al., 2023) was recently
introduced, requiring at least 100 seconds of video
analysis and not exhibiting language-based biases.

LLM Prompt Design. With the emergence of
LLMs, there has been an increasing research em-

| Question
| What was the order and organization of C's actions in the video? |

Captioner Captioner Captioner Captioner

| ! ! !
C chops C opens the lid C stirs salad in; |C chops
tomatoes on a !of a trash bin. the bowl. cucumber on a
cutting board. cutting board.

| [ B

Large Language Model —

___________ Answer
{" Creferstothe ! ! . !
1 ! C sequentially chops

\ _ Camera wearer ! ) . .
“““““ ingredients, discards waste,
and stores unused items.

Figure 2: An illustration of LLoVi, our simple LLM
framework for long-range video question-answering
(LVQA). We use Large Language Models (LLMs) like
GPT-3.5 and GPT-4 for their long-range modeling capa-
bilities. Our method involves two stages: first, we use
short-term visual captioners (e.g, LaViLa, BLIP2) to
generate textual descriptions for brief video clips (0.5s-
8s). Then, an LLM aggregates these dense, short-term
captions for long-range reasoning required for LVQA.
This simple approach yields impressive results, demon-
strating LLMs’ effectiveness in LVQA.

phasis on LLLM prompt design. The recent works
in (Wei et al., 2022; Zhou et al., 2023; Schick and
Schiitze, 2020; Chen et al., 2022; Yao et al., 2022)
explored prompting strategy in few-shot learning
settings. To eliminate the need for extensive hu-
man annotations, (Kojima et al., 2022; Wang et al.,
2023c,f) proposed zero-shot prompting methods.
Subsequent research (Zhou et al., 2022; Zhang
et al., 2022; Pryzant et al., 2023) has concentrated
on the automatic refinement of prompts. Instead,
we propose a multi-round summarization LLM
prompt for handling long, noisy, and redundant
textual inputs describing video content for LVQA.

3 Method

Our method, named LLoVi, consists of two stages:
1) short-term video clip captioning and 2) long-
range text-based video understanding using an
LLM. Figure 2 presents a detailed illustration of
our high-level approach. Below, we provide more
details about each component of our framework.

3.1 Short-term Video Clip Captioning

Given a long untrimmed video input V, we first
segment it into N,, non-overlapping short video
clips v = {v,}" |, where v, € RTv>*HxWx3



/Summarization Prompt \
Given the caption of a video, please
provide a summary ...
LLM
Captions
00:00-00:01 The man holds pilers.
00:01-00:02 The man walks around the
d.
VRl Summary
The video primarily
02:59-03:00 The man puts down a basket. "
features a man tending to
e his garden. He first plants
r . . 1 flowers ... He also tidies
I Question and Answer Candidates I T
. (optional) . waters the flowers with a
\———————’J basket.

~

Guestion Answering Prompt
Given the summary of a video, please

answer the following question ...
LLM

Ve
Summary

The video primarily features a man

tending to his garden. He first plants

flowers ... He also tidies the lawn ... At

last, he waters the flowers with a basket.

\ Answer: The
( correct answer is A.
Question and Answer Candidates

- J

Figure 3: An illustration of our multi-round summarization prompt that first asks an LLM to summarize the noisy
short-term visual captions (first round of prompting) and then answer a given question about the video based on the
LLM-generated summary (second round of prompting). Our results indicate that such a multi-round prompting
strategy significantly boosts LVQA performance compared to standard prompting techniques (+5.8%).

and T,,, H, W are the number of frames, height
and width of a short video clip respectively. Af-
terward, we feed each video clip vy, into a pre-
trained short-term visual captioner ¢, which pro-
duces textual captions ¢,, = ¢(vy,), where ¢, =
(w1, ...,wr,,) and w; represents the i-th word in
caption c,, of length L,,. Note that our model
is not restricted to any specific visual captioning
model. Our experimental section demonstrates that
we can incorporate various video (LaViLa (Zhao
et al., 2023), EgcoVLP (Qinghong Lin et al., 2022),
and image (BLIP-2 (Li et al., 2023d)) captioning
models. Next, we describe how our extracted short-
term captions are processed by an LLM.

3.2 Long-range Reasoning with an LLM

We want to leverage foundational LLMs for holistic
long-range video understanding. Formally, given
short-term visual captions {cm}%“:1 for all N,
short video clips, we first concatenate the clip cap-
tions into the full video captions C' = [cy, ..., cn, ]
in the same order as the captions appear in the
original video. Afterward, the concatenated video
captions C' are fed into an LLM for long-range
video reasoning. Specifically, given the concate-
nated video captions C, the question (), and the
answer candidates A, we prompt the LLM to se-
lect the correct answer using the following prompt
template: “Please provide a single-letter answer
(A, B, C, D, E) to the following multiple-choice
question {Q}. You are given language descriptions
of a video. Here are the descriptions: {C'}. Here
are the choices { A}.". The full prompt is included
in the Supplementary Material.

Our experiments in Section 4.3 suggest that this

simple approach works surprisingly well for LVQA.
However, we also discovered that many modern
LLMs (e.g., GPT-3.5, LLaMA) may struggle when
provided with long (>1K words), noisy, and po-
tentially redundant/irrelevant caption sequences.
To address these issues, we investigate more spe-
cialized LLM prompts that ask an LLM first to
summarize the noisy short-term visual captions
(first round of prompting) and then answer a given
question about the video (second round of prompt-
ing). Specifically, we formulate such a multi-round
prompt as follows: given the video captions C, the
question (@, and the answer candidates A, instead
of directly feeding the {C, @, A} triplet into LLM
for LVQA, we first ask the LLM to provide a sum-
mary of the captions in the first round, which we
denote as S using the following prompt template:
“You are given language descriptions of a video:
{C}. Please give me a { N,} word summary." N,
denotes the desired number of words in the sum-
mary S. Afterward, during the second round of
prompting, instead of using the captions C, we
use the summary .S as input for the LLM to se-
lect one of the answer candidates. Conceptually,
such a prompting scheme is beneficial, as the LLM-
generated summary S filters out irrelevant/noisy
information from the initial set of captions C, mak-
ing LLM inputs for the subsequent QA process
more succinct and cleaner. A detailed illustration
of our multi-round prompt is shown in Figure 3.

3.3 Implementation Details

For the experiments on EgoSchema, we use LaV-
iLa (Zhao et al., 2023) as our captioner. We seg-
ment each video into multiple 1s clips with a stride



00:40:42 --> 00:40:47
MovieQA It exists now only as part of a
neural-interactive simulation

o R O

What is the Matrix?

00:40:47 --> 00:40:48
that we call the Matrix.

e e Ao
. - 135s
A shared simulation

of the world.

ActivityNet-QA

Are the athletes
outdoor? O

i
Picks up a block, throws
that the man O it on the ground, and

What are the key steps

then picks up another
block.

consistently repeats?

Figure 4: An illustration of prior LVQA dataset lim-
itations. Top: An example from MovieQA (Tapaswi
et al., 2016). The model can use the provided subti-
tle information to answer a question while ignoring
visual cues in a video. Middle: An example from the
ActivityNet-QA Dataset (Yu et al., 2019). Despite long
video inputs, the model only needs to analyze a short 1s
video clip to answer the question. Bottom: An example
from the EgoSchema Dataset (Mangalam et al., 2023).
The model must analyze visual cues from the video to
answer a given question without relying on additional
textual inputs (e.g., speech, subtitles).

of 1s, resulting in a list of consecutive clips that
cover the entire video. We use GPT-3.5 as the
LLM on EgoSchema. For NeXT-QA, IntentQA,
and NeXT-GQA, we use LLaVA-1.5 (Liu et al.,
2023b) as the visual captioner and GPT-4 as the
LLM. We downsample the videos to 0.5 FPS and
prompt LLaVA to generate captions with roughly
30 words for each frame. More details are provided
in the Supplementary Material.

4 [Experiments

4.1 Datasets and Metrics

Unlike short-term video question-answering, long-
range video question-answering (LVQA) lacks ro-
bust and universally agreed-upon benchmarks. As
shown in Figure 4, many prior LVQA benchmarks
either exhibit significant language biases, or do
not require long-range video modeling capabili-
ties. To address these limitations, recent work intro-
duced EgoSchema (Mangalam et al., 2023), a new
long-range video question-answering benchmark
consisting of 5K multiple choice question-answer

. Caption Ego4D o
Captioner Type  Pre-training Acc. (%)
VideoBLIP (Yu) clip-level v 40.0
EgoVLP (Qinghong Lin et al., 2022) clip-level v 46.6
BLIP-2 (Li et al., 2023d) frame-level X 46.7
LaViLa (Zhao et al., 2023) clip-level v 51.8

Oracle clip-level - 65.8

Table 1: Accuracy of our framework with different
visual captioners. LaVilLa visual captioner achieves
the best results, outperforming other clip-level (e.g.,
EgoVLIP, VideoBLIP) and image-level (e.g., BLIP-2)
captioners. We also observe that the Oracle baseline
using ground truth captions greatly outperforms all other
variants, suggesting that our framework can benefit from
the future development of visual captioners.

pairs spanning 250 hours of video and covering a
wide range of human activities. By default, our
experiments are conducted on the validation set
of 500 questions (referred to as the EgoSchema
Subset). The final comparison is done on the full
test set of SK EgoSchema questions. We use QA
accuracy (i.e., the percentage of correctly answered
questions) as our evaluation metric. Additionally,
we also perform zero-shot LVQA experiments on
three commonly-used LVQA benchmarks: NExT-
QA (Xiaoetal., 2021), IntentQA (Li et al., 2023a),
and NExT-GQA (Xiao et al., 2023). Detailed
dataset information and metrics can be found in
the supplementary material.

4.2 Empirical Study on EgoSchema

Before presenting our main results, we first study
the effectiveness of different components within
our LLoVi framework, including (i) the visual cap-
tioner, (ii) the LLM, (iii) the LLM prompt design,
and (iv) few-shot in-context learning. The exper-
iments are conducted on the EgoSchema Subset
with 500 multi-choice questions. We discuss our
empirical findings below. We also include addi-
tional experiments in the supplementary material.

4.2.1 Visual Captioning Model

In Table 1, we study the effectiveness of vari-
ous clip-level video captioners, including LaV-
iLa (Zhao et al., 2023), EgoVLP (Qinghong Lin
et al., 2022), and VideoBLIP (Yu). In addition to
video captioners, we also try the state-of-the-art
image captioner, BLIP-2 (Li et al., 2023c). Lastly,
to study the upper bound of our visual captioning
results, we include the ground truth Oracle cap-
tioning baseline obtained from the Ego4D dataset.
All baselines in Table 1 use similar experimental
settings, including the same LLM model, i.e., GPT-



LLM Model Size Acc. (%)
Llama2-7B (Touvron et al., 2023) 7B 34.0
Llama2-13B (Touvron et al., 2023) 13B 40.4
Llama2-70B (Touvron et al., 2023) 70B 50.6
GPT-3.5 (Brown et al., 2020) 175B 51.8
GPT-4 (OpenAl, 2023) N/A 58.3

Table 2: Accuracy of our framework with different
LLMs. GPT-4 achieves the best accuracy, suggesting
that stronger LLMs perform better in LVQA. However,
we use GPT-3.5 for most of our experiments due to the
best accuracy and cost tradeoff.

3.5. The results are reported as LVQA accuracy on
the EgoSchema Subset.

The results in Table 1, suggest that LaVilLa
provides the best results, outperforming BLIP-2,
EgoVLP, and VideoBLIP. We also observe that de-
spite not being pre-trained on Ego4D (Grauman
et al., 2022), BLIP-2 performs reasonably well
(46.7 %) and even outperforms other strong Ego4D-
pretrained baselines, EgoVLP and VideoBLIP.
Lastly, the Oracle baseline with ground truth cap-
tions outperforms LaVila captions by a large mar-
gin (14.0%). This shows that our method can bene-
fit from future improvements in captioning models.

4.2.2 Large Language Model

In Table 2, we analyze the performance of our
framework using different LLMs while fixing the
visual captioner to be LaViLa. Our results indicate
that GPT-4 achieves the best performance (58.3%),
followed by GPT-3.5 (51.8%). Thus, stronger
LLMs (GPT-4) are better at long-range modeling,
as indicated by a significant margin in LVQA accu-
racy between GPT-4 and all other LLMs (>6.5%).
We also note that Llama2 performs reasonably well
with its 70B variant (50.6 %), but its performance
drastically degrades with smaller capacity LLMs
(i.e., Llama2-7B, Llama2-13B). Due to the tradeoff
between accuracy and cost, we use GPT-3.5 for
most of our experiments unless noted otherwise.

4.2.3 LLM Prompt Analysis

In this section, we (1) analyze several variants
of our summarization-based prompt (described in
Section 3), and (2) experiment with other com-
monly used prompt designs, including Zero-shot
Chain-of-Thought (Zero-shot CoT) (Wei et al.,
2022), Plan-and-Solve (Wang et al., 2023c), and
Self-Consistency (Wang et al., 2023f). Below, we
present a detailed analysis of these results.

Multi-round Summarization Prompt. Given a
concatenated set of captions C', an input question

Prompt Type Standard (C)—S (C,Q —S (C,Q,A)—S
Acc. (%) 51.8 53.6 57.6 55.9

Table 3: Different variants of our multi-round sum-
marization prompt. Our results indicate that the (C,
Q) — S variant that takes concatenated captions C' and
a question () for generating a summary S works the
best, significantly outperforming (+5.8%) the standard
prompt. This confirms our hypothesis that additional
inputs in the form of a question () enable the LLM to
generate a summary S tailored to a given question Q.

Q, and a set of candidate answers A, we can use
several input combinations to obtain the summary
S. Thus, here, we investigate three distinct variants
of obtaining summaries S:

* (C) — S: the LLM uses caption-only inputs
C' to obtain summaries S in the first round of
prompting.

* (C, Q) — S: the LLM uses captions C' and
a question () as inputs for generating sum-
maries .S. Having additional question inputs
is beneficial as it allows the LLM to generate a
summary S specifically tailored for answering
an input question Q).

* (C,Q, A) — S: the LLM takes captions C, a
question (), and the answer candidates A as
its inputs to produce summaries S. Having
additional answer candidate inputs enables the
LLM to generate a summary S most tailored
to particular question-answer pairs.

In Table 3, we explore the effectiveness of these
three prompt variants. Our results show that all
three variants significantly outperform our standard
LVQA prompt (described in Section 3). Specifi-
cally, we note that the variant (C) — S that uses
caption-only inputs to obtain the summaries outper-
forms the standard baseline by 1.8 %. Furthermore,
we observe that incorporating a given question as
an input (i.e., the (C, Q) — S variant) leads to
the best performance (57.6%) with a significant
5.8% boost over the standard LVQA prompt base-
line. This confirms our earlier intuition that having
additional question (Q inputs enables the LLM to
generate a summary S specifically tailored for an-
swering that question, thus leading to a big boost
in LVQA performance. Lastly, we observe that
adding answer candidates A as additional inputs
(i.e., the (C, Q, A) — S variant) leads to a drop
in performance (-1.7%) compared with the (C, Q)
— S variant. This might be because the wrong an-
swers in the candidate set A may mislead the LLM,
leading to a suboptimal summary S.



Number of words 50 100 300 500 700
Acc. (%) 556 574 558 57.6 550

Table 4: Number of words in a generated summary.
We study the optimal number of words in an LLM-
generated summary. These results suggest that the op-
timal LVQA performance is obtained when using 500-
word summaries.

Prompting Technique Acc. (%)
Zero-shot

Standard 51.8
Zero-shot Chain-of-Thought (Wei et al., 2022) 53.2
Plan-and-Solve (Wang et al., 2023c) 54.2
Self-Consistency (Wang et al., 2023f) 55.4
Ours 57.6
Few-shot

Standard 56.5
Ours 61.7

Table 5: Comparison with commonly used prompting
techniques. The “Standard" means a standard LVQA
prompt (see Section 3). We show that our framework
benefits from more sophisticated prompting techniques.
Our multi-round summarization prompt performs best
in both zero-shot and few-shot learning settings.

We also investigate the optimal length of the
generated summary S, and present these results in
Table 4. Specifically, for these experiments, we ask
the LLM to generate a summary S using a different
number of words (as part of our prompt). We use
the best performing (C, Q) — S variant for these
experiments. Our results indicate that using a very
small number of words (e.g., 50) leads to a drop
in performance, indicating that compressing the
caption information too much hurts the subsequent
LVQA performance. Similarly, generating sum-
maries that are quite long (e.g., 700 words) also
leads to worse results, suggesting that the filtering
of the potentially noisy/redundant information in
the captions is important for good LVQA perfor-
mance. The best performance is obtained using
500-word summaries.

Comparison with Commonly Used Prompts.
Next, in Table 5, we compare our multi-round
summarization prompt with other commonly used
prompts such as Zero-shot Chain-of-Thought (Wei
et al., 2022), Plan-and-Solve (Wang et al., 2023c),
and Self-Consistency (Wang et al., 2023f). These
results show that all of these prompts outperform
the base variant of our model that uses a standard
prompt. In particular, among these commonly used
prompts, the self-consistency prompting technique

Model Acc. (%)
Zero-shot

FrozenBiLLM (Yang et al., 2022a) 26.9
mPLUG-OwI (Ye et al., 2023) 31.1
InternVideo (Wang et al., 2022a) 32.1
LongViViT (Papalampidi et al., 2023) 33.3
Vamos (Wang et al., 2023d) 48.3
LLoVi (Ours) 50.3
Few-shot

LLoVi (Ours) 52.5

Table 6: Results on the full set of EgoSchema. The
best-performing zero-shot variant of our LLoVi frame-
work achieves 50.3% accuracy, outperforming the previ-
ous best-performing InternVideo model by 18.2%. For
fair comparisons, we gray out our best few-shot variant.

achieves the best results (55.4%). Nevertheless,

our multi-round summarization prompt performs
best (57.6%).

4.2.4 Few-shot In-Context Learning

In-context learning with LLMs has shown strong
few-shot performance in many NLP tasks (Brown
et al., 2020; Wei et al., 2022). In Table 5, we evalu-
ate the few-shot in-context learning capabilities of
our LLoVi framework. Our results show that our
LLoVi framework greatly benefits from few-shot
in-context learning. Specifically, the few-shot in-
context learning leads to a 4.7 % boost on the vari-
ant of our framework that uses a standard prompt
and 4.1% boost on our advanced framework using
a multi-round summarization prompt. We used 6
few-shot examples as we found this configuration
to produce the best performance.

4.3 Main Results on EgoSchema

In Table 6, we evaluate our best-performing
LLoVi framework on the full EgoSchema test
set containing 5K video samples. We compare
our approach with prior state-of-the-art meth-
ods including InternVideo (Wang et al., 2022a),
mPLUG-OwI (Ye et al., 2023), FrozenBiLM (Yang
et al., 2022a), as well as the concurrent works of
LongViViT (Papalampidi et al., 2023), and Va-
mos (Wang et al., 2023d). Based on these results,
we observe that the best-performing zero-shot vari-
ant of our LLoVi framework achieves 50.3% accu-
racy, outperforming the concurrent Vamos model
(+2.0%). Additionally, we show that by using few-
shot in-context learning, our best variant improves
even further. These results validate our design
choice of using the long-range modeling abilities of
LLMs for LVQA. Furthermore, since our proposed



Model Cau. (%) Tem. (%) Des. (%) All (%)

VFC (Momeni et al., 2023) 454 51.6 64.1 51.5
InternVideo (Wang et al., 2022a) 43.4 48.0 65.1 49.1
ViperGPT (Suris et al., 2023) - - 60.0
SeViLA (Yu et al., 2023) 61.3 61.5 75.6 63.6
LLoVi (ours) 69.5 61.0 75.6 67.7

Table 7: Zero-shot results on NeXT-QA. LLoVi
achieves 67.7% accuracy, outperforming previous best-
performing model SeViLA by 4.1%. Notably, LLoVi
excels at causal reasoning outperforming SeViLA by
8.2% in the causal question category.

LLoVi framework is agnostic to the visual caption-
ing model and an LLM it uses, we believe we could
further improve these results by leveraging more
powerful visual captioners and LLMs.

4.4 Results on Other Datasets

Next, we demonstrate that our simple framework
generalizes well to other LVQA benchmarks.
NEXT-QA. In Table 7, we evaluate LLoVi on the
NEXT-QA (Xiao et al., 2021) validation set in a
zero-shot setting. We compare our approach with
prior methods: VFC (Momeni et al., 2023), In-
ternVideo (Wang et al., 2022a), ViperGPT (Suris
et al., 2023), and SeViLA (Yu et al., 2023). We
observe that LLoVi outperforms the previous best-
performing method, SeViLA by 4.1%. Notably,
in the Causal category, LLoVi achieves 8.2% im-
provement. We conjecture this improvement comes
from the simple 2-stage design of our LLoVi frame-
work: captioning followed by LLM reasoning. By
captioning the video, we are able to directly lever-
age the reasoning ability of the powerful LLMs and
thus achieve good causal reasoning performance.
IntentQA. In Table 8, we evaluate our method
on the IntentQA (Li et al., 2023a) test set. In
our comparisons, we include several supervised
methods (HQGA (Xiao et al., 2022a), VGT (Xiao
et al., 2022b), BlindGPT (Ouyang et al., 2022),
CaVIR (Li et al., 2023b)) and the recent state-of-
the-art zero-shot approach, SeViLA. From the re-
sults in Table 8, we observe that our method greatly
outperforms all prior approaches, both in the fully
supervised and zero-shot settings.

NExT-GQA. In Table 9, we extend our framework
to the grounded LVQA task and evaluate it on the
NEXT-GQA (Xiao et al., 2023) test set. We com-
pare LLoVi with the weakly-supervised methods:
IGV (Li et al., 2022), Temp[CLIP](NG+) (Xiao
et al., 2023), FrozenBiLM (NG+) (Xiao et al.,
2023) and SeViLA (Yu et al., 2023). These base-
lines are first trained on NEXT-GQA to maxi-

Model Acc. (%)
Supervised

HQGA (Xiao et al., 2022a) 47.7
VGT (Xiao et al., 2022b) 51.3
BlindGPT (Ouyang et al., 2022) 51.6
CaVIR (Li et al., 2023b) 57.6
Zero-shot

SeViLA (Yu et al., 2023) 60.9
LLoVi (ours) 64.0

Table 8: Results on IntentQA. Our zero-shot frame-
work outperforms previous supervised methods by a
large margin (6.4%). LLoVi also outperforms the recent
state-of-the-art zero-shot method, SeViLA, by 3.1%.

Model mloP [oP@0.5 mloU IoU@0.5 Acc@GQA
Weakly-Supervised

IGV (Li et al., 2022) 214 189 14.0 9.6 10.2
Temp[CLIP](NG+) 2577 255 12.1 8.9 16.0
FrozenBiLM (NG+) 242 237 9.6 6.1 17.5

SeVILA (Yuetal., 2023) 295 229 21.7 13.8 16.6

Zero-shot
LLoVi (ours) 373 369 20.0 15.3 24.3

Table 9: Grounded LVQA results on NExT-GQA. We
extend LLoVi to the grounded LVQA task and show
that it outperforms prior weakly-supervised approaches
on all evaluation metrics. For a fair comparison, we
de-emphasize the models that were pretrained using
video-language grounding annotations.

mize the QA accuracy, and then use ad-hoc meth-
ods (Xiao et al., 2023) to estimate a relevant video
segment for question-answering. Although LLoVi
is not trained on NExT-GQA, it still outperforms
these weakly-supervised methods by a large margin
according to all evaluation metrics. These results
demonstrate that our framework can be used to tem-
porally ground its predictions for more explainable
long-range video understanding.

5 Conclusion

In this work, we present a simple, yet highly
effective LLM-based framework for long-range
video question-answering (LVQA). Our framework
outperforms all prior models on the newly intro-
duced EgoSchema benchmark. Furthermore, we
demonstrate that our approach generalizes to other
LVQA benchmarks such as NeXT-QA, IntentQA,
and it can also be extended to grounded LVQA
tasks. Lastly, we thoroughly evaluate various de-
sign choices of our approach and analyze the key
factors behind the success of our method. We hope
that our simple LVQA framework will help inspire
new ideas and simplify model design in long-range



video understanding.

Limitations

Our proposed framework used different short-term
visual captioning models for egocentric and exocen-
tric videos due to the domain difference. A unified
captioner that works for all kinds of videos remains
to be explored in the future. Additionally, our multi-
round summarization prompt requires two rounds
of prompting LLMs. Although it leads to a signif-
icant performance boost on LVQA, it also causes
extra computational cost. Therefore, the trade-off
between efficiency and high performance in our
prompt design can be further improved.
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Our appendix consists of Additional Datasets
and Metrics (Section A), Additional Analysis (Sec-
tion B), Additional Implementation Details (Sec-
tion C) and Qualitative Analysis (Section D).

A Additional Datasets and Metrics

In this section, we provide detailed information
about the datasets and the metrics we use.
 NExT-QA (Xiao et al., 2021) contains 5,440
videos with an average duration of 44s and
48K multi-choice questions and 52K open-
ended questions. There are 3 different ques-
tion types: Temporal, Causal, and Descriptive.
Following common practice, we perform zero-
shot evaluation on the validation set, which
contains 570 videos and 5K multiple-choice
questions.
IntentQA (Li et al., 2023a) contains 4,303
videos and 16K multiple-choice question-
answer pairs focused on reasoning about peo-
ple’s intent in the video. We perform a zero-
shot evaluation on the test set containing 2K
questions.
NExT-GQA (Xiao et al., 2023) is an ex-
tension of NExT-QA with 10.5K temporal
grounding annotations associated with the
original QA pairs. The dataset was introduced
to study whether the existing LVQA mod-
els can temporally localize video segments
needed to answer a given question. We eval-
uate all methods on the test split, which con-
tains 990 videos with 5,553 questions, each
accompanied by a temporal grounding label.
The metrics we used include: 1) Intersec-
tion over Prediction (IoP) (Xiao et al., 2023),
which measures whether the predicted tempo-
ral window lies inside the ground truth tem-
poral segment, 2) temporal Intersection over
Union (IoU), and 3) Acc@GQA, which de-
picts the percentage of accurately answered
and grounded predictions. For IoP and IoU,
we report the mean values and values with the
overlap thresholds of 0.5.

B Additional Analysis

In this section, we provide additional analysis on
the EgoSchema Subset using the standard prompt.
B.1 Video Sampling Configurations

In Figure 5, we investigate the sensitivity of LVQA
performance on EgoSchem with different video

sampling configurations. Specifically, in Subfig-
ure Sa, we experiment with 4 different clip lengths:
0.5s, 1s, 4s, and 8s. For each clip length, we use the
stride that would be sufficient to cover the entire
long video input. For these experiments, we use a
LaViLa visual captioner and a GPT-3.5 LLM. Our
results indicate that LVQA performance is the best
when the sampled clip length is 1s. We observe
that using an even shorter video clip length (i.e.,
0.5s) produces many repetitive/redundant captions,
which leads to 2% drop in LVQA performance.
Furthermore, we also note that increasing the clip
length to longer durations (e.g., 2s-8s) makes the
accuracy lower since the extracted captions start to
lack detailed visual information needed to answer
the question. In addition, in Subfigure 5b, we fix
the clip length to 1s and experiment with 4 different
stride values: 1s, 2s, 4s, and 8s. Note that the 1s
clips sampled using a 1s stride will cover the entire
video without overlap. Our results suggest a grad-
ual decrease in LVQA accuracy when increasing
the stride from 1s to 8s. This indicates that having
gaps in long video coverage leads to suboptimal
LVQA performance. Thus, for the rest experiments,
we use 1s video clips sampled with a 1s stride.
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Figure 5: The Analysis of Video Clip Sampling Strat-
egy on EgoSchema. These results show that sampling
1s video clips with a 1s stride leads to the best LVQA
performance.

B.2 Accuracy on Different Question Types

To better understand the strengths and limitations
of our LVQA framework, we manually categorize
questions in the EgoSchema Subset into 5 cate-
gories: (1) Purpose/Goal Identification, (2) Tools
and Materials Usage, (3) Key Action/Moment De-
tection, (4) Action Sequence Analysis, (5) Char-
acter Interaction (see Supplementary Materials for
details). Note that some questions belong to more
than one category. Based on this analysis, we ob-
serve that almost half of the questions relate to
purpose/goal identification, which makes intuitive



Question Category Category Percentage(%) Acc.(%)
Purpose/Goal Identification 49.2 54.9
Tools and Materials Usage 21.8 50.5
Key Action/Moment Detection 21.6 43.5
Action Sequence Analysis 18.2 52.7
Character Interaction 9.4 63.8

Table 10: Accuracy on different question categories
of EgoSchema. We manually categorize each question
in the EgoSchema Subset into 5 categories. Note that
each question may belong to one or more categories.
Our system performs the best on questions that involve
character interaction analysis or human purpose/goal
identification. This is encouraging as both of these ques-
tions typically require a very long-form video analysis.

sense as inferring human goals/intent typically re-
quires a very long video analysis. We also observe
that a significant portion of the questions relate
to tool usage, key action detection, and action se-
quence analysis. Lastly, the smallest fraction of the
questions belong to character interaction analysis.

In Table 10, we break down our system’s per-
formance according to each of the above-discussed
question categories. Our results indicate that our
system performs the best in the Character Interac-
tion category (63.8%). One possible explanation is
that the LaViLa model, which we use as our visual
captioner, is explicitly pretrained to differentiate
the camera wearer from other people, making it
well-suited for understanding various interactions
between characters in the video. We also observe
that our framework performs much worse in the
Key Action/Moment Detection category (43.5%).
We conjecture that this might be caused by the
limitations in the visual captioning model, i.e., if
the key action fails to appear in any of the visual
captions, the question will be almost impossible to
answer. Lastly, we note that our model performs
quite well on the remaining categories (>50%).
It is especially encouraging to see strong results
(54.9%) in the Purpose/Goal Identification cate-
gory since inferring human intentions/goals from
the video inherently requires very long-form video
analysis.

C Additional Implementation Details
C.1 Captioners

For most experiments on EgoSchema, we use LaV-
iLa as the visual captioner. For other pre-trained
visual captioners, we use off-the-shelf pre-trained
models, e.g., BLIP2 (Li et al., 2023c), EgoV-
LIP (Qinghong Lin et al., 2022).

LaVilLa is trained on the Ego4D dataset. The
original LaVilLa train set has 7743 videos with
3.9M video-text pairs and the validation set has 828
videos with 1.3M video-text pairs. The EgoSchema
dataset is cropped from Ego4D. Since EgoSchema
is designed for zero-shot evaluation and the origi-
nal LaViLa train set includes EgoSchema videos,
we retrain LaVilLa on Ego4D videos that do not
have any overlap with EgoSchema videos to avoid
unfair comparison with other methods. After re-
moving the EgoShema videos, the train set consists
6100 videos with 2.3M video-text pairs, and the
validation set has 596 videos with 0.7M video-text
pairs. We retrain LaViLa on this reduced train set
to prevent data leakage. LaVila training consists of
two stages: 1) dual-encoder training and 2) narrator
training. Below we provide more details.

Dual-encoder. We use TimeSformer (Bertasius
et al., 2021) base model as the visual encoder and a
12-layer Transformer as the text encoder. The input
to the visual encoder comprises 4 RGB frames of
size 224 x 224. We randomly sample 4 frames from
the input video clip and use RandomResizedCrop
for data augmentation. The video-language model
follows a dual-encoder architecture as CLIP (Rad-
ford et al., 2021) and is trained contrastively. Fol-
lowing LaViLa (Zhao et al., 2023), we use 1024 as
batch size. We train at a 3 x 107> learning rate for
5 epochs on 32 NVIDIA RTX 3090 GPUs.

Narrator is a visually conditioned autoregressive
Language Model. It consists of a visual encoder,
a resampler module, and a text encoder. We
use the visual encoder (TimeSformer (Bertasius
et al., 2021) base model) from the pretrained dual-
encoder (See the previous paragraph). The resam-
pler module takes as input a variable number of
video features from the visual encoder and pro-
duces a fixed number of visual tokens (i.e. 256).
The text decoder is the pretrained GPT-2 (Rad-
ford et al., 2019) base model with a cross-attention
layer inserted in each transformer block which at-
tends to the visual tokens of the resampler module.
We freeze the visual encoder and the text decoder,
while only training the cross-attention layers of the
decoder and the resampler module. Following the
design in LaViLa (Zhao et al., 2023), we use a batch
size of 256 and a learning rate of 3 x 10~°. We use
AdamW optimizer (Kingma and Ba, 2014) with
(B1, B2) = (0.9,0.999) and weight decay 0.01. We
train the model on 8 NVIDIA RTX 3090 GPUs for
5 epochs.



Narrating video clips. We use nucleus sam-
pling (Holtzman et al., 2019) with p = 0.95 and
return K = 5 candidate outputs. Then we take the
narration with the largest confidence score as the
final caption of the video clip.

For NExT-QA, IntentQA and NExT-GQA
datasets, we use LLaVA1.5 as the visual cap-
tioner and GPT-4 as the LLM. Specifically, we
use the 11ava-1.5-7b-hf variant with the prompt
“USER: <image>. Describe the image in 30 words.
ASSISTANT: .

C.2 LLMs

For most experiments on EgoSchema we use
GPT-3.5 as the LLM. Specifically, we use the
gpt-3.5-turbo-0613 variant which has 4K con-
text. When the context length is not enough, we
use the gpt-3.5-turbo-16k variant. We use O as
temperature for all experiments.

We use Llama-2-7b-chat-hf, Llama-2-13b-
chat-hf, and L1ama-2-70b-chat-hf variants as
Llama2 models. For all Llama2 models, we use
greedy sampling to generate the output.

For NExT-QA, IntentQA and NExT-GQA datasets,
we use GPT-4 as the LLM with the variant
gpt-4-1106-preview.

C.3 Prompting Techniques Implementation

Prompt Details. We provide detailed prompts
for our standard prompt in Table 11, multi-round
summarization-based prompt in Table 12, Zero-
shot Chain of Thought in Table 13, and Plan-and-
Solve prompting in Table 14. To implement Self-
Consistency, we set the temperature of GPT3.5 to
0.7 and run Zero-shot Chain of Thought for 5 times
following the design in Self-Consistency (Wang
et al., 2023f). Each run of the model provides a
result, and the final output is determined by a ma-
jority vote. The prompt for the grounded LVQA
benchmark is shown in Table 15.

Output Processing. When answering multiple
choice questions, GPT3.5 usually outputs complete
sentences instead of a single-letter answer, i.e. A, B,
C, D, or E. One way to obtain the single-character
response is to perform post-processing on the out-
put, which usually requires substantial engineering
efforts. In our work, however, we observe that
GPT3.5 is very sensitive to the starting sentences
of the prompts. Therefore, we explicitly prompt it
as in Table 11 to force GPT3.5 to generate a single
character as response. In practice, we take out the
first character of the output as the final answer.

R

[Q. Based on the actions described in the video, what
can be inferred as the primary goal or task being
performed by the character C?]

[C. #C walks towards the table. #C walks around the
workshop. #C walks around the workshop. #C walks
around the workshop. #C puts the tape measure down.
#C picks a pen. #C moves the left hand . #C leans on the
floor . #C places the wood on the floor with his left
hand.. #C puts down the tape measure.... ]

[A. Cis building a shelf.]

(a) Success case

[Q. Summarize the main activities c gets involved in
during the video, and explain how these activities are
interconnected.]

[C. #C eats the snack. #C touches the tablet screen. #C
places the green spoon in the bowl of food. #C eats the
chips. #C cuts the popcorn. #C eats the chips. #C eats
the corn. #C picks up the chips from the bowl. #C picks
the potato peels in the bowl. #C drops the chips in the
bowl. #C eats the food....]

[A. C eats chips and watches tv.]
[Truth. C eats chips and uses an ipad.]

(b) Failure case

Figure 6: Examples of our framework with a stan-
dard prompt on EgoSchema. We show two examples,
a successful one (a) and a failed one (b).

D Qualitative Analysis

D.1 Captioners

In Table 16 we compare different captions gener-
ated by BLIP2 and LaViLa on EgoSchema. LaViLa
captions are generally more concise than BLIP2
captions, focusing more on the actions while BLIP2
focuses more on describing the objects. We also
observe that LaVilLa is better at differentiating the
camera wearer and other person. As shown in the
second image in Table 16, LaViLa tends to focus
more on the action of the other person when the
camera wearer and other person both appear in the
video.

D.2 LLoVi with Standard Prompt

We show two examples of our method with stan-
dard prompt, including a successful one and a failed
one in Figure 6. Our method performs long-range
modeling from short-term video captions through



User

Please provide a single-letter answer (A, B, C, D, E) to the following multiple-choice question,
and your answer must be one of the letters (A, B, C, D, or E). You must not provide any other
response or explanation.

You are given some language descriptions of a first person view video. The video is 3 minute
long. Each sentence describes a clip_length clip. Here are the descriptions: Captions
You are going to answer a multiple choice question based on the descriptions, and your

Here is the question: Question

answer should be a single letter chosen from the choices.

Here are the choices. A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.

Assistant
Answer

Table 11: LLoVi with Standard Prompt on EgoSchema.

LLM to understand the video. In the success case
demonstrated in Subfigure 6a, the captions describe
the camera wearer’s action in a short period of time,
such as the interation with the tape measure and
the wood. With the short-term captions, LLM un-
derstand the long video and answers the question
correctly.

In the failure case shown in Subfigure 6b, although
the video captioner identifies the object in the video
correctly as a tablet, LLM understands the action of
the camera wearer as watching TV rather than us-
ing an iPad. This might be caused by misguidance
from the redundant captions that are not related to
the question.

D.3 LLoVi with Multi-round
Summarization-based Prompt

Figure 7 illustrates two EgoSchema questions that
our framework with multi-round summarization-
based prompt answers correctly. In Subfigure 7a,
the question asks for the primary function of a tool
that the video taker uses. However, shown in the
first two images, the long video contains descrip-
tions that are not related to the question, such as
operating a machine and rolling a dough. As a
result, the generated text captions would contain
a large section that is not our direction of interest.
By summarizing the captions with awareness to
the question, LLM extracts key information and
cleans redundant captions to provide clearer tex-

tual background for answering the question. The
same pattern is observed in Subfigure 7b.

Figure 8 shows two questions that our method fails
to answer. In the summarization stage, the LLM
answers the question directly instead of using the
question to guide the summarization. For exam-
ple, in Subfigure 8a, all the frames show the cam-
era wearer engaging in actions related to washing
dishes, but LLM infers that the person is cleaning
the kitchen in the summarization stage. This wrong
inference further misdirects the following question
answering stage, which leads to an incorrect an-
swer. In Subfigure 8b, LLM concludes that the cup
of water is used to dilute the paint because the cam-
era wearer dips the brush into water before dipping
it into the paint palette.

In Figure 9, we also show a question which the stan-
dard prompt fails to answer, but the multi-round
summarization-based prompt answers correctly. In
the video in the example question, we observe
the camera wearer involving in activities related
to laundry, such as picking up clothes from the
laundry basket and throwing them into the washing
machine. However, the short-term video captions
shown in Subfigure 9a demonstrate the redundancy
of actions. The repetitive actions complexes ex-
tracting and comprehending the information pre-
sented in the caption. For example, excessive cap-
tions on picking up clothes can make LL.M think
that the camera wearer is packing something. Our



User

You are given some language descriptions of a first person view video. Each video is 3 minute
long. Each sentence describes a clip_length clip. Here are the descriptions: Captions
Please give me a num_words words summary. When doing summarization, remember that
your summary will be used to answer this multiple choice question: Question.

Assistant
Summary
. v
( )
User

Please provide a single-letter answer (A, B, C, D, E) to the following multiple-choice question,
and your answer must be one of the letters (A, B, C, D, or E). You must not provide any other
response or explanation.

You are given some language descriptions of a first person view video. The video is 3 minute
long. Here are the descriptions: Summary

You are going to answer a multiple choice question based on the descriptions, and your
answer should be a single letter chosen from the choices.

Here is the question: Question

Here are the choices. A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.

Assistant
Answer

. v

Table 12: LLoVi with Multi-round Summarization-based Prompt on EgoSchema. We show the variant
(C, Q) — S, where we feed the question without potential choices to the summarization stage. Top: caption
summarization prompt. Bottom: question answering prompt. In the first stage, GPT3.5 outputs a question-
guided summary. In the second stage, GPT3.5 takes the summary without the original captions, then answer
the multiple choice question.

multi-round summarization-based prompt mitigate
this problem by first ask LLLM to provide a sum-
mary of the captions. The summary shown in Sub-
figure 9b states clearly that the camera wearer is
doing laundry. With the cleaner and more compre-
hensive summary, the LLM answer the question
correctly.

D.4 Question Categories

We provide detailed descriptions of each question
category in Table 17. Note that each question can
be classified into multiple categories.



User

You are given some language descriptions of a first person view video. The video is 3 minute
long. Each sentence describes a clip_length clip. Here are the descriptions: Captions
You are going to answer a multiple choice question based on the descriptions, and your
answer should be a single letter chosen from the choices.

Here is the question: Question

Here are the choices. A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
Before answering the question, let’s think step by step.

Assistant
Answer and Rationale

User

Please provide a single-letter answer (A, B, C, D, E) to the multiple-choice question, and
your answer must be one of the letters (A, B, C, D, or E). You must not provide any other
response or explanation. Your response should only contain one letter.

Assistant
Answer

Table 13: LLoVi with Zero-shot Chain of Thought Prompting on EgoSchema.




User

You are given some language descriptions of a first person view video. The video is 3 minute
long. Each sentence describes a clip_length clip. Here are the descriptions: Captions
You are going to answer a multiple choice question based on the descriptions, and your
answer should be a single letter chosen from the choices.

Here is the question: Question

Here are the choices. A: Option-A. B: Option-B. C: Option-C. D: Option-D. E: Option-E.
To answer this question, let’s first prepare relevant information and decompose it into 3
sub-questions. Then, let’s answer the sub-questions one by one. Finally, let’s answer the
multiple choice question.

Assistant
Sub-questions and Sub-answers

User

Please provide a single-letter answer (A, B, C, D, E) to the multiple-choice question, and
your answer must be one of the letters (A, B, C, D, or E). You must not provide any other
response or explanation. Your response should only contain one letter.

Assistant
Answer

Table 14: LLoVi with Plan-and-Solve Prompting on EgoSchema.

User

I will provide video descriptions and one question about the video. The video is 1 FPS
and the descriptions are the captions every 2 frames. Each caption starts with the frame
number.To answer this question, what is the minimun frame interval to check? Follow this
format: [frame_start_index, frame_end_index]. Do not provide any explanation.

Here are the descriptions: Captions

Here is the question: Question

Please follow the output format as follows: #Examplel: [5, 19]. #Example2: [30, 60].
#Example3: [1, 10] and [50, 60]

Assistant
Answer

Table 15: LLoVi Prompt on NExT-GQA.




LaViLa #C C drops the #O man X moves

brick mould. the cards.

#C C puts the cloth
on the table.

#C C moves the
dough in the tray.

BLIP2 A personislayinga A child is playing a
brick in the dirt. game of monopoly
with a tray of paper

plates.

A person is work-
ing on a tool.

Woman  making
dough in a kitchen.

Table 16: Comparison between different captioners. Top: frames from EgoSchema videos. Middle: captions
generated by LaViLa. Bottom: captions generated by BLIP2. LaVilLa captions are more concise than BLIP2
captions. LaViLa is better at differentiating the camera wearer and other people.



Question
Category

Description

Examples

Purpose/Goal
Identification

primary goals, intentions,
summary, or overarching
themes of the video

1. Taking into account all the actions performed by
¢, what can you deduce about the primary objective
and focus within the video content?

2. What is the overarching theme of the video, con-
sidering the activities performed by both characters?

Tools and Mate-
rials Usage

how the character engages
with specific tools, materi-
als, and equipment

1. What was the primary purpose of the cup of water
in this video, and how did it contribute to the overall
painting process?

2. Explain the significance of the peeler and the
knife in the video and their respective roles in the
preparation process.

Key Action /
Moment Detec-
tion

identify crucial
steps/actions,  the in-
fluence/rationale of key
action/moment/change on
the whole task

1. Out of all the actions that took place, identify the
most significant one related to food preparation and
explain its importance in the context of the video.

2. Identify the critical steps taken by c to organize
and prepare the engine oil for use on the lawn mower,
and highlight the importance of these actions in the
overall video narrative.

Action Se-
quence Analy-
sis

compare and contrast dif-
ferent action sequences,
relationship between dif-
ferent actions, how charac-
ters adjust their approach,
efficacy and precision, ex-
pertise of the character

1. What is the primary sequence of actions performed
by ¢ throughout the video, and how do these actions
relate to the overall task being performed?

2. Considering the sequence of events, what can
be inferred about the importance of precision and
accuracy in the character’s actions, and how is this
demonstrated within the video?

Character Inter-
action

how characters interact
and collaborate, how their
roles differ

1. What was the main purpose of the actions per-
formed by both ¢ and the man throughout the video,
and how did their roles differ?

2. Describe the general activity in the room and how
the different characters and their actions contribute
to this environment.

Table 17: Question categories of EgoSchema. We manually categorize each question in the EgoSchema Subset
into 5 categories. Note that each question may belong to one or more categories.



Figure 7:

[Q. What was the primary function of the scrapper
throughout the video? ]

[S. Throughout the video, the scrapper was used to cut,
move, and shape the dough. It was employed to divide
the dough into smaller pieces, ensuring uniformity and
consistency in size. By cutting the dough, the scrapper
allowed for easier handling and further processing....]

|

[A. The primary function of the scrapper throughout the
video is to cut the dough into small pieces.]

(@)

[Q. Based on the video, summarize the key steps in the
process that c undertook while preparing the tray and
working with the foil. ]

[S. ...In summary, the key steps in the process that #C
undertook while preparing the tray and working with
the foil include picking up a packet of foil, moving it to
the other side of the oven, spreading it on the oven,
pressing it with a butter grater, cutting it, removing it
from the tray, and putting it on the grill.]

[A. C prepared the tray by unfolding foil, cutting foil, and
placing foil on the tray.]

(b)

Success cases of our multi-round

summarization-based prompt.

[Q. Taking into account all the actions performed by c,
what can you deduce about the primary objective and
focus within the video content?]

[S. In the given first person view video, the primary
objective and focus of the content is on cleaning and
organizing the kitchen. The video starts with #C shaking
a bowl, followed by cleaning it with a sponge. #C then
proceeds to pick up a dish and clean a tray....]

[A. Cis cleaning the kitchen.]
[Truth. C s cleaning dishes.]

(a)

Caption

[Q. What was the primary purpose of the cup of water
in this video, and how did it contribute to the overall
painting process?]

[S. In this 3-minute first person view video, the primary
purpose of the cup of water was to clean and rinse the
paintbrush during the painting process.... The cup of
water is also used to dilute the paint, as #C is seen
dipping the brush into the water and then into the paint
palette....] l

[A. To provide a source of water for the paintbrush.]
[Truth. To clean the paintbrush.]

(b)

Figure 8: Failure cases of our framework with multi-

round summarization-based prompt.



[Q. From the actions ¢ performed, what can you infer
about the purpose and process of their activity?

[C. #C stands on the floor. #C touches the camera on the

L. head. #C picks the clothing from the box. #C folds the
cloth.. #C removes a hand from the table.. #C picks the
cloth from the bag. #C picks the jacket. #C picks a cloth.
#C places the clothes in the cloth rack. #C drops the cloth
in the suitcase. #C picks the cloth. #C picks a cloth....]

[A. Cis packing a bag.]

(a) Standard prompt (wrong answer).

Caption

[Q. From the actions ¢ performed, what can you infer
about the purpose and process of their activity?

[S. ... Throughout the video, C is seen engaging in tasks
L, related to laundry, such as picking up clothes from a
chair, laundry basket, or washing machine. They also
fold and remove clothes from the washing machine, and
even clean the washing machine itself. C is observed
handling various items, including a paper bag...]

[A. Cis doing laundry.]

(b) Multi-round summarization-based prompt (correct an-
swer).

Figure 9: Contrast between our standard prompt and
our multi-round summarization-based prompt. (a)
demonstrates the process of answering the question with
a standard prompt, and (b) shows answering the question
with our multi-round summarization-based prompt.



