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Abstract
Recent advances in large language models
(LLMs) have transformed software development
by automatically generating code from natural
language. Yet challenges remain in generating
fully correct code that aligns with user intent.
Our study reveals that LLMs tend to pay less
attention to user prompts as more code tokens
are generated. We hypothesize that this atten-
tion dilution issue is an important reason for code
generation errors. To mitigate this issue, we pro-
pose Selective Prompt Anchoring (SPA) to guide
code LLMs to pay more attention to user intent
when generating code. We evaluate SPA using
six base LLMs across six benchmarks. Our re-
sults demonstrate that SPA enhances Pass@1 by
up to 12.9%, consistently outperforming SOTA
methods in all settings. Our code is available
at https://github.com/magic-YuanTian/Selective-
Prompt-Anchoring.

1. Introduction
Large language models (LLMs) have emerged as power-
ful programming assistants. They have demonstrated un-
precedented capabilities in interpreting natural language
descriptions of programming tasks and generating source
code (Guo et al., 2024; Rozière et al., 2024). Despite this
great progress, LLMs still produce incorrect solutions to
challenging tasks or generate code that does not fully meet
user expectations (Wang et al., 2024; Ning et al., 2023).

To improve the performance of LLMs on coding tasks, many
efforts have been made to develop high-quality training
data (Li et al., 2023; Guo et al., 2024; Wei et al., 2023) and
design new domain-specific training objectives (Niu et al.,
2022; Chakraborty et al., 2022). However, these approaches
require tremendous computational resources. To address
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this challenge, various prompting methods have been ex-
plored to enhance the inference process of code LLMs, e.g.,
retrieval-augmented generation (Du et al., 2024), chain-of-
thoughts (Le et al., 2024; Suzgun et al., 2022), self-planning
and debugging (Jiang et al., 2024; Chen et al., 2024), etc.

Despite these efforts, little is known about why LLMs fail
to generate correct code. In this work, we seek to bridge
the knowledge gap by investigating the attention pattern of
LLMs during code generation. We analyzed five code LLMs
and found that as more code tokens were generated, LLMs
paid less attention to the user prompt. This caused LLMs
to gradually deviate from the user intent, thereby leading to
code generation errors. Furthermore, we found that more
generated tokens led to worse code generation performance,
demonstrating their struggle with long-term attention.

To mitigate this limitation, we propose Selective Prompt
Anchoring (SPA), a model-agnostic approach that optimizes
LLMs’ attention by amplifying the contextual impact of the
user prompt. SPA is inspired by the anchoring effect (Furn-
ham & Boo, 2011) in psychology, which refers to the phe-
nomenon where humans can be influenced by specific infor-
mation provided before decision-making. In SPA, we refer
to this information as anchored text, a group of selected
prompt tokens that should receive higher attention from the
model than others. Figure 1 illustrates the workflow of SPA.
Given the anchored text, SPA creates an original embedding
matrix ( 1⃝) as well as a masked embedding matrix by re-
placing the embeddings corresponding to anchored text with
mask embeddings ( 2⃝). We mathematically show that the
anchored text’s contextual impact can be approximated by
the difference between the logit distribution generated from
the original prompt and the prompt with the anchored text
masked ( 3⃝). To amplify the impact of anchored text dur-
ing code generation, SPA multiplies this logit distribution
difference by a hyperparameter called anchoring strength
( 4⃝), and then adds it to the original logit distribution ( 5⃝).

We evaluate SPA on six benchmarks using six code LLMs.
The benchmarks cover different programming languages
and task difficulty levels, while the LLMs vary in size
and code generation performance. SPA enhances Pass@1
by up to 12.9% across all settings, outperforming four
SOTA prompting methods and one SOTA attention steering
method. Notably, with SPA, a smaller version of DeepSeek-
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Figure 1. The Workflow of Selective Prompt Anchoring (SPA).

Coder (6.7B) can outperform its larger counterpart (33B).

2. Attention Analysis of Code LLMs
We conduct an empirical study to investigate the attention
dilution phenomenon in code LLMs. Following prior stud-
ies (Zhang et al., 2022; Galassi et al., 2021), we obtain
self-attention scores from the last layer in LLMs, which
has been shown to represent the most accurate attention
distribution (Kou et al., 2024; Wan et al., 2022a).1 We
calculate the percentage of attention on the user prompt.
Calculation details are provided in Appendix B.4. We also
experimented with an alternative gradient-based attention
calculation method (Selvaraju et al., 2016) and obtained
similar results, as detailed in Appendix B.2.

We analyzed five code LLMs on HumanEval (Chen et al.,
2021) and LiveCodeBench (Naman Jain, 2024). Figure 2
shows the shift of LLMs’ attention on the user prompt dur-

1Intuitively, deeper layers capture representations with long-
distance dependencies such as the control flow, which mirrors how
humans understand programs.

Figure 2. Shift of LLMs’ self-attention to the user prompt.

ing code generation. The result shows that as more tokens
are generated, models’ attention on the user prompt gradu-
ally becomes less. Consequently, the code generation pro-
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Table 1. Length of correct vs. incorrect code generated by LLMs.

EASY MEDIUM HARD OVERALL

PASSED 294 475 400 390
FAILED 418 664 784 622

cess becomes increasingly influenced by tokens generated
in recent time steps, rather than the user prompt. This can be
problematic in two ways. First, any generation inaccuracy,
such as creating an unhelpful variable in earlier steps, is
likely to propagate and influence subsequent steps. Sec-
ond, when generating long and complex code with many
detailed requirements, the model may overlook some spec-
ifications in the early stages, as the model tends to focus
more on recent tokens. To further investigate whether this
phenomenon affects performance, we experimented on Live-
CodeBench (Naman Jain, 2024), which provides 3 difficulty
levels for each task. Table 1 shows that, for tasks with
the same difficulty level, the average length of incorrectly
generated code is consistently longer than that of correctly
generated code. This implies that more generation steps can
indeed cause attention dilution and hinder accuracy. More
details are included in the Appendix A.

3. Approach
3.1. Overview

Given a user prompt x, a code LLM fθ generates tokens
autoregressively. At step i, the input to fθ is an n × m
embedding matrix Ei, defined as:

Ei = [Ex, e1, e2, . . . , ei−1,PAD]. (1)

where Ex is the submatrix of embeddings for tokens in
user prompt x, the series e1, . . . , ei−1 are embeddings of
generated tokens, and PAD is a padding submatrix. The
model outputs logits and transforms them into a probability
distribution. Then, a sampling method is applied to select
the next token.

We propose Selective Prompt Anchoring (SPA) to steer
model attention by amplifying the contextual impact of
the important tokens in the user prompt. In this work, we
assume these important tokens are selected by users. In-
spired by the anchoring effect (Furnham & Boo, 2011) in
psychology, we call these important tokens “anchored text”.
For example, in the prompt, “Given a string, count the num-
ber of uppercase vowels”, the user may want to emphasize
“uppercase vowels” to ensure that the model does not for-
get to define uppercase vowels (i.e., “A, E, I, O, U”) in the
generated code.

In Section 3.2, we first mathematically model how to steer
model attention. Then we augment model attention by in-

creasing the impact of user intent and derive the augmented
model output. In Section 3.3, we derive and calculate the
augmented logits, which can be approximately represented
by the linear combination of original and masked logits.

3.2. Attention Steering and Prompt Anchoring

SPA performs attention steering by scaling the impact of
selected tokens to the output logits fθ(Ei). Suppose x is
the anchored text for which we want to adjust the impact.
Ei is an n ×m input embedding matrix at step i, and Ex

represents a n × k submatrix within Ei corresponding to
the x. They are visualized below:

Ei =


e11 · · · e1k
e21 · · · e2k

...
. . .

...
en1 · · · enk︸ ︷︷ ︸

Ex

e1,k+1 · · · e1m
e2,k+1 · · · e2m

...
. . .

...
en,k+1 · · · enm

 .

(2)
We construct two n×m matrices, X for user prompt and
Gi for generated code.

• To construct X, we only retain k columns of Ei that
correspond to Ex, while setting remaining columns to
zero. This matrix X remains constant during token
generation.

• Conversely, Gi is formed by zeroing out the same k
columns of Ei that correspond to Ex, while preserving
all elements in the remaining columns.

They are visualized as follows:

X =


e11 e12 · · · e1k 0 · · · 0
e21 e22 · · · e2k 0 · · · 0

...
...

. . .
...

...
. . .

...
en1 en2 · · · enk 0 · · · 0

 , (3)

Gi =


0 0 · · · 0 e1,k+1 · · · e1m
0 0 · · · 0 e2,k+1 · · · e2m
...

...
. . .

...
...

. . .
...

0 0 · · · 0 en,k+1 · · · enm

 . (4)

X encapsulates the semantics for the anchored text x, while
Gi encapsulates the semantics for the remaining text, such
as the generated code. The sum of X and Gi reconstructs
the original matrix Ei:

Ei = X+Gi. (5)

Suppose we want to scale the semantic impact of the matrix
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X by a value ω.2 We refer to ω as anchoring strength. We
use Ei(X, ω) to represent the function that augments Ei by
scaling the influence of X by a degree of ω in the final logit.

• ω > 1 indicates semantic amplification, meaning the
model generates code with greater consideration of X.

• ω = 1 indicates using the original embedding. Ei is
equivalent to Ei(X, 1).

• 0 ≤ ω < 1 indicates semantic diminishment, meaning
the model generates code with less consideration of X.
When ω is 0, the model does not consider X at all.

• ω < 0 indicates a reversed semantic impact, meaning
the model generates the code in the opposite manner.
For example, if X corresponds to “uppercase”, the
model will instead consider “lowercase”.

In this work, we focus on scaling up the impact of the
anchored text x to mitigate the attention dilution issue.
Let Fθ,i,x(ω) represent the augmented logits calculated by
model fθ at step i, where the impact of anchored text x is
scaled by ω. We can calculate the integral of the partial
derivative of fθ with respect to ω from 0 to ω.3 Formally,

Fθ,i,x(ω) = fθ(Ei(X, ω) +Gi) (6)

= Fθ,i,x(0) +

∫ ω

0

dFθ,i,x(t)

dt
dt, (7)

where t is the variable of integration.

To reduce computational overhead, attention augmentation
is activated when the original generation fails the test case,
which is typically included in the code generation context.
When no test case is available, attention augmentation is
applied continuously throughout the generation. In the fol-
lowing section, we explain how to calculate the augmented
logits through approximation.

3.3. Augmented Logits by Approximation

Given the computational complexities of LLMs, directly
solving

∫ ω

0
dFθ,i,x(t)

dt dt in Equation 7 is impractical. There-
fore, we approximate it by employing the Taylor expansion:

Fθ,i,x(ω) = Fθ,i,x(0)+ω ·Fθ,i,x
′(0)+

ω2

2!
Fθ,i,x

′′(0)+ . . .

(8)
Since LLMs are inherently non-linear, higher-order deriva-
tives of the logits function are non-zero. We truncate the

2Scaling the semantics of X by ω is not equivalent to multiply-
ing X by ω. Multiplying the embedding of X by ω does not simply
improve the “semantic influence” of X, since the embedding of
X also encodes other non-semantic information such as positional
information. This is why we compute the difference between the
logits when masking and unmasking X to cancel out noise and
some of the non-semantic information (detailed in Section 3.3).

3fθ is differentiable for backpropagation.

Taylor expansion in Equation 8 after the first derivative to
obtain an approximation, yielding:

Fθ,i,x(ω) ≈ Fθ,i,x(0) + ω · Fθ,i,x
′(0), (9)

where the the integral part
∫ ω

0
dFθ,i,x(t)

dt dt in Equation 7 is
approximated by ω · Fθ,i,x

′(0). To calculate Fθ,i,x(0), 4 we
mask the anchored text x using mask embeddings. Each
LLM provides special tokens reserved for text masking,
which almost has no semantic impact, e.g., <unk> for Code
Llama (Rozière et al., 2024) and <pad> for DeepSeek-
Coder (Guo et al., 2024). Each special token corresponds
to a mask embedding. By replacing embeddings of x with
mask embeddings, we get a masked input matrix Emask

i . It
ablates the semantic impact of the anchored text x while
ensuring that the positional encoding remains unaffected.
Thus, we can get

Fθ,i,x(0) = fθ(Emask
i ). (10)

To calculate Fθ,i,x
′(0), we use finite-difference methods to

get an approximation. Assuming the interval of 1 − 0 is
sufficiently small for Fθ,i,x, we get:

Fθ,i,x
′(0) ≈ Fθ,i,x(1)− Fθ,i,x(0)

1− 0
. (11)

Combining Equations 9, 12 and 13, we get the augmented
logits by first-order approximation:

Fθ,i,x(ω) ≈ Fθ,i,x(0) + ω · (Fθ,i,x(1)− Fθ,i,x(0)) (12)
= ω · fθ(Ei(X, 1) +Gi)

+ (1− ω) · fθ(Ei(X, 0) +Gi) (13)

= ω · fθ(Ei) + (1− ω) · fθ(Emask
i ). (14)

Based on the augmented logits Fθ,i,x(ω) where the impact
of the anchored text is scaled by the value ω, a certain sam-
pling algorithm (e.g., greedy sampling) can be applied to
select the token. We provide more discussion about approx-
imation in Appendix C.

We choose not to directly modify self-attention layers to
steer the model attention, since this requires identifying
which attention head in which layer to steer and the direct
editing of attention values does not synchronize with other
components like the feedforward layers, which can be fairly
brittle and costly. Instead, we chose to simulate attention
steering by logits manipulation, which is fast, reliable, and
model-agnostic. In the next section, we demonstrate that
SPA achieves better performance with less computational
overhead compared to a SOTA method that directly modifies
self-attention layers (Zhang et al., 2024).

4Fθ,i,x(0) does not mean setting the embedding vector to zeros.
Instead, it means setting ω to zero, which replaces the original em-
bedding for anchored text with the mask embedding that contains
no semantic information. This mask embedding vector is non-zero.
Conversely, a zero embedding does not necessarily indicate the
absence of semantic information.
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4. Experiment Setup
4.1. Benchmarks

HumanEval (Chen et al., 2021) includes 164 Python tasks
designed by OpenAI and now has become a widely-used
benchmark for code generation.

MBPP (Austin et al., 2021) is another popular benchmark
that includes 974 crowd-sourced Python tasks. Due to am-
biguous task descriptions, the authors of MBPP created a
sanitized version that included 427 tasks with clearer de-
scriptions. We evaluate SPA on the sanitized version.

HumanEval+ and MBPP+ (Liu et al., 2023) improves the
original HumanEval and MBPP benchmarks with additional
test cases to cover corner cases (Liu et al., 2024b).

HumanEval-X (Hendrycks et al., 2021a) extends the Hu-
manEval benchmark to support more programming lan-
guages such as Python, Java, JavaScript, C++, and Go. It
aims to evaluate the multilingual code generation abilities.

BigCodeBench (Zhuo et al., 2024) is a more challenging
benchmark for code generation that evaluates models’ abili-
ties to follow complex instructions and use tools, including
1,140 real-world Python tasks across 139 libraries.

LiveCodeBench (Naman Jain, 2024) is a contamination-
free benchmark sourced from competitive programming
platforms. The benchmark continues to evolve and add new
code generation tasks. We conducted experiments on the
latest release, which includes a total of 1,055 tasks. The
latest tasks span from October 1, 2024, to February 1, 2025.

4.2. Baselines

Base Models. We select six representative open-source
code LLMs: CodeGen-Mono-350M (Nijkamp et al.,
2023), CodeLlama-7B (Rozière et al., 2024), StarCoder2-
15B (Lozhkov et al., 2024), and DeepSeek-Coder-Instruct-
1.3B, 6.7B, and 33B (Guo et al., 2024). These models
exhibit varying levels of performance in code generation.
We include more setup details about models in Appendix H.

Attention Steering Baseline. PASTA (Zhang et al., 2024)
is a recent method designed to steer model attention for
better instruction following. Unlike SPA, PASTA requires a
model-specific and time-consuming profiling stage to iden-
tify attention headers that are beneficial to performance. For
each unique task, PASTA requires around 1000 training
samples to identify attention headers that are beneficial to
performance. By contrast, SPA is model-agnostic and only
needs tuning a single hyperparameter with a few samples,
which is fast and generalizable as detailed in Appendix J.
PASTA internally edits transformers’ self-attention during
the feed-forward process, whereas SPA only edits the final
logits based on a mathematical approximation.

Prompting Methods. In addition to PASTA, we also com-
pare SPA to the mainstream prompting-based code genera-
tion methods, including Self-Debugging (Chen et al., 2024),
Self-Planning (Jiang et al., 2024), ReAct (Yao et al., 2023),
and Self-Edit (Zhang et al., 2023b). Self-Debugging and
Self-Edit leverage error messages from test cases to refine
generated code. Self-planning generates a step-by-step plan
before code generation. ReAct prompts an LLM to generate
reasoning traces and action plans in an interleaved manner.

4.3. Evaluation Metrics

Following prior work (Chen et al., 2021), we measure code
generation performance using the Pass@k metric, which
measures whether any of the top k candidates can pass all the
test cases. For main results, we report Pass@1 using greedy
sampling to generate a single code snippet. To demonstrate
the generalizability of SPA, we further calculate Pass@10
using beam search in Appendix F.

4.4. Anchoring Strength Tuning

The anchoring strength ω serves as a hyperparameter in
SPA. For each model and dataset, we use grid search to tune
the anchoring strength ω on 1/5 of the tasks, and evaluate
Pass@1 of SPA on the remaining 4/5 of the tasks. This pro-
cess is repeated across all five folds, with final performance
metrics averaged across folds.5 We observe an unimodal
relationship between ω and the performance. We provide
more details for the tuning SPA in Appendix J.

5. Results
5.1. Improvement over Base Models

Table 2 shows SPA consistently improves Pass@1 across
all 6 benchmarks and 6 code LLMs. On HumanEval/Hu-
manEval+ and MBPP/MBPP+, SPA enhances the base
model with on average 5.5% absolute improvement and
14.5% relative improvement, achieving up to a 12.9% abso-
lute improvement and a 42% relative improvement. These
improvements are observed across models of varying sizes
(350M-33B), original performance (15%-86%), and archi-
tectures. Notably, with SPA, the smaller DeepSeek-Coder
(6.7B) outperforms its much larger 33B counterpart on Hu-
manEval. This suggests optimizing model attention is a
promising alternative to simply scaling up model size (Ka-
plan et al., 2020) for performance improvement. On Big-
CodeBench and LiveCodeBench, while the absolute im-
provements (average 1.57% and 1.90%) are more modest
compared to other benchmarks, the relative gains (average
22.83% and 28.50%) remain significant. This is because

5We tune SPA on all tasks for better generalizability, while
SPA is only activated for failed tasks during inference to optimize
computational efficiency and generation performance.
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Table 2. Absolute (∆) and Relative (↑) Performance improvements in Pass@1 rates (%).

MODEL SIZE HUMANEVAL HUMANEVAL+ MBPP MBPP+ BIGCODEBENCH LIVECODEBENCH

CODEGEN-MONO (350M) 15.3 12.2 19.6 15.9 1.1 1.1
+ SPA 20.1 ∆+4.8

(31% ↑) 17.1 ∆+4.9
(40% ↑) 27.4 ∆+7.8

(40% ↑) 22.6 ∆+6.7
(42% ↑) 1.6 ∆+0.5

(45% ↑) 1.5 ∆+0.4
(36% ↑)

DEEPSEEK-CODER (1.3B) 66.4 61.8 58.2 52.4 2.5 6.5
+ SPA 70.1 ∆+3.7

(6% ↑) 67.7 ∆+5.9
(10% ↑) 60.9 ∆+2.7

(5% ↑) 52.4 ∆+0.0
(0% ↑) 3.4 ∆+0.9

(36% ↑) 9.2 ∆+2.7
(42% ↑)

DEEPSEEK-CODER (6.7B) 75.6 70.2 67.0 58.5 12.7 7.8
+ SPA 88.5 ∆+12.9

(17% ↑) 79.9 ∆+9.7
(14% ↑) 71.0 ∆+4.0

(6% ↑) 60.7 ∆+2.2
(4% ↑) 16.4 ∆+3.7

(29% ↑) 10.8 ∆+3.0
(38% ↑)

CODELLAMA (7B) 33.6 28.2 50.9 40.8 3.4 3.8
+ SPA 44.0 ∆+10.4

(31% ↑) 36.0 ∆+7.8
(28% ↑) 54.3 ∆+3.4

(7% ↑) 44.0 ∆+3.2
(8% ↑) 4.1 ∆+0.7

(5% ↑) 4.0 ∆+0.2
(5% ↑)

STARCODER2 (16B) 67.7 60.4 78.0 65.1 13.3 7.0
+ SPA 75.6 ∆+7.9

(12% ↑) 65.6 ∆+5.2
(9% ↑) 82.0 ∆+4.0

(5% ↑) 69.1 ∆+4.0
(6% ↑) 14.3 ∆+1.0

(8% ↑) 8.2 ∆+1.2
(17% ↑)

DEEPSEEK-CODER (33B) 81.7 77.1 73.4 63.2 18.9 11.9
+ SPA 86.2 ∆+4.5

(6% ↑) 79.3 ∆+2.2
(3% ↑) 79.4 ∆+6.0

(8% ↑) 70.3 ∆+7.1
(11% ↑) 21.5 ∆+2.6

(14% ↑) 15.8 ∆+3.9
(33% ↑)

SPA leverages the ability of its base model. If the base
model could solve a task but overlooks a few important
tokens in the prompt, SPA can help with this by adjusting
the attention. If a model lacks the ability to solve a task,
adjusting the model attention will not help much.

To demonstrate the generalizability of SPA, we show that
SPA can consistently improve Pass@10 by, on average
3.42% and up to 7.9%, as detailed in Appendix F. We
further evaluate SPA in scenarios where test cases are not
available and show that it still significantly enhances perfor-
mance, achieving an average 4.7% Pass@1 improvement
on HumanEval, as detailed in Appendix K. We illustrate
SPA’s attention anchoring with two concrete examples in
Appendix D. SPA improves performance by simply aligning
attention to prompts, without introducing additional model
parameters or context. We believe this success comes from
its ability to improve attention reliability. We provide a
thorough discussion in Appendix G.

5.2. Comparison to SOTA Methods

PASTA. Table 3 shows that SPA outperforms PASTA by
achieving a 5.9X higher Pass@1 improvement while using
only 20% of the inference time.6 We include more experi-
mental details and discussion in Appendix L. Compared to
the base model, SPA increases the decoding time by a prac-
tically negligible factor of 1.27. Further discussion about
the computational cost of SPA can be found in Appendix E.

Prompting methods. Table 3 shows that SPA outperforms
Self-Debugging, Self-Edit, Self-Planning, and ReAct by
achieving improvements that are 1.8X, 4.3X, 2.1X, and
5.9X higher, respectively, while only using 36%, 37%, 45%,

6For a fair comparison, we average and add the latency of
PASTA’s model profiling and the SPA’s tuning to the inference
time for each task.

and 34% of the inference time. The performance superior-
ity stems from two key factors. On the one hand, unlike
prompting methods that add more information or enforce
generation workflows, SPA preserves the original prompt
and does not involve additional LLM calls, thereby achiev-
ing better time efficiency. On the other hand, SPA addresses
the attention dilution issue that prompting methods do not
explicitly handle, thereby achieving higher accuracy.

Table 3. Comparison between SPA and SOTA methods.

METHOD ∆PASS@1 (%) TIME (SEC)

BASE MODEL 0 7.7

PASTA +1.2 48.8
SELF-DEBUGGING +4.2 27.3
SELF-EDIT +1.8 26.4
SELF-PLANNING +3.6 21.6
REACT +1.3 28.8
SPA +7.7 9.8

5.3. Evaluation on Different Programming Languages

To evaluate the generalizability across different program-
ming languages, we further evaluate SPA using HumanEval-
X (Hendrycks et al., 2021a), which includes five program-
ming languages.7 Table 4 demonstrates that SPA consis-
tently improves Pass@1 on HumanEval-X, with an aver-
age increase of 7.9% for Python, 4.85% for Java, 6.5% for
JavaScript, 3.65% for C++, and 5.2% for Go.

5.4. Ablation Study of Anchored Text Selection

To investigate the impact of anchored text selection in code
generation tasks, we conduct an ablation study by masking

7In the latest version, Rust caused issues when running test
cases, so we excluded Rust from the results.

6



Selective Prompt Anchoring for Code Generation

Table 4. Evaluation on HumanEval-X with Different Languages.

MODEL PY JAVA JS C++ GO

CODEGEN (350M) 15.3 9.8 13.4 9.8 6.7
+SPA +4.8 +3.0 +4.3 +3.7 +6.7

DEEPSEEK (1.3B) 66.4 42.7 57.3 43.3 40.2
+SPA +6.7 +3.0 +3.0 +2.4 +1.8

DEEPSEEK (6.7B) 75.6 48.8 65.2 49.4 45.7
+SPA +12.9 +8.5 +11.6 +1.8 +7.3

CODELLAMA (7B) 33.6 22.0 29.3 22.0 20.1
+SPA +10.4 +6.1 +8.5 +6.1 +6.7

STARCODER2 (15B) 67.7 22.0 29.3 22.0 20.1
+SPA +7.9 +5.5 +7.9 +5.5 +6.1

DEEPSEEK (33B) 81.7 53.0 70.7 53.7 49.4
+SPA +4.5 +3.0 +3.7 +2.4 +2.4

different components in code generation prompts. We de-
compose the code generation prompt into three components:
(1) natural language description, (2) source code, and (3)
test cases. We create 4 automated anchored text selection
methods by ablating the source code and test cases.8 To
explore whether anchoring on a few more informative to-
kens can enhance performance, we further create a condition
using important tokens labeled by human programmers as
the anchored text. We leverage the dataset from Kou et al.
(2024), where multiple programmers manually identified
critical tokens that models should attend to when solving
HumanEval and MBPP programming tasks. Following our
previous experimental setup, we tune SPA for each condition
and benchmark, calculating the average Pass@1 improve-
ment across all 6 experimental LLMs.

Table 5. Pass@1 Improvement (%) with Different Anchored Texts
(HE: HumanEval, MB: MBPP, BCB: BigCodeBench, LCB: Live-
CodeBench).

ANCHORED TEXT HE HE+ MB MB+ BCB LCB

HUMAN ATTENTION
(KOU ET AL., 2024) 3.66 3.04 2.58 2.11 N/A N/A

NATURAL LANGUAGE 5.48 5.08 4.26 3.22 1.57 1.90
+ CODE 4.87 4.65 3.75 2.81 1.42 1.73
+ TEST CASES 5.11 4.89 4.05 3.11 1.50 1.82
+ CODE & TEST CASES 4.76 4.57 3.98 2.81 1.44 1.73

As shown in Table 5, anchoring the natural language descrip-
tion alone achieves the best performance improvement. For
example, on HumanEval, anchoring the natural language
description alone improves Pass@1 by 5.48%. Including
source code (4.87%) and test cases (5.11%) in the anchored
text make the performance worse. When anchoring the en-

8We do not ablate the natural language description since it
explicitly represents the user intent.

tire user prompt, performance deteriorates further to 4.76%.
This suggests that removing less relevant context can help
SPA better align LLM attention with the user intent defined
in the natural language description.

Interestingly, we find that anchoring using human-labeled
important tokens achieves only 3.66% on HumanEval,
which is consistently less effective than all the automated
experimental anchoring methods. It suggests that narrow-
ing the anchored text to more informative tokens does not
necessarily improve performance. We think there are two
plausible reasons. First, since LLMs need to attend to differ-
ent context tokens at each decoding step, providing a narrow
set of anchored tokens may have a negative impact and dis-
tract the LLM in certain decoding steps. Second, previous
studies such as Xiao et al. (2024) show that even though
some tokens, such as separators and empty space, may not
be semantically meaningful or informative, they provide
important signals for LLMs to generate the right content
(e.g., following the grammar rules). Thus, over-attending
to the informative tokens but not the special tokens in the
task description may disrupt the regular generation process.
Nevertheless, we think this is a challenging but interesting
future direction to investigate. We believe our findings will
open up new research opportunities for the community on
this topic.

5.5. Impact of Prompt Length

To further validate that SPA effectively addresses the at-
tention dilution issue, we analyze both the original model
performance and SPA’s effectiveness across different prompt
lengths, as shown in Table 6. We divide the HumanEval
dataset into three equal-sized subsets (Short, Medium, and
Long) based on the 33rd and 66th percentiles of prompt
lengths. We find that the original code LLMs consistently
achieve better performance on shorter prompts compared
to longer ones. The average Pass@1 is 74.3% for Short
prompts, 49.2% for Medium prompts, and only 30.8% for
Long prompts. This result echoes our empirical finding on
attention dilution, as longer prompts can lead to more severe
attention dilution issues.

We further investigate whether SPA can effectively address
the attention dilution issue by comparing performance im-
provements across three subsets of tasks, Short, Medium,
and Long. To ensure a fair comparison, the attention aug-
mentation of SPA is activated for all tasks in each subset
of this experiment. The average Pass@1 improvement of
SPA is 1.1% for Short, 3.2% for Medium, and 11.7% for
Long. It shows that SPA consistently achieves greater im-
provements for longer prompts compared to shorter ones.
This implies that SPA indeed improves performance by ad-
dressing the attention dilution issue, as the improvement is
more significant when attention dilution is more severe.
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Table 6. SPA’s performance on tasks with different prompt lengths.

MODEL SHORT MEDIUM LONG

CODEGEN (350M) 37.0 6.6 2.3
+ SPA +1.7 +3.0 +4.3

DEEPSEEK-CODER (1.3B) 81.8 45.5 29.6
+ SPA -1.8 +14.5 +26.0

DEEPSEEK-CODER (6.7B) 87.3 69.1 44.4
+ SPA +3.6 -3.6 +7.5

CODELLAMA (7B) 69.2 43.5 0
+ SPA +2.6 +0.0 +10.0

STARCODER2 (15B) 85.5 49.1 40.1
+ SPA -1.8 +5.5 +14.8

DEEPSEEK-CODER (33B) 85.5 81.8 68.5
+ SPA +1.8 +0.0 +7.4

5.6. Impact of Anchoring Strength

In this section, we study how the anchoring strength ω of
SPA affects performance. To ensure fair comparisons, SPA
is activated for all tasks in these experiments, unlike during
inference when it is only activated for failed tasks. We also
tune SPA on all tasks to improve generalizability. As shown
in Figure 3, ω = 1 represents the original model.

We find that different anchoring strengths ω have different
effects: if ω is too low, improvements are low; if too high,
the LLM starts becoming biased and performance declines.
Overall, as ω increases, performance first improves, reaches
an optimum, and then drops with further increases.

We find ω is both tunable and transferable. While the opti-
mal value varies slightly across models and benchmarks, it
is generally model-dependent. We find ω = 1.25 serves as a
universal anchoring strength, consistently improving perfor-
mance in all cases. Additional experiments and discussions
are provided in Appendix J.

5.7. Evaluation on Other Generative Tasks

Table 7. SPA’s performance on different generative tasks
(“TRUTH.” and “INFO.” are evaluation metrics of TruthfulQA).

MODEL TRUTH. INFO. GSM8K MMLU BOOLQ

LLAMA-3.1 88.4 97.8 76.5 69.5 83.0

+ SPA +3.1 +0.9 +1.1 +0.0 +0.1

While we focus on code generation in this work, we are
interested in whether SPA can be applied to other gen-
erative tasks, Thus, we evaluate SPA on other genera-
tive benchmarks, including TruthfulQA (Lin et al., 2022),
GSM8K (Cobbe et al., 2021), MMLU (Hendrycks et al.,
2021b), and BoolQ (Clark et al., 2019). As shown in Table 7,
SPA enhances the base model’s performance in all bench-

marks except MMLU. While the performance improvement
is not as significant as in code generation, we hypothesize
that this is because different tasks have unique input and
output patterns, leading to varying degrees of attention di-
lution. For MMLU, the model only needs to generate a
choice to answer the multiple-choice question. The output
length is significantly shorter than in code generation and
considerably less than in user prompts. Consequently, the
model’s attention is hardly diluted by self-generated tokens,
making SPA not helpful. In contrast, TruthfulQA requires
the model to generate a text analysis, provide reasoning, and
answer the question. Therefore, SPA is more beneficial in
addressing attention dilution and correcting the remaining
27% errors for “TRUTH.” (Truthfulness) and 41% errors
for “INFO.” (Informativeness). Nevertheless, it remains an
interesting future work to investigate how to further improve
SPA for a broader range of generative tasks beyond code
generation. More details are reported in Appendix I.

6. Related Work
Code Generation. To enhance the performance of LLMs
on coding tasks, significant efforts have been dedicated to
curating high-quality training data (Li et al., 2023; Guo
et al., 2024; Tian et al., 2025; Wei et al., 2023) and design-
ing domain-specific training objectives (Niu et al., 2022;
Chakraborty et al., 2022). Furthermore, techniques such as
instruction tuning (Wei et al., 2022), reinforcement learning
with human feedback (Ouyang et al., 2022), and repository-
level context modeling (Zhang et al., 2023a) have been
explored to improve alignment, reasoning, and context un-
derstanding abilities in code generation. However, these
approaches often require significant fine-tuning effort. In
the meantime, a line of work has focused on developing
interactive methods (Di & Zhang, 2025; Tian et al., 2023;
2024) that incorporate real-time human feedback to guide
and refine the model’s output. Despite their effectiveness,
such human-in-the-loop approaches remain limited due to
the requirement of user intervention. To overcome these
challenges, recent research has increasingly explored au-
tomated and training-free prompting methods (Chen et al.,
2024; Zhang et al., 2023b; Suzgun et al., 2022; Le et al.,
2024), which aim to automatically optimize prompts by
integrating additional reasoning or contextual information.
For example, Self-Debugging (Chen et al., 2024) enable
LLMs to debug code based on error messages and execu-
tion results. Self-Planning (Jiang et al., 2024) allows LLMs
to decompose tasks into subtasks and implement solutions
step-by-step. ReAct (Yao et al., 2023) prompts an LLM to
generate reasoning traces and action plans in an interleaved
manner. Compared with these methods, SPA takes an or-
thogonal approach that amplifies the influence of the user
prompt to mitigate the attention dilution issue.
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Figure 3. Analysis of Anchoring Strength

Attention Steering. TOAST (Shi et al., 2023a) tunes a fea-
ture selection module to redirect attention to task-relevant
features. PASTA (Zhang et al., 2024) performs model pro-
filing to identify beneficial attention headers and recalculate
attention distributions across transformer layers. However,
these attention-steering approaches usually require exten-
sive model adaptations and complex setup procedures. In
contrast, SPA provides a model-agnostic solution that math-
ematically simulates attention steering via logit arithmetic.

Logit Arithmetic. There has been a growing body of re-
search on performing arithmetic transformations on logits to
enhance text generation, such as contrasting logits from mul-
tiple LMs (Liu et al., 2024a; 2021; Dou et al., 2019; Zhao
et al., 2024) and contrasting logits from different layers of
a model (Chuang et al., 2024; Gera et al., 2023). Unlike
these methods, SPA contrasts logits from the same model by
perturbing the input through masking, rather than providing
additional context (Pei et al., 2023; Shi et al., 2023b; Malkin
et al., 2022) or changing to a completely new prompt (Sen-
nrich et al., 2024). Furthermore, we provide a mathematical
approximation of semantic scaling over arbitrary groups of
embeddings. SPA is specifically designed to address the
attention dilution issue in LLMs during code generation—a
phenomenon first observed in our work. By contrast, none
of the existing works explored code generation or model
attention. They primarily focus on enhancing coherence
(Malkin et al., 2022), factuality (Shi et al., 2023b; Chuang
et al., 2024; Sennrich et al., 2024), and controllability (Liu
et al., 2021; Pei et al., 2023; Zhao et al., 2024).

7. Limitations & Future Work
In this work, we pre-define the method for selecting an-
chored tokens and use a fixed anchoring strength when
generating code. We consider this approach a baseline.
Future work could explore how to dynamically select the
anchored text and anchoring strength. For the selection of

anchored text, one idea is to use LLMs to dynamically iden-
tify relevant words or phrases corresponding to the current
generation step. For tasks where NL may not be important
compared to code (e.g., code translation), we can use static
code analysis to identify important code elements (e.g., func-
tion calls and variable names heavily used in the code). For
the selection of anchoring strength, one idea is to develop
a method to calculate the relevance of words and phrases
to each generation step. Based on the relevance scores, the
system can assign higher values to more relevant contexts
while assigning lower values to less relevant ones.

In our current experiments, we utilize existing test cases in
the benchmark to determine whether to activate SPA. Al-
though this is a common practice in code generation (Chen
et al., 2024; Zhang et al., 2023b), this may not be applicable
to programming tasks where test cases are not available.
This can be potentially addressed by prompting LLMs to
generate test cases. Furthermore, we believe SPA will be
beneficial in a self-improving pipeline for fairly complex
tasks. By analyzing the errors in the initially generated
code, LLMs can be prompted to identify which instructions
or requirements were not followed in the prompt. Then
SPA can be used to amplify the influence of these ignored
instructions.

8. Conclusion
We present SPA, a model-agnostic approach to enhancing
LLM code generation. Our study first identifies the atten-
tion dilution phenomenon, where code LLMs increasingly
overlook the prompt as generation progresses. To address
this, SPA introduces a training-free, mathematically proven
mechanism for controlling the influence of selected prompt
tokens. Experiments demonstrate that aligning model atten-
tion to user prompts using SPA significantly and consistently
enhances the code generation performance of base LLMs.
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A. Performance Analysis by Different Generation Lengths

Figure 4. Length of correct vs. incorrect code generated by LLMs at three levels of granularity: character, word, and line.

To evaluate how code length affects model performance, we analyze the length distribution of correctly and incorrectly
generated code. We use the same set of experimental LLMs (Nijkamp et al., 2023; Guo et al., 2024; Rozière et al., 2024) as
in Section 2 and experiment on both HumanEval (Chen et al., 2021) and LiveCodeBench (Naman Jain, 2024).

Particularly, we evaluate code length at three granularities: characters, words (tokens), and lines. Figure 4 demonstrates
that incorrectly generated code is significantly longer than correctly generated code across different granularity levels. To
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mitigate the impact of the correlation between task difficulty and generation length, we conduct further analysis at different
task difficulty levels in LiveCodeBench. Table 1 shows that the average length of incorrectly generated code is consistently
longer than that of correctly generated code, across all levels.

These results echo our findings about attention dilution—as the generated sequence grows longer, the model’s attention to
the user prompt diminishes, leading to more errors.

B. Calculation Details and Extended Discussion of LLM Attention
B.1. Calculation of Self-attention

Most LLMs are based on the decoder of transformer (Vaswani et al., 2017), which has multiple self-attention layers. Roughly
speaking, given an LLM fθ and an input sequence of tokens t0, t1, . . . , tn where ti represents the ith token. The transformer
calculates relevance scores between every pair of tokens. The self-attention score for a token ti in the sequence can be
roughly formulated as:

attention(ti) ≈
∑n

j=1 relevance(ti, tj)∑n
i=1

∑n
j=1 relevance(ti, tj)

, (15)

where the relevance function approximates the computation among Q,K, V in transformers (Vaswani et al., 2017). However,
different layers have different attention distributions. According to a study (Wan et al., 2022b), deeper self-attention layers
can better capture long-distance dependencies and program structure, so we calculate the attention by aggregating attention
from multiple heads at the last layer. Nevertheless, this still excludes the influence from the last forward layer.

B.2. Calculation of Gradient-based Attention

To validate the generalizability of attention dilution, we employ a gradient-based attention calculation method (Selvaraju
et al., 2016; Shrikumar et al., 2017). Compared to using self-attention layers in transformers, the gradient-based method can
be generalized to different model architectures by treating the entire model as a whole differentiable function. It computes
the model’s attention by calculating the gradients relative to each input token. Intuitively, a token that induces a larger
gradient is considered more influential, suggesting that the model pays greater attention to it. Formally, the attention over
the token ti is calculated by

attention(ti) =
∂fθ(t0, t1, . . . , tn)

∂ti
. (16)

As shown in Figure 5, we observe a similar declining pattern in the model’s attention over the initial prompt, suggesting that
attention dilution is a fundamental phenomenon that persists across different attention measurement approaches.

B.3. Attention Misalignment

Despite the success of the attention mechanism in LLMs, prior works found that language models often exhibit simple
attention patterns (Raganato & Tiedemann, 2018; Voita et al., 2019). Furthermore, an empirical study (Kou et al., 2024) found
that given a coding task, there often exists a misalignment between LLM attention and human attention. When generating
code, LLMs often focus on parts in natural language descriptions that are different from what human programmers focus
on. Another work (Ning et al., 2024) shows that when the model’s attention aligns more closely with human programmers’
attention, the model generates more accurate SQL queries. Inspired by these findings, we hypothesize that a root cause of
inaccuracy in LLM-generated code stems from the suboptimal model attention.

B.4. Attention to the User Prompt Ratio

Based on these two methods to calculate LLMs’ attention, we analyze how the attention of LLMs to the initial prompt shifts.
Formally, given the prompt x and the following generated tokens t0, t1, . . . , ti−1, we calculate the attention to the user
prompt ratio α(x) over the initial prompt

α(x) =
attention(x)

attention(x) +
∑n

i=1 attention(ti)
(17)

Given that attention analysis requires open sourcing, we select five SOTA code LLMs with various sizes. We run the
experiments on HumanEval (Chen et al., 2021), one of the most popular benchmarks for evaluating code generation models.
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Figure 5. Shift of LLMs’ gradient-based attention to the initial prompt. The gradient is calculated with respect to the output logits.

We run five LLMs (Nijkamp et al., 2023; Rozière et al., 2024; Guo et al., 2024) on all 164 Humaneval tasks. Figure 5 and
Figure 2 show the gradient-based attention shift when generating the first 400 tokens. The value gradually becomes noisy
due to the insufficient length of the generated sequence.

The results demonstrate that there indeed exists such an attention dilution issue. Due to the autoregressive nature, LLMs’
attention to the initial prompt is gradually diluted as they generate more code. LLMs tend to attend to code generated
by themselves. Our finding is supported by another study (Chiang & Cholak, 2022) which investigates the self-attention
dilution of transformers in a more general scenario.

C. Extended Discussion of Approximation in SPA

In Section 3.3, Equation 9 delivers the approximation by only keeping the first derivative in Equation 8, but it is also feasible
to calculate a higher-order approximation. For example, if we want to keep the term involving the second-order derivative
ω2

2! Fθ,i,x
′′(0), it can still be computed using finite-difference methods:

Fθ,i,x
′′(0) ≈ Fθ,i,x(1)− 2Fθ,i,x(0) + Fθ,i,x(−1)

(1− 0)2
. (18)

Fθ,i,x(−1) can be solved by Equation 12 where Fθ,i,x(0) and Fθ,i,x(1) are the logits generated from the original input and
the logits generated from the masked input.

However, no matter how many terms we keep in Equation 8, we find we can only represent Fθ,i,x(ω) as a linear combination
of F (0) and F (1), weighted by an unknown variable ω.

In Section 5.6, our experiments reveal that ω’s impact on code generation performance follows an unimodal pattern—initially
increasing, then decreasing. Due to its distribution simplicity, we argue that while a higher-order approximation may yield a
more reasonable performance distribution across different ω values, it does not significantly affect the process of locating
the optimal anchoring strength. Therefore, beyond its computational efficiency, the first-order approximation in SPA is
adequate for calculating semantically accurate augmented logits.

D. Code Generation Examples
Figure 6 presents two examples comparing the code generated by models alone and the models augmented using SPA.
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In the first example, CodeLlama (7B) overlooks the specified condition ”upper vowels.” In contrast, SPA enhances the
model’s focus on the intended purpose. The code initializes all the upper vowels in the first line and correctly refers to it
later.

In the second example, DeepSeek-Coder (1.3B) erroneously sorts the list by string names instead of integers. When
using SPA, the model demonstrates improved recognition of the required procedures, aligning more closely with the task
description. The code correctly sorts and reverses the list. Then the integer list is mapped to the string list.

Figure 6. Examples of generated code by LLMs alone (left) and using SPA (right).

E. Computational Cost of SPA

E.1. Latency

We analyzed the sources of inference overhead, which include running test cases, the two decoding processes, and the logit
arithmetic operations. We observed that each attention augmentation in SPA results in an additional 0.6 times the base
model’s latency, but this increase occurs only when test cases fail. Running test cases incurs only a very small cost (0.1s on
average) compared to the total inference time (9.6s). Thus, only activating SPA when test failures are detected can reduce
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the overall overhead. The more accurate the base model, the less overhead SPA introduces. On average, SPA increases the
inference time to 1.27 times that of the original model. We believe this overhead is acceptable in practical development.

Table 8. Comparison of Tokens Per Second With and Without SPA.

MODEL TOKEN/SECOND

CODEGEN (350M) 34.1
+SPA 22.7

DEEPSEEK-CODER (1.3B) 17.8
+SPA 14.4

DEEPSEEK-CODER (6.7B) 12.1
+SPA 10.2

CODELLAMA (7B) 14.5
+SPA 10.6

STARCODER (15B) 7.4
+SPA 6.2

DEEPSEEK-CODER (33B) 5.3
+SPA 4.6

E.2. Memory

SPA requires the storage of the logit generated by the masked prompt embeddings. Theoretically, the additional memory
requirement, denoted as Moverhead, can be expressed as:

Moverhead = V ×D × Slogit (19)

where V represents the vocabulary size, D is the token embedding dimension, and Slogit is the size of a single logit value.

Consider a vocabulary size V = 50, 000, a token embedding dimension D = 4, 096, and a logit size Slogit = 2 bytes. Then
the additional memory overhead is calculated as:

50, 000× 4, 096× 2 bytes ≈ 390 MB (20)

In practice, this memory overhead can be significantly reduced because many low-ranked tokens hardly contribute to the
results. We can calculate the augmented logits by considering only the top-ranked tokens and ignoring the rest. For example,
if we focus only on the top 100 logits, the overhead will dramatically decrease to 800 KB.

E.3. Tradeoff Between Latency and Memory Usage via Parallelization

Currently, SPA is implemented by sequentially computing the logits. However, the latency can be further reduced by
parallelizing the logits generation from the original and masked embeddings, as these computations are independent
(Figure 1). This optimization, however, comes at the cost of increased memory usage (double VRAM or memory for
forwarding). Given that LLM inference is memory-intensive, this introduces a tradeoff between reduced latency and higher
memory consumption.

F. Pass@10 & Beam Search with SPA

To further evaluate the generalizability of SPA, we assess its Pass@10 performance using beam search. While SPA produces
augmented logits that could be used directly for beam search, we observed that directly sampling top beams from these
augmented logits does not improve the performance. We hypothesize that this phenomenon occurs because while SPA
successfully amplifies the influence of anchored text and improves the accuracy of top logits, it also amplifies noise in
lower-ranked logits. This undermines the reliability of the overall probability distribution, thereby hindering the sampling
process.

To address this issue, we retrieve top candidate tokens based on the augmented logits but use original probabilities to
accumulate beam probability. This strategy ensures that important, potentially overlooked tokens are considered while
maintaining reliable probabilities.
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Table 9. Pass@1 and Pass@10 (%) with and without using SPA.

MODEL SIZE
HUMANEVAL HUMANEVAL+ MBPP MBPP+

PASS@1 PASS@10 PASS@1 PASS@10 PASS@1 PASS@10 PASS@1 PASS@10

CODEGEN-MONO (350M) 15.3 36.6 12.2 33.6 19.6 47.7 15.9 42.4
+ SPA 20.1 (+4.8) 39.0 (+2.4) 17.1 (+4.9) 38.5 (+4.9) 27.4 (+7.8) 55.6 (+7.9) 22.6 (+6.7) 43.3 (+0.9)

DEEPSEEK-CODER (1.3B) 66.4 73.3 61.8 68.7 58.2 67.0 52.4 63.7
+ SPA 70.1 (+3.7) 73.3 (+0.0) 67.7 (+5.9) 69.3 (+0.6) 60.9 (+2.7) 68.8 (+1.8) 52.4 (+0.0) 64.3 (+0.6)

DEEPSEEK-CODER (6.7B) 75.6 84.0 70.2 77.9 67.0 79.8 58.5 70.2
+ SPA 88.5 (+12.9) 86.4 (+2.4) 79.9 (+9.7) 82.8 (+4.9) 71.0 (+4.0) 87.7 (+7.9) 60.7 (+2.2) 73.9 (+3.7)

CODELLAMA (7B) 33.6 58.0 28.2 48.9 50.9 61.0 40.8 49.0
+ SPA 44.0 (+10.4) 64.7 (+6.7) 36.0 (+7.8) 54.4 (+5.5) 54.3 (+3.4) 65.3 (+4.3) 44.0 (+3.2) 52.0 (+3.0)

DEEPSEEK-CODER (33B) 81.7 88.5 77.1 80.2 73.4 86.8 63.2 75.8
+ SPA 86.2 (+4.5) 89.7 (+1.2) 79.3 (+2.2) 83.2 (+3.0) 79.4 (+6.0) 89.2 (+2.4) 70.3 (+7.1) 80.1 (+4.3)

As shown in Table 9, SPA consistently improves Pass@10 by, on average, 3.42% and up to 7.9% when using beam search.
While the improvements are not as pronounced as those seen with Pass@1, we anticipate that future work could develop
beam search algorithms specifically optimized for SPA’s unique logit distribution characteristics.

G. Hypothetical explanation for Attention dilution and SPA’s effectiveness
SPA is motivated by a recent study (Kou et al., 2024) and our empirical observations demonstrating the attention dilution
issue. Our experiment results in Section 5 echo our observation and confirm the existence of attention dilution during code
generation. Here we propose a detailed explanation for this phenomenon based on our knowledge and hypotheses. We
believe it stems from two limitations in regular autoregressive decoding: (1) Distraction and (2) Error propagation.

Distraction. When a transformer generates a token, its correctness depends on two abilities: (1) whether the model
attends to the correct context, and (2) whether the model can derive the correct token based on this context. SPA aims
to improve the first ability. Suppose we have a perfect transformer. For each generated token, it should only attend to
relevant prior tokens and ignore irrelevant ones. However, no model is perfect. For each prior token, there is a chance the
model incorrectly identifies and attends to it. As the model generates more tokens that compete for attention, it becomes
increasingly challenging for the model to accurately distribute its attention. The model has more chances to attend to
irrelevant tokens, making its attention increasingly unreliable.

In contrast, the user prompt is persistently relevant throughout the generation since it represents the user’s intent. While
self-generated tokens are also important context, they are less persistently related than task descriptions in code generation.
Amplifying the impact of the task description by SPA essentially enhances attention reliability, thereby mitigating distraction.

Error propagation. During code generation, the model may generate irrelevant code tokens. However, the autoregressive
nature of LLMs assumes that all previously generated tokens are correct. For example, if the model introduces an irrelevant
variable declaration, subsequent generations may take it into account and continue to generate irrelevant code. Although
the model can still generate correct code behavior in later generations, this assumption of correctness makes it difficult
to identify errors. As a result, the error can propagate and accumulate, leading to a higher probability of errors in later
generations.

SPA mitigates this issue by reinforcing attention to the user prompt while downplaying reliance on self-generated tokens.
This optimizes the attention distribution based on the trustworthiness of different contexts, thereby increasing accuracy.

H. Implementation and Deployment
H.1. Implementation of SPA

SPA is a model-agnostic algorithm and our implementation does not rely on specific models. All six models in our paper are
built upon the Huggingface Transformer library, which offers APIs to directly access and edit token embeddings and logits.
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Particularly, the SPA generator inherits the Huggingface Transformers generation API.9 We leverage the hook to modify the
logit calculation within the original generation pipeline. The API works for any LLM in the Huggingface model collections
10 with native hyperparameters such as TEMPERATURE. We have released a PyPI library 11 for developers to quickly test
SPA.

H.2. Model Deployment

We downloaded and deployed LLMs from Huggingface. To expedite evaluations, we apply 8-bit quantization (Frantar et al.,
2023; Dettmers et al., 2022) to all models. Prior studies (Li et al., 2024; Huang et al., 2024) have demonstrated that this
approach has very little impact on LLM performance. We set the Temperature to 0 and the beam to 1 for greedy decoding in
all experiments, except for the one described in Appendix F. All experiments were conducted on a 64-bit Ubuntu 22.04 LTS
system, equipped with an AMD EPYC 7313 CPU, eight NVIDIA A5500 GPUs, and 512GB of memory. The experiments
ran for approximately seven weeks.

H.3. Prompt Design

We use the original task descriptions from the datasets as prompts for the text-completion models, CodeLlama and CodeGen-
Mono. For the remaining models, we format the prompts using the official chat template from HuggingFace. All experiments
are conducted in a zero-shot setting.

I. Evaluating SPA on Other Generative Tasks
To evaluate the generalizability of SPA beyond code generation, we experiment SPA on other generative tasks, including
TruthfulQA (Lin et al., 2022), GSM8K (Cobbe et al., 2021), MMLU (Hendrycks et al., 2021b), and BoolQ (Clark et al.,
2019).

TruthfulQA (Lin et al., 2022) is a benchmark designed to measure models’ ability to avoid generating false or misleading
information, requiring models to answer questions while remaining truthful. GSM8K (Cobbe et al., 2021) tests mathematical
reasoning capabilities through grade school math word problems that require multi-step solutions. MMLU (Hendrycks et al.,
2021b) evaluates models across 57 subjects, including elementary mathematics, US history, computer science, law, and
more, comprehensively testing both breadth and depth of knowledge. It provides multiple-choice questions for LLMs to
identify the correct answers. BoolQ (Clark et al., 2019) consists of naturally occurring yes/no questions from web queries,
testing reading comprehension and binary classification abilities. We use Llama 3.1-Instruct-8B as our base model since the
other models in our study are specifically fine-tuned for code tasks.

Table 10. Evaluating SPA on Different Generative Tasks.

MODEL
TRUTHFULQA TRUTHFULQA GSM8K MMLU BOOLQ HUMANEVAL(TRUTH.) (INFO.)

LLAMA-3.1-INSTRUCT-8B 88.40% 97.78% 76.5% 69.5% 83% 63.4%

+ SPA + 3.14% + 0.91% + 1.10% + 0% + 0.03% + 9.76%

As shown in Table 7, while SPA provides improvements across these tasks, the gains are significantly smaller compared to
code generation tasks. We attribute this performance difference to the unique input-output pattern of different generative
tasks.

For MMLU, the model only needs to generate a choice to answer the multiple-choice question. The output length is
significantly shorter than in code generation and considerably less than in user prompts. Consequently, the model’s attention
is hardly diluted by self-generated tokens, making SPA not helpful. In contrast, TruthfulQA requires the model to generate a
text analysis, provide reasoning, and answer the question. Therefore, SPA is more beneficial in addressing attention dilution
and correcting the remaining 27% errors for Truthfulness and 41% errors for Informativeness. In contrast, code generation is

9https://huggingface.co/docs/transformers/en/main_classes/text_generation
10https://huggingface.co/models
11https://pypi.org/project/anchoring/
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typically lengthy and can easily lead to attention dilution. Moreover, code generation prompts serve as persistent instructions,
requiring the LLM to maintain focus throughout the generation process. This differs from tasks like translation, where there
is no inherent need to consistently anchor attention to specific components of the input.

Therefore, we believe SPA is especially suitable for enhancing LLMs’ attention for code generation tasks. Nevertheless, it
remains an interesting future work to investigate how to further improve SPA for a broader range of generative tasks beyond
code generation. More details are reported in Appendix I.

J. Tuning of Anchoring Strength
As demonstrated in Section 5.6, different anchoring strengths ω lead to different performance and follow a simple unimodal
pattern. In this section, we report more evaluation of tuning SPA. To ensure fair comparisons, SPA is activated for all tasks
in all experiments, unlike during inference time where SPA is only activated for failed tasks. Moreover, we tune SPA on all
the tasks for better generalizability.

J.1. Tuning Stability

We evaluate the stability of tuning anchoring strength by tuning SPA on five exclusive subsets of each dataset for each
model, as shown in Table 11. The average variance across subsets is 0.0046 for HumanEval/HumanEval+ and 0.0026 for
MBPP/MBPP+, demonstrating the tuning stability.

Table 11. Tuned Anchoring Strength on Different Subsets.

MODEL SUBSET HUMANEVAL/+ MBPP/+

CODEGEN-MONO (350M) SUBSET1 1.05 1.30
SUBSET2 1.10 1.35
SUBSET3 1.20 1.25
SUBSET4 1.30 1.35
SUBSET5 1.25 1.35
COMPLETE 1.20 1.35

DEEPSEEK-CODER (1.3B) SUBSET1 1.05 1.20
SUBSET2 1.05 1.15
SUBSET3 1.10 1.15
SUBSET4 1.00 1.20
SUBSET5 1.05 1.25
COMPLETE 1.05 1.20

DEEPSEEK-CODER (6.7B) SUBSET1 1.30 1.30
SUBSET2 1.25 1.20
SUBSET3 1.30 1.25
SUBSET4 1.20 1.20
SUBSET5 1.35 1.25
COMPLETE 1.28 1.25

CODELLAMA (7B) SUBSET1 1.55 1.25
SUBSET2 1.55 1.20
SUBSET3 1.50 1.20
SUBSET4 1.65 1.25
SUBSET5 1.65 1.15
COMPLETE 1.60 1.20

DEEPSEEK-CODER (33B) SUBSET1 1.25 1.25
SUBSET2 1.30 1.30
SUBSET3 1.40 1.30
SUBSET4 1.35 1.40
SUBSET5 1.35 1.20
COMPLETE 1.35 1.30
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J.2. Cross-dataset & Cross-model Tuning Evaluation

We investigate the transferability of this hyperparameter across different models and datasets. Firstly, we conduct a
cross-dataset evaluation between HumanEval/HumanEval+ and MBPP/MBPP+, which have distinct prompt formats. We
tune ω on HumanEval+ and evaluate Pass@1 on MBPP and MBPP+, and vice versa12 (denoted as SPAcross−dataset). We
calculate average Pass@1 improvements on the original and plus versions across all baseline models. Secondly, we perform
a cross-model evaluation by tuning ω on one model and evaluating Pass@1 on the remaining four. For each model, we
compute the average Pass@1 improvements across all the other models, for HumanEval/HumanEval+ and MBPP/MBPP+
respectively (denoted as SPAcross−model). Similar to Section 5, SPA represents tuning within the split partial dataset, while
SPA∗ represents tuning within the entire dataset.

Table 12. Pass@1 improvements (%) based on cross-dataset tuning.

DATASET SPAcross−dataset SPAcross−model SPA SPA∗

HUMANEVAL/+ + 2.01 - 0.29 + 4.36 + 5.11
MBPP/+ + 2.50 + 0.37 + 2.86 + 3.57

As shown in Table 12, we find the anchoring strength ω tuned on one model is hardly transferred to another. However, ω
tuned on one dataset can be transferred to another with reduced but still effective performance. These observations suggest
that the anchoring strength is highly model-dependent and partially task-dependent.

We further investigate whether it is possible to find a universal anchoring strength that works for most scenarios. One
potential value is the average of the tuned anchoring strengths across benchmarks for each model. We apply this fixed
anchoring strength to all settings, denoted as SPA-preset. As shown in Table 13, although the generation accuracy decreases
compared to using a tuned strength, SPA with the fixed strength can still outperform the baselines. It implies that SPA is
effectively deployable in new scenarios once a reasonable value is set.

Table 13. Comparison between SPA and SOTA methods.

METHOD ∆PASS@1 (%) TIME (SEC)

BASE MODEL 0 7.7

PASTA +1.2 48.8
SELF-DEBUGGING +4.2 27.3
SELF-EDIT +1.8 26.4
SELF-PLANNING +3.6 21.6
REACT +1.3 28.8
SPA-FIXED-STRENGTH +5.0 9.8
SPA +7.7 9.8

J.3. Comparison between Tuned SPA and Optimal SPA

To better understand the tuning efficiency, we tune SPA on each complete dataset to obtain the optimal anchoring strength
(denoted as SPA∗). As shown in Table 14, we find that SPA∗ achieves 20% higher performance improvements compared to
the tuned SPA on average.

Table 15 reports optimal anchoring strength values ω. We observe the average value of 1.28 can be used to effectively
improve performance across all benchmarks for all LLMs.

K. Analysis of SPA’s Performance without Test Case Availability
To analyze SPA’s effectiveness in scenarios without available test cases, we conduct additional experiments where SPA is
applied to all code generation tasks (SPAall). As shown in Table 17, SPAall can still achieve significant improvements across
all benchmarks and models. For example, on HumanEval, SPAall improves DeepSeek-Coder (6.7B)’s Pass@1 by 7.6%

12The “plus” versions of HumanEval and MBPP share identical prompts with their base counterparts, so we only tune once on the plus
version.
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Table 14. Pass@1 Improvements (%) Comparision between Tuned SPA and Optimal SPA (SPA is applied to all tasks).

MODEL SIZE HUMANEVAL HUMANEVAL+ MBPP MBPP+

CODEGEN-MONO (350M) 15.3 12.2 19.6 15.9
+ SPA 18.3 (+3.0) 16.0 (+3.8) 24.9 (+5.3) 20.6 (+4.7)
+ SPA∗ 18.3 (+3.0) 16.0 (+3.8) 24.9 (+5.3) 20.6 (+4.7)

DEEPSEEK-CODER (1.3B) 66.4 61.8 58.2 52.4
+ SPA 69.5 (+3.1) 66.4 (+4.6) 59.1 (+0.9) 52.4 (+0.0)
+ SPA∗ 71.0 (+4.6) 66.4 (+4.6) 61.7 (+3.5) 53.4 (+1.0)

DEEPSEEK-CODER (6.7B) 75.6 70.2 67.0 58.5
+ SPA 83.2 (+7.6) 75.6 (+5.4) 69.6 (+2.6) 60.2 (+1.7)
+ SPA∗ 84.0 (+8.4) 76.3 (+6.1) 72.2 (+5.2) 61.1 (+2.6)

CODELLAMA (7B) 33.6 28.2 50.9 40.8
+ SPA 40.5 (+6.9) 33.6 (+5.4) 52.9 (+2.0) 43.1 (+2.3)
+ SPA∗ 41.2 (+7.6) 35.9 (+7.7) 52.9 (+2.0) 43.1 (+2.3)

DEEPSEEK-CODER (33B) 81.7 77.1 73.4 63.2
+ SPA 84.7 (+3.0) 77.9 (+0.8) 77.2 (+3.8) 68.5 (+5.3)
+ SPA∗ 85.5 (+3.8) 78.6 (+1.5) 77.2 (+3.8) 68.5 (+5.3)

Table 15. Optimal Anchoring Strength (ω) for each model and benchmark.

MODEL HUMANEVAL HUMANEVAL+ MBPP MBPP+ Average

CODEGEN-MONO (350M) 1.20 1.20 1.35 1.35 1.28

DEEPSEEK-CODER (1.3B) 1.05 1.05 1.20 1.20 1.13

DEEPSEEK-CODER (6.7B) 1.28 1.28 1.25 1.25 1.26

CODELLAMA (7B) 1.60 1.60 1.20 1.20 1.40

DEEPSEEK-CODER (33B) 1.35 1.35 1.30 1.30 1.33

Average 1.30 1.30 1.33 1.33 1.28

(from 75.6% to 83.2%).

Table 16. Comparison to PASTA in terms of Pass@1.

HUMANEVAL HUMANEVAL+ MBPP MBPP+ BIGCODEBENCH

PASTA +1.22 +1.22 +1.17 +0.94 +0.1

SPA +7.32 +4.88 +4.22 +3.51 +0.4

L. Comparison to PASTA

Unlike mainstream methods that optimize prompts, SPA enhances performance by optimizing model attention. We
compare SPA with another attention steering method, PASTA (Zhang et al., 2024). PASTA’s implementation only supports
LLAMA (Touvron et al., 2023a), LLAMA2 (Touvron et al., 2023b), and GPT-J (Wang & Komatsuzaki, 2021). We find
that adapting PASTA to new models requires significant effort, so we only evaluate it on LLAMA-7B, LLAMA2-7B, and
GPT-J-6B.

Table 16 demonstrates that SPA consistently outperforms PASTA on five benchmarks, achieving 4X higher Pass@1 on
average. We attribute this to two hypothetical reasons. First, internally editing model attention can be sensitive and
exhibit unexpected behaviors. Second, identifying effective attention headers may not be stable or generalizable across
different tasks. In contrast, SPA augments the final logits without internally editing the model’s feed-forward process,
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Table 17. Absolute (∆) and Relative (↑) Performance improvements in Pass@1 rates (%). SPAall is applied to all tasks, while SPA

indicates SPA is activated when the original generated code fails test cases.

MODEL SIZE HUMANEVAL HUMANEVAL+ MBPP MBPP+ BIGCODEBENCH

CODEGEN-MONO (350M) 15.3 12.2 19.6 15.9 1.1

+ SPAall 18.3 ∆+3.0
(20% ↑) 16.0 ∆+3.8

(31% ↑) 24.9 ∆+5.3
(27% ↑) 20.6 ∆+4.7

(30% ↑) 1.4 ∆+0.3
(27% ↑)

+ SPA 20.1 ∆+4.8
(31% ↑) 17.1 ∆+4.9

(40% ↑) 27.4 ∆+7.8
(40% ↑) 22.6 ∆+6.7

(42% ↑) 1.6 ∆+0.5
(45% ↑)

DEEPSEEK-CODER (1.3B) 66.4 61.8 58.2 52.4 2.5

+ SPAall 69.5 ∆+3.1
(5% ↑) 66.4 ∆+4.6

(7% ↑) 59.1 ∆+0.9
(2% ↑) 52.4 ∆+0.0

(0% ↑) 3.3 ∆+0.8
(32% ↑)

+ SPA 70.1 ∆+3.7
(6% ↑) 67.7 ∆+5.9

(10% ↑) 60.9 ∆+2.7
(5% ↑) 52.4 ∆+0.0

(0% ↑) 3.4 ∆+0.9
(36% ↑)

DEEPSEEK-CODER (6.7B) 75.6 70.2 67.0 58.5 12.7

+ SPAall 83.2 ∆+7.6
(10% ↑) 75.6 ∆+5.4

(8% ↑) 69.6 ∆+2.6
(4% ↑) 60.2 ∆+1.7

(3% ↑) 14.2 ∆+1.5
(12% ↑)

+ SPA 88.5 ∆+12.9
(17% ↑) 79.9 ∆+9.7

(14% ↑) 71.0 ∆+4.0
(6% ↑) 60.7 ∆+2.2

(4% ↑) 16.4 ∆+3.7
(29% ↑)

CODELLAMA (7B) 33.6 28.2 50.9 40.8 3.4

+ SPAall 40.5 ∆+6.9
(21% ↑) 33.6 ∆+5.4

(19% ↑) 52.9 ∆+2.0
(4% ↑) 43.1 ∆+2.3

(6% ↑) 3.8 ∆+0.4
(12% ↑)

+ SPA 44.0 ∆+10.4
(31% ↑) 36.0 ∆+7.8

(28% ↑) 54.3 ∆+3.4
(7% ↑) 44.0 ∆+3.2

(8% ↑) 4.1 ∆+0.7
(21% ↑)

STARCODER2 (16B) 67.7 60.4 78.0 65.1 13.3

+ SPAall 72.1 ∆+4.4
(6% ↑) 63.6 ∆+3.2

(5% ↑) 80.9 ∆+2.9
(4% ↑) 67.6 ∆+2.5

(4% ↑) 14.1 ∆+0.8
(6% ↑)

+ SPA 75.6 ∆+7.9
(12% ↑) 65.6 ∆+5.2

(9% ↑) 82.0 ∆+4.0
(5% ↑) 69.1 ∆+4.0

(6% ↑) 14.3 ∆+1.0
(8% ↑)

DEEPSEEK-CODER (33B) 81.7 77.1 73.4 63.2 18.9

+ SPAall 84.7 ∆+3.0
(4% ↑) 77.9 ∆+0.8

(1% ↑) 77.2 ∆+3.8
(5% ↑) 68.5 ∆+5.3

(8% ↑) 20.7 ∆+1.8
(10% ↑)

+ SPA 86.2 ∆+4.5
(6% ↑) 79.3 ∆+2.2

(3% ↑) 79.4 ∆+6.0
(8% ↑) 70.3 ∆+7.1

(11% ↑) 21.5 ∆+2.6
(14% ↑)

making it model-agnostic. Furthermore, SPA only introduces a single hyperparameter, and the tuning is stable (discussed in
Appendix J.1).
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