
Deep Associations, High Creativity: A Simple yet Effective Metric for
Evaluating Large Language Models

Anonymous ACL submission

Abstract001

The evaluation of LLMs’ creativity represents002
a crucial research domain, though challenges003
such as data contamination and costly human004
assessments often impede progress. Drawing005
inspiration from human creativity assessment,006
we propose PACE, asking LLMs to generate007
Parallel Chains of Associations to Evaluate008
their creativity. PACE minimizes the risk of009
data contamination and offers a straightforward,010
highly efficient evaluation, as evidenced by its011
strong correlation with Arena Creative Writing012
(Spearman’s ρ = 0.739, p < 0.001) on var-013
ious proprietary and open-source models. A014
comparative analysis of associative creativity015
between LLMs and humans reveals that while016
high-performing LLMs achieve scores com-017
parable to average human performance, top-018
performing humans consistently outperform019
LLMs. Furthermore, linguistic analysis reveals020
that both humans and LLMs exhibit a trend of021
decreasing concreteness in their associations,022
and humans demonstrating a greater diversity023
of associative patterns.024

1 Introduction025

Developing creative artificial intelligence and026

boosting co-creativity remain central goals in AI027

research (Rafner et al., 2023; Franceschelli and028

Musolesi, 2024; Lee and Chung, 2024). Current029

research conduct diverse creativity-based tasks to030

evaluate the creative capabilities of Large Lan-031

guage Models (LLMs), aiming to understand their032

potential and limitations (Tian et al., 2023; At-033

makuru et al., 2024; Si et al., 2024).034

However, data contamination, a prominent is-035

sue in current LLMs evaluations, may compro-036

mise the reliability of conclusions (Sainz et al.,037

2023; Xu et al., 2024; Lu et al., 2024a). More-038

over, unlike tasks with definitive answers, establish-039

ing frameworks to evaluate creativity poses unique040

challenges, particularly due to its complex nature041

(Rafner et al., 2023; Ivcevic and Grandinetti, 2024)042

Figure 1: Structure of PACE: Three 20-word chains
are generated for each seed. The average association
distance of each chain is calculated to represent its score.

and the subjective and time-consuming process of 043

human scoring (Olson et al., 2021; Organisciak 044

et al., 2023; Lu et al., 2024b). 045

In light of these issues, this study draws inspi- 046

ration from established psycholinguistic measures 047

of human creativity and introduces PACE (Parallel 048

Association Chain Evaluation), a highly efficient 049

framework to evaluate LLMs. As shown in Fig- 050

ure 1, This approach requires no human-annotated 051

data and enables automatic and reliable scoring. 052

Associative evaluation lies at the core of human 053

creativity research (Mednick and Halpern, 1968; 054

Olson et al., 2021; Beaty and Kenett, 2023). The 055

theory of associative creativity posits that individ- 056

uals with higher creative capacity are more likely 057

to generate unconventional connections, enabling 058

them to link disparate concepts and produce orig- 059

inal ideas (Mednick, 1962; Merseal et al., 2023). 060

As for LLMs, measuring associative distance effi- 061

ciently assesses their capacity for creative associa- 062

tion, reflecting their ability to move beyond surface 063
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co-occurrence patterns and tap into deeper, less064

common semantic links that underlie genuine cre-065

ativity (Yao et al., 2022; Abramski et al., 2024).066

Our results demonstrate a strong correlation be-067

tween PACE and Arena creative writing (ρ =068

0.739, p < 0.001), as well as other LLM leader-069

boards, through testing a series of open-source and070

closed-source models of varying capabilities. We071

further compare associative creativity between hu-072

mans and LLMs, finding that state-of-the-art mod-073

els perform comparably to general human groups,074

but still fall short of professional humans. Linguis-075

tic analysis reveals that both models and humans076

tend to produce associations with decreasing con-077

creteness; however, human associations are gener-078

ally more abstract and exhibit greater diversity in079

association types.080

2 Method081

2.1 Parallel Word Association Chains082

The ability to generate distant associations is a key083

indicator of creativity, as it reveals unconventional084

connections between concepts and ideas (Mednick,085

1962; Kenett et al., 2014; Zhang et al., 2023). Sim-086

ilarly, advanced models are expected to capture087

multi-level semantics and identify deeper connec-088

tions, enabling them to foster novel insights.089

To systematically evaluate this capability, we090

present a two-phase approach inspired by human091

participant studies from Gray et al. (2019). The092

approach consists of: (1) eliciting three distinct093

associations from LLMs as secondary seed words,094

and (2) generating 20-word association chains that095

contain both primary and secondary seeds.096

Each association chain is generated indepen-097

dently to minimize mutual influence among the098

chains. Compared to single-chain association, this099

parallel approach improves the diversity of associa-100

tive pathways, allowing a broader sampling of the101

model’s creative potential. For each independent102

chain, we employ a chain-of-thought prompting103

strategy to guide the model’s word associations 1,104

ensuring a structured yet flexible generation pro-105

cess. Prompts can be found in Appendix A.3.106

1While multi-turn dialogue could also be used to elicit
associations, generating without conversational history often
results in redundant outputs. Conversely, providing full con-
versational history introduces confounds such as long-context
memory and coherence constraints inherent to multi-turn or re-
cursive setups. As a result, the two-step approach yields inter-
pretable and controlled measurements of creative associative
capacity, aligning with both human experimental paradigms
and computational evaluation scenarios.

2.2 Seed Words 107

110 seed words are selected from the Interconti- 108

nental Dictionary Series (IDS, Key and Comrie, 109

2023), a multilingual project representing univer- 110

sal concepts across languages. The IDS consists 111

of 22 chapters, each corresponding to a distinct 112

semantic domain, such as time, quality, and mo- 113

tion. From each chapter, five seed words are chosen 114

based on their frequency distribution in the Cor- 115

pus of Contemporary American English (COCA; 116

Davies, 2008), using five equally spaced frequency 117

intervals to ensure balanced representation. This 118

selection process combines semantic diversity and 119

frequency variation to enable a comprehensive eval- 120

uation. For each model, three chains are generated 121

for each seed word, resulting in 6,270 associated 122

words. The complete list of seed words is provided 123

in Appendix A.3. 124

2.3 Association Distance Metric 125

We measure the creativity score using the mean as- 126

sociation distance. Each seed’s score is derived by 127

averaging the association distances of three chains, 128

and the model’s overall associative creativity is de- 129

termined by averaging the scores of 110 seeds. See 130

details in Appendix A.3. We use FastText (crawl- 131

300d-2m; Mikolov et al., 2018) for computing co- 132

sine distance. Table 2 also reports results using 133

alternative word embedding models. 134

3 Experiments and Results 135

3.1 Models and Parameters 136

Thirty models are selected from the Chatbot Arena 137

Leaderboard, covering a diverse range of ranks 138

and licenses (commercial and open-source). When 139

comparing with other benchmarks that have rel- 140

atively few models on their leaderboards, we in- 141

cluded at least 18 models to ensure a robust correla- 142

tion analysis (Bonett and Wright, 2000). Multiple 143

versions and sizes of Qwen models were added to 144

examine the relationship between scale and perfor- 145

mance. The full list of models is in Table 6. Model 146

responses are obtained via APIs with a temperature 147

of 0, except for o3-mini (fixed at 1), while other 148

parameters remained default. 149

3.2 Correlation with Existing Benchmarks 150

We select several representative benchmarks to 151

validate our results, including the Chatbot Arena 152

leaderboard (Arena All and Arena CW, which ranks 153

models based on human voting preferences for 154
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Figure 2: Spearman Rank Correlation Between Model Rankings Based on Association Distance and Arena Creative
Rankings (r = 0.739, p < 0.001). Claude-3.5-Sonnet demonstrates the largest association distance.

Table 1: Spearman Rank Correlation between Model
Rankings based on Association Distance and Different
Benchmarks

Leaderboard Corr. P-value Models
Arena All 0.660*** < 0.001 30
Arena CW 0.739*** < 0.001 30

MMLU-Pro 0.505* < 0.05 23
LiveBench 0.691** < 0.01 19
EQ-Bench 0.637** < 0.01 18

* p < 0.05, ** p < 0.01, *** p < 0.001

anonymous models, Chiang et al., 2024), MMLU-155

Pro (a more complex and challenging version of156

Massive Multitask Language Understanding, Wang157

et al., 2024), livebench (releasing new questions158

regularly, White et al., 2024), EQ-Bench (specif-159

ically its creative writing leaderboard, scored by160

LLMs, Paech, 2023). We then calculate the ranks161

of the models in each leaderboard and their associ-162

ation scores.163

3.3 Results164

Association Distance Shows Significant Correla-165

tions with LLM Creative Ranks. As illustrated166

in Figure 2 and Table 1, the correlation between167

PACE and various benchmarks ranges from mod-168

erate to strong. Bootstrap analysis confirms the169

robustness of these correlations, with detailed re-170

sults presented in Table 3.171

As Figure 2 shows, models from the same organi-172

zation with similar structures can exhibit different173

PACE rankings, e.g., DeepSeek-V3.1 scored 0.763174

(rank 6), DeepSeek-R1 scored 0.759 (rank 8), and175

DeepSeek V3 scored 0.748 (rank 19), demonstrat-176

ing PACE’s effectiveness in differentiation. Ad- 177

ditionally, we analyze various versions and sizes 178

of the Qwen model, which provides diverse open- 179

source variants for comparison (see Appendix A.2). 180

Figure 3: Comparison of Association Distances Be-
tween Humans and LLMs. Using human data from
Gray et al. (2019), results show that high-performing
LLMs match average human performance, but fall
short of professional humans.

4 Comparison between Humans and 181

Models 182

4.1 Associative Creativity 183

We compare human and LLM performance on 184

associative creativity tests. For humans, we use 185

data from Gray et al. (2019), including general 186

American participants and professional performers. 187

For LLMs, we evaluate top-20 models and those 188

ranked around 75, using the same seed words for 189

both groups. Details on seeds, model groups, and 190

prompts are in Appendix A.3. 191

Current Leading LLMs Match Average Hu- 192

man Creativity. In terms of overall performance, 193
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Figure 4: Concreteness scores for human and model
responses in the association chain task decline across
chain positions, with models consistently showing
higher concreteness than humans. Details are provided
in Appendix A.4.

high-performing models have achieved statistical194

parity with human control groups, as evidenced195

by the results of Welch’s t-test (t = 0.644, p =196

0.52), surpassing previous studies that reported197

lower model performance compared to human par-198

ticipants (Wenger and Kenett, 2025). Further-199

more, significant performance differences are ob-200

served between high-performing models and mid-201

performing models (t = 3.781, p < 0.001).202

Best-performing Human Still Outperforms203

LLMs. Both overall group scores (t = 6.152, p <204

0.001) and the highest values from the hu-205

man group (Humanmax=0.8501, Modelmax=0.8251)206

show that the best-performing humans still out-207

perform the best LLMs in agreement with previ-208

ous research (Koivisto and Grassini, 2023). Be-209

sides, a significant difference between the pro-210

fessional group and other groups can also be ob-211

served. This result demonstrates the irreplace-212

able role of human creativity (Rafner et al., 2023;213

Lee and Chung, 2024; Boussioux et al., 2024).214

However, LLMs demonstrate greater consistency215

in minimum performance (Humanmin=0.3457,216

Modelmin=0.6888), suggesting their potential as re-217

liable co-creativity tools for generating consistent218

solutions (Dell’Acqua et al., 2023; Jia et al., 2024;219

Lee and Chung, 2024; Ashkinaze et al., 2024).220

4.2 Associative Patterns221

We further compare the patterns of association be-222

tween human and LLMs from two aspects: trend223

of associations and type between associations.224

Trend of Associations. As shown in Figure 4,225

both humans and LLMs exhibit a decreasing trend226

in concreteness. However, the model consistently227

demonstrates higher levels of concreteness com-228

Figure 5: Types of associations within chains, catego-
rized according to the four-class taxonomy developed
by Nissen and Henriksen (2006). Details are provided
in Appendix A.4.

pared to humans. This suggests that the model 229

tends to rely more on concrete concepts rather than 230

abstract ones, whereas humans are more inclined 231

toward abstract cognition. Additionally, while both 232

LLMs and the general human population display 233

a relatively steady decline in concreteness, profes- 234

sionals exhibit greater variability, suggesting more 235

frequent transitions in their associations (Kenett 236

et al., 2014; Zhang et al., 2023). 237

Type of Associations. Similar to humans, LLMs 238

exhibit a stronger tendency to generate syntagmatic 239

associations (words that co-occur in sequences, like 240

"dog" → "bark") compared to paradigmatic asso- 241

ciations (words that can substitute for each other, 242

like "dog" → "cat"). However, human associate 243

more diversely, generating non-semantic relation- 244

ships such as phonological connections. Moreover, 245

association patterns among professionals show a 246

tendency in "other" type of association, suggesting 247

that creative individuals tend to form associations 248

based on personal experiences rather than common 249

linguistic patterns. 250

5 Conclusions 251

We propose PACE as a benchmark to evaluate 252

LLMs. Our findings demonstrate a strong and sig- 253

nificant correlation between PACE scores and sev- 254

eral established benchmarks, e.g. ρ = 0.739 with 255

Arena CW. Our results prove that measuring asso- 256

ciative distance provides an efficient way to assess a 257

LLMs’ capacity for creative association, reflecting 258

its ability to move beyond surface co-occurrence 259

patterns and tap into deeper, less common semantic 260

links that underlie genuine creativity. 261
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Limitations262

Limited Focus on English. Since we use English263

seed words, rankings in Arena Creative Writing264

(with English prompts), and English word embed-265

dings, the evaluation of PACE is conducted in En-266

glish, focusing on its correlation with creativity267

performance. Consequently, our results are limited268

to the assessment of English creative ability.269

Limited Sample Model Sizes. To validate ro-270

bustness indirectly, we rely on rankings from other271

leaderboards, which restrict the selection of mod-272

els due to the limited number of models avail-273

able in those leaderboards. Additionally, to en-274

sure comparability across different leaderboards,275

we select models that are commonly present in all276

leaderboards, further narrowing the range of mod-277

els available for analysis. Based on Bonett and278

Wright (2000), Spearman correlations in the range279

of |ρ| ≈ 0.5− 0.7, typically require a sample size280

of 20-30 to achieve reliable confidence intervals.281

For the main results related to Arena CW, we report282

a sufficient number of models, although in other283

leaderboards, the number of models is close to the284

expected threshold, which may slightly affect the285

robustness of the conclusions.286
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A Appendix491

A.1 Full Results492

Validation of Different Embedding Models. To493

validate the correlation, we employ three widely-494

used English word embeddings to compute associ-495

ation distances: GloVe (GloVe-6B-300D; Penning-496

ton et al., 2014), MUSE (English; Conneau et al.,497

2017), and FastText (crawl-300d-2m; Mikolov498

et al., 2018). Results presented in Table ?? demon-499

strate a consistently significant correlation between500

PACE rankings and Arena Creative Writing (Arena501

CW) scores , with MUSE achieving the highest502

correlation coefficient (ρ = 0.76). To ensure align-503

ment with the concreteness prediction (Details can504

be found in Appendix A.4), we use FastText to505

show our results.506

Table 2: Spearman Correlation Results Across Different
Word Embedding Methods

Leaderboard Glove Muse FastText Models
Arena CW 0.529** 0.757*** 0.739*** 30
Arena All 0.488** 0.675*** 0.660*** 30
MMLU-Pro 0.383 0.555** 0.505* 23
Livebench 0.490* 0.651*** 0.691*** 19
EQ-Bench 0.304 0.796*** 0.637** 18
* p < 0.05, ** p < 0.01, *** p < 0.001

Bootstrap Results for Correlation Analysis.507

To validate the robustness of the correlation coeffi-508

cient, we employ a bootstrap method to randomly509

select the results of seed words and compute Spear-510

man correlation. Except for MMLU-Pro (with a511

significant ratio of 0.96), other leaderboards demon-512

strate a stable and significant correlation (with a sig-513

nificant ratio of 1.00) with PACE rankings. Among514

these, Arena-CW achieve the highest correlation515

with PACE, with Spearman correlation values rang-516

ing from 0.67 to 0.77, indicating a strong relation-517

ship.518

Table 3: Bootstrap Results for Spearman Correlation
Across Different Leaderboard

Leaderboard Mean Corr. Std. Corr. 95% CI Sig. Ratio
Arena CW 0.726*** 0.023 [0.678, 0.769] 1.000
Arena All 0.650*** 0.023 [0.602, 0.695] 1.000
MMLU-Pro 0.489* 0.045 [0.405, 0.578] 0.962
LiveBench 0.669*** 0.031 [0.607, 0.725] 1.000
EQ-Bench 0.624** 0.043 [0.537, 0.714] 1.000
* p < 0.05, ** p < 0.01, *** p < 0.001

Reducing Elements Cause Lower Correlation519

But Stay Significant. We explore methods to opti-520

mize evaluation efficiency by modifying two key521

parameters: the number of seed words and chain522

length. Using random sampling with 500 iterations, 523

we select various subsets of seed words. Addi- 524

tionally, we analyze the impact of different chain 525

lengths by truncating the original chains and com- 526

puting Spearman’s rank correlation coefficients.

Table 4: Impact of Reducing Seed Nums

Leaderboard Num-1 Num-2 Num-3 Num-4
Arena CW 0.587 (0.048) 0.609 (0.034) 0.613 (0.025) 0.617 (0.017)
Arena All 0.598 (0.050) 0.621 (0.035) 0.626 (0.025) 0.630 (0.019)
MMLU-Pro 0.439 (0.084) 0.453 (0.056) 0.465 (0.045) 0.471 (0.033)
LiveBench 0.589 (0.071) 0.604 (0.051) 0.613 (0.034) 0.612 (0.027)
EQ-Bench 0.649 (0.080) 0.673 (0.056) 0.681 (0.040) 0.686 (0.027)
Values in parentheses indicate Standard Deviations.

527

Table 5: Impact of Reducing Chain Length

Leaderboard Length-5 Length-10 Length-15 Length-20
Arena CW 0.582*** 0.698*** 0.717*** 0.739***
Arena All 0.502** 0.618*** 0.637*** 0.660***
MMLU-Pro 0.249 0.479* 0.461* 0.505*
LiveBench 0.558* 0.632** 0.633** 0.691**
EQ-Bench 0.370 0.554* 0.562* 0.637**
* p < 0.05, ** p < 0.01, *** p < 0.001

The results demonstrate that larger sample sizes 528

yield higher correlation coefficients, indicating en- 529

hanced performance stability. 530

A.2 Supplementary Analysis of Results 531

PACE Captures Subtle Difference Between Mod- 532

els. We merge results from different Qwen model 533

to examine how model versions and parameter 534

sizes would affect association distances. As Fig- 535

ure 6shows, there are clear distinctions in associ- 536

ation abilities across different model series, with 537

Qwen models demonstrating a consistent version- 538

based hierarchy: Qwen-3, Qwen-2.5, and Qwen-2. 539

In addition, while lower-performing groups typ- 540

ically comprise smaller models of different ver- 541

sions (e.g., Qwen-2-7b, Qwen-2.5-3b), larger mod- 542

els with older versions can match the performance 543

of newer versions (e.g., Qwen-2-72b). This result 544

highlights how architectural improvements and in- 545

creased parameter counts represent two distinct but 546

complementary paths for advancing model perfor- 547

mance. 548

Subjective and Abstract Semantic Categories 549

Differentiate Models’ Performance. As Figure 7 550

shows, while newer models generally outperform 551

older ones, the performance gap varies significantly 552

across semantic categories. All model show great 553

performance in some subjective category, e.g., spa- 554

tial relationship, time, quantitiy. Even earlier ver- 555

sion with small sizes achieve relatively high per- 556

formance (>0.71). However, for subjective and ab- 557
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Figure 6: Association distance comparison across versions and sizes of Qwen models. This figure represents the
association distance calculated at each position within the associative chains across different models and versions.
Results reveal three performance clusters at different chain positions: (1) high-large models (new architectures,
larger parameters), (2) high-moderate and low-large models (mixed newer models with moderate parameters
and older models with larger parameters), and (3) low-small models (smaller architectures, fewer parameters).
These findings highlight the combined effect of model version and parameter size and validate PACE as an effective
evaluation framework.

Figure 7: Association Distance Sorted by Chapters in IDS
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stract categories, e.g., Emotions and values (0.63-558

0.72), kinship (0.65-0.78), the performance gap559

between model generations widens substantially,560

with newer models demonstrating up to 10 per-561

centage point improvements over their previous562

versions. Notably, these subjective and abstract563

elements often constitute the core components of564

creative writing.565

Humans Generate More Diverse Associations566

Than LLMs. We combine the responses gener-567

ated by the model and humans, respectively, and568

standardize the sample sizes for each seed word569

to eliminate potential biases arising from varying570

data sizes. The analysis of the responses using the571

Type-Token Ratio (TTR) revealed distinct patterns572

in lexical diversity between LLMs and human par-573

ticipants. Despite the use of prompts specifically574

designed to enhance response diversity in LLMs,575

their TTR values consistently remained lower than576

those of human participants across all seed words.577

This finding suggests that LLMs produce more ho-578

mogeneous responses compared to humans, under-579

scoring their limitations as substitutes for human580

creative output (Walsh et al., 2024; Wenger and581

Kenett, 2025).582

Figure 8: TTR of Responses from Models and Human

A.3 Experimental Details583

Selected Models. Full list of selected models584

can be found in Table 6. PACE evaluation con-585

tains a comprehensive selection of LLMs, featuring586

both prominent closed-source commercial mod-587

els (including various versions of Gemini, GPT,588

and Claude series) and leading open-source models589

(such as DeepSeek, Qwen, Gemma, and LLaMA590

series). This selection provides a balanced view591

of the current state-of-the-art in both commercial592

and open-source models, with 34 models in total593

Model License Arena CW Association Distance
gemini-2.5-pro-preview-03-25 - 1450 0.7757
deepseek-chat-v3-0324 ✓ 1376 0.7628
gpt-4.1-2025-04-14 - 1364 0.7728
deepseek-r1 ✓ 1356 0.7588
gemini-2.0-flash-001 - 1348 0.7576
qwen3-235b-a22b ✓ 1314 0.7553
gemma-3-27b-it ✓ 1358 0.7673
qwen-max-2025-01-25 - 1334 0.7505
deepseek-v3 ✓ 1331 0.7480
o3-mini-2025-01-31 - 1270 0.7388
claude-3.7-sonnet - 1316 0.7817
yi-lightning - 1282 0.7614
claude-3.5-sonnet - 1289 0.7885
gpt-4o-mini-2024-07-18 - 1270 0.7297
gpt-4.1-nano - 1256 0.7340
hunyuan-standard - 1244 0.7171
llama-3.1-405b-instruct ✓ 1264 0.7521
llama-3.3-70b-instruct ✓ 1255 0.7542
qwen2.5-72b-instruct ✓ 1228 0.7339
mistral-large-2407 ✓ 1246 0.7429
mistral-large-2411 ✓ 1246 0.7548
llama-3.1-70b-instruct ✓ 1239 0.7476
gemma-2-27b-it ✓ 1245 0.7488
llama-3-70b-instruct ✓ 1214 0.7532
claude-3-sonnet - 1188 0.7345
qwen2-72b-instruct ✓ 1184 0.7371
claude-3-haiku - 1163 0.7236
mixtral-8x22b-instruct ✓ 1147 0.7515
gpt-3.5-turbo-0125 - 1099 0.7283
gpt-3.5-turbo-1106 - 1044 0.7226
command-r-plus-08-2024 ✓ - 0.7397
deepseek-r1-distill-llama-70b ✓ - 0.7461
deepseek-r1-distill-qwen-32b ✓ - 0.7437
hunyuan-turbos-20250313 - - 0.7260

Table 6: Selected Models with Arena CW Scores (Cut-
off: Early May 2025) and Their Association Distances

being evaluated. Among the 34 total models evalu- 594

ated, 30 models have Chatbot Arena scores (early 595

May 2025 scoring version, Chiang et al., 2024), 596

while four additional models (command-r-plus-08- 597

2024, deepseek-r1-distill-llama-70b, deepseek-r1- 598

distill-qwen-32b, and hunyuan-turbos-20250313) 599

are included to ensure minimum model coverage 600

across other leaderboards despite lacking Arena 601

CW scores. 602

Selected Seed Words. The final set of 110 seed 603

words was selected through a two-step process. 604

First, using NLTK part-of-speech tagger, we iden- 605

tified nouns by filtering for words with the "NN" 606

prefix, as nouns frequently serve as stimuli in as- 607

sociation experiments. While our initial focus was 608

on nouns, we included all identified words in our 609

dataset since words from different syntactic cate- 610

gories can effectively trigger associations. Second, 611

we ranked these words based on their frequency in 612

COCA2020 (Davies, 2008), divided the corpus into 613

five equal segments, and selected the final words 614

based on this stratification. 615

Formula for Association Distance. Our associ- 616

ation distance measurement builds upon Gray et al. 617

(2019). For each position n in an association chain, 618

we calculate the association distance as the average 619

semantic distance from the current position to all 620

preceding positions: 621
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Chapter Seed
The physical world rock, wood, dust, rainbow, headland
Kinship son, female, widow, son-in-law, stepdaugh-

ter
Animals eagle, worm, dove, firefly, midge
The body sick, toe, blink, eyelid, earwax
Food and drink meal, pepper, crush, ripe, unripe
Clothing and grooming spin, soap, bracelet, braid, awl
The house bed, pole, ladder, chimney, cookhouse
Agriculture and vegetation grass, mushroom, bamboo, sickle, banyan
Basic actions and technology strike, broken, cord, glue, adze
Motion push, lift, swim, dive, outrigger
Possession seek, hire, possess, lend, stingy
Spatial relations center, ball, collect, round, fathom
Quantity piece, count, pair, twelve, multitude
Time month, summer, yesterday, cease, timepiece
Sense perception dark, dry, rough, sour, brackish
Emotions and values pain, correct, anxiety, sadness, deceit
Cognition seem, explain, reflect, wise, imitate
Speech and language speak, refuse, confess, howl, rebuke
Social and political relations subject, neighbor, plot, ruler, chieftain
Warfare and hunting peace, defeat, bow, fortress, fishhook
Law murder, judgment, punishment, plaintiff, ar-

son
Religion and belief pray, temple, fairy, phantom, portent

Table 7: Chapters and their associated seed words

An =

∑n−1
i=1 Dn,i

n− 1
, (1)622

where Dn,i represents the semantic distance be-623

tween positions n and i, capturing the conceptual624

relatedness between thoughts at these positions.625

The association distance of an entire sequence626

is then calculated by averaging the association dis-627

tances across all positions:628

Achain =

∑n
i=2

(∑i−1
j=1 Di,j

i−1

)
n− 1

, (2)629

where n is the total number of positions in the630

association chain.631

To enhance diversity of LLMs’ responses, we632

generate three association chains for each seed.633

The association distance for each seed is computed634

by averaging the three chain scores:635

Aseed =
1

3

3∑
c=1

Achain,c, (3)636

Finally, the overall association distance metric637

for a model is derived by averaging across all seeds:638

Amodel =
1

S

S∑
s=1

Aseed,s, (4)639

where S represents the total number of seeds640

evaluated.641

Prompts. We use a two-step approach to con-642

struct parallel association chains. First, we gener-643

ate prompts based on the methodology proposed644

by Gray et al. (2019), incorporating more detailed645

instructions to clearly articulate task requirements.646

This modification addresses our observation that 647

certain lower-tier language models tend to generate 648

associations consistently based on the seed word 649

rather than the immediately preceding word. Ad- 650

ditionally, we require models to provide reasoning 651

for each association between consecutive words, 652

which serves two purposes: ensuring adherence to 653

task specifications and enhancing label accuracy in 654

association type classification. 655

To compare different LLMs, we set the temper- 656

ature parameter to zero to observe their intrinsic 657

associative patterns (with the exception of o3-mini, 658

which has a fixed temperature setting of 1). For 659

comparisons between LLMs and human responses, 660

we use both zero and one temperature settings to 661

obtain a broader range of responses. 662

First Stage Prompt

Starting with the word "{seed}", generate three different
words that directly associate with this initial word only
(not with each other). Please put down only single words,
and do not use proper nouns (such as names, brands,
etc.). For each word, provide a brief explanation of its
connection to "{seed}". Return in JSON format:

{
"results": [

{"word": "", "reason": ""},
{"word": "", "reason": ""},
{"word": "", "reason": ""}

]
}

663

Second Stage Prompt

Starting with the word pair "{seed}" → "{sec-
ond_word}", generate a chain of 20 words where each
new word should be associated with ONLY the word
immediately before it. Generate the third word based on
"{second_word}", then generate the fourth word based
on your third word, and so on. Please put down only sin-
gle words, and do not use proper nouns (such as names,
brands, etc.). For each word, provide a brief explanation
of its connection to the previous word. Return in JSON
format with exactly 20 entries:

{
"results": [

{"word": "{second_word}",
"reason": "{second_word_reason}"},
{"word": "", "reason": ""},
{"word": "", "reason": ""},
...
{"word": "", "reason": ""}

]
}

664

Settings for Comparison Between Human and 665

LLMs. In Section 4, we compare the performance 666

between LLMs and humans, using human partici- 667

pant data from Gray et al. (2019). Specifically, we 668
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analyze data from two groups: Group 2 (represen-669

tative American samples) serving as the general670

population group, and Group 4 (professional ac-671

tors) representing the professional expertise group.672

The professional actors’ group demonstrate supe-673

rior performance, achieving the highest ratings in674

both the original evaluations and original validation675

tests.676

For LLM analysis, we select two parallel groups677

based on their Chatbot Arena Rankings. The high-678

performing group comprises four LLMs ranked679

within the top 20: DeepSeek-Chat-v3.1, Gemini-680

2.5-Pro-03-25-preview, Qwen3-235b-a22b, and681

GPT-4.1. The mid-performing group includes682

Yi-Lightning, Gemma-2-27b-it, LlaMA-3.3-70b-683

Instruct, and Mistral-Large-2411, with an average684

ranking of 75 in the Arena leaderboard, represent-685

ing the standard performance of current models.686

This selection includes models from different orga-687

nizations to ensure fair TTR calculations (details688

can be found in Figure 8).689

For seed words, we select the same set used in690

human participant trials to ensure valid compar-691

isons: bear, table, candle, snow, paper, and toaster.692

To achieve a comparable sample size with human693

responses, we generated LLMs’responses by vary-694

ing the temperature parameter between 0 and 1.695

In this section, three association chains indepen-696

dently, rather than using averaged values for each697

seed word in the section of correlation analysis,698

thereby better simulating abundant LLM partici-699

pants. Consequently, each model generated six700

chains (three chains plus two temperature settings)701

per seed word.702

A.4 Supplementary Experiment Details.703

Labelling Association Type. Given that LLMs704

have demonstrated the ability to identify various705

types of associations (De Deyne et al., 2024), we706

use DeepSeek-V3.1 to classify the semantic rela-707

tionships between consecutive word pairs in each708

association chain. The classification adhered to the709

association type framework established by Nissen710

and Henriksen (2006), which categorizes relation-711

ships as syntagmatic, paradigmatic, phonological,712

or other.713

Prediction of Concretness Using Embedding714

Model. Word embeddings can effectively predict715

various psychological dimensions of lexicon (Char-716

bonnier and Wartena, 2019; Flor, 2024; Hussain717

et al., 2024).718

We used the concreteness dataset developed719

Table 8: Fixed Effects Model Results Across Groups

Group Intercept Slope p-value R2

(β0) (β1)
Professional 3.994 -0.017 1.04e-3 0.275

[3.823, 4.166] [-0.027, -0.007]
General 4.030 -0.026 1.32e-53 0.350

[3.969, 4.091] [-0.029, -0.022]
High LLM 4.212 -0.020 4.32e-16 0.277

[4.132, 4.292] [-0.025, -0.015]
Mid LLM 4.305 -0.024 3.67e-23 0.249

[4.231, 4.378] [-0.028, -0.019]
Note: 95% confidence intervals in brackets.
Degrees of freedom: Professional = 626, General = 5,642,
High LLM = 2,697, Mid LLM = 2,640. Since some model
responses do not meet the required length of 20, these
instances are considered missing values. Consequently, we
exclude them from the calculations as their absence may
impact the overall results.

by Brysbaert et al. (2014), one of the largest 720

human-labeled concreteness databases, to train 721

three embedding-based prediction models: Fast- 722

Text (English), GloVe (6B-300d), and MUSE (En- 723

glish). Model performance are evaluated using 724

Pearson’s correlation coefficient, root mean square 725

error (RMSE), and Kendall’s rank correlation. Ta- 726

ble 9 indicate that FastText achieved the highest 727

Pearson correlation and Kendall coefficient, as well 728

as the lowest RMSE. Consequently, we finally use 729

FastText to assign concreteness ratings to associa- 730

tion responses. 731

Table 9: Comparison of word embedding models for
concreteness prediction

Model Pearson r Kendall RMSE
Training Set
FastText 0.931 ± 0.000 0.760 ± 0.001 0.371 ± 0.001
GloVe 6B 0.902 ± 0.001 0.728 ± 0.001 0.442 ± 0.001
MUSE 0.848 ± 0.001 0.658 ± 0.001 0.541 ± 0.001
Test Set
FastText 0.910 ± 0.002 0.722 ± 0.003 0.421 ± 0.004
GloVe 6B 0.837 ± 0.004 0.638 ± 0.004 0.556 ± 0.006
MUSE 0.845 ± 0.004 0.654 ± 0.004 0.545 ± 0.005

Note: Values shown as mean ± standard deviation. Bold
indicates best performance. Valid words: FastText (35,424),
GloVe (31,617), MUSE (27,101).

Table 8 provides detailed information on the 732

fixed effects, with group differences modeled as 733

fixed effects. In this analysis, position within the 734

association trend serves as the independent variable 735

(X), and concreteness is treated as the dependent 736

variable (Y). 737
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