
Overcoming the Curse of Dimensionality in Reinforcement Learning
Through Approximate Factorization

Chenbei Lu 1 Laixi Shi 2 Zaiwei Chen 3 Chenye Wu 4 Adam Wierman 5

Abstract
Factored Markov Decision Processes (FMDPs)
offer a promising framework for overcoming the
curse of dimensionality in reinforcement learning
(RL) by decomposing high-dimensional MDPs
into smaller and independently evolving compo-
nents. Despite their potential, existing studies on
FMDPs face three key limitations: reliance on
perfectly factorizable models, suboptimal sam-
ple complexity guarantees for model-based algo-
rithms, and the absence of model-free algorithms.
To address these challenges, we introduce approx-
imate factorization, which extends FMDPs to han-
dle imperfectly factored models. Moreover, we
develop a model-based algorithm and a model-
free algorithm (in the form of variance-reduced
Q-learning), both achieving the first near-minimax
sample complexity guarantees for FMDPs. A key
novelty in the design of these two algorithms is
the development of a graph-coloring-based opti-
mal synchronous sampling strategy. Numerical
simulations based on the wind farm storage con-
trol problem corroborate our theoretical findings.

1. Introduction
Reinforcement learning (RL) (Sutton & Barto, 2018) has
become an increasingly popular framework for solving se-
quential decision-making problems in recent years (Kober
et al., 2013; Haydari & Yılmaz, 2020; Chen et al., 2022;
Charpentier et al., 2021). However, despite its promising
potential, RL still faces significant challenges, in partic-
ular the curse of dimensionality (Sutton & Barto, 2018).

1Institute for Interdisciplinary Information Sciences, Tsinghua
University 2Department of Electrical and Computer Engineering,
Johns Hopkins University 3Edwardson School of Industrial Engi-
neering, Purdue University 4School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen 5Computing &
Mathematical Sciences Department, Caltech. Correspondence to:
Chenye Wu <wuchenye@cuhk.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

Specifically, the size of the state and action spaces grows
exponentially with the dimension of the RL problem, mak-
ing it difficult—if not impossible—to efficiently represent,
learn, and optimize policies in high-dimensional settings.

To mitigate the curse of dimensionality, a common practical
approach is to employ function approximation to approxi-
mate the solution of an RL problem within a prespecified
function class, such as neural networks. While effective in
certain applications, these methods often lack strong the-
oretical guarantees, with most existing work focusing on
linear function approximation (Tsitsiklis & Van Roy, 1996;
Bhandari et al., 2018; Srikant & Ying, 2019; Chen et al.,
2023) and some extensions to nonlinear methods, which
typically rely on strong assumptions (Fan et al., 2020; Xu &
Gu, 2020). Consequently, achieving provable sample effi-
ciency for large-scale sequential decision-making remains a
significant challenge in RL.

Fortunately, many real-world applications, when modeled
as Markov Decision Processes (MDPs), exhibit structured
transition probabilities and reward functions that can be
leveraged to design algorithms with improved sample com-
plexity. For instance, in robotic control, high-dimensional
state spaces often consist of substates that evolve indepen-
dently or depend on a low-dimensional subset of the previ-
ous state. Specifically, consider a warehouse with multiple
mobile robots transporting goods, each robot typically plans
and moves based on its own position and objective, largely
independent of the internal states of other robots unless they
are highly close. These problems can be modeled using
the factored MDP (FMDP) framework (Osband & Van Roy,
2014), which decomposes the original MDP into smaller and
independently evolving MDPs. In this framework, the sam-
ple complexity scales with the sum, rather than the product,
of the individual state-action space sizes, thereby offering a
potential solution to the curse of dimensionality.

While promising, the FMDP framework has several major
limitations: (1) it assumes that the original MDP can be
perfectly decomposed into smaller MDPs; (2) for model-
based algorithms, a significant gap remains between the
best-known sample complexity and the theoretical lower
bound (Chen et al., 2020; Xu & Tewari, 2020); and (3) no
provable model-free algorithms currently exist for FMDPs.

1

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Addressing these challenges is essential for improving RL
efficiency in large-scale problems.

1.1. Contributions

The main contributions of our work are threefold.

Approximate Factorization of MDP and Efficient Sam-
pling. We propose an approximate factorization scheme
that flexibly decomposes any MDP into low-dimensional
components, while allowing for imperfect factorization. To
facilitate algorithm design, we introduce a multi-component
factorized synchronous sampling approach, formulated as
a cost-optimal graph coloring problem. Unlike previous
FMDP methods, which estimate transitions for a single
component per sample, our approach enables simultane-
ous sampling of multiple components from a single sam-
ple, significantly reducing the sample complexity for both
model-based and model-free algorithms.

Model-Based Algorithm. We propose a novel model-based
RL algorithm that uses synchronous sampling to exploit
low-dimensional structures from approximate factorization.
The algorithm achieves provable problem-dependent sam-
ple complexity (cf. Theorem 5.1), outperforming existing
minimax-optimal bounds for standard MDPs (Azar et al.,
2012). For the special case of FMDPs, it improves the best-
known sample complexity (Chen et al., 2020) by up to a
factor equal to the number of components and matches the
instance-dependent lower bound (Xu & Tewari, 2020).

Model-Free Algorithm. We introduce a model-free al-
gorithm, Variance-Reduced Q-Learning with Approximate
Factorization (VRQL-AF), which also builds on the syn-
chronous sampling method. VRQL-AF achieves the same
problem-dependent sample complexity guarantees (cf. The-
orem 6.1) as our model-based algorithm, up to logarithmic
factors, and outperforms existing minimax-optimal algo-
rithms for standard MDPs (Wainwright, 2019b). In the
special case of FMDPs, VRQL-AF is, to the best of our
knowledge, the first provable model-free algorithm with
near-optimal sample complexity guarantees. This improve-
ment is enabled by a tailored factored empirical Bellman op-
erator induced by synchronous sampling, combined with a
variance-reduction technique that minimizes variance across
factored components.

To support the above contributions, we include a detailed
literature review in Appendix A and comprehensive experi-
ments in Appendix H, covering both synthetic FMDPs and
a real-world wind farm storage control application.

2. Model and Background
We consider an infinite-horizon discounted MDP M =
(S,A, P, r, γ), where S is the finite state space, A is the

finite action space, P is the unknown transition kernel, with
P (s′ | s, a) denoting the transition probability from state
s to s′ given action a, r : S × A → [0, 1] is the unknown
reward function, and γ ∈ (0, 1) is the discount factor. Given
a policy π : S → ∆(A) (where ∆(A) denotes the set of
probability distributions supported on A), its Q-function
Qπ ∈ R|S||A| is defined as

Qπ(s, a) = Eπ,P

[∞∑
t=0

γtr(st, at)

∣∣∣∣∣ s0 = s, a0 = a

]
for all (s, a), where Eπ,P [·] denotes the expectation over
trajectories generated by the transition kernel P and the
policy π. With the Q-function defined above, the agent’s
goal is to find an optimal policy π∗ such that its associated
Q-function is uniformly maximized over all state-action
pairs. It has been shown that such an optimal policy always
exists (Puterman, 2014).

At the heart of solving an MDP is the Bellman equation,
which states that the optimal Q-function, denoted by Q∗, is
the unique solution to the fixed-point equation

Q = H(Q),

where H : R|S||A| → R|S||A| is the Bellman optimality
operator defined as

[H(Q)](s, a) = Es′∼P (·|s,a)[r(s, a) + γmax
a′∈A

Q(s′, a′)]

for all (s, a). Once Q∗ is obtained, an optimal policy can be
computed by choosing actions greedily based on Q∗.

Suppose that the model parameters of the MDP are known.
Then, we can efficiently compute Q∗ through the value it-
eration method: Qk+1 = H(Qk). Since the operator H(·)
is a contraction mapping (Sutton & Barto, 2018), the value
iteration method converges geometrically to Q∗ (Banach,
1922). However, in RL, the agent does not know the model
parameters of the underlying MDP, making direct value it-
eration infeasible. A common solution is the model-based
approach, which estimates the model parameters through
empirical sampling and then applies value iteration to the
estimated model. Alternatively, model-free methods, such
as Q-learning (Watkins & Dayan, 1992), bypass model es-
timation by directly solving the Bellman equation using
stochastic approximation (Robbins & Monro, 1951).

Throughout this paper, we work under a widely used sam-
pling mechanism setting – the generative model (Kearns
et al., 2002; Kakade, 2003). This model allows us to query
any state-action pair (s, a) to obtain a random sample of
the next state s′ and the immediate reward r(s, a) accord-
ing to the underlying transition kernel and reward function.
While not explored in this work, extending our results to
the Markov sampling setting—provided the behavior policy
induces a uniformly ergodic Markov chain—is a promising
direction for future research.

2

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

3. Approximate Factorization of MDPs
In this section, we introduce the concept of approximate
factorization. Assume without loss of generality that each
state s can be represented as an n-dimensional vector. Ac-
cordingly, the overall state space S can be written as S =∏n

i=1 Si, where Si ⊆ R for all i ∈ [n] := {1, 2, . . . , n}.
Similarly, assume without loss of generality that each ac-
tion is an m-dimensional vector and A =

∏m
j=1 Aj , where

Aj ⊆ R for all j ∈ [m]. Throughout this paper, each com-
ponent s[i] ∈ Si of a state s ∈ Rn is called a substate. A
subaction is defined analogously. The following definitions
of scope, scope set and scope variable, will be useful for
introducing approximate factorization.

Definition 3.1. Consider a factored d-dimensional set X =∏d
i=1 Xi, where Xi ⊆ R for all i ∈ [d]. For any Z ⊆

[d] (which we call a scope), the corresponding scope set
X [Z] is defined as X [Z] =

∏
i∈Z Xi. Any element x[Z] ∈

X [Z] (which is a |Z|-dimensional vector) is called a scope
variable. When Z contains only one element, i.e., Z = {i}
for some i ∈ [d], we denote x[i] as x[{i}].

An approximate factorization is characterized by a tuple
ω = (ωP , ωR), which specifies how both the transition ker-
nel and the reward function are factorized. In the following,
we elaborate on the definitions of ωP and ωR in detail.

3.1. Approximate Factorization of the Transition Kernel

A factorization scheme ωP of the transition kernel is char-
acterized by a tuple

ωP =
(
Kω, {ZS

k ⊆ [n] | k ∈ [Kω]},
{ZP

k ⊆ [n+m] | k ∈ [Kω]}
)
,

where

• Kω ∈ [n] denotes the number of components into which
we partition the transition kernel;

• {ZS
k | k ∈ [Kω]} is a collection of scopes over the n-

dimensional state space S. This collection forms a parti-
tion of [n], i.e.,

⋃Kω

k=1 Z
S
k = [n] and ZS

k1
∩ ZS

k2
= ∅ for

any k1 ̸= k2. For each scope ZS
k ⊆ [n], the associated

subspace is denoted by S[ZS
k];

• {ZP
k | k ∈ [Kω]} is a collection of scopes over the joint

state-action space X := S ×A. For example, in an MDP
with a 3-dimensional state space and a 2-dimensional
action space, if ZP

k = {1, 2, 4}, then the associated scope
set is X [ZP

k] = S1 × S2 ×A1.

For simplicity of notation, we use −ZS
k := [n] \ ZS

k to
denote the complement of ZS

k with respect to [n]. The fac-
torization scheme ωP characterizes the component-wise de-
pendency structure within the transition kernel. To motivate

our approximate factorization scheme, we first consider the
special case where the transition kernel P is perfectly factor-
izable with respect to ωP . That is, for all x = (s, a) ∈ X ,
s′ ∈ S, and k ∈ [Kω], we have

P (s′ | x) =
∏Kω

k=1
Pk(s

′[ZS
k] | x[ZP

k]), (1)

where Pk(· | x[ZP
k]) is a valid probability distribution for

all x[ZP
k] ∈ X [ZP

k]. Eq. (1) implies that the transitions
of s′[ZS

k] for different k are conditionally independent and
each depends only on the corresponding substate-subaction
pair in X [ZP

k]. An MDP that admits both perfect transition
and reward decompositions (cf. Section 3.2) is called an
FMDP (Osband & Van Roy, 2014). In this case, one only
needs to solve Kω smaller MDPs rather than the original
high-dimensional one, thereby significantly reducing the
complexity of finding an optimal policy.

As discussed in Section 1, while the FMDP framework of-
fers a promising way to address the curse of dimensionality,
the assumption of perfect factorization is relatively restric-
tive. To overcome this, we propose a more general scheme
of approximate factorization, which allows deviations from
the exact structure in Eq. (1). Specifically, to develop an
approximate factorization scheme (i.e., to get an estimate of
the “marginal” transition probabilities P (s′[ZS

k] | x[ZP
k])

in Eq. (1)), we define the set of feasible marginal transition
probabilities in the following. For any k ∈ [Kω], let

Pk=

{
Pk∈R|X [ZP

k]|×|S[ZS
k]|
∣∣∣∣∃c∈Σ|X [−ZP

k]|,∀s′[ZS
k]∈S[ZS

k],

x[ZP
k] ∈ X [ZP

k], s.t. Pk(s
′[ZS

k] | x[ZP
k]) =∑

x′[−ZP
k]

c[x′[−ZP
k]]P (s′[ZS

k] | x[ZP
k], x′[−ZP

k])

}
,

where we use Σd to denote the d-dimensional probability
simplex. Then, we choose Pk ∈ Pk arbitrarily for all k ∈
[Kω]. As we will see in later sections, the development of
our theoretical results does not rely on the specific choice of
Pk ∈ Pk. To understand the definition of Pk, again consider
the perfectly factorizable setting, in which case P (s′[ZS

k] |
x[ZP

k], x′[−ZP
k]) = P (s′[ZS

k] | x[ZP
k], x′′[−ZP

k]) for any
x′[−ZP

k], x′′[−ZP
k] ∈ X [−ZP

k] because the transition of
s′[ZS

k] does not depend on the substate-subaction pairs in
X [−ZP

k]. As a result, Pk is a singleton set for all k, which
is consistent with Eq. (1). Coming back to the case where
the underlying MDP is not perfectly factorizable, choosing
Pk from Pk can be viewed as a way of approximating the
“marginal” transition probabilities.

Given an approximation scheme ωP , we define the approxi-
mation error with respect to the transition kernel as

∆P
ω = sup

P1∈P1,...,PKω∈PKω

max
s′∈S,x∈X

∣∣P (s′ | x)

3

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

−
∏Kω

k=1
Pk(s

′[ZS
k] | x[ZP

k])
∣∣. (2)

To understand ∆P
ω , see that for any s′ ∈ S and x ∈ X , we

have the following:

P (s′ | x)−
Kω∏
k=1

Pk(s
′[ZS

k] | x[ZP
k]) = ∆1 +∆2,

where

∆1 =P (s′ | x)−
Kω∏
k=1

Pk(s
′[ZS

k] | x),

∆2 =

Kω∏
k=1

Pk(s
′[ZS

k] | x)−
Kω∏
k=1

Pk(s
′[ZS

k] | x[ZP
k]).

The first term ∆1 represents the error due to ignoring the
correlation between the transitions of s′[ZS

k] for different
k, and vanishes if the transitions of substates from different
scope sets are independent. The second term ∆2 arises due
to ignoring the dependence of the transitions of s′[ZS

k] from
x[−ZP

k]. Note that when the MDP is perfectly factorizable,
we have ∆P

ω = 0 (cf. Eq. (1)).

3.2. Approximate Factorization of the Reward Function

For the reward function, the factorization is characterized
by the tuple

ωR =
(
ℓω, {ZR

i ∈ [n+m] | i ∈ [ℓω]}
)
,

where

• ℓω is a positive integer representing the number of com-
ponents into which we decompose the reward function;

• {ZR
i | i ∈ [ℓω]} is a set of scopes with respect to the joint

state-action space X .

Under this factorization scheme, the global reward function
r(x) is approximated by the sum of “local” reward functions
from {ri : X [ZR

i] −→ [0, 1]}i∈[ℓω], where each ri depends
only on the scope variable x[ZR

i]. Similarly, given an ap-
proximation scheme ωR for the reward function, we define
its approximation error as

∆R
ω = max

x∈X

∣∣∣∣r(x)−∑ℓω

i=1
ri(x[Z

R
i])

∣∣∣∣ , (3)

which is a measurement of the deviation from our approx-
imation to the true reward function. The approximation
error ∆R

ω arises due to the fact that the reward function r(x)
may depend on substate-subaction pairs outside the scope
set X [ZR

i]. In the special case where the underlying MDP
can be perfectly factorized into several small MDPs and the

sum of their reward functions is equal to the original reward
function, we have ∆R

ω = 0.

For further illustration of our approximate factorization
scheme, see Appendix B for an example.

4. Factorized Multi-Component Synchronous
Sampling

To introduce our model-based and model-free algorithms,
we first present an efficient sampling algorithm that exploits
the factorization structure. Consider classical model-based
RL, which typically involves two steps: (1) estimating the
transition kernel and reward function through empirical sam-
pling, and (2) applying value iteration or policy iteration
to the estimated model. The curse of dimensionality arises
primarily in the first step, where each state-action pair must
be sampled multiple times, resulting in sample complexity
proportional to |S||A|. By leveraging approximate factor-
ization, we significantly reduce this burden. For clarity, we
focus here on estimating the transition kernel; the same
approach applies to the reward function.

The goal is to construct an approximation P̂ of the original
transition kernel P . We do this by estimating a collection
of low-dimensional transition kernels {P̂k | k ∈ [Kω]} and
computing P̂ according to

P̂ (s′ | x) =
∏Kω

k=1
P̂k(s

′[ZS
k] | x[ZP

k]) (4)

for all s′ ∈ S and x ∈ S × A. Instead of sampling ex-
haustively from the global state-action space, we sample
full transitions and extract the relevant substate-subaction
dimensions, as is standard in factored MDPs (Osband &
Van Roy, 2014).

To estimate P̂k(s
′[ZS

k] | x[ZP
k]) for any k ∈ [Kω], we

define the restricted sampling set XP
k as:

XP
k = {x ∈ X | x[−ZP

k] = xdefault[−ZP
k]}, (5)

where xdefault ∈ X is an arbitrary but fixed reference point.
Sampling from XP

k allows us to estimate the k-th factorized
component without needing to cover the full state-action
space. For each x ∈ XP

k , we sample the next state N times,
obtaining samples {skx,i}i∈[N]. The empirical transition
kernel P̂k is then computed as

P̂k(s
′[ZS

k] |x[ZP
k])=

1

N

∑N

i=1
1(skx,i[Z

S
k] = s′[ZS

k]) (6)

for all s′[ZS
k] ∈ S[ZS

k] and x ∈ XP
k . The overall estimate

P̂ is then obtained via Eq. (4).

Using this approach, the total number of required samples is∑Kω

k=1 |X [ZP
k]|N . Since the total substate-subaction space

4

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

size,
∑Kω

k=1 |X [ZP
k]|, is typically much smaller, often ex-

ponentially smaller, than the size of the full state-action
space |S| |A|, the overall sample complexity is significantly
reduced compared to classical model-based RL.

This also explains why the best-known sample complexity
depends on

∑Kω

k=1 |X [ZP
k]| (Chen et al., 2020). To improve

this to the lower bound of maxk |X [ZP
k]|, we show that the

key is to leverage structural properties of factored MDPs
and to design synchronous sampling strategies that allow
multiple factors to be sampled simultaneously.

4.1. Structure-Aware Sample Reuse Strategies

The sampling method described above can be further op-
timized by exploiting the structure of the factorization
scheme to improve sample efficiency. Previously, the sam-
ples {skx,i}i∈[N] were used solely to estimate P̂k(s

′[ZS
k] |

x[ZP
k]) for component k. However, these samples may also

be reused to estimate other low-dimensional transition ker-
nels, depending on the relationships among their associated
scopes. To formalize this idea, we introduce two key strate-
gies that leverage the structural relationships between the
scope sets of different components.

Synchronous Sampling with Inclusive Scopes. For any
k1, k2 ∈ [Kω] such that ZP

k1
⊆ ZP

k2
, the samples used to

estimate the transition kernel of component k2 can be reused
to estimate that of component k1. Specifically, consider the
sampling set

XP
k2

= {x ∈ X | x[−ZP
k2
] = xdefault[−ZP

k2
]}

for component k2, where xdefault[−ZP
k2
] is a fixed, arbitrary

element from X [−ZP
k2
]. By sampling from each x ∈ XP

k2
,

we obtain samples of the next state {sk2
x,i}i∈[N]. Since

ZP
k1

⊆ ZP
k2

, these samples inherently contain information
about the transitions of component k1. Therefore, we can
estimate the transition probabilities for component k1 ac-
cording to Eq. (6) with k = k1 using the same samples,
where the sampling set XP

k1
is defined based on XP

k2
as

XP
k1

= {x ∈ XP
k2

| x[ZP
k2

\ ZP
k1
] = xdefault[ZP

k2
\ ZP

k1
]}.

This reuse of samples improves overall sample efficiency by
avoiding redundant sampling for component k1.

Synchronous Sampling with Exclusive Scopes. For any
k1, k2 ∈ [Kω] such that their associated scopes are dis-
joint, i.e., ZP

k1
∩ ZP

k2
= ∅, we can estimate the transitions

for both components simultaneously using shared samples.
Specifically, define the joint sampling set XP

k1,k2
as

XP
k1,k2

=
{
(x[ZP

k1
](imod |X [ZP

k1
]|+1),x[Z

P
k2
](imod |X [ZP

k2
]|+1),

xdefault[−(ZP
k1

∪ ZP
k2
)]) | i ∈ [Dmax]

}
,

where Dmax = max(|X [ZP
k1
]|, |X [ZP

k2
]|), and x[ZP

k1
](i) de-

notes the i-th element in a fixed ordering of X [ZP
k1
]. The

modulo operation ensures that we cycle through all possible
values of each component’s state-action space. By sam-
pling from each x ∈ XP

k1,k2
N times, we obtain samples

{sx,i}Ni=1, which are used to estimate the transition probabil-
ities for both components according to Eq. (6). Appendix C
provides an example of synchronous sampling with disjoint
scopes. This strategy improves sample efficiency by reduc-
ing the total number of samples compared to sampling each
component independently.

4.2. Cost-Optimal Synchronous Sampling Strategy

Building on the aforementioned two key strategies, we next
present our sampling approach. Recall that we have Kω

components associated with scope sets ZP
1 , ZP

2 , . . . , ZP
Kω

.
For each k ∈ [Kω], we define its corresponding sampling
cost as the size of the scope set X [ZP

k]. Using the inclusive
scope property, we first eliminate components whose scope
sets are subsets of others. Let K∗

ω denote the set of remaining
components defined as

K∗
ω = {k ∈ [Kω] | ∀k1 ̸= k such that ZP

k ̸⊂ ZP
k1
}.

Next, to use the exclusive scope property, we divide K∗
ω into

subsets {Gi}1≤i≤κp
(where κp denotes the total number of

subsets) such that within each subset Gi, the components
have disjoint scopes, i.e., ZP

k1
∩ZP

k2
= ∅ for all k1, k2 ∈ Gi.

This enables us to apply the strategy of synchronous sam-
pling with exclusive scopes within each subset. Specifically,
for each subset Gk of K∗

ω, we construct the joint sampling
sets as

XP
Gk

= {{x[ZP
j](i mod |X [ZP

j]|+1)}j∈Gk
,

xdefault[−(∪j∈Gk
ZP
j)]

∣∣∣ i ∈ [Dmax,k]},

where Dmax,k = maxj∈Gk
|X [ZP

j]| ensures that all scope
sets associated with this subset are sampled. Therefore, the
cost of sampling a joint sampling set is determined by the
largest scope sets in the group as

ck(Gk) = Dmax,k = max
j∈Gk

|X [ZP
j]|.

Our objective is to minimize the total sampling cost across
all groups defined as

min
κp

min
G1,...,Gκp

∑κp

k=1
ck(Gk).

This problem is closely related to the Graph Coloring Prob-
lem (GCP) (Jensen & Toft, 2011; Karp, 2010). In Appendix
G, we detailedly elaborate on the connection between our

5

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

cost-optimal sampling problem and the GCP. The solution
yields the optimal number of groups κp ∈ [Kω] and the
division scheme {Gk}k∈[κp]. Notably, κp corresponds to
the chromatic number (Erdős & Hajnal, 1966) (the minimal
number of colors required) in GCP, which is often much
smaller than the number of nodes in the graph (Khot, 2001;
Sopena, 1997; Goddard & Xu, 2012). This result translates
to κp ≪ Kω in our context, leading to substantial sampling
cost reductions. The detailed discussion on κp can refer to
Section 5.2.

4.3. MDP Model Estimation

Given {Gk}k∈[κp] and the joint sampling sets {XP
Gk
}k∈[κp],

we are ready to sample and estimate the transition kernel.
Specifically, for each state x ∈ XP

Gk
, we perform N sam-

pling trials to obtain next-state samples based on the genera-
tive model. Specifically, we generate N samples {skx,i}Ni=1

by sampling from P (· | x) as detailed in Algorithm 1. For
each component j ∈ Gk and s′[ZS

j] ∈ S[ZS
j], we compute

the empirical transition kernel according to

P̂j(s
′[ZS

j] | x[ZP
j]) =

1

N

∑
i∈[N]

1(skx,i[Z
S
j] = s′[ZS

j]).

Algorithm 1 Cost-Optimal Factorized Synchronous Sam-
pling Algorithm

1: Input: Approximate factorization ω = (ωP , ωR).
2: Solve the optimal division scheme represented by

{κp, {Gk}k∈[κp]};
3: Construct the sampling sets {XP

Gk
}k∈[κp];

4: for k = 1, 2, · · · , κp do
5: Sample from each state-action pair x ∈ XP

Gk
for N

times to obtain {skx,i}x∈XP
Gk

,i∈[N].
6: end for
7: Output: Samples {skx,i}k∈[κp],x∈XP

Gk
,i∈[N].

To estimate the reward function components, we employ
similar inclusive and exclusive scope strategies. By con-
structing a sampling set tailored to these strategies, we can
then proceed with learning the reward function.

5. Model-Based RL with Approximate
Factorization

In this section, we focus on model-based RL and propose
the model-based Q-value iteration with approximate factor-
ization algorithm, which offers improved sample complexity
guarantees.

5.1. Algorithm Design

The algorithm is summarized in Algorithm 2, which con-
sists of two steps: estimating the model parameters and

performing Q-value iteration on the estimated model.

Algorithm 2 Model-Based Q-Value Iteration with Approxi-
mate Factorization

1: Input: Positive integer T and initialization Q̂0(s, a) =
0 for all (s, a) ∈ S ×A.

2: Compute empirical transition kernel P̂ and the reward
function r̂ through synchronous sampling Algorithm 1
and Eqs. (7) and (8).

3: for t = 1, 2, · · · , T do
4: Q̂t(s, a) = Es′∼P̂ (s′|s,a)[r̂(s, a) +

γmaxa′ Q̂t−1(s
′, a′)] for all (s, a).

5: end for
6: Output: Estimated Q-value function Q̂∗

ω = Q̂T .

The first step involves estimating the transition kernel and
the reward function (see Algorithm 2, Line 2). Specifically,
in Section 4, we explained how to estimate the transition
probabilities P̂k for each component k ∈ [Kω]. For any
s′ ∈ S and x ∈ X , the overall transition probability P̂ (s′ |
x) is computed by combining the individual component
estimates as follows:

P̂ (s′ | x) =
∏Kω

k=1
P̂k(s

′[ZS
k] | x[ZP

k]). (7)

Similarly, for the reward function, we aggregate the esti-
mated rewards r̂i for each component i ∈ [ℓω] to obtain the
overall reward function

r̂(x) =
∑ℓω

i=1
r̂i(x[Z

R
i]). (8)

The second step is to apply the value iteration method using
these estimated model parameters (see Algorithm 2, Lines
3–5). In particular, Line 4 of Algorithm 2 represents the
empirical version of the Bellman iteration. Through value
iteration, we can compute the desired optimal-Q-value func-
tion and derive the corresponding greedy policy as the final
solution to the RL problem.

5.2. Sample Complexity Guarantees

We now present the sample complexity guarantees of Algo-
rithm 2; the proof can be found in Appendix D. Before
proceeding, without loss of generality, we assume that
|X [ZP

1]| ≥ |X [ZP
2]| ≥ · · · ≥ |X [ZP

Kω
]| and |X [ZR

1]| ≥
|X [ZR

2]| ≥ · · · ≥ |X [ZR
ℓω
]|, i.e., the component scope sets

are ordered in descending order based on their cardinality.

Theorem 5.1. Given any approximate factorization scheme
ω, let Eω = γ(1− γ)−2∆P

ω + (1− γ)−1∆R
ω . For any confi-

dence level δ > 0 and the desired accuracy level ϵ ∈ (0, 1),
with probability at least 1 − δ, the output Q-function Q̂∗

ω

from Algorithm 2 after T ≥ c2 log(ϵ
−1(1 − γ)−1) itera-

tions satisfies ∥Q̂∗
ω − Q∗||∞ ≤ ϵ + Eω provided that the

6

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

total number of samples, denoted by Dω , satisfies

Dω ≥
c0

(∑
k∈[κp]

|X [ZP
k]|
)
log
(
c1|X [∪k∈[Kω]Z

P
k]|δ−1

)
ϵ2(1− γ)3

+
∑

i∈[κr]
|X [ZR

i]|, (9)

where κp ∈ [0,Kω] and κr ∈ [0, ℓω] are problem-
dependent parameters, and c0, c1 c2 are absolute constants.

Now we discuss further implications of our results.

Model Misspecification Bias. The parameter Eω is called
the model misspecification bias, which consists of two terms:
γ(1−γ)−2∆P

ω and (1−γ)−1∆R
ω , both of which are linearly

dependent on the approximation errors of the transition
kernel and reward function, respectively. This bias arises
from the inaccuracies introduced by the factorization of the
transition kernel and reward function. If the factorization
were accurate, these approximation errors would vanish,
and Eω would reduce to zero, as in the FMDP case, which
is discussed below.

Sample Complexity Implications and Comparison to
Prior Works. For a fair comparison, we consider our results
using a factorization scheme ω that is perfect with the bias
Eω = 0. In this case, our sample complexity required to
achieve an ε-optimal policy is of the following order:

Õ

(∑
k∈[κp]

|X [ZP
k]|ϵ−2(1− γ)−3 +

∑
i∈[κr]

|X [ZR
i]|
)
.

Compared with the minimax-optimal sample complexity of
Õ(|S||A|ε−2(1−γ)−3) (Azar et al., 2012) for solving stan-
dard MDPs, we have identical dependence on δ, ϵ, and the
effective horizon 1/(1−γ). The key improvement lies in the
dependence on the size of the state-action space, where we
improve the minimax Õ(|S||A|) dependence (Azar et al.,
2012) to Õ(

∑
k∈[κp]

|X [ZP
k]|) ≤ Õ(Kω maxk |X [ZP

k]|).
Notably, Õ(Kω maxk |X [ZP

k]|) is a problem-dependent
sample complexity — almost proportional to the sample
complexity of solving the largest individual component
among the factorized parts of the entire transition kernel,
which is exponentially smaller than |S||A| due to reduced
dimensionality. For example, consider an approximate fac-
torization scheme that decomposes an MDP into 10 disjoint
components with identical cardinalities. The corresponding
sample complexity becomes Õ

(
[|S||A|] 1

10

)
, achieving an

exponential reduction in sample complexity relative to the
number of factorized components.

In addition, when the bias Eω = 0, the MDPs with ap-
proximate factorization reduce to the well-known setting
of FMDPs. Compared to the best-known sample com-
plexity upper bound Õ(

∑Kω

k=1 |X [ZP
k]|ϵ−2(1 − γ)−3 +

∑ℓω
i=1 |X [ZR

i]|) for FMDPs from (Chen et al., 2020) 1, our
result Õ(

∑κp

k=1 |X [ZP
k]|ϵ−2(1−γ)−3+

∑κr

i=1 |X [ZR
i]|) of-

fers strictly better sample complexity, where κp ∈ [Kω] and
κr ∈ [ℓω] are instance-dependent parameters. Indeed, κp

reflects the sparsity of the dependence structure in the MDP.
In many real-world applications such as UAV swarm control
(Campion et al., 2018) and power system economic dispatch
(Chen et al., 2022; Lu et al., 2023), the dynamics of different
UAVs or different power generators are highly independent,
then κp ≪ Kω and can be small constant if the dependence
structure is sparse. Also, by connecting it to the Graph
Coloring Problem, κp ≪ Kω is provable under mild condi-
tions (can refer to the discussion in Section 4.2). As a result,
it indicates our sample complexity can improve the prior
arts in FMDPs by a factor of up to O(Kω). Similarly, κr

can be significantly smaller than ℓω if the reward function
components have such sparse dependence.

The sample complexity lower bound for FMDPs is
Õ(maxk |X [ZP

k]|ϵ−2(1 − γ)−3 + maxi |X [ZR
i]|), which

is established in (Xu & Tewari, 2020; Chen et al., 2020).
It worth noting that, our algorithm is the first to match
this lower bound in an instance-dependent manner when
κp, κr = O(1), demonstrating that we not only improve
upon existing upper bounds but also achieve the theoretical
minimum sample complexity under certain conditions.

Trade-Off Between Sample Complexity and Model Mis-
specification Bias. The approximate factorization scheme
ω can be viewed as a tunable hyperparameter. In general,
when the number of components Kω increases, we get a
finer decomposition of P and the size of each component
decays exponentially with Kω , which significantly reduces
the sample complexity Dω. However, the drawback of
increasing Kω arbitrarily is that it may result in a larger mis-
specification bias Eω due to model mismatch. To illustrate
this trade-off, consider the example depicted in Figure 1,
where we decompose an MDP into three components by dis-
regarding certain weak dependencies. If the induced error
Eω is smaller than the desired accuracy level ϵ, this imper-
fect factorization is sufficient to achieve the target solution.
When we require higher accuracy (smaller ε), a more care-
ful factorization scheme with generally fewer components
should be chosen. For instance, grouping wt and pt within a
single component will reduce the bias Eω , though at the cost
of increased sample requirements. This trade-off will be
revisited again in our numerical simulations in Section H.1.
As a final note, when Kω = 1, this theorem recovers the
classical sample complexity result (without decomposition)
established in (Azar et al., 2012).

1We translate their results to our setting for easy understanding
and clear comparison.

7

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

6. Model-Free RL with Approximate
Factorization

In this section, we focus on the model-free setting and intro-
duce the Variance-Reduced Q-Learning with Approximate
Factorization (VRQL-AF) algorithm with sample complex-
ity guarantees.

6.1. Algorithm Design

In classical Q-learning (Watkins & Dayan, 1992), the Q-
function estimate Q̂t is updated using a small-stepsize vari-
ant of the empirical Q-value iteration as follows:

Q̂t+1 = Q̂t + ηt(Ĥt(Q̂t)− Q̂t),

where ηt ∈ (0, 1) is the learning rate, Ĥt(Q) is the empiri-
cal Bellman operator satisfying [Ĥt(Q)](s, a) = r(s, a) +
γmaxa′ Q(s′t(s, a), a

′) for all (s, a) and Q ∈ R|S||A|, and
s′t(s, a) denotes the next state sampled from P (· | s, a).

Compared with classical Q-learning, our VRQL-AF algo-
rithm consists of two key modifications: (1) a factored em-
pirical Bellman operator design and (2) a variance-reduced
Q-iteration. The factored Bellman operator is designed to
replace the standard empirical Bellman operator in order
to enhance sampling efficiency by leveraging the structure.
Its construction is outlined in Algorithm 3. Specifically,
in vanilla Q-learning, we need to sample all state-action
pairs to generate a single empirical Bellman operator, which
requires |S||A| samples and is highly inefficient. Our ap-
proach aims to reduce the number of required samples by
exploiting the problem structure through a factorization
scheme, thus enabling the repeated use of the same samples.

Algorithm 3 Empirical Factored Bellman Operator Genera-
tion

1: Input: Factorization scheme ω = (ωP , ωR).
2: Solve the optimal Synchronous sampling scheme repre-

sented by {κp, {Gk}k∈[κp]};
3: Construct the sampling sets {XP

Gk
}k∈[κp];

4: for k = 1, 2, · · · , κp do
5: Sample the transition from each state-action pair x ∈

XP
Gk

once, and obtain the next state by {skx}k∈[κp].
6: end for
7: Get empirical Bellman operator Ĥ (for any Q) follow-

ing Eq. (10);
8: Output: Empirical Bellman operator Ĥ;

Specifically, we adopt the synchronous sampling scheme
{κp, {Gk}k∈[κp]} discussed in Section 4, and then obtain
the corresponding κp sampling sets {XP

Gk
}k∈[κp]. For each

k ∈ [κp], we sample over each entry x from the set XP
Gk

once, obtaining the next state skx randomly generated based
on transition and corresponding reward. This gives us the

Algorithm 4 Variance-Reduced Q-Learning with Approxi-
mate Factorization (VRQL-AF)
Input: Number of epochs T ; Epoch length M ; Reference

sample size Nτ (τ ≤ T); Learning rate ηt.
Output: ϵ-accurate Q Function estimation QM with 1− δ

probability;
1: Initialize Q0(s, a) = 0 for all s and a;
2: for epoch τ = 1, 2, ..., T do
3: Generate Nτ factored empirical Bellman operators

{B̂i}i=1,2,...,Nτ
though Algorithm 3;

4: Calculate the reference Bellman operator
Hτ (Qτ−1) =

1
Nτ

∑Nτ

i=1 B̂i(Qτ−1);
5: Initialize Q0 = Qτ−1;
6: for iteration t = 0, ...,M − 1 do
7: Generate factored empirical Bellman operator Ĥt

through Algorithm 3;
8: Compute the variance-reduced update:

Qt+1 = Qt + ηt
(
Ĥt(Qt)− Ĥt(Qτ−1)

+Hτ (Qτ−1)−Qt

)
. (11)

9: end for
10: Qτ = QM ;
11: end for
12: Output: QT ;

samples {skx}x∈XP
Gk

,k∈[κp]. These samples are sufficient

to construct the factored empirical Bellman operator Ĥ(Q).
Specifically, for any x := (s, a) ∈ S×A, the corresponding
entry [Ĥ(Q)](s, a) of Ĥ(Q) satisfies

[Ĥ(Q)](s, a) =γmax
a′

Q(s′x,1[Z
S
1], . . . , s

′
x,Kω

[ZS
Kω

], a′)

+ r(s, a), (10)

where for each j ∈ [Kω], s′x,j is the sample containing the
correct transition of component j satisfying

s′x,j ∈ {skx̃ | x̃ ∈ XP
Gk
, x̃[ZP

j] = x[ZP
j]}.

This ensures that the samples from different components
are used to compute the transitions for all dimensions of
the Bellman operator. By using synchronous sampling, we
cover the transitions for all components, allowing us to
estimate the entire factored Bellman operator efficiently.
Note that, Eq. (10) simply extracts the relevant dimensions
from each sample to update the corresponding factors, which
makes the implementation straightforward and efficient.

The variance reduction technique aims to reduce the vari-
ance in the update process, thereby accelerating the con-
vergence (Sidford et al., 2018; 2023; Wainwright, 2019b).
Armed with both schemes, our proposed VRQL-AF is sum-
marized in Algorithm 4. Specifically, the algorithm employs

8

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

a two-loop structure. In each outer epoch τ , a new reference
is constructed, followed by an inner loop that iteratively
updates the Q-value estimate using both the reference and
real-time empirical Bellman operators.

In particular, in each outer loop τ , we first compute a ref-
erence Bellman operator H(Qτ−1), which is an average
of Nτ factored empirical Bellman operators B̂i generated
through a sampling process applied to the fixed Q-value
function Qτ−1 (obtained from previous steps). This refer-
ence Bellman operator provides a low-variance estimate of
the Q-value function.

Next, in each inner loop t, a new factored empirical Bellman
operator Ĥt is generated from fresh samples, and the Q-
function is updated by combining a high-variance unbiased
operator Ĥt(Qt) with a reference-based variance-reduction
term Ĥt(Qτ−1)−Hτ (Qτ−1).

6.2. Sample Complexity Guarantees

We now provide a bound on the sample complexity of Algo-
rithm 4; the proof is provided in Appendix E:
Theorem 6.1. Given any approximate factoriza-
tion scheme ω, a confidence level δ > 0, and the
desired accuracy level ϵ ∈ (0, 1). Let the bias
Eω = γ(1 − γ)−2∆P

ω + (1 − γ)−1∆R
ω , the number

of epochs T = c1 log
(
(1− γ)−1ϵ−1

)
, the epoch length

M = c2log
(
6T |X [∪Kω

k=1Z
P
k]|(1− γ)−1δ−1

)
(1− γ)−3,

the reference sample size Nτ =

c34
τ log

(
6T |X [∪Kω

k=1Z
P
k]|
)
(1− γ)−2, and the learn-

ing rate ηt = (1 + (1− γ)(t+ 1))−1. With probability
at least 1 − δ, the output Q-function Q̂∗

ω from Algorithm
VRQL-AF satisfies ∥Q∗ − Q̂∗

ω∥∞ ≤ ϵ+ Eω , provided that
the total number of samples, denoted by Dω, satisfies the
following:

Dω ≥
c0(
∑

k∈[κp]
|X [ZP

k]|) log
(
c1|X [∪Kω

k=1Z
P
k]|

(1−γ)δ

)
log
(

c2
(1−γ)ϵ

)
ϵ2(1− γ)3

+
∑

i∈[κr]
|X [ZR

i]|,

where c0, c1, c2 > 0 are universal constants.

In evaluating the performance of VRQL-AF, we note that
the estimation bias Eω is the same as in our model-based
algorithm in Theorem 5.1.

Therefore, we focus our discussion on the sample com-
plexity, in the case of perfect factorization Eω = 0 for fair
comparisons. In this case, our sample complexity required
to achieve an ε-optimal policy is of the following order:

Õ

(∑
k∈[κp]

|X [ZP
k]|

ϵ2(1− γ)3
+
∑

i∈[κr]
|X [ZR

i]|

)
, (12)

which achieves the same order as our model-based algo-
rithm. This indicates that our proposed model-free VRQL-
AF can also address the persistent curse of dimensionality
in standard RL, as already discussed for our model-based
algorithm. For more details, please refer to Section 5.2.

Importantly, VRQL-AF is the first near-optimal model-free
algorithm for our approximate factorization framework (in-
cluding FMDPs), which breaks the curse of dimensionality
by combining a tailored factored empirical Bellman opera-
tor, a synchronous sampling scheme, and advanced variance
reduction. The improved sample complexity is achieved by
a refined cross-dimensional variance analysis on the conver-
gence process with factored empirical Bellman operators.

Note that for the factored MDP setting (Osband & Van Roy,
2014) with perfect factorization, our result can potentially
be extended to the Markov-sampling regime under a fixed
behavior policy π, provided that π induces, on each factor
with a sampling set, a uniformly ergodic Markov chain. The
analysis can following techniques like (Li et al., 2020b). A
fully rigorous treatment of this extension is left to future
work.

7. Conclusion
Our work introduces a framework for approximate factor-
ization in MDPs to address the curse of dimensionality
in large-scale RL problems. By decomposing MDPs into
smaller factorized components, we propose a synchronous
sampling method to optimize component-wise sampling and
a model-based RL algorithm that leverages the factoriza-
tion structure. Additionally, we design variance-reduced
Q-learning algorithms with a factored empirical Bellman
operator for efficient online learning. Our theoretical re-
sults show significant improvements in sample complexity,
outperforming existing bounds for both vanilla and FMDPs.

Acknowledgements
We sincerely thank the anonymous area chair and reviewers
for their insightful feedback. We are grateful to Hongyu
Yi for proofreading the paper and to Kishan Panaganti for
helpful discussions.

This work was supported in part by Tsinghua University
during C. Lu’s visit to the California Institute of Technology.
L. Shi acknowledges support from the Resnick Institute and
the Computing, Data, and Society Postdoctoral Fellowship
at Caltech. C. Wu’s work was supported in part by the
National Natural Science Foundation of China under Grant
72271213, the Shenzhen Science and Technology Program
under Grant RCYX20221008092927070. A. Wierman’s
work was supported in part by NSF grants CNS-2146814,
CPS-2136197, CNS-2106403, and NGSDI-2105648.

9

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Agarwal, A., Jiang, N., Kakade, S. M., and Sun, W. Rein-

forcement learning: Theory and algorithms. CS Dept.,
UW Seattle, Seattle, WA, USA, Tech. Rep, 32, 2019.

Agarwal, A., Kakade, S., and Yang, L. F. Model-based rein-
forcement learning with a generative model is minimax
optimal. In Conference on Learning Theory, pp. 67–83.
PMLR, 2020.

Azar, M. G., Munos, R., and Kappen, H. J. On the sample
complexity of reinforcement learning with a generative
model. In Proceedings of the 29th International Cofer-
ence on International Conference on Machine Learning,
pp. 1707–1714, 2012.

Azar, M. G., Osband, I., and Munos, R. Minimax regret
bounds for reinforcement learning. In International Con-
ference on Machine Learning, pp. 263–272. PMLR, 2017.

Banach, S. Sur les opérations dans les ensembles abstraits
et leur application aux équations intégrales. Fund. Math,
3(1):133–181, 1922.

Bhandari, J., Russo, D., and Singal, R. A finite time anal-
ysis of temporal difference learning with linear function
approximation. In Conference on Learning Theory, pp.
1691–1692. PMLR, 2018.

Boutilier, C., Dearden, R., Goldszmidt, M., et al. Exploiting
structure in policy construction. In IJCAI, volume 14, pp.
1104–1113, 1995.

Boutilier, C., Dean, T., and Hanks, S. Decision-theoretic
planning: Structural assumptions and computational
leverage. Journal of Artificial Intelligence Research, 11:
1–94, 1999.

California ISO. Electricity Price Data. https://www.
energyonline.com/Data/, 2021. Online; ac-
cessed on 20 December 2022.

Campion, M., Ranganathan, P., and Faruque, S. Uav swarm
communication and control architectures: a review. Jour-
nal of Unmanned Vehicle Systems, 7(2):93–106, 2018.

Charpentier, A., Elie, R., and Remlinger, C. Reinforce-
ment learning in economics and finance. Computational
Economics, pp. 1–38, 2021.

Chen, X., Hu, J., Li, L., and Wang, L. Efficient reinforce-
ment learning in factored MDPs with application to con-
strained RL. In International Conference on Learning
Representations, 2020.

Chen, X., Qu, G., Tang, Y., Low, S., and Li, N. Reinforce-
ment learning for selective key applications in power
systems: Recent advances and future challenges. IEEE
Transactions on Smart Grid, 13(4):2935–2958, 2022.

Chen, Z., Clarke, J.-P., and Maguluri, S. T. Target network
and truncation overcome the deadly triad in Q-learning.
SIAM Journal on Mathematics of Data Science, 5(4):
1078–1101, 2023.

Chen, Z., Maguluri, S. T., Shakkottai, S., and Shanmugam,
K. A Lyapunov theory for finite-sample guarantees of
Markovian stochastic approximation. Operations Re-
search, 72(4):1352–1367, 2024a.

Chen, Z., Zhang, K., Mazumdar, E., Ozdaglar, A., and
Wierman, A. Two-timescale Q-learning with function
approximation in zero-sum stochastic games. The 25th
ACM Conference on Economics and Computation, 2024b.

Dai, B., Shaw, A., Li, L., Xiao, L., He, N., Liu, Z., Chen,
J., and Song, L. Sbeed: Convergent reinforcement learn-
ing with nonlinear function approximation. In Interna-
tional Conference on Machine Learning, pp. 1125–1134.
PMLR, 2018.

Dokeroglu, T. and Sevinc, E. Memetic teaching–learning-
based optimization algorithms for large graph coloring
problems. Engineering Applications of Artificial Intelli-
gence, 102:104282, 2021.

Erdős, P. and Hajnal, A. On chromatic number of graphs and
set-systems. Acta Math. Acad. Sci. Hungar, 17(61-99):1,
1966.

Even-Dar, E., Mansour, Y., and Bartlett, P. Learning rates
for Q-learning. Journal of Machine Learning Research,
5(1), 2003.

Fan, J., Wang, Z., Xie, Y., and Yang, Z. A theoretical
analysis of deep Q-learning. In Learning for Dynamics
and Control, pp. 486–489. PMLR, 2020.

Gary, M. R. and Johnson, D. S. Computers and intractability:
A guide to the theory of np-completeness, 1979.

Gheshlaghi Azar, M., Munos, R., and Kappen, H. J. Mini-
max PAC bounds on the sample complexity of reinforce-
ment learning with a generative model. Machine Learn-
ing, 91:325–349, 2013.

Goddard, W. and Xu, H. The s-packing chromatic number
of a graph. Discussiones Mathematicae Graph Theory,
32(4):795–806, 2012.

10

https://www.energyonline.com/Data/
https://www.energyonline.com/Data/

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Guestrin, C., Koller, D., Parr, R., and Venkataraman, S.
Efficient solution algorithms for factored MDPs. Journal
of Artificial Intelligence Research, 19:399–468, 2003.

Haydari, A. and Yılmaz, Y. Deep reinforcement learning
for intelligent transportation systems: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23
(1):11–32, 2020.

Jaakkola, T., Jordan, M., and Singh, S. Convergence of
stochastic iterative dynamic programming algorithms.
Advances in Neural Information Processing Systems, 6,
1993.

Jensen, T. R. and Toft, B. Graph Coloring Problems. John
Wiley & Sons, 2011.

Jin, C., Yang, Z., Wang, Z., and Jordan, M. I. Provably
efficient reinforcement learning with linear function ap-
proximation. In Conference on Learning Theory, pp.
2137–2143. PMLR, 2020.

Kakade, S. M. On the sample complexity of reinforcement
learning. University of London, University College Lon-
don (United Kingdom), 2003.

Karp, R. M. Reducibility among Combinatorial Problems.
Springer, 2010.

Kearns, M. and Singh, S. Finite-sample convergence rates
for Q-learning and indirect algorithms. Advances in Neu-
ral Information Processing Systems, 11, 1998.

Kearns, M., Mansour, Y., and Ng, A. Y. A sparse sampling
algorithm for near-optimal planning in large Markov de-
cision processes. Machine Learning, 49:193–208, 2002.

Kellerer, H., Pferschy, U., Pisinger, D., Kellerer, H., Pfer-
schy, U., and Pisinger, D. Multidimensional Knapsack
Problems. Springer, 2004.

Khot, S. Improved inapproximability results for maxclique,
chromatic number and approximate graph coloring. In
Proceedings 42nd IEEE Symposium on Foundations of
Computer Science, pp. 600–609. IEEE, 2001.

Kober, J., Bagnell, J. A., and Peters, J. Reinforcement
learning in robotics: A survey. The International Journal
of Robotics Research, 32(11):1238–1274, 2013.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Breaking
the sample size barrier in model-based reinforcement
learning with a generative model. Advances in Neural In-
formation Processing Systems, 33:12861–12872, 2020a.

Li, G., Wei, Y., Chi, Y., Gu, Y., and Chen, Y. Sample
complexity of asynchronous Q-learning: Sharper analysis
and variance reduction. Advances in Neural Information
Processing Systems, 33:7031–7043, 2020b.

Li, G., Shi, L., Chen, Y., and Chi, Y. Breaking the sample
complexity barrier to regret-optimal model-free reinforce-
ment learning. Information and Inference: A Journal of
the IMA, 12(2):969–1043, 2023.

Li, G., Cai, C., Chen, Y., Wei, Y., and Chi, Y. Is Q-learning
minimax optimal? a tight sample complexity analysis.
Operations Research, 72(1):222–236, 2024a.

Li, G., Shi, L., Chen, Y., Chi, Y., and Wei, Y. Settling the
sample complexity of model-based offline reinforcement
learning. The Annals of Statistics, 52(1):233–260, 2024b.

Lin, S. Computer solutions of the traveling salesman prob-
lem. Bell System Technical Journal, 44(10):2245–2269,
1965.

Lu, C., Gu, N., Jiang, W., and Wu, C. Sample-adaptive
robust economic dispatch with statistically feasible guar-
antees. IEEE Transactions on Power Systems, 39(1):
779–793, 2023.

Lu, C., Yi, H., Zhang, J., and Wu, C. Self-improving online
storage control for stable wind power commitment. IEEE
Transactions on Smart Grid, 15(4):3666–3680, 2024.

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness,
J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidje-
land, A. K., Ostrovski, G., et al. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529–533, 2015.

Osband, I. and Van Roy, B. Near-optimal reinforcement
learning in factored MDPs. Advances in Neural Informa-
tion Processing Systems, 27, 2014.

Puterman, M. L. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. John Wiley & Sons,
2014.

Robbins, H. and Monro, S. A stochastic approximation
method. The Annals of Mathematical Statistics, pp. 400–
407, 1951.

Schaefer, T. J. The complexity of satisfiability problems.
In Proceedings of the tenth annual ACM symposium on
Theory of Computing, pp. 216–226, 1978.

Shen, Y., Sun, Y., Li, X., Eberhard, A., and Ernst, A. En-
hancing column generation by a machine-learning-based
pricing heuristic for graph coloring. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 36,
pp. 9926–9934, 2022.

11

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Shi, L., Li, G., Wei, Y., Chen, Y., and Chi, Y. Pessimistic
Q-learning for offline reinforcement learning: Towards
optimal sample complexity. In International Conference
on Machine Learning, pp. 19967–20025. PMLR, 2022.

Shi, L., Li, G., Wei, Y., Chen, Y., Geist, M., and Chi, Y. The
curious price of distributional robustness in reinforcement
learning with a generative model. Advances in Neural
Information Processing Systems, 36, 2024.

Sidford, A., Wang, M., Wu, X., Yang, L., and Ye, Y. Near-
optimal time and sample complexities for solving Markov
decision processes with a generative model. Advances in
Neural Information Processing Systems, 31, 2018.

Sidford, A., Wang, M., Wu, X., and Ye, Y. Variance reduced
value iteration and faster algorithms for solving Markov
decision processes. Naval Research Logistics (NRL), 70
(5):423–442, 2023.

Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou,
I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M.,
Bolton, A., et al. Mastering the game of go without
human knowledge. Nature, 550(7676):354–359, 2017.

Sopena, E. The chromatic number of oriented graphs. Jour-
nal of Graph Theory, 25(3):191–205, 1997.

Srikant, R. and Ying, L. Finite-time error bounds for linear
stochastic approximation and TD-learning. In Conference
on Learning Theory, pp. 2803–2830. PMLR, 2019.

Sutton, R. S. and Barto, A. G. Reinforcement Learning: An
Introduction. MIT press, 2018.

Szepesvári, C. The asymptotic convergence-rate of Q-
learning. Advances in Neural Information Processing
Systems, 10, 1997.

Tian, Y., Qian, J., and Sra, S. Towards minimax optimal rein-
forcement learning in factored Markov decision processes.
Advances in Neural Information Processing Systems, 33:
19896–19907, 2020.

Tsitsiklis, J. and Van Roy, B. Analysis of temporal-
diffference learning with function approximation. Ad-
vances in Neural Information Processing Systems, 9,
1996.

Tsitsiklis, J. N. Asynchronous stochastic approximation and
Q-learning. Machine Learning, 16:185–202, 1994.

Vershynin, R. High-dimensional Probability: An Intro-
duction with Applications in Data Science, volume 47.
Cambridge university press, 2018.

Wainwright, M. J. Stochastic approximation with cone-
contractive operators: Sharp l-infty bounds for Q-
learning. arXiv preprint arXiv:1905.06265, 2019a.

Wainwright, M. J. Variance-reduced Q-learning is minimax
optimal. Preprint arXiv:1906.04697, 2019b.

Wang, R., Salakhutdinov, R. R., and Yang, L. Reinforce-
ment learning with general value function approxima-
tion: Provably efficient approach via bounded Eluder
dimension. Advances in Neural Information Processing
Systems, 33:6123–6135, 2020.

Watkins, C. J. and Dayan, P. Q-learning. Machine Learning,
8:279–292, 1992.

Woo, J., Shi, L., Joshi, G., and Chi, Y. Federated offline
reinforcement learning: Collaborative single-policy cov-
erage suffices. In International Conference on Machine
Learning, pp. 53165–53201. PMLR, 2024.

Xu, G., Shi, J., Wu, J., Lu, C., Wu, C., Wang, D., and Han,
Z. An optimal solutions-guided deep reinforcement learn-
ing approach for online energy storage control. Applied
Energy, 361:122915, 2024.

Xu, P. and Gu, Q. A finite-time analysis of Q-learning
with neural network function approximation. In Inter-
national Conference on Machine Learning, pp. 10555–
10565. PMLR, 2020.

Xu, Z. and Tewari, A. Reinforcement learning in factored
MDPs: Oracle-efficient algorithms and tighter regret
bounds for the non-episodic setting. Advances in Neural
Information Processing Systems, 33:18226–18236, 2020.

12

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Appendices
A. Related Work
Our work contributes to a few key literatures within the RL community. We discuss each in turn below.

Finite-Sample Analysis for Model-Based Algorithms. Our proposed algorithm (cf. Algorithm 2) follows the model-based
RL approach, where the learning process involves model estimation and planning. Model-based approaches have been
extensively studied (Azar et al., 2012; Agarwal et al., 2020; Gheshlaghi Azar et al., 2013; Sidford et al., 2018; Azar et al.,
2017; Jin et al., 2020; Li et al., 2024b), achieving minimax-optimal sample complexity of Õ(|S||A|ϵ−2(1− γ)−3) in the
generative model setting (Li et al., 2020a). This minimax-optimal bound is established by considering all possible MDPs in
a worst-case manner, without leveraging any additional structure in the problem. In contrast, by leveraging the structure for
algorithm design, we achieve sample complexity with exponentially reduced dependency on the size of the state and action
space (cf. Theorem 5.1) when the MDP is perfectly factorizable.

Finite-Sample Analysis for Model-Free Algorithms. Our proposed algorithm also aligns with model-free RL, which
does not estimate the model but directly optimize the policy (Sutton & Barto, 2018). A vast body of literature focuses
on Q-learning (Tsitsiklis, 1994; Jaakkola et al., 1993; Szepesvári, 1997; Kearns & Singh, 1998; Even-Dar et al., 2003;
Wainwright, 2019a; Chen et al., 2024a; Li et al., 2023; 2024a; Shi et al., 2022; Woo et al., 2024) with various sampling
settings, demonstrating a minimax sample complexity of Õ(|S||A|ϵ−2(1− γ)−4). With further advancements like variance
reduction, Q-learning has been shown to achieve a minimax-optimal sample complexity of Õ(|S||A|ϵ−2(1− γ)−3) in the
generative model setting (Wainwright, 2019b). In contrast, our work leverages the approximate factorization structure of
MDPs to further enhance sample efficiency. By designing a factored empirical Bellman operator with variance reduction,
we achieve exponentially reduced sample complexity with respect to the state-action space size (cf. Theorem 6.1) with
matching minimax dependence on the other parameters.

Factored MDPs. Our model generalizes the framework of FMDPs (Boutilier et al., 1995; 1999), extending it to account
for approximation errors. Most existing work on FMDPs is set in an episodic framework and primarily analyzes regret
performance (Guestrin et al., 2003; Osband & Van Roy, 2014; Xu & Tewari, 2020; Tian et al., 2020; Chen et al., 2020).
In particular, the state-of-the-art results translate into a sample complexity of Õ(

∑K
k=1 |Xk|ϵ−2(1 − γ)−3), where the

complexity scales with the sum of the state-action space sizes |Xk| across all factored components. Building on this line of
work, we propose a factorized synchronous sampling technique that enables simultaneous updates for multiple components
using a single sample. By coupling this with refined cross-component variance analysis, we reduce the sample complexity to
as low as Õ

(
maxk |Xk|ϵ−2(1− γ)−3

)
in an instance-dependent manner, which only depends on the maximal component

size rather than the sum. This result matches the lower bounds established in prior work (Xu & Tewari, 2020; Chen et al.,
2020), up to logarithmic factors. Crucially, our approach does not require the MDP to exhibit perfect factorizability, allowing
for broader applicability to general MDPs.

RL with Function Approximation. To make RL problem sample efficient for large-scale problems, a common approach
is to employ function approximation (Sutton & Barto, 2018). Intuitively, the key idea is to limit the searching space of an
RL problem to a predefined function class, in which each function can be specified with a parameter that is low-dimensional.
This approach has achieved significant empirical success (Mnih et al., 2015; Silver et al., 2017). However, RL with function
approximation is not theoretically well understood except under strong structural assumptions on the approximating function
class, such as the function class being linear (Tsitsiklis & Van Roy, 1996; Bhandari et al., 2018; Srikant & Ying, 2019;
Chen et al., 2023; 2024b), the Bellman completeness being satisfied (Fan et al., 2020), or others (Dai et al., 2018; Wang
et al., 2020). Also, the function approximation often targets to approximate the Q-values, instead of exploiting the inherent
transition kernel and reward function structures. In this work, we take a different approach by leveraging approximate
factorization structures instead of implementing function approximation. It is also worth noting that our approach is
highly flexible and can be further extended by incorporating function approximation techniques, providing an even broader
framework for tackling large-scale RL problems.

13

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

B. An Illustrative Example of Approximate Factorization
To provide intuition, we present an example of applying the approximate factorization scheme in a real-world application,
demonstrating that it offers additional opportunities to achieve a better balance between desired solution accuracy and
sample efficiency. In particular, we consider the storage control problem (Xu et al., 2024) in wind farms. The storage
controller (the agent) aims to align the real-time wind power generation output (the state) with the desired prediction values
by flexibly charging or discharging the energy storage system.

This problem can be modeled as an MDP, where the state at time t, st = (wt, pt, ct), captures the wind power generation wt,
electricity price pt, and the state of charge (SoC) of the storage ct. The action at represents the storage charging decision
at time t. The transition dependence structure can be represented as a bipartite graph, as illustrated in Figure 1(a). In the
graph, nodes on the left-hand side (LHS) represent the state and action at time t, while nodes on the right-hand side (RHS)
represent the state at time t+ 1. A solid blue line between nodes indicates a strong dependence. For instance, the electricity
price pt+1 strongly depends on the previous price pt. While a dashed blue line represents weak dependence. For example,
while the wind power generation wt can influence the next step’s electricity price pt+1 in the market, its impact is weaker
compared to the direct influence of the previous price pt.

Figure 1(b) illustrates an approximate factorization scheme on this MDP, where the system’s dynamics are divided into
three smaller components — the dynamics of the wind power generation, electricity price, and storage levels. Strong
transition dependencies are preserved within each component, but weaker dependencies, such as the influence of wind power
generation on electricity price, are disregarded. This leads to the following approximation of the transition probability:

P̂ (st+1|st, at) = P (wt+1|wt) · P (pt+1|pt) · P (ct+1|ct, at).

This approximation simplifies the model by factoring the transition dynamics into smaller, more manageable components
while retaining key dependencies. Note that this problem does not fall under a FMDP, as the dynamics cannot be perfectly
broken down into smaller components. However, our approximate factorization scheme offers a more flexible framework,
allowing imperfectly factorizable transition dynamics to be divided into smaller components while maintaining sufficient
model accuracy. This expands the factorization step’s action space, enabling a more effective search for optimal trade-offs
between solution accuracy and sample efficiency.

wind power
generation

(st , at) (st+1)

electricity price

SoC of storage

charging action

wt

pt

ct

at

wt+1

pt+1

ct+1

Strong impact on transitions

Weak impact on transitions

(st , at) (st+1)

wt

pt

ct

at

wt+1

pt+1

ct+1

Factorization ω with Kω= 3

(a) Bipartite Graph Representation

wind power
generation

(st , at) (st+1)

electricity price

SoC of storage

charging action

wt

pt

ct

at

wt+1

pt+1

ct+1

Strong impact on transitions

Weak impact on transitions

(st , at) (st+1)

wt

pt

ct

at

wt+1

pt+1

ct+1

Factorization ω with Kω= 3

(b) Approximate Factorization Scheme

Figure 1. Bipartite Graph Representation and Approximate Factorization.

C. Illustration of Synchronous Sampling with Exclusive Scopes
An example of synchronous sampling with exclusive scopes is illustrated in Fig. 2. Specifically, this factorization contains
two components 1 and 2, the transition of state in the first component depends on x[ZP

1] = x[{1, 2}], while for the second

14

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

component, its associated state’s transition depends on x[ZP
2] = x[{3}], where ZP

1

⋂
ZP
2 = ∅, which means the transitions

of the two components don’t have common dependence. The classical sampling process within the FMDPs involves
sampling all possible entries from the sampling sets of both components, leading to a sampling cost |XP

1 |+ |XP
2 |. While

equipped with the exclusive scope property, we can simultaneously sample the entries of both components in a single sample.
Thus, the total sampling cost equals the size of the larger sampling set, i.e., max(|XP

1 |, |XP
2 |).

Entry 1

Entry 2

Entry 3

Entry

...

x[1] x[2] x[3]

Sampling Set for Component 1

x[4]

Joint Sampling Set for Components 1&2

Entry 1

Entry 2

Entry

...

x[1] x[2] x[3]

Sampling Set for Component 2

x[4]

Entry 1

Entry 2

Entry 3

...

x[1] x[2] x[3] x[4]

Default

Default

Default

Default

Default

Default

Default

Default

Default

Default

Default

Default

Default

Default

Entry

Joint Sampling Set Design

Total Sampled Entries = Total Sampled Entries =

Independent Component-wise Sampling Synchronous Component-wise Sampling

Figure 2. Synchronous Sampling with Exclusive Scopes.

D. Proof of Theorem 5.1
We aim to ensure the total number of samples Dω satisfies the following lower bound:

Dω ≥ Nentry ·N +Dr, (13)

where Nentry denotes the number of unique state-action pairs that must be sampled, N is the sampling frequency for each
pair, and Dr is the sample complexity required to estimate the exact reward function.

The term Nentry is directly specified in Algorithm 1. It is defined as the total number of state-action pairs across all
components to be sampled. Mathematically:

Nentry =
∑

i∈[κp]
maxk∈Gi |X [ZP

k]| ≤
∑

k∈[κp]
|X [ZP

k]|,

where κp is the total number of sampling sets, Gi is the set of component indices associated with the i-th sampling set,
|X [ZP

k]| denotes the size of the state-action space for component k.

For the sample complexity associated with estimating the reward function, Dr, it is sufficient to sample all necessary
state-action pairs once for each reward component ri to obtain the exact reward values. Similar to the transition kernel
sampling, the sample complexity of the reward function is bounded by:

Dr ≤ maxi∈[κr] |X [ZR
i]|

where κr is the minimal number of sampling sets required to estimate the reward function, and |X [ZR
i]| is the size of the

state-action space for reward component ri.

Therefore, we only need to determine the required sampling frequency N . Recall that, the error ∥Q∗ − Q̂∗
ω∥∞ comes from

two aspects: 1) the computation error in Algorithm 2 due to finite value function iterations, and 2) finite sample error due to
inaccurate estimation of P̂ . Since the value iteration algorithm converges exponentially fast, according to Section 5.2 in (Shi
et al., 2024), T = c0 log(

1
(1−γ)ϵ) is enough to guarantee the computation error ≤ O(ϵ). Instead, we focus on the estimation

error due to finite samples. To do so, we decompose the estimation error of the Q-value function into two terms, the bias Eω

15

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

and the finite sample error αN . By applying the triangle inequality to the error, we get:

∥Q∗ − Q̂∗
ω∥∞ ≤ ∥Q∗ −Q∗

ω∥∞︸ ︷︷ ︸
Bias Eω

+ ∥Q∗
ω − Q̂∗

ω∥∞︸ ︷︷ ︸
Finite Sample Error αN

, (14)

where

• Q∗ is the optimal Q-value function induced by the actual optimal policy π∗, transition kernel P , and reward function r.

• Q̂∗
ω is the estimated Q-value function based on the estimated policy π̂∗

ω, estimated transition kernel P̂ω, and estimated
reward function rω , where

P̂ω(s
′|x) =

Kω∏
k=1

P̂k(s
′[ZS

k] | x[ZP
k]),∀s′ ∈ S, ∀x ∈ X ,

rω(x) =

ℓω∑
i=1

ri(x[Z
R
i]),∀x ∈ X .

• Q∗
ω is the optimal Q-value function based on the factorization scheme ω, which assumes the utilization of infinite samples.

It is induced by the policy πω , transition kernel Pω , and reward function rω , where Pω(s
′|x) is defined as:

Pω(s
′|x) := lim

N→∞
P̂ω(s

′|x).

The limits exists due to the fixed sampling algorithm and the law of large numbers. DUe to the deterministic mapping
between P and Q, we have limN−→∞ Q̂∗

ω = Q∗
ω with probability 1.

Thus, the finite sample error term αN := ∥Q∗
ω − Q̂∗

ω∥∞ in the decomposition can be made arbitrarily small as N increases.
Instead, the bias Eω doesn’t vanish due to the approximation errors from factorization.

For the bias term Eω , it can be bounded as follows:

Lemma D.1 (Proof in Appendix F.2). Given any factorization scheme ω, the following condition holds:

Eω := ∥Q∗ −Q∗
ω∥∞ ≤ ∆R

ω

1− γ
+

γ∆P
ω

(1− γ)2
. (15)

Then, we focus on the finite sample error term αN . Using the result in Lemma F.4, we have:

Q∗
ω − Q̂∗

ω ≤ γ(I − γP̂
π∗
ω

ω)−1(Pω − P̂ω)V
∗
ω︸ ︷︷ ︸

:=∆1

, (16)

Q∗
ω − Q̂∗

ω ≥ γ(I − γP̂
π̂∗
ω

ω)−1(Pω − P̂ω)V
∗
ω︸ ︷︷ ︸

:=∆2

, (17)

where P̂
π∗
ω

ω ∈ R|S||A|×|S||A| represents the transition matrix of Markov chain {(st, at)} induced by policy π∗
ω under

transition kernel P̂ω , and P̂
π̂∗
ω

ω ∈ R|S||A|×|S||A| is induced by policy π̂∗
ω under transition kernel P̂ω .

Based on Eq. (16) and (17), the error term αN satisfies

αN := ∥Q∗
ω − Q̂∗

ω∥∞ ≤ max{∥∆1∥∞, ∥∆2∥∞}, (18)

Now we only need to control ∥∆1∥∞ and ∥∆2∥∞. We first control the absolute value of the common term (Pω − P̂ω)V
∗
ω

for both ∆1 and ∆2 in Lemma D.2.

16

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Lemma D.2 (Proof in Appendix F.3). Given sample size N , then with probability at least 1− δ, the following condition
holds:

|(Pω − P̂ω)V
∗
ω | ≤

2 log(2|X [∪Kω

k=1Z
P
k]|)

3N(1− γ)
· 1+

√
2 log(2|X [∪Kω

k=1Z
P
k]|)VarPω

(V ∗
ω)

N
,

where | · | denotes the absolute value function, VarPω
(V ∗

ω) denotes the value function variance with transition kernel Pω , as
defined in Definition F.1.

Using the naive bound ∥γ(I − γP̂π
ω)

−1∥∞ ≤ γ
1−γ for any π, and combining Lemma D.2 with Eq. (16) and (17), we can

show that

|∆1| ≤
2γ log(2|X [∪Kω

k=1Z
P
k]|)

3N(1− γ)2
· 1+ γ

√
2 log(2|X [∪Kω

k=1Z
P
k]|)

N
(I − γP̂

π∗
ω

ω)−1
√

VarPω
(V ∗

ω), (19)

|∆2| ≤
2γ log(2|X [∪Kω

k=1Z
P
k]|)

3N(1− γ)2
· 1+ γ

√
2 log(2|X [∪Kω

k=1Z
P
k]|)

N
(I − γP̂

π̂∗
ω

ω)−1
√

VarPω
(V ∗

ω). (20)

The remaining challenge is to control (I − γP̂
π̂∗
ω

ω)−1
√

VarPω
(V ∗

ω) and (I − γP̂
π∗
ω

ω)−1
√

VarPω
(V ∗

ω) for ∆1 and ∆2,
respectively. We first bound the term (I − γP̂

π̂∗
ω

ω)−1
√

VarPω
(V ∗

ω) for ∆1, which is slightly more complex, and bounding
another term is analogous. Specifically,

|(I − γP̂
π̂∗
ω

ω)−1
√

VarPω
(V ∗

ω)|

=(I − γP̂
π̂∗
ω

ω)−1
√

VarPω
(V ∗

ω)− VarP̂ω
(V ∗

ω) + VarP̂ω
(V ∗

ω)

=(I − γP̂
π̂∗
ω

ω)−1
√

Pω(V ∗
ω)

2 − (PωV ∗)2 − P̂ω(V ∗
ω)

2 + (P̂ωV ∗
ω)

2 + VarP̂ω
(V ∗

ω)

=(I − γP̂
π̂∗
ω

ω)−1
√
(Pω − P̂ω)(V ∗

ω)
2 − ((PωV ∗

ω)
2 − (P̂ωV ∗

ω)
2) + VarP̂ω

(V ∗
ω)

≤(I − γP̂
π̂∗
ω

ω)−1

(√
|(Pω − P̂ω)(V ∗

ω)
2|+

√
|(PV ∗)2 − (P̂ωV ∗

ω)
2|+

√
VarP̂ω

(V ∗
ω)

)
=(I − γP̂

π̂∗
ω

ω)−1

√
|(Pω − P̂ω)(V ∗

ω)
2|︸ ︷︷ ︸

T1

+(I − γP̂
π̂∗
ω

ω)−1

√
|(PωV ∗

ω)
2 − (P̂ωV ∗

ω)
2|︸ ︷︷ ︸

T2

+ (I − γP̂
π̂∗
ω

ω)−1
√

VarP̂ω
(V ∗

ω)︸ ︷︷ ︸
T3

.

This splition allows us to focus on T1, T2 and T3, which can be controlled by the following lemmas:
Lemma D.3 (Proof in Appendix F.4). With a probability at least 1− δ, T1 satisfies

T1 ≤ 1

(1− γ)2

4

√√√√2 log
(
2|X [∪Kω

k=1Z
P
k]|
)

N
· 1.

Lemma D.4 (Proof in Appendix F.5). With a probability at least 1− δ, T2 satisfies

T2 ≤
√
2

(1− γ)2

4

√√√√2 log
(
2|X [∪Kω

k=1Z
P
k]|
)

N
· 1.

Lemma D.5 (Proof in Appendix F.6). The term T3 can be bounded as follows:

T3 ≤

 4γ

(1− γ)3

√√√√2 log
(
4|X [∪Kω

k=1Z
P
k]|
)

N
+

√
1 + γ

(1− γ)3

 · 1.

17

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Combining Lemmas D.2-D.5 yields the bound of ∆2:

Lemma D.6 (Proof in Appendix F.7). With probability at least 1− δ, the estimated Q-function Q̂∗ satisfies

|∆2| ≤ 18

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)3

+ 6

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)3


1
2

.

Analogously, we can show that with probability at least 1− δ, |∆1| also satisfies

|∆1| ≤ 18

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)3

+ 6

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)3


1
2

.

Combining the bounds on |∆1| and |∆2|, we have that with probability at least 1− δ,

∥Q∗
ω − Q̂∗

ω∥∞ ≤max(|∆1|, |∆2|)

≤18

 log
(
24|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)3

+ 6

 log
(
24|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)3


1
2

.

Taking any ϵ = ∥Q∗
ω − Q̂∗

ω∥∞ ≤ 1, we can first verify that
log(24|X [∪Kω

k=1Z
P
k]|)

N(1−γ)3 ≤ 1. Therefore,

ϵ ≤ (18 + 6)

 log
(
24|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)3


1
2

.

It directly yields the bound for N with probability at least 1− δ:

N ≥
576 log

(
24|X [∪Kω

k=1Z
P
k]|
)

(1− γ)3ϵ2
. (21)

Substituting Eq. (21) into Eq. (13) yields:

Dω ≥
576

(
κp maxk∈[Kω] |X [ZP

k]|
)
log
(
24|X [∪k∈[Kω]Z

P
k]|δ−1

)
ϵ2(1− γ)3

+ κr max
i∈[ℓω]

|X [ZR
i]|.

Letting c0 = 576 and c1 = 24 leads to our result.

E. Proof of Theorem 6.1
Proof. Similar to the model-based case, we show the total amount of samples Dω should satisfy:

Dω ≥ Nentry ·N +Dr, (22)

where Nentry denotes the number of sampled state-action pairs for generating a single empirical Bellman operator in
Algorithm 3, and N denotes the number of generated empirical Bellman operators. Notation Dr denotes the sample
complexity of finding the exact reward function.

The term Nentry can be directly obtained in Algorithm 3, which equals the sum of numbers of all state-action pairs in all
decomposed components, satisfying:

Nentry =
∑

i∈[κp]
maxk∈Gi |X [ZP

k]| ≤
∑

k∈[κp]
|X [ZP

k]|,

18

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

where κp is the total number of sampling sets, Gi is the set of component indices associated with the i-th sampling set,
|X [ZP

k]| denotes the size of the state-action space for component k.

For the sample complexity associated with estimating the reward function, Dr, it is sufficient to sample all necessary
state-action pairs once for each reward component ri to obtain the exact reward values. Similar to the transition kernel
sampling, the sample complexity of the reward function is bounded by:

Dr ≤
∑

i∈[κr]
|X [ZR

i]|

where κr is the minimal number of sampling sets required to estimate the reward function, and |X [ZR
i]| is the size of the

state-action space for reward component ri.

For the sampling times N , according to Algorithm 4, we can conclude that:

N =
∑T

τ=1
(Nτ +M) =

∑T

τ=1
Nτ +MT, (23)

where T is the number of epochs, Nτ is the sampling frequency for estimating the reference Bellman operator in the τ -th
epoch, M is the number of variance-reduced updates in a single epoch.

The key of the proof is to show the estimation error decays exponentially when the number of epochs increases, i.e.,

Lemma E.1 (Proof in Appendix F.8). For any δ ≥ 0, with probability at least 1− δ/T , the Q-function estimate Qτ after τ
epochs satisfies

∥Qτ −Q∗
ω∥∞ ≤ 1

(1− γ)2τ
, ∀τ = 1, . . . , T, (24)

provided that the number of samples M and the number of iterations Nτ satisfy the following conditions:

M = c2
log
(

6T |X [∪Kω
k=1Z

P
k]|

(1−γ)δ

)
(1− γ)3

, (25)

Nτ = c34
τ
log
(
6T |X [∪Kω

k=1Z
P
k]|
)

(1− γ)2
, (26)

where ηt =
1

1+(1−γ)(t+1) , c2, c3 > 0 are sufficiently large constants.

We first ensure the error decreases to a relatively small value 1√
1−γ

after T1 epochs. Specifically, we set:

T1 =

⌈
log2

(
1√
1− γ

)⌉
. (27)

Using the union bound over all τ ≤ T1 in Eq. (24), we obtain that with probability at least 1− δ:

∥QT1
−Q∗∥∞ ≤ 1√

1− γ
.

Substituting Nτ , T1, and M into Eq. (23), the total number of samples for this phase, denoted N[1], is bounded by:

N[1] ≤ c4 ·
log
(

6T1|X [∪Kω
k=1Z

P
k]|

(1−γ)δ

)
· log

(
1

1−γ

)
(1− γ)3

, (28)

where c4 is a constant depending on c2 and c3.

We now show that from initial point Q0 = QT1
, an additional T2 =

⌈
c log2

(
1√

1−γϵ

)⌉
epochs are sufficient to reduce the

error to ϵ, where c > 0 is a constant.

We utilize the following lemma:

19

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Lemma E.2 (Proof in Appendix F.16). Given ∥Q0 −Q∗∥∞ ≤ 1√
1−γ

, and setting:

M = c2 ·
log
(

6T |X [∪Kω
k=1Z

P
k]|

(1−γ)δ

)
(1− γ)3

, (29)

Nτ = c3 · 4τ ·
log
(
6T |X [∪Kω

k=1Z
P
k]|
)

(1− γ)2
, (30)

then, with probability at least 1− δ:

∥Qτ −Q∗
ω∥∞ ≤ 1

2τ
√
1− γ

, ∀τ ≥ 0.

The proof of Lemma E.2 follows a similar routine to that of Lemma E.1 but leverages the better initial estimate Q0. This
lemma indicates that starting from an initial error of 1√

1−γ
, the variance-reduced iteration halves the error at each step.

After T2 =
⌈
c′ log2

(
1√

1−γϵ

)⌉
epochs (with c′ > 0), the error reduces to ϵ. The total number of samples for this phase,

denoted N[2], is bounded by:

N[2] ≤ c5 ·
log
(

6T1|X [∪Kω
k=1Z

P
k]|

(1−γ)δ

)
· log

(
1

1−γ

)
(1− γ)3ϵ2

, (31)

where c5 is a sufficiently large constant.

Combining the samples from both phases, the total number of samples required is:

N = N[1] +N[2].

Substituting back into Eq. (22), we conclude that the total sample complexity Dω satisfies the desired bound:

Dω ≥ Nentry · (N[1] +N[2]) +Dr.

This completes the proof.

F. Proof for Auxiliary Lemmas
F.1. Preliminary Definitions and Lemmas

In the following, we provide all necessary definition, preliminary lemmas. For self-contained, we provide the proofs to the
lemmas according to the notations of this work.

Definition F.1. Let VarP (V) ∈ R|S||A| be the value function variance with transition kernel P , which is given by:

VarP (V) = P (V)2 − (PV)2,

where P ∈ R|S||A|×|S| is the transition kernel, and (V)2 ∈ R|S| is the element-wise product of V , i.e., (V)2 = V ◦ V .

Definition F.2. We define Σπ
M (s, a) as the variance of discounted reward under policy π and MDP M given state s and

action a, i.e.,

Σπ
M (s, a) = E

(∞∑
t=0

γtr(st, at)−Qπ
M (s0, a0)

)2
∣∣∣∣∣∣ s0 = s, a0 = a

 ,

where Qπ
M denotes the Q-function induced by policy π under MDP M .

20

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Lemma F.3. (Lemma 2.2 in (Agarwal et al., 2019)) For any policy π, it holds that:

Qπ − Q̂π = γ(I − γP̂π)−1(P − P̂)V π,

where Qπ and Q̂π are Q-functions induced by the policy π under transition kernels P and P̂ , respectively, and P̂π ∈
R|S||A|×|S||A| represents the transition matrix of the Markov chain {(st, at)} induced by π with transition kernel P̂ .

Proof. Recall that Qπ is the unique solution of the Bellman equation:

Qπ = r + γPπQπ.

Since I − γPπ is invertible when 0 < γ < 1, we have

Qπ = (I − γPπ)−1r. (32)

It follows that

Qπ − Q̂π = (I − γPπ)−1r − (I − γP̂π)−1r

= (I − γP̂π)−1((I − γP̂π)− (I − γPπ))(I − γPπ)−1r

= γ(I − γP̂π)−1(Pπ − P̂π)(I − γPπ)−1r

= γ(I − γP̂π)−1(Pπ − P̂π)Qπ

= γ(I − γP̂π)−1(P − P̂)V π,

where the fourth equality is due to Eq. (32). The last equality is because PπQπ = PV π .

Lemma F.4. (Lemma 2.5 in (Agarwal et al., 2019)) For any two optimal Q functions Q∗ and Q̂∗, which are induced by the
same reward function r, but different transition kernels P and P̂ . It holds that:

Q∗ − Q̂∗ ≤ γ(I − γP̂π∗
)−1(P − P̂)V ∗,

Q∗ − Q̂∗ ≥ γ(I − γP̂ π̂∗
)−1(P − P̂)V ∗,

where π∗ and π̂∗ are the optimal policies induced by Q-value functions Q∗ and Q̂∗. The matrix P̂π∗ ∈ R|S||A|×|S||A|

represents the transition matrix of the Markov chain {(st, at)} induced by the policy π∗ under the transition kernel P̂ .
Similarly, P̂ π̂∗ ∈ R|S||A|×|S||A| represents the transition matrix of the Markov chain {(st, at)} induced by the policy π̂∗

under the transition kernel P̂ . The optimal value function V ∗ is induced by Q∗, which satisfies V ∗(s) = maxa Q
∗(s, a) for

all states s ∈ S.

Proof. The two conditions can be proved using Lemma F.3. Specifically, the first inequality can be proved as follows:

Q∗ − Q̂∗ = Qπ∗
− Q̂π̂∗ ≤ Qπ∗

− Q̂π∗
= γ(I − γP̂π∗

)−1(P − P̂)V ∗,

where the inequality is because Q̂π̂∗ ≥ Q̂π for any policy π. The last equality comes from Lemma F.3.

For the second condition, we have:

Q∗ − Q̂∗ = Qπ∗
− Q̂π̂∗

= Qπ∗
− (I − γP̂ π̂∗

)−1r

= (I − γP̂ π̂∗
)−1(I − γP̂ π̂∗

)Qπ∗
− (I − γP̂ π̂∗

)−1(I − γPπ∗
)Qπ∗

= (I − γP̂ π̂∗
)−1((I − γP̂ π̂∗

)− (I − γPπ∗
))Qπ∗

= γ(I − γP̂ π̂∗
)−1(Pπ∗

− P̂ π̂∗
)Qπ∗

≥ γ(I − γP̂ π̂∗
)−1(Pπ∗

− P̂π∗
)Qπ∗

= γ(I − γP̂ π̂∗
)−1(P − P̂)V ∗.

The second equality is because Qπ = (I − γPπ)−1r, and the inequality is because P̂ π̂∗
Qπ∗ ≤ P̂π∗

Qπ∗
due to the

optimality of policy π∗ regarding Q-function Qπ∗
.

21

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Lemma F.5. (Adapted from Lemma 5 in (Azar et al., 2012)) Given a MDP M with transition kernel P and reward function
r, the following identity holds for all policy π:

Σπ
M = γ2(1− γ2Pπ)−1VarP (V π

M)

Proof. We start with the definition of Σπ
M (s, a):

Σπ
M (s, a) = EP,π

[(∞∑
t=0

γtr(st, at)−Qπ
M (s0, a0)

)2∣∣∣∣ s0 = s, a0 = a

]

= EP,π

(∞∑
t=1

γtr(st, at)− γQπ
M (s1, a1)− (Qπ

M (s0, a0)− r(s0, a0)− γQπ
M (s1, a1))

)2
∣∣∣∣∣∣ s0 = s, a0 = a


= EP,π

(∞∑
t=1

γtr(st, at)− γQπ
M (s1, a1)

)2
∣∣∣∣∣∣ s0 = s, a0 = a


− 2EP,π

[(∞∑
t=1

γtr(st, at)− γQπ
M (s1, a1)

)
(Qπ

M (s0, a0)− r(s0, a0)− γQπ
M (s1, a1))

∣∣∣∣∣ s0 = s, a0 = a

]
+ EP,π

[
(Qπ

M (s0, a0)− r(s0, a0)− γQπ
M (s1, a1))

2
∣∣∣ s0 = s, a0 = a

]
= γ2EP,π

(∞∑
t=1

γt−1r(st, at)−Qπ
M (s1, a1)

)2
∣∣∣∣∣∣ s0 = s, a0 = a


− 2EP,π

[
E

[∞∑
t=1

γtr(st, at)− γQπ
M (s1, a1)

∣∣∣∣∣ s1, a1
]
(Qπ

M (s0, a0)− r(s0, a0)− γQπ
M (s1, a1))

∣∣∣∣∣ s0 = s, a0 = a

]
+ EP,π

[
(Qπ

M (s0, a0)− r(s0, a0)− γQπ
M (s1, a1))

2
∣∣∣ s0 = s, a0 = a

]
= γ2EP,π

(∞∑
t=1

γt−1r(st, at)−Qπ
M (s1, a1)

)2
∣∣∣∣∣∣ s0 = s, a0 = a


+ EP,π

[
(Qπ

M (s0, a0)− r(s0, a0)− γQπ
M (s1, a1))

2
∣∣∣ s0 = s, a0 = a

]
= γ2EP,π

(∞∑
t=1

γt−1r(st, at)−Qπ
M (s1, a1)

)2
∣∣∣∣∣∣ s0 = s, a0 = a


+ γ2EP,π

[(
Es1,a1∼P (·|s0,a0)[Q

π
M (s1, a1)]−Qπ

M (s1, a1)
)2∣∣∣ s0 = s, a0 = a

]
= γ2

∑
s1,a1

Pπ(s1, a1|s, a)Σπ
M (s1, a1) + γ2VarP (V π

M)(s, a),

where the third equality is obtained by dividing the quadratic term; the fourth equality is derived by the law of total
expectation; the fifth equality holds due to E [

∑∞
t=1 γ

tr(st, at)− γQπ
M (s1, a1)| s1, a1] = 0. The last equality is derived

based on the definitions of Σπ
M (s, a) and VarP (V π

M).

Lemma F.6. (Lemma 6 in (Wainwright, 2019b)) Given two Q-functions Q∗
r and Q̃∗, which are the induced by the same

transition kernel P , but different reward functions r and r̃ = r +∆r. It holds that,

|Q∗ − Q̃∗| ≤ max
{
(I − γPπ∗

)−1|∆r|, (I − γP π̃∗
)−1|∆r|

}
,

where π∗ and π̃∗ denote the optimal policy induced by Q∗ and Q̃∗, respectively.

Proof. This lemma can be proved by showing the following two conditions:

max(Q∗ − Q̃∗,0) ≤ (I − γPπ∗
)|∆r|, (33)

22

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

max(Q̃∗ −Q∗,0) ≤ (I − γP π̃∗
)|∆r|. (34)

For condition (33), we can prove the following:

Q∗ − Q̃∗ = r + γPπ∗
Q∗ − (r +∆r + γP π̃∗

Q̃∗)

≤ |∆r|+ γPπ∗
(Q∗ − Q̃∗)

≤ |∆r|+ γPπ∗
max(Q∗ − Q̃∗,0),

where the second inequality comes from Pπ∗
Q̃∗ ≤ P π̃∗

Q̃∗.

Since the right-hand-side term is positive in all entries. Thus, we have:

max(Q∗ − Q̃∗,0) ≤ |∆r|+ γPπ∗
max(Q∗ − Q̃∗,0).

Rearranging the inequality yields Eq. (33).

For proving Eq. (34), we follow a similar routine and get:

Q̃∗ −Q∗ = (r +∆r + γP π̃∗
Q̃∗)− (r + γPπ∗

Q∗)

≤ |∆r|+ γP π̃∗
(Q̃∗ −Q∗)

≤ |∆r|+ γP π̃∗
max(Q̃∗ −Q∗,0).

Hence, we have:

max(Q̃∗ −Q∗,0) ≤ |∆r|+ γPπ∗
max(Q̃∗ −Q∗,0).

Rearranging the inequality yields Eq. (34). Using |Q∗− Q̃∗| = max(max(Q∗− Q̃∗,0),max(Q̃∗−Q∗,0)) and combining
Eq. (33)-(34) yields the desired result.

F.2. Proof for Lemma D.1

Proof. We first write the Bellman equation of Q∗ and Q∗
ω as follows:

Q∗(s, a) = r(s, a) + γ
∑
s′

P (s′|s, a)max
a′

Q∗(s′, a′), (35)

Q∗
ω(s, a) = rω(s, a) + γ

∑
s′

Pω(s
′|s, a)max

a′
Q∗

ω(s
′, a′). (36)

Subtracting Eq. (35) with (36) yields:

Q∗(s, a)−Q∗
ω(s, a) = r(s, a)− rω(s, a) + γ

∑
s′

(P (s′|s, a)max
a′

Q∗(s′, a′)− Pω(s
′|s, a)max

a′
Q∗

ω(s
′, a′))

= r(s, a)− rω(s, a) + γ
∑
s′

(P (s′|s, a)(max
a′

Q∗(s′, a′)−max
a′

Q∗
ω(s

′, a′))

+ (P (s′|s, a)− Pω(s
′|s, a))max

a′
Q∗

ω(s
′, a′))

Taking absolute value on both side yields:

|Q∗(s, a)−Q∗
ω(s, a)| ≤∥r − rω∥∞ + γ

∑
s′

(P (s′|s, a)(max
a′

Q∗(s′, a′)−max
a′

Q∗
ω(s

′, a′))

+ γ∥P − Pω∥∞ max
s′,a′

Q∗
ω(s

′, a′)

≤∥r − rω∥∞ + γ∥Q∗ −Q∗
ω∥∞ + γ∥P − Pω∥∞ max

s′,a′
Q∗

ω(s
′, a′), (37)

23

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

where the last inequality comes from |maxa Q
∗(s, a)−maxa Q

∗
ω(s, a)| ≤ maxa |Q∗(s, a)−Q∗

ω(s, a)| ≤ ∥Q∗ −Q∗
ω∥∞.

Due to Q∗
ω(s

′, a′) ≤ 1
1−γ for any state-action pair (s′, a′), we have:

∥Q∗ −Q∗
ω∥∞ = max

s,a
|Q∗(s, a)−Q∗

ω(s, a)|

≤ ∥r − rω∥∞ + γ∥Q∗ −Q∗
ω∥∞ +

γ

1− γ
∥P − Pω∥∞. (38)

Standard mathematical manipulation on Eq. (38) yields:

∥Q∗ −Q∗
ω∥∞ ≤ ∥r − rω∥∞

1− γ
+

γ∥P − Pω∥∞
(1− γ)2

. (39)

Applying the definitions of approximation errors, we have:

∥Q∗ −Q∗
ω∥∞ ≤ ∆R

ω

1− γ
+

γ∆P
ω

(1− γ)2
. (40)

This concludes our proof.

F.3. Proof for Lemma D.2

Proof. We leverage the structure of the factorized transition kernel and show that the vector (Pω − P̂ω)V
∗
ω contains multiple

identical entries. By identifying the distinct entries, we can focus our analysis on a subset of state-action pairs.

Recall that (Pω − P̂ω)V
∗
ω ∈ R|S||A|×1 represents the difference between the actual and estimated reward vector. Due to the

factorized form of the transition kernel Pω , the estimated transition probability P̂ (s′ | x) is given by:

P̂ (s′ | x) =
Kω∏
k=1

P̂k(s
′[ZS

k] | x[ZP
k]),

where each P̂k(s
′[ZS

k] | x[ZP
k]) depends only on the subset ZP

k of the state-action pair x. As a result, only the state-action
components x[ZP

k] for k ∈ [Kω] determine the transition probabilities. Thus, there are at most |X [∪Kω

k=1Z
P
k]| distinct rows

in the matrix (Pω − P̂ω).

We use X ∗ to denote a set of state-action pairs indicating distinct entries, satisfying:

X ∗ =

{
x ∈ X

∣∣∣∣ ∀x′, x′′ ∈ X ∗, x′ ̸= x′′ ⇒ ∃ k ∈ [Kω] such that x′[ZP
k] ̸= x′′[ZP

k]

}
. (41)

For any x ∈ X ∗, we can easily verify that the estimation P̂ (s′ | x) is unbiased:

E[P̂ (s′ | x)− P (s′ | x)]

=E
[∏

i∈[κp]
(
∏

k∈Gi

P̂k(s
′[ZS

k] | x[ZP
k]))−

∏
i∈[κp]

(
∏

k∈Gi

Pk(s
′[ZS

k] | x[ZP
k]))

]
=E

[∏
i∈[κp]

P̂ (s′[∪k∈GiZ
S
k] | x[∪k∈GiZ

P
k])−

∏
i∈[κp]

P (s′[∪k∈GiZ
S
k] | x[∪k∈GiZ

P
k])

]
=
∏

i∈[κp]
E[P̂ (s′[∪k∈Gi

ZS
k] | x[∪k∈Gi

ZP
k])]−

∏
i∈[κp]

P (s′[∪k∈Gi
ZS
k] | x[∪k∈Gi

ZP
k])

=0.

The third equality is due to the independent sampling of different sampling sets, and the last equality is due to
E[P̂ (s′[∪k∈GiZ

S
k] | x[∪k∈GiZ

P
k])] = P (s′[∪k∈GiZ

S
k] | x[∪k∈GiZ

P
k]) within each sampling set due to the law of large

numbers.

24

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Also, since 0 ≤ V ∗
ω ≤ 1

1−γ · 1, we have ∥(Pω − P̂ω)V
∗
ω ∥∞ ≤ 1

1−γ . Combining with the Bernstein’s inequality (Vershynin,
2018) with sample size N yields that:

P
(
|(Pω(·|x)− P̂ω(·|x))V ∗

ω | ≥ t
)
≤ 2 exp

(
−

N2

2 t2

NVarPω
(V ∗

ω)(x) +N t
3(1−γ)

)
, (42)

where VarPω
(V ∗

ω)(x) denotes the entry of VarPω
(V ∗

ω) corresponding to x.

Letting the right-hand-side of Eq. (42) equal δ

|X [∪Kω
k=1Z

P
k]|

leads to the following inequality:

δ

|X [∪Kω

k=1Z
P
k]|

= 2 exp

(
−

N2

2 t2

NVarPω (V
∗
ω)(x) +N t

3(1−γ)

)
.

Rearranging this term yields that

t ≤
2 log(|X [∪Kω

k=1Z
P
k]|)

3N(1− γ)
+

√
2 log(|X [∪Kω

k=1Z
P
k]|)VarPω

(V ∗
ω)(x)

N
.

Taking the union bound across all state-action pairs x ∈ X ∗, and using the identical entry property yields that, with
probability at least 1− δ:

∣∣∣(Pω − P̂ω)V
∗
∣∣∣ ≤
√

2 log(|X [∪Kω

k=1Z
P
k]|)VarPω (V

∗
ω)

N
+

2 log(|X [∪Kω

k=1Z
P
k]|)

3N(1− γ)
· 1.

This concludes our proof.

F.4. Proof for Lemma D.3

Proof. We have that

∥(Pω − P̂ω)(V
∗
ω)

2∥∞ =

∥∥∥∥(∏Kω

k=1
Pk(s

′[ZS
k] | x[ZP

k])−
∏Kω

k=1
P̂k(s

′[ZS
k] | x[ZP

k]))(V ∗
ω)

2

∥∥∥∥
∞

.

Following the same routine in the proof of Lemma D.2, we known (Pω − P̂ω)(V
∗
ω)

2 contains at most |X [∪Kω

k=1Z
P
k]| distinct

entries.

Meanwhile, for each single entry of (Pω − P̂ω)(V
∗
ω)

2, denoted by (Pω(·|x)− P̂ω(·|x))(V ∗
ω)

2, we can show the following
conditions:

E((Pω(·|x)− P̂ω(·|x))(V ∗
ω)

2) = 0,∀x ∈ X ,

∥(Pω − P̂ω)(V
∗
ω)

2∥∞ ≤ ∥P̂ω(V
∗
ω)

2∥∞ + ∥Pω(V
∗
ω)

2∥∞ ≤ 2

(1− γ)2
.

With N i.i.d. samples for estimating (Pω(·|x) − P̂ω(·|x))(V ∗
ω)

2 ∈ R, we apply the standard Hoeffding’s inequality to
(Pω(·|x)− P̂ω(·|x))(V ∗

ω)
2 as follows:

P
(
|(Pω(·|x)− P̂ω(·|x))(V ∗

ω)
2| ≥ ϵ

)
≤ 2 exp

(
− 2Nϵ2

(2
(1−γ)2)

2 ·N

)
= 2 exp

(
− (1− γ)4Nϵ2

2

)
,∀x ∈ X ,

Letting the right-hand-side term be δ

|X [∪Kω
k=1Z

P
k]|

and applying the union bound across all distinct state-action pair x ∈ X ∗

(with definition in Eq. (41)) yield:

∥(Pω − P̂ω)(V
∗
ω)

2∥∞ ≤ 1

(1− γ)2
·

√√√√2 log
(
2|X [∪Kω

k=1Z
P
k]|
)

N
.

25

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Thus, T1 satisfies

T1 = (I − γP̂
π̂∗
ω

ω)−1

√
|(Pω − P̂ω)(V ∗

ω)
2|

≤ ∥(I − γP̂
π̂∗
ω

ω)−1∥∞
√∥∥∥(Pω − P̂ω)(V ∗

ω)
2
∥∥∥
∞

· 1

≤ 1

(1− γ)2

4

√√√√2 log
(
2|X [∪Kω

k=1Z
P
k]|
)

N
· 1.

This concludes our proof.

F.5. Proof for Lemma D.4

Proof. We first bound ∥(PωV
∗
ω)

2 − (P̂ωV
∗
ω)

2∥∞ as follows:

∥(PωV
∗
ω)

2 − (P̂ωV
∗
ω)

2∥∞ = ∥(PωV
∗
ω + P̂ωV

∗
ω)(PωV

∗
ω − P̂ωV

∗
ω)∥∞

≤ ∥PωV
∗
ω + P̂ωV

∗
ω ∥∞∥PωV

∗
ω − P̂ωV

∗
ω ∥∞

≤ 2∥V ∗
ω ∥∞∥(Pω − P̂ω)V

∗
ω ∥∞.

Applying the Hoeffding’s inequality to ∥(Pω − P̂ω)V
∗
ω ∥∞ yields that, with probability at least 1− δ:

∥(Pω − P̂ω)V
∗
ω ∥∞ ≤ 1

1− γ

√√√√2 log
(
2|X [∪Kω

k=1Z
P
k]|
)

N
. (43)

Therefore, T2 satisfies

T2 = (I − γP̂
π̂∗
ω

ω)−1

√
|(PωV ∗

ω)
2 − (P̂ωV ∗

ω)
2|

≤ ∥(I − γP̂
π̂∗
ω

ω)−1∥∞
√∥∥∥(PωV ∗

ω)
2 − (P̂ωV ∗

ω)
2
∥∥∥
∞

· 1

≤ 1

1− γ

√
2∥V ∗

ω ∥∞∥(Pω − P̂ω)V ∗
ω ∥∞ · 1

≤
√
2

(1− γ)2

4

√√√√2 log
(
2|X [∪Kω

k=1Z
P
k]|
)

N
· 1.

F.6. Proof for Lemma D.5

Proof. We decompose T3 as follows:

T3 = (I − γP̂
π̂∗
ω

ω)−1
√

VarP̂ω
(V ∗

ω)

= (I − γP̂
π̂∗
ω

ω)−1
√

VarP̂ω
(V ∗

ω − V̂
π∗
ω

ω + V̂
π∗
ω

ω − V̂
π̂∗
ω

ω + V̂
π̂∗
ω

ω)

≤ (I − γP̂
π̂∗
ω

ω)−1
√
2VarP̂ω

(V ∗
ω − V̂

π∗
ω

ω) + 2VarP̂ω
(V̂

π̂∗
ω

ω) + 2VarP̂ω
(V̂

π̂∗
ω

ω − V̂
π∗
ω

ω)

≤ (I − γP̂
π̂∗
ω

ω)−1
√

2VarP̂ω
(V ∗

ω − V̂
π∗
ω

ω)︸ ︷︷ ︸
T31

+(I − γP̂
π̂∗
ω

ω)−1
√

2VarP̂ω
(V̂

π̂∗
ω

ω)︸ ︷︷ ︸
T32

+ (I − γP̂
π̂∗
ω

ω)−1
√

2VarP̂ω
(V̂

π̂∗
ω

ω − V̂
π∗
ω

ω)︸ ︷︷ ︸
T33

.

26

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Then, we bound T31, T32 and T33 separately.

Step 1. Bounding T31:

For T31, the following condition holds:

T31 = (I − γP̂
π̂∗
ω

ω)−1
√
2VarP̂ω

(V ∗
ω − V̂

π∗
ω

ω)

≤ ∥(I − γP̂
π̂∗
ω

ω)−1∥∞
√

2∥VarP̂ω
(V ∗

ω − V̂
π∗
ω

ω)∥∞ · 1

≤
√
2

1− γ

√
∥V ∗

ω − V̂
π∗
ω

ω ∥2∞ · 1

≤
√
2

1− γ

√
∥Q∗

ω − Q̂
π∗
ω

ω ∥2∞ · 1.

Applying Lemma F.3 yields:

∥Q∗
ω − Q̂

π∗
ω

ω ∥2∞ = ∥γ(I − γP̂
π∗
ω

ω)−1(Pω − P̂ω)V
∗
ω ∥2∞

≤ γ2

(1− γ)2
∥(Pω − P̂ω)V

∗
ω ∥2∞.

Applying Eq. (43), we have that, with probability at least 1− δ, the term ∥Q∗
ω − Q̂

π∗
ω

ω ∥2∞ satisfies

∥Q∗
ω − Q̂

π∗
ω

ω ∥2∞ ≤ γ2

(1− γ)4


√√√√2 log

(
2|X [∪Kω

k=1Z
P
k]|
)

N


2

=
2γ2 log

(
2|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)4
. (44)

Therefore, with probability at least 1− δ, T31 satisfies that:

T31 ≤ 2γ

(1− γ)3

√√√√2 log
(
2|X [∪Kω

k=1Z
P
k]|
)

N
· 1.

Step 2. Bounding T32:

Note that, (1− γ)(I − γP̂
π̂∗
ω

ω)−1 is a matrix of probability with each row being a probability distribution. For a positive
vector v and distribution ν, Jensen’s inequality implies that ν

√
v ≤

√
ν · v (inequality of expectation). This implies:

∥T32∥∞ =

∥∥∥∥(I − γP̂
π̂∗
ω

ω)−1
√

VarP̂ω
(V̂

π̂∗
ω

ω)

∥∥∥∥
∞

=
1

1− γ

∥∥∥∥(1− γ)(I − γP̂
π̂∗
ω

ω)−1
√

VarP̂ω
(V̂

π̂∗
ω

ω)

∥∥∥∥
∞

≤

√∥∥∥∥ 1

1− γ
(I − γP̂

π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω)

∥∥∥∥
∞
. (45)

Also, we can reformulate ∥(I − γP̂
π̂∗
ω

ω)−1VarP̂ (V̂
π̂∗
ω

ω)∥∞ as follows:

∥(I − γP̂
π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω)∥∞ = ∥(I − γP̂
π̂∗
ω

ω)−1(I − γ2P̂
π̂∗
ω

ω)(I − γ2P̂
π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω)∥∞

27

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

= ∥(I − γP̂
π̂∗
ω

ω)−1(I − γP̂
π̂∗
ω

ω)(I + γP̂
π̂∗
ω

ω)(I − γ2P̂
π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω)∥∞

= ∥(I + γP̂
π̂∗
ω

ω)(I − γ2P̂
π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω)∥∞

≤ ∥(I + γP̂
π̂∗
ω

ω)∥∞∥(I − γ2P̂
π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω)∥∞

≤ (1 + γ)∥(I − γ2P̂
π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω)∥∞.

Thus, we have ∥∥∥∥(I − γP̂π)−1
√

VarP̂ω
(V̂

π̂∗
ω

ω)

∥∥∥∥
∞

≤

√∥∥∥∥1 + γ

1− γ
(I − γ2P̂

π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω)

∥∥∥∥
∞
.

We now connect this result with the definition of Σπ
M in Lemma F.5:

Σ
π̂∗
ω

M = γ2(1− γ2P̂
π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω),

where the transition kernel of MDP M is P̂ω . Therefore,

(I − γ2P̂
π̂∗
ω

ω)−1VarP̂ω
(V̂

π̂∗
ω

ω) =
Σ

π̂∗
ω

M

γ2
≤ 1

(1− γ)2
· 1,

where the inequality comes from ∥Σπ
M∥∞ ≤ γ2

(1−γ)2 for any policy π, which can be easily verified according to Definition
F.2:

∥Σπ
M∥∞ = max

(s,a)

∥∥∥∥∥∥E
(∞∑

t=0

γtr(st, at)−Qπ
M (s0, a0)

)2
∣∣∣∣∣∣ s0 = s, a0 = a

∥∥∥∥∥∥
∞

≤ max
(s,a)

E

∥∥∥∥∥
∞∑
t=0

γtr(st, at)−Qπ
M (s0, a0)

∥∥∥∥∥
2

∞

∣∣∣∣∣∣ s0 = s, a0 = a


≤ γ2

(1− γ)2
.

Substituting this condition into Eq. (45) yields:

T32 ≤

√
1 + γ

(1− γ)3
· 1.

Step 3. Bounding T33: The term T33 satisfies

T33 = (I − γP̂
π̂∗
ω

ω)−1
√

2VarP̂ω
(V̂

π̂∗
ω

ω − V̂
π∗
ω

ω)

≤ ∥(I − γP̂
π̂∗
ω

ω)−1∥∞
√
2∥VarP̂ω

(V̂
π̂∗
ω

ω − V̂
π∗
ω

ω)∥∞ · 1

≤
√
2

1− γ

√
∥V̂ π̂∗

ω
ω − V̂

π∗
ω

ω ∥2∞ · 1

≤
√
2

1− γ

√
∥Q̂∗

ω − Q̂
π∗
ω

ω ∥2∞ · 1.

Similar to the bound of T31 in Eq. (44), we have that with probability at least 1− δ,

∥Q̂∗
ω − Q̂

π∗
ω

ω ∥2∞ ≤
2γ2 log

(
2|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)4
.

28

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Thus, with probability at least 1− δ, T33 satisfies

T33 ≤ 2γ

(1− γ)3

√√√√2 log
(
2|X [∪Kω

k=1Z
P
k]|
)

N
· 1.

Step 4. Combining the Results:

Combining the upper bounds for T31, T32 and T33, we can bound T3 that, with probability at least 1− δ,

T3 ≤

(
4γ

(1− γ)3

√√√√2 log
(
4|X [∪Kω

k=1Z
P
k]|
)

N
+

√
1 + γ

(1− γ)3

)
· 1.

F.7. Proof for Lemma D.6

Proof. Taking δ to be δ
3 , and applying Lemma D.2-D.5 yields:

|∆2| ≤
3

(1− γ)3

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N

+
7

(1− γ)2

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N


3
4

+

√
2

(1− γ)3

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N

1/2

. (46)

Applying Cauchy–Schwarz inequality yields:

3

(1− γ)3

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N

+

√
2

(1− γ)3

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N

1/2

≥

√√√√√√ 3

(1− γ)3

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N

 ·

√
2

(1− γ)3

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N

1/2

=
√
3(1− γ)−

9
4

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N


3
4

≥
√
3

(1− γ)2

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N


3
4

.

Applying this condition to Eq. (46) yields:

∥Q∗
ω − Q̂∗

ω∥∞ ≤
3(1 + 7√

3
)

(1− γ)3

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N

+

√
2(1 + 7√

3
)√

(1− γ)3

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N

1/2

≤18

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)3

+ 6

 log
(
12|X [∪Kω

k=1Z
P
k]|
)

N(1− γ)3


1
2

.

This concludes our proof.

29

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

F.8. Proof for Lemma E.1

We prove this lemma by induction. We first show that the base case (τ = 1) satisfies Eq. (24), and then prove the inductive
condition when τ ≥ 2.

Step 1. Showing Base Case with τ = 1:

Due to the initialization, we have Qτ−1(s, a) = Q0(s, a) = 0 for any state-action pair (s, a). Therefore, for τ = 1, both the
empirical and reference Bellman operators equal to the immediate reward:

Ĥt(Qτ−1)s,a = r(s, a) and Hτ (Qτ−1)s,a = r(s, a), ∀(s, a).

Given this, the variance-reduced update in Eq. (11) simplifies to the standard Q-learning update:

Qt = (1− ηt−1)Qt−1 + ηt−1Ĥt−1(Qt−1), ∀t = 1, . . . ,M.

Let ∆t = Qt −Q∗
ω denote the estimation error at iteration t, where Q∗

ω is the unique fixed-point solution of the Bellman
equation H(Q) = Q. Then, we have:

∆t = (1− ηt−1)∆t−1 + ηt−1(Ĥt−1(Q
∗
ω +∆t−1)−H(Q∗

ω))

= (1− ηt−1)∆t−1 + ηt−1(Ĥt−1(Q
∗
ω +∆t−1)− Ĥt−1(Q

∗
ω) + Ĥt−1(Q

∗
ω)−H(Q∗

ω))

= (1− ηt−1)∆t−1 + ηt−1 (Ĥt−1(Q
∗
ω +∆t−1)− Ĥt−1(Q

∗
ω))︸ ︷︷ ︸

Contractive Error: Wt−1(∆t−1)

+ηt−1 (Ĥt−1(Q
∗
ω)−H(Q∗

ω))︸ ︷︷ ︸
Random Error: Et−1

. (47)

Observe that the error iteration ∆t consists of three components: the decaying term (1− ηt−1)∆t−1, the contractive error
term Wt−1(∆t−1), and the random error Et−1.

The contractive error Wt−1(∆t−1) depends on both ∆t−1 and the empirical Bellman operator Ĥt−1, and it is bounded due
to the γ-contractiveness of Ĥt−1:

∥Wt−1(∆t−1)∥∞ ≤ γ∥∆t−1∥∞. (48)

The random error Et−1 is i.i.d. for different values of t. By applying the iteration in Eq. (47) and using the contraction
condition in Eq. (48), we can express ∆t fully as follows:

Lemma F.7 (Proof in Appendix F.9). For any t ≥ 1, the estimation error ∆t is bounded above and below by:

∆t ≤
t−1∏
k=0

(1− (1− γ)ηk)∥∆0∥∞1+ γηt−1∥Pt−1∥∞1+ γ

t−2∑
i=1

 t−1∏
j=i+1

(1− (1− γ)ηj)

 ηi∥Pi∥∞

1+ Pt, (49)

∆t ≥ −
t−1∏
k=0

(1− (1− γ)ηk)∥∆0∥∞1− γηt−1∥Pt−1∥∞1− γ

t−2∑
i=1

 t−1∏
j=i+1

(1− (1− γ)ηj)

 ηi∥Pi∥∞

1+ Pt,(50)

where Pt represents a discounted sum of the random error Et, defined as:

Pt =

{
0 if t = 0,∑t−1

k=0

((∏t−1
j=k+1(1− ηj)

)
ηkEk

)
if t ≥ 1.

(51)

To effectively manage the product term
∏t−1

k=0(1− (1− γ)ηk), we apply a step size defined as ηk = 1
1+(1−γ)(k+1) . Under

this choice of step size, we can demonstrate that the expression 1− (1− γ)ηk satisfies

1− (1− γ)ηk = 1− 1− γ

1 + (1− γ)(k + 1)

=
1 + (1− γ)k

1 + (1− γ)(k + 1)

30

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

=
ηk

ηk−1
, ∀k ≥ 1.

Using this result, we can simplify the product-form coefficients in Eq. (49) as follows:

t−1∏
k=0

(1− (1− γ)ηk) = (1− (1− γ)η0)

t−1∏
k=1

ηk
ηk−1

= ηt−1, ∀t, (52) t−1∏
j=i+1

(1− (1− γ)ηj)

 ηi =

 t−1∏
j=i+1

ηj
ηj−1

 ηi = ηt−1, ∀t. (53)

Substituting Eq. (52) and (53) into the bounds in Eq. (49) and (50), we obtain:

∥∆t∥∞ ≤ ηt−1∥∆0∥∞ + γηt−1

t−1∑
k=0

∥Pk∥∞ + ∥Pt∥∞. (54)

To complete the proof, we need to control ∥Pk∥∞ for each k. The following lemma provides the necessary bound:

Lemma F.8 (Proof in Appendix F.10). Given the step size ηk = 1
1+(1−γ)k , for any k ≥ 1, with probability at least 1− δ,

the weighted error sum Pk satisfies

∥Pk∥∞ ≤ 2

3(1− γ)(1 + (1− γ)k)
log

(
2|X [∪Kω

k=1Z
P
k]|

δ

)
+

2

√
2∥σ2

E∥∞ log
(

2|X [∪Kω
k=1Z

P
k]|

δ

)
√

1 + (1− γ)k
, (55)

where σ2
E is the variance of each random error Et, satisfying σ2

E(s, a) = Var
(
Ĥ(Q∗

ω)(s, a)
)

.

This lemma shows that ∥Pk∥∞ is decreasing in the iteration number k. Substituting the bound on ∥Pk∥∞ into Eq. (54)
yields the following results:

Lemma F.9 (Proof in Appendix F.11). With probability at least 1− δ, the estimation error ∆M after M iterations in epoch
τ = 1 satisfies

∥∆M∥∞ ≤
3 + 2 log

(
2M |X [∪Kω

k=1Z
P
k]|

δ

)
3(1− γ)2M

+
2 log

(
2M |X [∪Kω

k=1Z
P
k]|

δ

)
log(1 + (1− γ)M)

3(1− γ)3M

+

6

√
2∥σ2

E∥∞ log
(

2M |X [∪Kω
k=1Z

P
k]|

δ

)
(1− γ)

3
2M

1
2

,

Let M = c2

log

(
6T |X [∪Kω

k=1
ZP
k]|

(1−γ)δ

)
(1−γ)3 with a sufficiently large c2, we have:

∥Q1 −Q∗
ω∥∞ = ∥∆M∥∞ ≤

√
∥σ2

E∥∞ + 1

2
≤ 1

2(1− γ)
(56)

holds with probability at least 1− δ
T , where the last inequality is due to ∥σ2

E∥∞ ≤ γ2

(1−γ)2 . This finishes the proof of the
basic case with τ = 1.

Step 2. Showing the Inductive Case with τ ≥ 2:

We assume that the input Qτ in epoch τ satisfies the bound

∥Qτ −Q∗
ω∥∞ ≤

√
∥σ2

E∥∞ + 1

2τ
:= bτ ,

31

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

and our goal is to show that ∥Qτ+1 −Q∗∥∞ ≤ bτ
2 with probability at least 1− δ

T .

Specifically, Qτ+1 is equivalent to the output QM of running M rounds of variance-reduced Q-learning from the initialization
Q0 = Qτ . The reference Bellman operator Hτ is obtained using Nτ empirical samples.

The variance-reduced update can be rewritten into:

Qt+1 −Q∗ = (1− ηt)(Qt −Q∗) + ηt (Ĥt(Qt)− Ĥt(Q
∗))︸ ︷︷ ︸

Contractive Error: Wt(∆t)

+ηt (Ĥt(Q
∗)−H(Q∗

ω)− Ĥt(Qτ) +Hτ+1(Qτ))︸ ︷︷ ︸
Variance-reduced Error: Et

.

Observe that, the update form contains three components: the decaying term (1− ηt)(Qt −Q∗), the contractive error term
Wt(∆t) and the variance reduced error term Et. The only difference between the variance-reduced iteration and the vanilla
iteration comes from the variance-reduced error Et, which can be further split into the following form:

Ĥt(Q
∗)−H(Q∗

ω)− Ĥt(Qτ) +Hτ+1(Qτ)

=Ĥt(Q
∗)− Ĥt(Qτ) +Hτ+1(Qτ)−Hτ+1(Q

∗
ω) +Hτ+1(Q

∗
ω)−H(Q∗

ω)

=H(Qτ)−H(Q∗
ω)− Ĥt(Qτ) + Ĥt(Q

∗
ω)︸ ︷︷ ︸

Ea
t

+Hτ+1(Qτ)−Hτ+1(Q
∗
ω)−H(Qτ) +H(Q∗

ω)︸ ︷︷ ︸
Eb

+Hτ+1(Q
∗
ω)−H(Q∗

ω)︸ ︷︷ ︸
Ec

An important observation is that, Ea

t depends on the empirical Bellman operator sampled in each iteration t, while Eb
and

Ec
are independent of each iteration, but only dependent on the reference Bellman operator T τ sampled in the begining of

iteration.

We apply the result in Lemma F.7 for the bound on the error accumulation in iterative updates, and get the following bound
on ∆t = Qt −Q∗:

∥∆t∥∞ ≤ ηt−1∥∆0∥∞ + γηt−1

∑t−1

k=0
(∥P a

k ∥∞ + ∥P b
k∥∞ + ∥P c

k∥∞) + ∥P a
t ∥∞ + ∥P b

t ∥∞ + ∥P c
t ∥∞, (57)

where P a
t , P b

t and P c
t are the discounted sums of E

a

t , E
b

and E
c

satisfying:

P a
t =

{
0 if t = 0,∑t−1

k=0

((∏t−1
j=k+1(1− ηj)

)
ηkE

a

k

)
if t ≥ 1.

(58)

P b
t =

{
0 if t = 0,∑t−1

k=0

((∏t−1
j=k+1(1− ηj)

)
ηkE

b
)

if t ≥ 1.
(59)

P c
t =

{
0 if t = 0,∑t−1

k=0

((∏t−1
j=k+1(1− ηj)

)
ηkE

c
)

if t ≥ 1.
(60)

To simplify, we have that ∥P b
t ∥∞ ≤ ∥Eb∥∞ and ∥P c

t ∥∞ ≤ ∥Ec∥∞. Since ∥Eb∥∞ and ∥Ec∥∞ are independent of t, by
substituting ηt−1 = 1

1+(1−γ)t , we have

γηt−1

∑t−1

k=0
(∥Eb∥∞ + ∥Ec∥∞) + ∥Eb∥∞ + ∥Ec∥∞

=

(
1 +

γt

1 + (1− γ)t

)
(∥Eb∥∞ + ∥Ec∥∞)

≤ 2

1− γ
(∥Eb∥∞ + ∥Ec∥∞).

Hence, ∆t satisfies

∥∆t∥∞ ≤ ηt−1∥∆0∥∞ + γηt−1

∑t−1

k=0
∥P a

k ∥∞ + ∥P a
t ∥∞ +

2

1− γ
(∥Eb∥∞ + ∥Ec∥∞). (61)

The remaining challenge is to bound the following three terms: ∥Eb∥, ∥Ec∥ and ∥P a
k ∥.

32

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Lemma F.10 (Proof in Appendix F.12). In τ -th iteration, with probability at least 1− δ
3T , Eb

satisfies

∥Eb∥∞ ≤ bτ

√√√√2 log
(

6T |X [∪Kω
k=1Z

P
k]|

δ

)
Nτ

.

Lemma F.11 (Proof in Appendix F.13). In τ -th iteration, with probability at least 1− δ
3T , Ec

satisfies

∥Ec∥∞ ≤ c1

√√√√ log
(

2T |X [∪Kω
k=1Z

P
k]|

δ

)
Nτ

(√
∥σ2

E∥∞ + 1

)
,

where c1 is an absolute constant.

Lemma F.12 (Proof in Appendix F.14). In the τ -th iteration, with probability at least 1− δ
3T , it satisfies

γηt−1

t−1∑
k=0

∥P a
k ∥∞ + ∥P a

t ∥∞ ≤ c2bτ

 log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
log(1 + (1− γ)t)

(1− γ)2t
+

√
log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
(1− γ)

3
2 t

1
2

 ,

where c2 is an absolute constant.

Combining Lemmas F.10, F.11 and F.12 yields:

∥∆M∥∞ ≤ bτ
1 + (1− γ)M

+
c1

√
log

(
2T |X [∪Kω

k=1
ZP
k

]|
δ

)
Nτ

(√
∥σ2

E∥∞ + 1
)
+ bτ

√
log

(
2T |X [∪Kω

k=1
ZP
k

]|
δ

)
Nτ

1− γ

+ c2bτ

 log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
log(1 + (1− γ)M)

(1− γ)2M
+

√
log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
(1− γ)

3
2M

1
2

 .

Substituting M = c2

log

(
6T |X [∪Kω

k=1
ZP
k]|

(1−γ)δ

)
(1−γ)3 and Nτ = c34

τ log(6T |X [∪Kω
k=1Z

P
k]|)

(1−γ)2 with large enough c2 and c3 yields that:

∥∆M∥∞ ≤
√
∥σ2

E∥∞ + 1

2τ+1
≤ 1

(1− γ)2τ+1
.

This concludes our proof.

F.9. Proof to Lemma F.7

Proof. We will prove the result by induction. First, by applying Eq. (47), we have that ∆1 satisfies

∆1 = (1− η0)∆0 + η0(Ĥ0(Q
∗
ω +∆0)− Ĥ0(Q

∗
ω)) + η0(Ĥ0(Q

∗
ω)−H(Q∗

ω))

≤ (1− η0)∥∆0∥∞1+ η0γ∥∆0∥∞1+ η0E0
= (1− (1− γ)η0)∥∆0∥∞1+ η0E0
= (1− (1− γ)η0)∥∆0∥∞1+ P1, (62)

where the inequality follows from the contraction property Ĥ0(Q
∗
ω +∆0)− Ĥ0(Q

∗
ω) ≤ γ∥∆0∥∞1.

Similarly, ∆1 can be lower bounded as follows:

∆1 = (1− η0)∆0 + η0(Ĥ0(Q
∗
ω +∆0)− Ĥ0(Q

∗
ω)) + η0(Ĥ0(Q

∗
ω)−H(Q∗

ω))

33

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

≥ −(1− η0)∥∆0∥∞1− η0γ∥∆0∥∞1+ η0E0
= −(1− (1− γ)η0)∥∆0∥∞1+ η0E0
= −(1− (1− γ)η0)∥∆0∥∞1+ P1. (63)

The expressions in Eq. (62) and (63) are consistent with the upper and lower bounds provided by Eq. (49) and (50) in
Lemma F.7.

Now, suppose that the conditions in Eq. (49) and (50) hold for ∆t, that is:

∆t ≤ at∥∆0∥∞1+ bt1+ Pt, (64)
∆t ≥ −at∥∆0∥∞1− bt1+ Pt, (65)

where

at =

t−1∏
k=0

(1− (1− γ)ηk), bt = γηt−1∥Pt−1∥∞ + γ

t−2∑
i=1

 t−1∏
j=i+1

(1− (1− γ)ηj)

 ηi∥Pi∥∞

 .

Applying Eq. (47), ∆t+1 satisfies

∆t+1 = (1− ηt)∆t + ηtWt(∆t) + ηtEt
≤ (1− ηt)(at∥∆0∥∞1+ bt1+ Pt) + ηtγ∥∆t∥∞1+ ηtEt (66)
≤ (1− ηt)(at∥∆0∥∞1+ bt1+ Pt) + ηtγ(at∥∆0∥∞ + bt + ∥Pt∥∞)1+ ηtEt (67)
= (1− (1− γ)ηt)at︸ ︷︷ ︸

at+1

∥∆0∥∞1+ (γηt∥Pt∥∞ + (1− (1− γ)ηt)bt)︸ ︷︷ ︸
bt+1

1+ (1− ηt)Pt + ηtEt︸ ︷︷ ︸
Pt+1

, (68)

where inequality (66) is obtained by applying the upper bound condition (64) and the contraction property Wt(∆t) ≤
γ∥∆t∥∞1; Inequality (67) is obtained by using conditions (64); Equality (68) is achieved by rearranging the terms.

Following the same steps, we can establish the corresponding lower bound for ∆t+1 in Eq. (50). This completes the
proof.

F.10. Proof to Lemma F.8

Proof. Recall the definition in Eq. (51). For any t ≥ 2, Pt can be expressed as a weighted sum:

Pt =
∑t−1

k=0
at,kEk,

where at,k =
(∏t−1

j=k+1(1− ηj)
)
ηk.

Denote the (s, a)-th entry of Pt as Pt(s, a). Since all Ek are independent and identically distributed, we can apply Bernstein’s
inequality (Vershynin, 2018) to Pt(s, a). This gives us the following probability bound:

P (|Pt(s, a)| ≥ ϵt) ≤ 2 exp

(
− ϵ2t

2
∑t−1

k=0 a
2
t,kσ

2
E(s, a) +

2
3 (maxk |at,k|ME(s,a))ϵt

)
, ∀(s, a),

where σ2
E(s, a) is the variance of E(s, a), and ME(s,a) is the maximum absolute value of E(s, a).

Recall that Pt is the weighted sum of different Ek’s, and all Ek are i.i.d. random variables. Each Ek has at most |X [∪Kω

k=1Z
P
k]|

distinct entries due to the sampling scheme, where X [∪Kω

k=1Z
P
k] represents the set of possible state-action pairs involved in

the components’ scopes. We denote these distinct state-action pairs by X ∗ defined in Eq. (41).

Taking the union bound over all state-action pairs x := (s, a) ∈ X ∗, we have:

P (∥Pt∥∞ ≥ ϵt) ≤ 2|X [∪Kω

k=1Z
P
k]| exp

(
− ϵ2t

2
∑t−1

k=0 a
2
t,kσ

2
E(s, a) +

2
3 (maxk |at,k|ME(s,a))ϵt

)
.

34

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

To set this probability to δ, let P (∥Pt∥∞ ≥ ϵt) = δ. Then, we can conclude:

δ ≤ 2|X [∪Kω

k=1Z
P
k]| exp

(
− ϵ2t

2
∑t−1

k=0 a
2
t,kσ

2
E(s, a) +

2
3 (maxk |at,k|ME(s,a))ϵt

)
.

Taking the natural logarithm on both sides and rearranging terms gives:

ϵ2t − log

(
2|X [∪Kω

k=1Z
P
k]|

δ

)(
2

t−1∑
k=0

a2t,kσ
2
E(s, a) +

2

3

(
max

k
|at,k|ME(s,a)

)
ϵt

)
≤ 0.

To solve for ϵt, we treat this as a quadratic inequality:

ϵ2t −
(
2

3
max

k
|at,k|ME(s,a)

)
log

(
2|X [∪Kω

k=1Z
P
k]|

δ

)
ϵt − 2 log

(
2|X [∪Kω

k=1Z
P
k]|

δ

)
t−1∑
k=0

a2t,kσ
2
E(s, a) ≤ 0.

To simplify further:

ϵt ≤
2

3
log

(
2|X [∪Kω

k=1Z
P
k]|

δ

)
max

k
|at,k|ME(s,a) + 2

√√√√log

(
2|X [∪Kω

k=1Z
P
k]|

δ

)
t−1∑
k=0

a2t,kσ
2
E(s, a). (69)

To complete the analysis, we need to bound maxk |at,k|, ME(s,a), and
∑t−1

k=0 a
2
t,k.

Step 1: Bounding ME(s,a)

For any k, since the empirical Bellman operator Ĥk(Q
∗) and the true Bellman operator H(Q∗

ω) are both bounded between 0
and 1

1−γ , we have:

ME(s,a) = sup ∥Ek∥∞ = sup ∥Ĥk(Q
∗)−H(Q∗

ω)∥∞ ≤ 1

1− γ
.

Step 2: Bounding maxk |at,k|

Next, we analyze the ratio at,k

at,k−1
to find maxk |at,k|. Recall the definition of at,k:

at,k =

(∏t−1

j=k+1
(1− ηj)

)
ηk.

To compute at,k

at,k−1
, we have:

at,k
at,k−1

=
ηk

ηk−1(1− ηk)
.

Using the step size ηk = 1
1+(1−γ)(k+1) , we can express:

at,k
at,k−1

=
1− (1− γ)ηk

1− ηk
.

Given that 0 < γ < 1, we have ηk ≤ 1
1+(1−γ)k < 1, and thus:

at,k
at,k−1

≥ 1, ∀k.

This means that at,k is non-decreasing with respect to k. Hence, the maximum value maxk |at,k| occurs at k = t− 1:

max
k

|at,k| = at,t−1 = ηt−1 =
1

1 + (1− γ)t
.

35

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Step 3: Bounding
∑t−1

k=0 a
2
t,k

We also need to bound
∑t−1

k=0 a
2
t,k. The following lemma provides this bound:

Lemma F.13 (Proof in Appendix F.15). For any t ≥ 1, the sum
∑t−1

k=0 a
2
t,k satisfies

t−1∑
k=0

a2t,k ≤ 2

1 + (1− γ)t
.

Combining the results from Steps 1, 2, and 3, we can now derive the bound for ϵt. Substituting these bounds into Eq. (69),
we get that with probability at least 1− δ:

∥Pt∥∞ ≤ ϵt ≤
2

3(1− γ)(1 + (1− γ)t)
log

(
2|X [∪Kω

k=1Z
P
k]|

δ

)
+

2

√
2∥σ2

E∥∞ log
(

2|X [∪Kω
k=1Z

P
k]|

δ

)
√
1 + (1− γ)t

.

This concludes our proof.

F.11. Proof of Lemma F.9

Proof. Letting the upper bound of each ∥Pk∥∞ (in Eq. (55)) with k = 1, . . . ,M holds with probability 1− δ
M , we have:

∥∆M∥∞ ≤ ∥∆0∥∞
1 + (1− γ)M

+
2 log

(
2M |X [∪Kω

k=1Z
P
k]|

δ

)
3(1− γ)2M

+

2

√
2∥σ2

E∥∞ log
(

2M |X [∪Kω
k=1Z

P
k]|

δ

)
√
1 + (1− γ)M

+
2 log

(
2M |X [∪Kω

k=1Z
P
k]|

δ

)
3(1− γ)2M

M∑
i=1

1

1 + (1− γ)i

+

2

√
2∥σ2

E∥∞ log
(

2M |X [∪Kω
k=1Z

P
k]|

δ

)
1 + (1− γ)M

M∑
i=1

1√
1 + (1− γ)i

.

Note that,

M∑
i=1

1

1 + (1− γ)i
≤
∫ M

0

1

1 + (1− γ)x
dx =

log (1 + (1− γ)M)

1− γ
,

M∑
i=1

1√
1 + (1− γ)i

≤
∫ M

0

1√
1 + (1− γ)x

dx =
2
(√

1 + (1− γ)M − 1
)

1− γ
≤

2
√
1 + (1− γ)M

1− γ
.

Hence, ∆M satisfies

∥∆M∥∞ ≤ ∥∆0∥∞
1 + (1− γ)M

+
2 log

(
2M |X [∪Kω

k=1Z
P
k]|

δ

)
3(1− γ)2M

+

2

√
2∥σ2

E∥∞ log
(

2M |X [∪Kω
k=1Z

P
k]|

δ

)
√

1 + (1− γ)M

+
2 log

(
2M |X [∪Kω

k=1Z
P
k]|

δ

)
log(1 + (1− γ)M)

3(1− γ)3M
+

4

√
2∥σ2

E∥∞ log
(

2M |X [∪Kω
k=1Z

P
k]|

δ

)
(1− γ)

3
2M

1
2

≤
3 + 2 log

(
2M |X [∪Kω

k=1Z
P
k]|

δ

)
3(1− γ)2M

+
2 log

(
2M |X [∪Kω

k=1Z
P
k]|

δ

)
log(1 + (1− γ)M)

3(1− γ)3M

36

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

+

6

√
2∥σ2

E∥∞ log
(

2M |X [∪Kω
k=1Z

P
k]|

δ

)
(1− γ)

3
2M

1
2

.

This concludes our proof.

F.12. Proof of Lemma F.10

Proof. Recall the definition of Eb
, which is given by:

Eb
= Hτ+1(Qτ)−Hτ+1(Q

∗
ω)−H(Qτ) +H(Q∗

ω).

We first note that the expectation of the difference between the empirical Bellman operators is:

EHτ+1

[
Hτ+1(Qτ)−Hτ+1(Q

∗
ω)
]
= H(Qτ)−H(Q∗

ω).

Due to the γ-contraction property of both the empirical Bellman operator Hτ+1 and the true Bellman operator H, we have:

∥Hτ+1(Qτ)−Hτ+1(Q
∗
ω)−H(Qτ) +H(Q∗

ω)∥∞ ≤ ∥Hτ+1(Qτ)−Hτ+1(Q
∗
ω)∥∞ + ∥H(Qτ)−H(Q∗

ω)∥∞.

Since both operators are γ-contractions, it follows that:

∥Hτ+1(Qτ)−Hτ+1(Q
∗
ω)∥∞ ≤ γ∥Qτ −Q∗

ω∥∞ and ∥H(Qτ)−H(Q∗
ω)∥∞ ≤ γ∥Qτ −Q∗

ω∥∞.

Combining these, we get:

∥Hτ+1(Qτ)−Hτ+1(Q
∗
ω)−H(Qτ) +H(Q∗

ω)∥∞ ≤ 2γ∥Qτ −Q∗
ω∥∞ ≤ 2γbτ .

Applying Hoeffding’s inequality to the (s, a)-th entry of Eb
, denoted as Eb

(s, a), we obtain:

P
(
|Eb

(s, a)| ≥ ϵ
)
≤ 2 exp

(
−2Nτ ϵ

2

4b2τ

)
= 2 exp

(
−Nτ ϵ

2

2b2τ

)
.

Letting 2 exp
(
−Nτ ϵ

2

2b2τ

)
= δ

3T |X [∪Kω
k=1Z

P
k]|

, and taking union bound for x ∈ X ∗, we have that:

∥Eb∥∞ ≤ bτ

√√√√2 log
(

6T |X [∪Kω
k=1Z

P
k]|

δ

)
Nτ

.

This completes the proof.

F.13. Proof of Lemma F.11

Proof. Recall that E
c
= T (Q∗)−H(Q∗

ω) represents the estimation error using Nτ empirical Bellman operators. We know
that E[T (Q∗)] = H(Q∗

ω).

Applying Bernstein’s inequality (Vershynin, 2018) to the (s, a)-th entry of E
c
, denoted as Ec

(s,a), we obtain:

P
(
|Ec

(s,a)| ≥ ϵ
)
≤ 2 exp

(
−

1
2Nτ ϵ

2

∥σ2
E∥∞ + ϵ

3(1−γ)

)
.

37

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

We set the right-hand side probability equal to δ

3T |X [∪Kω
k=1Z

P
k]|

, which gives us:

2 exp

(
−

1
2Nτ ϵ

2

∥σ2
E∥∞ + ϵ

3(1−γ)

)
=

δ

3T |X [∪Kω

k=1Z
P
k]|

.

Rearranging this equation for ϵ, we get:

1

2
Nτ ϵ

2 −
ϵ log(6T |X [∪Kω

k=1Z
P
k]|/δ)

3(1− γ)
− ∥σ2

E∥∞ log(6T |X [∪Kω

k=1Z
P
k]|/δ) = 0.

Solving this quadratic equation for ϵ, we have:

ϵ ≤

2 log(6T |X [∪Kω
k=1Z

P
k]|/δ)

3(1−γ) +

√
4 log2(6T |X [∪Kω

k=1Z
P
k]|/δ)

9(1−γ)2 + 2Nτ∥σ2
E∥∞ log(6T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ
.

Simplifying further, we find:

ϵ ≤
2 log(6T |X [∪Kω

k=1Z
P
k]|/δ)

3Nτ (1− γ)
+

√
2∥σ2

E∥∞ log(6T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ
.

Applying the union bound over all x := (s, a) ∈ X ∗, we conclude that with probability at least 1− δ
3T , the infinity norm

∥Ec∥∞ satisfies

∥Ec∥∞ ≤
2 log(6T |X [∪Kω

k=1Z
P
k]|/δ)

3Nτ (1− γ)
+

√
2∥σ2

E∥∞ log(6T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ
. (70)

Given that Nτ ≥ c · 4τ log(8T |X [∪Kω
k=1Z

P
k]|/δ)

(1−γ)2 , it follows that
log(2T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ (1−γ) ≤ 1 for a large enough c. Thus, ∥Ec∥∞ is
further bounded by:

∥Ec∥∞ ≤ c1



√√√√√√∥σ2
E∥∞ log

(
6T |X [∪Kω

k=1Z
P
k]|

δ

)
Nτ

+ 1



≤ c1

√√√√ log
(

6T |X [∪Kω
k=1Z

P
k]|

δ

)
Nτ

(√
∥σ2

E∥∞ + 1

)
,

where c1 is an absolute constant. This completes the proof.

F.14. Proof of Lemma F.12

Proof. The term P a
k evolves in an exactly the same way as Pk discussed before. Hence, we apply the result in Lemma F.8

and get that, with probability at least 1− δ
3TM :

∥P a
t ∥∞ ≤ 2ME,a

3(1 + (1− γ)t)
log

(
6TM |X [∪Kω

k=1Z
P
k]|

δ

)
+

2

√
2∥σ2

E,a∥∞ log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
√

1 + (1− γ)t
,∀t.

Here ME,a and σ2
E,a denote the maximal absolute value and variance of error Ea

t .

38

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

First, we observe that Ea

t satisfies

∥Ea

t ∥∞ = ∥H(Qτ)−H(Q∗
ω)− Ĥt(Qτ) + Ĥt(Q

∗
ω)∥∞

≤ ∥H(Qτ)−H(Q∗
ω)∥∞ + ∥Ĥt(Qτ)− Ĥt(Q

∗
ω)∥∞

≤ 2γ∥Qτ −Q∗∥∞
≤ 2bτ .

Thus, we have ME,a ≤ 2bτ and
√
∥σ2

E,a∥∞ ≤ 2bτ . And ∥P a
t ∥∞ then satisfies

∥P a
t ∥∞ ≤ bτ

4 log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
3(1 + (1− γ)t)

+

√√√√8 log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
1 + (1− γ)t


Thus, we can control the whole term by:

γηt−1

t−1∑
k=0

∥P a
k ∥∞ + ∥P a

t ∥∞ ≤γηt−1

t−1∑
i=0

bτ

4 log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
3(1 + (1− γ)i)

+

√√√√8 log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
1 + (1− γ)i



+ bτ

4 log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
3(1 + (1− γ)t)

+

√√√√8 log
(

6TM |X [∪Kω
k=1Z

P
k]|

δ

)
1 + (1− γ)t

 .

For analyzing the coefficients:

γηt−1

t−1∑
i=0

1

1 + (1− γ)i
+

1

1 + (1− γ)t
≤ γ

1 + (1− γ)t

∫ t

0

1

1 + (1− γ)x
dx+

1

1 + (1− γ)t

≤ γ

1 + (1− γ)t
· log(1 + (1− γ)t)

1− γ
+

1

1 + (1− γ)t

≤2 log(1 + (1− γ)t)

(1− γ)2t
.

γηt−1

t−1∑
i=0

1√
1 + (1− γ)i

+
1√

1 + (1− γ)t
≤ γ

1 + (1− γ)t

∫ t

0

1√
1 + (1− γ)x

dx+
1√

1 + (1− γ)t

≤ γ

1 + (1− γ)t

2(
√
1 + (1− γ)t− 1)

1− γ
+

1√
1 + (1− γ)t

≤ 3

(1− γ)
3
2 t

1
2

.

Thus, the whole term satisfies

γηt−1

t−1∑
k=0

∥P a
k ∥∞ + ∥P a

t ∥∞ ≤
8bτ log(1 + (1− γ)t) log

(
6TM |X [∪Kω

k=1Z
P
k]|

δ

)
3(1− γ)2t

+

6bτ

√
2 log

(
6TM |X [∪Kω

k=1Z
P
k]|

δ

)
(1− γ)

3
2 t

1
2

. (71)

Absorbing the constants concludes our proof.

39

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

F.15. Proof of Lemma F.13

Proof. Recall the expression for the ratio at,k−1

at,k
:

at,k−1

at,k
=

1− ηk
1− (1− γ)ηk

=
(1− γ)(k + 1)

(1− γ)(k + 1) + γ
=

k + 1

k + 1 + γ
1−γ

.

Using this, we can express at,k−i for any 1 ≤ i < k as follows:

at,k−i = at,k

i−1∏
j=0

at,k−j−1

at,k−j
= at,k

i−1∏
j=0

k + 1− j

k + 1− j + γ
1−γ

.

To simplify this product, note that:
k + 1− j

k + 1− j + γ
1−γ

≤ k + 1

k + 1 + γ
1−γ

∀j.

Thus, we can further bound at,k−i by:

at,k−i ≤ at,k

i−1∏
j=0

k + 1

k + 1 + γ
1−γ

= at,k

(
k + 1

k + 1 + γ
1−γ

)i

.

Letting k = t− 1, we can now bound
∑t−1

k=0 a
2
t,k by considering the following square form:

t−1∑
k=0

a2t,k ≤ a2t,t−1

1 +

t−1∑
k=1

(
t

t+ γ
1−γ

)2k
 .

We analyze this term by considering different γ.

Case 1: γ ≥ 1
2

This series is geometric with a ratio
(

t
t+ γ

1−γ

)2
< 1. The sum of a geometric series can be calculated as:

∞∑
k=0

rk =
1

1− r
for |r| < 1.

Applying this to our series:

t−1∑
k=0

a2t,k ≤ a2t,t−1

1 +

(
t

t+ γ
1−γ

)2
1−

(
t

t+ γ
1−γ

)2
 = a2t,t−1

(
1 +

(1− γ)2t2

γ(2t(1− γ) + γ)

)
.

Since γ ≥ 1
2 , we have:

a2t,t−1

(
1 +

(1− γ)2t2

γ(2t(1− γ) + γ)

)
≤ a2t,t−1

(
1 +

(1− γ)2t2

t(1− γ)

)
= a2t,t−1(1 + (1− γ)t)

Using at,t−1 = 1
1+(1−γ)t yields that,

t−1∑
k=0

a2t,k ≤ 1

1 + (1− γ)t
. (72)

40

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Case 2: γ < 1
2

We use t
t+ γ

1−γ
≤ 1 and 1− γ ≥ 1

2 to obtain that:

a2t,t−1

1 +

t−2∑
k=1

(
t

t+ γ
1−γ

)2k
 ≤ a2t,t−1

(
1 +

t−2∑
k=1

1

)
≤ a2t,t−1(1 + t).

Since γ < 1
2 , we have 1− γ > 1

2 and 1 < 2(1− γ). Thus

a2t,t−1(1 + t) ≤ a2t,t−1(1 + 2(1− γ)t) ≤ 2a2t,t−1(1 + (1− γ)t).

Using at,t−1 = 1
1+(1−γ)(t−1) yields that,

a2t,t−1

(
1 +

(1− γ)2t2

γ(2(1− γ)t+ γ)

)
≤ 2

1 + (1− γ)t
. (73)

Combing Eq. (72) and (73) yields our result.

F.16. Proof to Lemma E.2

Proof. We proceed by induction on the epoch index τ . The base case when τ = 0 is straightforward, as the initial
approximation Q0 can satisfy the desired bound. Our focus is on the inductive step: assuming that the input Qτ in epoch τ
satisfies

∥Qτ −Q∗
ω∥∞ ≤ 1

2τ
√
1− γ

:= b′τ ,

we aim to show that the output Qτ+1 satisfies ∥Qτ+1 −Q∗∥∞ ≤ b′τ
2 with probability at least 1− δ

T .

To achieve this, we analyze the variance-reduced update rule, which can be expressed as

Qt+1 = (1− ηt)Qt + ηtF̂t(Qt),

where F̂t(Qt) is the variance-reduced Bellman operator defined by

F̂t(Qt) = Ĥt(Qt)− Ĥt(Qτ) +Hτ+1(Qτ).

Here, Ĥt is the empirical Bellman operator based on samples at iteration t, and Hτ+1 is the reference Bellman operator
estimated using a larger reference dataset collected in epoch τ + 1.

We additionally define the refined variance-reduced Bellman operator, eliminating the randomness due to sampling:

F(Qt) = H(Qt)−H(Qτ) +Hτ+1(Qτ),

where H is the true Bellman operator. Due to independent and identically distributed sampling, we have E[F̂t(Qt)] = F(Qt).
Moreover, since H is a γ-contraction, it follows that F is also a γ-contraction mapping.

We introduce a reference Q-function Q̃, defined as the fixed point of F :

Q̃ = F(Q̃) = H(Q̃)−H(Qτ) +Hτ+1(Qτ).

This function Q̃ serves as an intermediary between QM and Q∗, potentially closer to QM than Q∗ is.

Our strategy is to bound the error ∥QM −Q∗
ω∥∞ by decomposing it into two components:

∥QM −Q∗
ω∥∞ ≤ ∥QM − Q̃∥∞︸ ︷︷ ︸

=:B1

+ ∥Q̃−Q∗
ω∥∞︸ ︷︷ ︸

=:B2

.

41

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

The term B1 quantifies the distance between the iteratively computed QM and the reference Q̃, while B2 measures the
distance between Q̃ and the optimal Q∗

ω .

We aim to bound B1 and B2 separately. Intuitively, B1 will decrease with the number of iterations M within the epoch,
and B2 will be controlled by the size of the reference dataset Nτ . We show they can be well bounded when Nτ and M are
properly selected:

Lemma F.14 (Proof in Appendix F.17). In the τ -th epoch, with probability at least 1− δ
2T , B1 satisfies

B1 ≤ b′τ +B2

5
,

if Nτ = c′1
4τ log(8T |X [∪Kω

k=1Z
P
k]|)

(1−γ)2 and M = c′2
log(6T |X [∪Kω

k=1Z
P
k]|(1−γ)−1ϵ−1)

(1−γ)3 with large enough c′1 and c′2.

Lemma F.15 (Proof in Appendix F.18). In the τ -th epoch, with probability at least 1− δ
2T , B2 satisfies

B2 ≤ b′τ
4
.

if Nτ = c′1
4τ log(8T |X [∪Kω

k=1Z
P
k]|)

(1−γ)2 and M = c′2
log(6T |X [∪Kω

k=1Z
P
k]|(1−γ)−1ϵ−1)

(1−γ)3 with large enough c′1 and c′2.

By combining Lemmas F.14 and F.15, we obtain:

∥QM −Q∗
ω∥∞ ≤ B1 +B2 ≤ b′τ

5
+

6B2

5
=

b′τ
5

+
6

5
· b

′
τ

4
≤ b′τ

2
.

This completes the inductive step and hence the proof of Lemma E.2.

F.17. Proof to Lemma F.14

Proof. We aim to bound B1 = ∥QM − Q̃∥∞. Our approach mirrors the inductive case in the proof of Lemma E.1, with a
key difference in the error decomposition.

Consider the difference between the iterates Qt+1 and the reference Q̃:

Qt+1 − Q̃ = (1− ηt)Qt + ηtF̂t(Qt)− Q̃.

Subtracting and adding ηtFt(Q̃), and using F(Q̃) = Q̃, we can rewrite this as

Qt+1 − Q̃ = (1− ηt)(Qt − Q̃) + ηt

(
F̂t(Qt)− F̂t(Q̃)

)
+ ηt

(
F̂t(Q̃)−F(Q̃)

)
.

The first term represents the contraction towards Q̃. The second is γ-contractive because∥∥∥F̂t(Qt)− F̂t(Q̃)
∥∥∥
∞

≤ γ
∥∥∥Qt − Q̃

∥∥∥
∞

,

which is easy to handle, and the third term is an i.i.d. zero-mean random variable across iterations t, with the magnitude can
be bounded by:

∥F̂t(Q̃)−F(Q̃)∥∞ = ∥T̂t(Q̃)− T̂t(Qτ)∥∞ + ∥Tt(Q̃)− Tt(Qτ)∥∞ ≤ 2γ∥Q̃−Qτ∥∞.

Hence, the iteration of Qt+1 − Q̃ mirrors the iteration in Eq. (47). Following the same routine as the proof of Lemma F.9,
we establish that, for a step sizes ηt = 1

1+(1−γ)(t+1) , with probability 1− δ
2T ,

∥QM − Q̃∥∞ ≤ c

(
1

(1− γ)M
+

1

(1− γ)3/2
√
M

)
log

(
6TM |X [∪Kω

k=1Z
P
k]|

δ

)
∥Q̃−Qτ∥∞,

42

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

where c is a large enough constant.

By choosing M = c2

log

(
6T |X [∪Kω

k=1
ZP
k]|

(1−γ)δ

)
(1−γ)3 with sufficiently large c2, we can ensure that the right-hand side is less than

1
5∥Q̃−Qτ∥∞.

Observing that
∥Q̃−Qτ∥∞ ≤ ∥Q̃−Q∗∥∞ + ∥Qτ −Q∗

ω∥∞ = B2 + b′τ ,

we can conclude
B1 = ∥QM − Q̃∥∞ ≤ 1

5
∥Q̃−Qτ∥∞ ≤ 1

5
(B2 + b′τ).

This establishes the desired bound on B1, completing the proof of Lemma F.14.

F.18. Proof to Lemma F.15

Proof. Our goal is to bound the term B2 = ∥Q̃−Q∗
ω∥∞, where Q̃ is the fixed point of the operator F defined as:

Q̃ = F(Q̃) = H(Q̃)−H(Qτ) +Hτ+1(Qτ).

Recall that Q∗
ω = H(Q∗

ω). Thus, Q̃ can be viewed as the fixed point of a Bellman operator with a perturbed reward function,
where the perturbation magnitude is −H(Qτ) +Hτ+1(Qτ). We seek to show that when the population size for estimating
the reference Bellman operator is large enough, the term −H(Qτ)+Hτ+1(Qτ) converges to 0 and F converges to the actual
Bellman operator H, allowing ∥Q̃−Q∗

ω∥∞ ≤ b′τ
4 . Essentially, the error B2 comes from the reward function perturbation

Hτ+1(Qτ)−H(Qτ). In the first step, we bound the reward perturbation ∆r = −H(Qτ) +Hτ+1(Qτ) as follows:

|∆r| = |Hτ+1(Qτ)−H(Qτ)| ≤ |Hτ+1(Qτ)−Hτ+1(Q
∗
ω) +H(Q∗

ω)−H(Q∗
ω) +Hτ+1(Q

∗
ω)−H(Qτ)|

≤ |Hτ+1(Qτ)−Hτ+1(Q
∗
ω)|+ |H(Qτ)−H(Q∗

ω)|+ |Hτ+1(Q
∗
ω)−H(Q∗

ω)|
≤ 2γ∥Qτ −Q∗∥∞ · 1+ |Hτ+1(Q

∗
ω)−H(Q∗

ω)|.

The first terms can be directly bounded through Hoeffding’s inequality. Similar to the proof of Lemma F.10, with probability
at least 1− δ

4T ,

2γ∥Qτ −Q∗
ω∥∞ · 1 ≤ 4b′τ

√
log(8T |X [∪k∈[Kω]Z

P
k]|/δ)

Nτ
.

The second term can be bounded by applying the result of Eq. (70)2 in Lemma F.11, we have that with probability at least
1− δ

4T ,

|Hτ+1(Q
∗
ω)−H(Q∗

ω)| ≤ c

 log(8T |X [∪Kω

k=1Z
P
k]|/δ) · 1

Nτ (1− γ)
+

√
σ2
E log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ

 ,

where c is a large enough constant.

Combining these two conditions, we can derive that, with probability at least 1− δ
2T ,

|∆r| ≤ c

 log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ (1− γ)
· 1+ (b′τ1+ σE)

√
log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ

 , (74)

where c is a large enough constant.

2The only difference is to applying the bound on the vector |Hτ+1(Q
∗
ω)−H(Q∗

ω)|, instead of the infinity norm.

43

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

Now we have already obtained the element-wise error bound of the reward function, which is the only difference for inducing
Q̃ and Q∗. Applying Lemma F.6 with Eq. (74), we have:

|Q̃−Q∗
ω| ≤ max {∆1,∆2} ,

where

∆1 = c(I − γP
π∗
ω

ω)−1

 log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ (1− γ)
· 1+ (b′τ1+ σE)

√
log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ

 , (75)

∆2 = c(I − γP
π̃∗
ω

ω)−1

 log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ (1− γ)
· 1+ (b′τ1+ σE)

√
log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ

 . (76)

Bounding ∆1: For bounding ∆1, the key is to bound (I − γP
π∗
ω

ω)−1σE . We have:

∥(I − γP
π∗
ω

ω)−1σE∥∞ = γ2∥(I − γP
π∗
ω

ω)−1VarP∗
ω
(V ∗

ω)∥∞ ≤
√
2

(1− γ)
3
2

, (77)

where the second inequality comes from Eq. (45) in Appendix F.6. By using ∥(I − γP
π∗
ω

ω)−1∥∞ ≤ 1
1−γ and Eq. (77), we

have:

∆1 ≤ c

 log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ (1− γ)2
· 1+ (b′τ +

√
2

(1− γ)
3
2

)

√
log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ
· 1


≤ cb′τ

2τ log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ (1− γ)
3
2

+
2τ+2

1− γ

√
log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ

 · 1, (78)

where the second inequality is obtained by using b′τ = 2−τ
√
1−γ

.

Bounding ∆1: For bounding ∆2, the difference comes from bounding (I − γP
π̃∗
ω

ω)−1σE . We define σ2
Ẽ as the variance of

induced by Q function Q̃ and policy π̃∗. Then, we have:

∥(I − γP
π̃∗
ω

ω)−1σE∥∞ = ∥(I − γP
π̃∗
ω

ω)−1(σẼ − σẼ + σE)∥∞
= ∥(I − γP

π̃∗
ω

ω)−1σẼ∥∞ + ∥(I − γP
π̃∗
ω

ω)−1(σẼ − σE)∥∞

≤ 3

(1− γ)
3
2

+
∥Q̃−Q∗

ω∥∞
1− γ

. (79)

Combining Eq. (79) with Eq. (76), we have:

∆2 ≤cb′τ

2τ log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ (1− γ)
3
2

+
2τ+2

1− γ

√
log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ

 · 1

+ c∥Q̃−Q∗
ω∥∞

√
log(8T |X [∪Kω

k=1Z
P
k]|/δ)

(1− γ)2Nτ
· 1. (80)

Combining Eq. (80) and (78), we can conclude that:

∥Q̃−Q∗
ω∥∞ ≤cb′τ

2τ log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ (1− γ)
3
2

+
2τ+2

1− γ

√
log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ


44

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

+ c∥Q̃−Q∗
ω∥∞

√
log(8T |X [∪Kω

k=1Z
P
k]|/δ)

(1− γ)2Nτ
. (81)

Using a sample size Nτ = c34
τ log

(
6T |X [∪Kω

k=1Z
P
k]|
)
(1− γ)−2 with large enough c3, we can guarantee:

c

√
4τ log(8T |X [∪Kω

k=1Z
P
k]|/δ)

Nτ
≤ 1

2
, (82)

c · 2τ log(8T |X [∪Kω

k=1Z
P
k]|/δ)

(1− γ)
3
2Nτ

≤ 1

8
, (83)

c

√
4τ+1 log(8T |X [∪Kω

k=1Z
P
k]|/δ)

(1− γ)2Nτ
≤ 1

8
. (84)

Substituting condition (82)-(84) into Eq. (81) leads to ∥Q̃−Q∗
ω∥∞ ≤ b′τ

4 . This concludes our proof.

G. Discussion on the Cost-Optimal Sampling Problem
G.1. Relating the Cost-Optimal Sampling Problem to Graph Coloring

The Graph Coloring Problem (GCP) is defined as follows: Given a graph G = (V,E), where V is a set of vertices and E is
a set of edges, the task is to assign a color to each vertex such that no two adjacent vertices (i.e., vertices connected by an
edge) share the same color. The objective is to find the optimal coloring scheme that minimizes the number of colors used,
known as the chromatic number of the graph (Erdős & Hajnal, 1966).

In the Cost-Optimal Sampling Problem (COSP), components with scopes ZP
1 , ZP

2 , . . . , ZP
Kω

must be divided into different
groups, where the scopes of components in the same subset do not overlap (i.e., ZP

i ∩ ZP
j = ∅ for any i, j in the same

group). This problem can be modeled as a variant of the GCP. Specifically, each component i represents a vertex in a graph,
and two vertices i and j are connected by an edge if their scopes overlap, i.e., ZP

i ∩ ZP
j ̸= ∅. Assigning a color to a vertex

corresponds to assigning the component to a group. Since components in the same subset must have disjoint scopes, no
two connected vertices (representing components with overlapping scopes) can share the same color. The goal is to find a
coloring scheme that minimizes the total costs across all groups, where the cost of each subset is determined by the scope
with largest factor set space |X [ZP

i]| in that group.

G.2. Proof for NP-Completeness of the COSP

NP-completeness is used to characterize a subset of problems that are computationally hard to solve. Famous NP-complete
problems include the Traveling Salesman Problem (TSP) (Lin, 1965), the Knapsack Problem (Kellerer et al., 2004), the
Hamiltonian Path Problem (Gary & Johnson, 1979), and the Satisfiability (SAT) Problem (Schaefer, 1978).

A problem is classified as NP-complete if it satisfies two conditions:

• In NP: The problem belongs to the class NP, meaning that given a proposed solution, we can verify its feasibility in
polynomial time.

• NP-hard: The problem is at least as hard as any other problem in NP. This means that any problem in NP can be
transformed or reduced to an NP-hard problem in polynomial time, then we could solve the NP-hard problem to get the
solution of any NP problem.

Graph coloring has been shown to be NP-complete (Karp, 2010), as it is computationally difficult to find the minimum
number of colors for an arbitrary graph. We now show that the COSP is NP-complete by proving: (1) it belongs to NP, and
(2) it is at least as hard as the NP-complete GCP.

45

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

G.2.1. THE COSP BELONGS TO NP

In the COSP, given a solution (a partition of components into groups and their associated costs), we can verify its feasibility
in polynomial time by:

• Verifying that the scopes within each subset are disjoint, which can be done by checking pairwise intersections within
each group. This can be done in O(K2

ω(n+m)) time.

• Calculating the total cost of a partition by identifying the largest scope size in each subset and summing these values,
which can also be computed in polynomial time, specifically O(Kω).

G.2.2. THE COSP IS NP-HARD

We prove NP-hardness by reducing the GCP to the COSP. We demonstrate that for any instance of the GCP, a corresponding
instance of the COSP can be constructed, and based on the optimal solution of the COSP, we can derive the optimal solution
to the GCP.

Given any instance of the GCP with a graph G = (V,E), we construct a corresponding instance of the COSP as follows:

• Step 1. Assign unique base dimensions for each vertex: Let |V | be the number of vertices, we initial |V | components
with the scope for each component i ∈ [|V |] satisfies ZP

i = {i}. This ensures that each component starts with a unique,
non-overlapping dimension.

• Step 2. Create shared dimensions for edges: For each edge (vi, vj) ∈ E, we introduce a new and unique dimension di,j
that will belong to both ZP

i and ZP
j . Specifically, we updates the scopes of components i and j by

ZP
i = ZP

i ∪ {di,j}, ZP
j = ZP

j ∪ {di,j}.

This ensures that for every edge in the graph, the corresponding components have overlapping scopes, mimicking the
adjacency constraint in the GCP.

• Step 3. Enforce disjointness for non-adjacent vertices: If there is no edge between two vertices vi and vj , the corresponding
scopes should remain disjoint, i.e., ZP

i ∩ ZP
j = ∅. This property is automatically maintained because shared dimensions

are only introduced for pairs of vertices that are connected by an edge.

We provide an example to illustrate the construction process. Consider a small example graph G = (V,E) with three
vertices V = {v1, v2, v3} and edges E = {(v1, v2), (v2, v3)}. The construction process is:

• Step 1. Assign unique base dimensions for each vertex: ZP
1 = {1}, ZP

2 = {2} and ZP
3 = {3}.

• Step 2. Create shared dimensions for edges: For edge (v1, v2), we introduce d1,2 = 4, so ZP
1 = {1, 4}, ZP

2 = {2, 4}.
Also, for edge (v2, v3), we introduce d2,3 = 5, so ZP

2 = {2, 4, 5}, ZP
3 = {3, 5}.

• Step 3. Resulting scopes: the resulting scopes are:

ZP
1 = {1, 4}, ZP

2 = {2, 4, 5}, ZP
3 = {3, 5}.

The objective of the COSP is to partition these components into disjoint groups (sets of components with no overlapping
scopes) while minimizing the total sampling cost. Since the sampling cost for each component is set to 1, minimizing the
total sampling cost is equivalent to minimizing the number of groups (colors) used, as each subset contributes 1 to the total
cost. Therefore, solving the COSP on this constructed instance is equivalent to solving the GCP.

G.2.3. NP-COMPLETENESS

Since the GCP can be reduced to the COSP in polynomial time, and solving the COSP provides a solution to the GCP, the
COSP is NP-hard. Furthermore, since the COSP belongs to NP, it is NP-complete.

46

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

G.3. Computation Complexity

Intuitively, the SOSP involves grouping the factors of the MDP to minimize the total sampling cost. While the problem may
appear combinatorial, it is computationally efficient in our setting for two reasons: (1) the number of factors K is typically
small (on the order of log(|S||A|)), (2) there exist established exact and approximate algorithms to solve such problems
efficiently.

Specifically, the problem can be formulated as an integer program of size O(K), solvable by modern solvers like Gurobi
and CPLEX when K is moderate (e.g., K ≤ 500). Furthermore, as discussed in ealier subsections, it can be reduced to the
classical weighted GCP, for which many scalable algorithms exist. In practice, even problems with thousands of nodes (e.g.,
K = 5000) can be solved to near-optimality within seconds (Shen et al., 2022; Dokeroglu & Sevinc, 2021).

H. Numerical Experiments
We now present numerical experiments to evaluate our proposed model-based and model-free algorithms based on approxi-
mate factorization with comparisons to state-of-the-art RL algorithms. We focus on two types of tasks: (i) synthetic MDP
tasks and (ii) an electricity storage control problem in power system operation.

H.1. Synthetic MDP Tasks

The two synthetic MDP tasks that we consider are distinguished by their transition kernels: one with a perfectly factorizable
transition kernel and another with an imperfectly factorizable one. For the former task, we consider a three-dimensional
state space, where each state is represented as s = (s[1], s[2], s[3]), along with a one-dimensional action a. The transitions
for s[1] and s[2] are independent of other components, while s[3] is influenced by both its own state and the action a. Each
substate and the action space consists of 5 discrete elements. Both the transition kernel and the reward function are randomly
generated. We conduct 50 trials to compare our model-based and model-free algorithms (VRQL-AF) with approximate
factorization against traditional model-based RL and a variance-reduced Q-learning method without factorization. Figures.
3(a) and 3(b) illustrate the l∞-norm of the Q-function error for both settings, respectively, as a function of the number of
samples. As shown in the two figures, our approximate factorization methods (depicted in red) consistently exhibit lower
Q-function error across varying sample sizes compared to the vanilla RL approaches (depicted in blue). This demonstrates
that our approach significantly reduces sample complexity, showcasing superior sample efficiency. These findings underline
the effectiveness of our factorization-based framework in enhancing learning efficiency for multi-dimensional MDPs.

0.5 1.0 1.5 2.0 2.5
Number of Samples Ds 1e4

0.00

0.25

0.50

0.75

1.00

1.25

||Q
*

Q
* |

|

Vanilla Model-based RL
Model-based RL with AF

(a) Model-based RL

0.5 1.0 1.5 2.0 2.5
Number of Samples Ds 1e4

0.00

0.25

0.50

0.75

1.00

1.25

1.50

||Q
*

Q
* |

|

Q-Learning with Variance Reduction
VRQL-AF

(b) Model-free RL

Figure 3. Performance on Perfectly Factorizable MDPs

The second task involves MDPs with imperfectly factorizable transition kernels. Here, the state consists of 4 substates,
each taking one of 5 possible values. To investigate the trade-off between sample complexity and estimation error, we
evaluate three factorization schemes: (1) full factorization with Kω = 4, (2) partial factorization with Kω = 2, and (3) no
factorization with (Kω = 1), corresponding to vanilla RL. We conduct 200 trials to compare their performance with different
sample amounts. As shown in Figure 4, our model-based and model-free RL algorithms exhibit distinct convergence
behaviors under these different factorization levels. The results indicate two key breaking points (D1, E1) and (D2, E2) in
performance trade-offs (illustrated in Figure 4(b)), which inform the optimal factorization choice depending on the sample

47

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

0.00 0.25 0.50 0.75 1.00 1.25 1.50
Number of Samples Ds 1e4

3.5

3.0

2.5

2.0

1.5

1.0

lo
g|

|Q
*

Q
* |

|

K = 4
K = 2
K = 1

(a) Model-based RL

0.0 0.5 1.0 1.5 2.0
Number of Samples Ds 1e4

3.0

2.5

2.0

1.5

1.0

lo
g|

|Q
*

Q
* |

|

(D1, 1)

(D2, 2)

K = 4
K = 2
K = 1

(b) Model-free RL

Figure 4. Performance on Imperfectly Factorizable MDPs

Power Supply
!𝑤! 𝑤! − 𝑣!"

𝑣!#

𝑣!"

Energy Storage System

Power Grid Wind Farm

Required
Power

Generated
Power
𝑤!

Figure 5. Wind Farm Storage Control. (Adapted from (Lu et al., 2024))

availability. Specifically, in the small sample range with Ds ≤ D1, the full factorization scheme (Kω = 4) converges
quickly but has a higher asymptotic error, making it suitable when the samples are limited or the required accuracy is
not high. In the intermediate sample range with D1 < Ds ≤ D2, the partial factorization scheme (Kω = 2) provides a
balanced trade-off, achieving moderate convergence speed and a lower asymptotic error. This scheme is advantageous
when a compromise between sample efficiency and accuracy is needed. In the large sample range with Ds > D2, the no
factorization scheme (Kω = 1) results in the smallest asymptotic error but converges slowly. This approach is best suited
when very high precision is required, and a large sample size is available. Therefore, it highlights the benefits of selecting an
appropriate factorization level to match the sample size and desired accuracy. The flexibility in choosing among different
factorization strategies enables the optimization of performance based on specific requirements, making our approach
adaptable to various settings.

H.2. Wind Farm Storage Control Problem

We next evaluate the performance of our proposed approach on the wind farm storage control problem introduced in Section
B. As depicted in Figure 5, this problem involves managing energy storage systems to mitigate mismatches between variable
wind power generation and demand, thereby minimizing penalty costs.

The control actions consist of charging and discharging decisions influenced by real-time wind generation and unit penalty
prices. Constraints include storage capacity limits, prohibiting simultaneous charging and discharging, and lossy energy
dynamics. For a detailed model description, please refer to Appendix I. The total state-action space size in this problem is
104.

Figure 6 illustrates the performance of our approach, where we decompose the MDP into three components as described
earlier. Specifically, Figure 6(a) demonstrates that our approximate factorization-based algorithm converges significantly
faster than the vanilla model-based approach by leveraging the model’s structural properties. Additionally, our method

48

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

0.0 0.2 0.4 0.6 0.8 1.0
Number of Samples Ds 1e7

0.0

0.5

1.0

1.5

2.0

2.5

||Q
*

Q
* |

|

1e2
Vanilla Model-based RL
Model-based RL with AF

(a) Convergence of Q-function Estimation

0 500 1000 1500 2000 2500 3000
Time Slot

0

1

2

3

4

Co
st

 ($
)

1e4
Vanilla Model-based RL
Model-based RL with AF

(b) Economic Performance

Figure 6. Performance on Storage Control

exhibits considerably lower variance, indicating more stable performance for different sample conditions. Figure 6(b)
presents the economic benefits of our algorithm using a sample size of 60,000 data points (typically taking the wind farm
a year to collect), evaluating cumulative system penalty costs over 3,000 time slots. The results show that our approach
reduces costs by 19.3% compared to the vanilla model-based method, highlighting its enhanced effectiveness in managing
complex problems with large-scale state spaces.

I. Detailed Model of Wind Farm-equipped Storage Control
I.1. System Model

Consider a wind farm tasked with supplying power to the grid under an electricity supply contract. The predetermined
supply quantity of wind power at any given time t is denoted by ŵt. This value is established based on wind power forecasts,
which can be made from a minute to a day in advance, either by the wind farm itself or the Independent System Operator
(ISO). As time progresses, the actual wind power generation wt is sequentially disclosed in real-time. The wind farm is
equipped with a storage system, allowing it to either store wind energy, denoted as u+

t , or release stored energy, denoted as
u−
t into the grid at any time t. As a result, the total power delivered to the grid, represented by gt, is determined by

gt = wt + v−t − v+t .

When the mismatch exists between commitment ŵt and the delivered power gt, the wind farm will be charged with a penalty
cost ct(ŵt, gt) as follows:

ct(ŵt, gt) = p+t max(gt − ŵt, 0) + p−t max(ŵt − gt, 0),

where p+t and p−t denote the unit penalty costs for wind generation surplus and shortage at time t, respectively.

The wind farm targets to minimize the accumulated mismatch penalty costs across all T time slots by reasonably controling
the storage system. Mathematically, the storage control problem can be formulated as follows:

(P1) min
v+
t ,v−

t ,∀t

∑T

t=1
ct(ŵt, gt) (85)

s.t. gt = wt + v−t − v+t ,∀t, (86)

SoC1 =
C

2
, (87)

SoCt+1 = SoCt + η+v+t − η−v−t ,∀t, (88)

η+v+t ≤ C − SoCt,∀t, (89)

η−v−t ≤ SoCt,∀t, (90)

v+t ≤ wt,∀t, (91)

49

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

v+t , v
−
t ≥ 0,∀t, (92)

v+t v
−
t = 0,∀t. (93)

In the optimization, the decision variables at time t include:

• v+t : generated wind power which is charged to the energy storage;

• v−t : discharged energy from the storage to the grid;

And the other functions, latent variables, and parameters include:

• ct(·): total penalty cost at time t;

• ŵt: committed wind power supply at time t;

• wt: wind power generation at time t;

• T : total duration of storage control decisions;

• p+t , p−t : unit grid penalty prices for power generation shortage and surplus at time t, respectively;

• gt: actual supplied energy at time t;

• SoCt: state-of-charge (SOC) of storage at time t;

• C: energy storage capacity;

• η+, η−: charging and discharging efficiencies of storage;

Constraint (86) represents the delivered power; constraints (87) and (88) characterize the dynamics of storage; and constraints
(89) and (90) denote the storage capacity limits. Constraint (91) and (92) show the upper and lower limits of storage control
actions, and constraint (93) indicates that the storage cannot be charged and discharged simultaneously.

Due to the inherent stochasticity of penalty prices and renewable energy production, it is impractical to obtain the optimal
future storage control decisions. Therefore, in practice, we often consider sequential storage control. Specifically, at
each time t, we determine the current storage control actions v+t , v

−
t , ct based on the currently available information.

Consequently, we establish the following online storage control problem at time t as follows:

(P2) min
v+
t ,v−

t

ct(ŵt, gt) +

∞∑
τ=t+1

γτ−tE(cτ (ŵτ , gτ)) (94)

s.t. gt = wt + v−t − v+t , (95)

SoCt+1 = SoCt + η+v+t − η−v−t , (96)

η+v+t ≤ C − SoCt, (97)

η−v−t ≤ SoCt, (98)

v+t ≤ wt, (99)

v+t , v
−
t ≥ 0, (100)

v+t v
−
t = 0. (101)

I.2. Markov Decision Process Modeling

We highlight that problem (P2) can be transformed into MDP in the following manner:

Markov Decision Process (S,A,P,R):

50

Overcoming the Curse of Dimensionality in Reinforcement Learning via Approximate Factorization

• States S: Any state s ∈ S is composed of the penalty prices p+, p−, the committed and real wind power generation ŵ and
w, and state-of-charge SoC. Formally, s = (p+, p−, ŵ, w, SoC);

• Actions A: Any action a ∈ A is composed of the charge amount v+ and discharge amount v−. Formally, a = (v+, v−);

• Transition probability P : P is the transiting probability matrix Pa = {Pr(st+1 = s′|st = s, at = a),∀s, s′ ∈ S, a ∈ A},
which includes the probability of transiting from state s to s′ with action a for all s, s′ and a;

• Reward R: R is the immediate reward (penalty in our case) after transiting from state s to state s′ due to action a, i.e.,
R = {r(s, a),∀s, a}. Specifically, in the one-shot decision problem, the penalty r(s, a) equals the negative of the penalty,
i.e.,

r(s, a) = p+ max(w − ŵ, 0) + p− max(ŵ − w, 0).

We can observe that, for the storage control problem, the state space S and the action space A are known. The reward
R is also known once the state s and action a are decided. The only unknown comes from the transition probability P .
However, some important observations for P can simplify the problem. Specifically, we can divide the state variables
s = (p+, p−, ŵ, w, SoC) into one deterministic state and several random states. The deterministic state is SoC, which can
be determined following Eq. (96) without any uncertainty. And the random states include p+, p−, ŵ, w, which are fully
random3.

In our numerical study, we assume p = p+ = p−, and observe that only ∆ = ŵ−w exists in the reward function. Therefore,
the state can be rewritten as S = (p,∆w, SoC). For the factorization scheme ω, we use the following factorization to the
transition kernel:

P̂ (pt+1,∆t+1, SoCt+1|pt,∆t, SoCt, at) = P̂ (pt+1|pt)P̂ (∆t+1|∆t)P̂ (SoCt+1|SoCt, at).

I.3. Parameter Settings

In the numerical study, we utilized the California aggregate wind power generation dataset from CAISO (California ISO,
2021) containing predicted and real wind power generation data with a 5-minute resolution spanning from January 2020 to
December 2020. The penalty price equals the average electricity price of CASIO (California ISO, 2021) with the matching
resolution and periods. We set C = 500 kWh, γ = 0.9. The discretization levels of p, ∆w and SoC are set to be 8, 8, 50,
respectively. The action set includes 3 discretized choices: charging (discharging) to satisfy 100%, 50%, and 0% of energy
mismatches, respectively.

3Note that, the committed wind power ŵ is essentially not random. However, only the generation mismatch w − ŵ exists in our
problem, and such mismatch can be regarded as a random variable.

51

