
U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

On Truthful Item-Acquiring Mechanisms for
Reward Maximization

Submission ID: 178

ABSTRACT
In this research, we study the problem that a collector acquires

items from the owner based on the item qualities the owner de-

clares and an independent appraiser’s assessments. The owner is

interested in maximizing the probability that the collector acquires

the items and is the only one who knows the items’ factual quality.

The appraiser performs her duties with impartiality, but her assess-

ment may be subject to random noises, so it may not accurately

reflect the factual quality of the items. The main challenge lies in

devising mechanisms that prompt the owner to reveal accurate

information, thereby optimizing the collector’s expected reward.

We consider the menu size of mechanisms as a measure of their

practicability and study its impact on the attainable expected re-

ward. For the single-item setting, we design optimal mechanisms

with a monotone increasing menu size. Although the reward gap

between the simplest and optimal mechanisms is bounded, we show

that simple mechanisms with a small menu size cannot ensure any

positive fraction of the optimal reward of mechanisms with a larger

menu size. For the multi-item setting, we show that an ordinal

mechanism that only takes the owner’s ordering of the items as

input is not incentive-compatible. We then propose a set of Union

mechanisms that combine single-item mechanisms. Moreover, we

run experiments to examine these mechanisms’ robustness against

the independent appraiser’s assessment accuracy and the items’

acquiring rate.
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1 INTRODUCTION
Information asymmetry is a prevalent concern in online markets

and the economics of the web. This situation arises when one

party possesses superior information compared to another in a
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market setting, potentially leading to inefficiencies that hinder

the quantity and quality of transactions. To address these issues

and enhance market efficiency, it becomes imperative to design

incentive mechanisms that encourage truthful information sharing

among the involved parties.

In one such scenario, an owner possesses a collection of items,

and their actual quality is undisclosed. A collector considers acquir-

ing these items but lacks precise information about their condition

and quality. Despite this, the collector has access to statistical data

related to the items, offering valuable yet potentially imperfect

insights. Furthermore, the collector can rely on assessments from

an independent appraiser, an expert in the field. It’s important to

note that these appraiser assessments may be affected by random

noise, adding complexity to the decision-making process. The cen-

tral question addressed in this study revolves around whether the

collector can craft incentive mechanisms that effectively elicit truth-

ful information from the owner. Our ultimate aim is to optimize

the collector’s reward for acquiring these items, shedding light on

how to bridge information gaps and foster more efficient dynamics

within online markets.

This item-acquiring problem encompasses a wide range of op-

timization problems. We provide several illustrative examples to

showcase its versatility.

Paper acceptance for conference proceedings. The internet and web
technologies have rapidly evolved, leading to a surge in academic

paper submissions, especially in areas like Web economics, social

networks, and user modeling. For instance, The Web Conference

(WWW) saw a substantial increase in paper submissions, from

around 950 in 2017 to over 1,900 in 2023, reflecting heightened

interest in this dynamic field. To manage this influx, conferences

employ strategies like engaging expert reviewers [32]. They also

implement measures to streamline the process [10, 11, 34, 37, 40].

However, information asymmetry poses challenges in conducting

accurate reviews, partly due to differences in authors’ and reviewers’

timeframes [34, 37]. In this process, authors aim to maximize their

paper’s acceptance chances, while conference organizers seek to

uphold their prestige by accepting top-tier research papers.

App Store Review Process. The App Store Review Process exempli-

fies a web-related economic activity where developers submit their

mobile applications to platforms like Apple’s App Store or Google

Play. In this ecosystem, expert moderators meticulously assess the

apps for quality, security, and guidelines adherence, maintaining

a high-quality, secure marketplace. App stores aim to ensure com-

pliance, generate revenue, promote fairness, and build user trust.

On the other hand, developers possess a significant information ad-

vantage over app stores and their moderators. They have in-depth

knowledge about their app’s functionality, marketing strategies,

and monetization data, and have their own set of goals, including

seeking exposure, monetization opportunities, user engagement,

compliance with platform rules, receiving feedback, and achieving

long-term success.
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This paper presents a fresh perspective on eliciting true infor-

mation in the item-acquiring problem and addresses it using mech-

anism design approaches. In mechanism design, a menu refers to

a collection of options or alternatives offered to participants by

a mechanism. Generally, a mechanism with a larger menu size

has the potential to achieve higher efficiency by providing more

choices to participants. However, this increased efficiency comes

at the cost of greater complexity. As a result, simpler mechanisms

with a smaller menu size are often preferred over complex ones

with larger menus, as they are easier to implement and understand

[4, 21, 38]. Mechanism design studies have extensively explored

the tradeoff between menu size and optimality. The optimal size

of a menu in a mechanism is often context-specific and contingent

on the objectives of the mechanism designer. Taking into account

these factors, researchers aim to strike a balance between offering

ample choices and ensuring manageable implementation for more

effective and efficient mechanisms.

1.1 Our Contribution
In the single-item setting, our research highlights the uniqueness

of the Score-Only Mechanism as the sole deterministic, incentive-

compatible, and monotone mechanism under mild conditions. De-

spite its simplicity, we discover that the additive reward gap be-

tween the Score-Only Mechanism and the optimal reward remains

bounded. To enrich the choices available to the owner, we introduce

a set of mechanisms offering two options. Notably, the optimal Two

Menu mechanism can be efficiently computed in polynomial time.

Additionally, we compute the optimal mechanism with a bounded

menu size, shedding light on the tradeoff between menu size and

reward. Surprisingly, we find that the collector’s expected reward

can increase without bounds as the menu size grows, and having

a small menu size cannot guarantee any positive fraction of the

optimal reward.

In the multi-item setting, we unveil the limitations of an ordinal

mechanism that relies solely on the owner’s item ordering as input,

as it proves to be non-incentive-compatible. To address this, we

propose a set of Unionmechanisms that ingeniously combine single-

item mechanisms.

Furthermore, we conduct experiments to assess the robustness

of these mechanisms concerning the accuracy of the independent

appraiser’s assessments and the rate of items being acquired. These

experiments shed valuable insights into the practicality and effec-

tiveness of the proposed mechanisms in real-world scenarios.

1.2 Related work
Handling the fast-growing number of submissions to academic

conferences has attracted a lot of attention. Almost all previous

peer review mechanisms only rely on the reviewers’ expertise [8,

17, 27]. To the best of our knowledge, the first exception was [35,

36], which recommends using the author’s knowledge to assist

in peer-reviewing because an author knows her papers the best.

Su proposes the Isotonic Mechanism, which asks the author to

report the ranking of her submissions. Wu et al. [39] subsequently

extends the Isotonic Mechanism from the single-owner scenario to

accommodate multiple owners, a scenario common in peer-review

situations involving papers with multiple authors. The mechanism

returns adjusted scores by solving a convex optimization problem

related to the ranking and imprecise raw scores given by reviewers.

If the author’s goal is to improve the accuracy of the scores for

each paper, the author should provide accurate ranking information.

While wewill also consider asking the author (the owner of research

papers) to provide a ranking of her papers, we consider the setting

in that the owner wants to maximize the probability of the items

getting acquired by a collector.

Miller et al. at 2005 introduce the peer-prediction problem and

proposes a peer-prediction method to elicit informative feedback in

online review platforms that can improve the accuracy of ratings

and reduce the problem of shilling [28]. Faltigs and Radaovic at

2017 notice that in many data science applications, such as crowd-

sourcing, peer review, or online auctions, there is a problem of

information asymmetry, where individuals have different levels of

information about a particular item or decision. This can lead to

biased or inaccurate information and undermine the data’s useful-

ness [9]. They employ auction design to elicit truthful information

from individuals. Dasgupta and Ghosh at 2013 propose a new ap-

proach to crowdsourced judgment elicitation that considers the

crowd workers’ varying levels of expertise [7]. The peer-prediction

problem has also been studied in [13, 23–25, 33]. The major dif-

ference between our model and theirs is that we assume that the

independent appraiser is non-strategic. The appraiser performs

her duties with impartiality, which genuinely provides a score for

the collector’s item-acquiring decision, although the score may be

subject to random noises.

Brier et al. at 1950 introduces the Brier score as a way to evaluate

probabilistic forecasts [5]. The Brier score is a proper scoring rule

that measures the accuracy of a probabilistic forecast by comparing

the predicted probabilities to the actual outcomes. Examples of the

scoring rule include logarithmic, quadratic, and spherical scoring

rules [16, 18, 19, 31]. They are initially used in weather forecasting

[6, 30], and have now been extended to prediction markets [14],

finance, and macroeconomics [15, 29]. In our model, the goal is

to optimize the collector’s reward instead of just eliciting the true

information.

The menu size is an important consideration in mechanism de-

sign as it can impact the optimality and practicability of the mecha-

nism. A larger menu can provide more options for the participants,

but it can also increase the complexity of the mechanism and reduce

practicality. Therefore, researchers have proposed mechanisms of

different menu sizes and examined their optimality in various set-

tings [4, 21, 38].

2 SINGLE-ITEM MECHANISMS
An owner has an item whose factual quality, 𝑣 ∈ 𝑉 , is the owner’s

private information. The factual quality 𝑣 follows a discrete prob-

ability distribution 𝐷 . Let 𝑑 (𝑣) be the probability that the factual

quality is 𝑣 and the support of 𝑉 be |𝑉 | = 𝑛. In a single-item ac-

quiring mechanism, the owner declares a quality 𝑣 ′ ∈ 𝑉 of her

item, which is not necessarily the same as 𝑣 . The collector will

arrange for the item to be assessed by an independent appraiser

and deemed a quality score. This quality score is subject to random

noises and may not accurately reflect the item’s factual value. De-

note 𝑟 (𝑣, 𝑠) the probability that the item’s factual quality is 𝑣 , and
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it receives score 𝑠 , where 𝑠 ∈ 𝑆 and the support of 𝑆 is |𝑆 | =𝑚. Let

𝑅 = [𝑟 (𝑣, 𝑠)] be the stochastic matrix whose elements are 𝑟 (𝑣, 𝑠) and∑
𝑠∈𝑆 𝑟 (𝑣, 𝑠) = 1,∀ 𝑣 ∈ 𝑉 . The matrix 𝑅 and the distribution 𝐷 are

public information. Denote 𝑡 the quality bar of this item-acquiring
problem, which is chosen by nature. The quality bar influences the

collector’s decision-making since the collector has a positive reward

if she acquires an item whose factual value 𝑣 exceeds 𝑡 . Given the

distribution 𝐷 , the stochastic matrix 𝑅, and the quality bar 𝑡 , the

collector publicizes an acquiring matrix 𝑋 = [𝑥 (𝑣 ′, 𝑠)], in which

the element 𝑥 (𝑣 ′, 𝑠) is the probability she acquires the item when

the owner reports quality 𝑣 ′ and receives score 𝑠 . The owner, in

view of the acquiring matrix 𝑋 and the quality bar 𝑡 , is interested

in maximizing the probability that her item gets acquired by the

collector. Therefore, she will report a quality 𝑣 ′ that maximizes∑︁
𝑠∈𝑆

𝑥
(
𝑣 ′, 𝑠

)
𝑟 (𝑣, 𝑠) .

When 𝑥 (𝑣 ′, 𝑠) ∈ {0, 1}, we call the single-item acquiring mechanism

deterministic. When 𝑥 (𝑣 ′, 𝑠) ∈ [0, 1], the mechanism is randomized.
We are interested in incentive-compatible mechanisms that elicit

truthful information from the owner. Incentive-compatibility is

a crucial property in mechanism design because it ensures that

individuals have no incentive to misrepresent their private infor-

mation. Formally speaking, a mechanism is incentive-compatible if

the owner maximizes the probability that her item gets acquired

by declaring the true quality 𝑣 , i.e.,∑︁
𝑠∈𝑆

𝑥 (𝑣, 𝑠)𝑟 (𝑣, 𝑠) ≥
∑︁
𝑠∈𝑆

𝑥 (𝑣 ′, 𝑠)𝑟 (𝑣, 𝑠), ∀ 𝑣, 𝑣 ′ ∈ 𝑉 .

When the owner reports truthfully, the collector’s reward is∑︁
𝑠∈𝑆,𝑣∈𝑉

(𝑣 − 𝑡) 𝑑 (𝑣) 𝑥 (𝑣, 𝑠) 𝑟 (𝑣, 𝑠) .

So, the collector’s objective is to determine an acquiring matrix 𝑋

that elicits true information from the owner to maximize her reward.

We call the mechanism that maximizes the collector’s expected

reward optimal.
As a principle, the collector relies on the expertise of the ap-

praiser, so it is desirable that the acquiring matrix 𝑋 = [𝑥 (𝑣, 𝑠)]
is monotone increasing in the quality score 𝑠 for any fixed factual

quality 𝑣 . In other words, a mechanism is monotone if the higher

quality of the item is considered by the independent appraiser, the

more likely that the collector will acquire the item.

We begin by examining a simple mechanism that makes the

acquiring decision regardless of the owner’s report.

The Score-OnlyMechanism (SOM). For any score 𝑠 , the collec-
tor acquires the item if the expected quality of the item conditioning

on the score reaches the quality bar, and denies it otherwise, i.e.,

𝑥 (𝑣, 𝑠) =
{

1, 𝐸𝑣∈𝑉 [𝑣 | 𝑠] ≥ 𝑡, ∀ 𝑠 ∈ 𝑆,

0, otherwise.

Since

𝐸𝑣∈𝑉 [𝑣 | 𝑠] =
∑︁
𝑣∈𝑉

𝑣 · Pr[𝑣 | 𝑠] =
∑

𝑣∈𝑉 𝑣𝑑 (𝑣)𝑟 (𝑣, 𝑠)∑
𝑣∈𝑉 𝑑 (𝑣)𝑟 (𝑣, 𝑠) ,

the acquiring matrix of the Score-Only Mechanism is such that

𝑥 (𝑣, 𝑠) = 1 if and only if∑︁
𝑣∈𝑉

(𝑣 − 𝑡)𝑑 (𝑣)𝑟 (𝑣, 𝑠) ≥ 0, ∀ 𝑠 ∈ 𝑆.

In view that SOM makes the acquiring decision independent of

the owner’s report 𝑣 ′, the mechanism is incentive-compatible. In

addition, the extent to which SOMmaximizes the collector’s reward

depends on the stochastic matrix 𝑅. We call matrix 𝑅 consistent with
probability distribution 𝐷 , if for any 𝑠 ,

𝐸𝑣∈𝑉 [𝑣 | 𝑠] ≥ 𝑡 ⇔ 𝑠 ≥ 𝑡 .

Hence, with the consistency condition, the collector in SOM can

acquire the item if the quality score deemed by the appraiser exceeds

the quality bar, i.e., 𝑠 ≥ 𝑡 . In practice, this criterion significantly

facilitates the collector’s decision-making. In the following, we

show that SOM is the optimal mechanism that fulfills these desired

properties. Due to space limitations, we defer some proofs in the

paper to the Appendix.

Theorem 2.1. When the stochastic matrix 𝑅 is consistent with
the quality distribution 𝐷 , SOM is optimal amongst all deterministic,
incentive-compatible, and monotone mechanisms.

Proof. Due to the consistency condition and that SOM is de-

terministic, the collector acquires the item if and only if 𝑠 ≥ 𝑡 .

Therefore, SOM is monotone in the quality score 𝑠 . Next, we prove

its optimality. Since the elements of the acquiring matrix, 𝑋 , are

binary in deterministic mechanisms, when we further restrict to

monotone mechanisms, we know that for each 𝑣𝑖 ∈ 𝑉 , there ex-

ists an integer 𝑘𝑖 , such that 𝑥 (𝑣𝑖 , 𝑠1) = · · · = 𝑥 (𝑣𝑖 , 𝑠𝑘𝑖 ) = 0, and

𝑥 (𝑣𝑖 , 𝑠𝑘𝑖+1
) = · · · = 𝑥 (𝑣𝑖 , 𝑠𝑚) = 1. We claim that due to incentive

compatibility, this integer 𝑘𝑖 should be independent of the row 𝑖 .

Suppose for contradiction that there exist two rows 𝑖 and 𝑗 , which

correspond to two different factual qualities 𝑣𝑖 and 𝑣 𝑗 , for which

𝑘𝑖 ≠ 𝑘 𝑗 . Without loss of generality, assume that 𝑘𝑖 < 𝑘 𝑗 . Then,

when the item’s factual quality is 𝑣 𝑗 , the owner can increase the

probability that the item gets acquired by misreporting 𝑣𝑖 , since

𝑥 (𝑣𝑖 , 𝑠𝑘𝑖+1
) = 1 whereas 𝑥 (𝑣 𝑗 , 𝑠𝑘𝑖+1

) = 0, which violates incentive

compatibility. Hence, the row rank of the acquiring matrix 𝑋 is 1.

Last, the consistency condition uniquely determines the number

of 1’s in the rows of the acquiring matrix, except the ties when

𝑠 = 𝑡 , which does not make a difference to the collector’s expected

reward, no matter whether the mechanism acquires or denies the

item. Therefore, SOM is optimal. □

While these properties are desirable, they restrict the search

space to improve the collector’s expected reward. We call a mecha-

nism omniscient if it knows the factual quality 𝑣 and only acquires

the item if 𝑣 ≥ 𝑡 and denies it otherwise. So, the omniscient mech-

anism is not confronted with these desirable properties. We first

characterize the reward gap between SOM and the omniscient

mechanism.

Define the sum of the differences between the factual quality

and the score by total bias. That is, the total bias is∑︁
𝑠∈𝑆,𝑣∈𝑉

|𝑠 − 𝑣 | 𝑑 (𝑣)𝑟 (𝑣, 𝑠) .

We establish the following result.
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Theorem 2.2. The difference between the collector’s reward in the
Omniscient Mechanism and her expected reward in the Score-Only
Mechanism is bounded by the total bias.

Proof. Given a fixed 𝑠 ∈ 𝑆 , the quality deemed by the appraiser,

we consider the difference between the collector’s reward in the Om-

niscient Mechanism and her reward in the Score Only Mechanism.

Their difference is due to that the SOM may not acquire the item

while the Omniscient Mechanism does, when the factual quality is

higher than the quality bar. We define it by the loss conditioning on
𝑠 . That is,

𝐿𝑠 =
∑︁
𝑣≥𝑡

(𝑣 − 𝑡)𝑑 (𝑣)𝑟 (𝑣, 𝑠).

If SOM does not acquire the item, it is because that∑︁
𝑣∈𝑉

(𝑣 − 𝑡)𝑑 (𝑣)𝑟 (𝑣, 𝑠) ≤ 0. (1)

Consider mutually exclusive cases 𝑣 < 𝑡 and 𝑣 ≥ 𝑡 , and rearrange

this inequality, we have that

𝐿𝑠 ≤ −
∑︁
𝑣<𝑡

(𝑣 − 𝑡)𝑑 (𝑣)𝑟 (𝑣, 𝑠) .

When 𝑠 ≤ 𝑡 , we have

𝐿𝑠 ≤
∑︁
𝑣≥𝑡

(𝑣 − 𝑠)𝑑 (𝑣)𝑟 (𝑣, 𝑠) ≤
∑︁
𝑣∈𝑉

|𝑣 − 𝑠 | 𝑑 (𝑣)𝑟 (𝑣, 𝑠).
(2)

When 𝑠 > 𝑡 , from (1), we obtain

𝐿𝑠 ≤ −
∑︁
𝑣<𝑡

(𝑣 − 𝑡)𝑑 (𝑣)𝑟 (𝑣, 𝑠)

= −
∑︁
𝑣<𝑠

(𝑣 − 𝑠)𝑑 (𝑣)𝑟 (𝑣, 𝑠) +
∑︁

𝑡≤𝑣<𝑠
(𝑣 − 𝑠)𝑑 (𝑣)𝑟 (𝑣, 𝑠)

−
∑︁
𝑣<𝑡

(𝑠 − 𝑡)𝑑 (𝑣)𝑟 (𝑣, 𝑠)

≤
∑︁
𝑣∈𝑉

|𝑣 − 𝑠 |𝑑 (𝑣)𝑟 (𝑣, 𝑠).

(3)

Combining function (2) with (3), we get

𝐿𝑠 ≤
∑︁
𝑣∈𝑉

|𝑠 − 𝑣 | 𝑑 (𝑣)𝑟 (𝑣, 𝑠) .

This is the total scoring bias conditioned on 𝑠 . Summing over all 𝑠 ,

we get that

𝐿 =
∑︁
𝑠∈𝑆

𝐿𝑠 ≤
∑︁

𝑠∈𝑆,𝑣∈𝑉
|𝑠 − 𝑣 | 𝑑 (𝑣)𝑟 (𝑣, 𝑠) .

The proof for the mechanism acquires the item is relatively similar.

Therefore, the difference between the two mechanisms is bounded

by the total bias. □

Clearly, in order to improve the collector’s expected reward,

we need to relax these properties. In the following, we present a

randomized yet simple mechanism. We start by proposing a set of

these mechanisms and then find the optimal one within this set.

Let 𝛼 ∈ [0, 1] and 𝑏1, 𝑏2 ∈ 𝑆 , where 𝑏1 ≤ 𝑏2. Given any fixed

factual quality 𝑣 ∈ 𝑉 , due to monotonicity, assume that the scores

𝑠 𝑗 ∈ 𝑆, 𝑗 ∈ [𝑚] are in increasing order. Let us consider two types of

acquiring vectors as below.

𝑥1 (𝑣, 𝑠) =
{

0, for 𝑠1 < · · · < 𝑠𝑙 < 𝑏1,

𝛼, for 𝑏1 ≤ 𝑠𝑙+1
< · · · < 𝑠𝑚,

𝑥2 (𝑣, 𝑠) =
{

0, for 𝑠1 < · · · < 𝑠ℎ < 𝑏2,

1, for 𝑏2 ≤ 𝑠ℎ+1
< · · · < 𝑠𝑚 .

Recall that the owner wants to maximize the probability that

the item gets acquired by the collector; that is, to maximize the∑
𝑠∈𝑆 𝑥 (𝑣 ′, 𝑠) 𝑟 (𝑣, 𝑠). Since 𝑅 = 𝑟 (𝑣, 𝑠) is public information, one

can solve this maximization problem on behalf of the owner when

rows of the acquiring matrix are restricted to the above two types.

Essentially, this problem boils down to comparing 𝛼
∑
𝑠≥𝑏1

𝑟 (𝑣, 𝑠)
and 1 · ∑𝑠≥𝑏2

𝑟 (𝑣, 𝑠). If 𝛼 ∑
𝑠≥𝑏1

𝑟 (𝑣, 𝑠) > 1 · ∑𝑠≥𝑏2
𝑟 (𝑣, 𝑠), then

the acquiring vector 𝑥1 (𝑣, 𝑠) is preferable; otherwise, 𝑥2 (𝑣, 𝑠) is
preferable. Denote 𝑉1 = {𝑣 | 𝛼 ∑

𝑠≥𝑏1
𝑟 (𝑣, 𝑠) >

∑
𝑠≥𝑏2

𝑟 (𝑣, 𝑠)} ⊂
𝑉 the set of the owner’s factual qualities with which 𝑥1 (𝑣, 𝑠) is
preferable, and 𝑉 \𝑉1 the set of factual qualities with which 𝑥2 (𝑣, 𝑠)
is preferable.

Two Menu Mechanisms (TMM). A Two Menu Mechanism

(TMM(𝑏1, 𝑏2, 𝛼)) offers two options, namely menus, to the owner. In

other words, the row rank of the acquiring matrix is 2. Specifically,

the acquiring matrix is

𝑥 (𝑣, 𝑠) =


0, if 𝑣 ∈ 𝑉1 and 𝑠 < 𝑏1,

𝛼, if 𝑣 ∈ 𝑉1 and 𝑠 ≥ 𝑏1,

0, if 𝑣 ∉ 𝑉1 and 𝑠 < 𝑏2,

1, if 𝑣 ∉ 𝑉1 and 𝑠 ≥ 𝑏2 .

So, one menu is that the collector will acquire the item with prob-

ability 𝛼 if the quality score 𝑠 reaches 𝑏1, and denies it otherwise.

The other menu is that the collector will acquire the item if the

quality score 𝑠 reaches 𝑏2, and denies it otherwise.

Intuitively, the owner prefers the first menu if the item is deemed

low quality by the appraiser and prefers the second menu if it is

deemed high quality.

Theorem 2.3. Any Two Menu Mechanism is incentive-compatible
and monotone. The optimal Two Menu Mechanism can be found in
𝑂 (𝑚3𝑛 log𝑛) time.

Proof. A TwoMenuMechanism is incentive compatible because

the owner’s most favorable action is captured by the definition of

sets𝑉1 and𝑉 \𝑉1. The monotonicity can be seen from the acquiring

probabilities 𝑥 (𝑣, 𝑠).
Consider two parameters 𝑏1, 𝑏2 ∈ 𝑆 in a Two Menu Mechanism.

Since |𝑆 | = 𝑚, the total number of these pairs of parameters is

𝑚2
. For each pair of 𝑏1 and 𝑏2, we can find the probability 𝛼 that

maximizes the collector’s expected reward. These three parameters

𝑏1, 𝑏2, 𝛼 define a Two Menu Mechanism. We find the optimal Two

Menu Mechanism by comparing the collector’s expected reward in

all𝑚2
of these Two Menu Mechanisms.

Without loss of generality, assume that the quality values in 𝑉

are sorted in increasing order, i.e., 𝑣1 < 𝑣2 < · · · < 𝑣𝑛 . For each

pair of 𝑏1 and 𝑏2, when 𝛼 = 0, 𝑉1 = ∅. The cardinality of the set

𝑉1 increases when 𝛼 increases. For every 𝑖 = 1, · · · , 𝑛, we com-

pute the probability 𝛼𝑖 such that the quality value 𝑣𝑖 is added to
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𝑉1. We sort these 𝛼𝑖 ’s in non-decreasing order and denote them by

𝛼
(1)
𝑖

, · · · , 𝛼 (𝑛)
𝑖

. It takes time 𝑂 (𝑛 log𝑛). For any 𝛼 ∈ [𝛼 ( 𝑗 )
𝑖

, 𝛼
( 𝑗+1)
𝑖

),
𝑗 = 1, · · · , 𝑛 − 1, 𝑉1 is determined. The collector’s expected reward

becomes a linear function of 𝛼 , and it takes 𝑂 (1) time to find the

optimal 𝛼 in the interval [𝛼 ( 𝑗 )
𝑖

, 𝛼
( 𝑗+1)
𝑖

). After searching in all in-

tervals, we pick the best 𝛼 . To conclude, the time complexity is

𝑂 (𝑚3𝑛 log𝑛). □

If we further relax the menu size, we can derive the optimal

mechanisms by solving a linear programming.

The Optimal Mechanisms (OM1). The acquiring matrix 𝑋 =

𝑥 (𝑣, 𝑠) of the optimal mechanisms that maximize the collector’s ex-

pected reward is the solution to the following linear programming.

max

∑︁
𝑠∈𝑆,𝑣∈𝑉

(𝑣 − 𝑡) 𝑑 (𝑣) 𝑥 (𝑣, 𝑠) 𝑟 (𝑣, 𝑠)

𝑠 .𝑡 .
∑︁
𝑠∈𝑆

𝑥 (𝑣, 𝑠)𝑟 (𝑣, 𝑠) ≥
∑︁
𝑠∈𝑆

𝑥 (𝑣 ′, 𝑠)𝑟 (𝑣, 𝑠), ∀ 𝑣, 𝑣 ′ ∈ 𝑉 ,

𝑥 (𝑣, 𝑠) ≥ 𝑥 (𝑣, 𝑠′), ∀ 𝑣 ∈ 𝑉 , 𝑠 > 𝑠′ ∈ 𝑆,

𝑥 (𝑣, 𝑠) ∈ [0, 1], ∀ 𝑣 ∈ 𝑉 , 𝑠 ∈ 𝑆.

(4)

We note that the optimal solution to this linear programming may

not be unique, and any optimal solution 𝑋 = [𝑥 (𝑣, 𝑠)] defines an
Optimal Mechanism.

Theorem 2.4. Any Optimal Mechanism derived from the opti-
mal solution of the linear programming is incentive compatible and
monotone. The set of optimal mechanisms is convex.

Proof. The first constraint of the linear programming implies

that the owner has a better chance of getting the item acquired

by reporting the factual quality 𝑣 than by misreporting any other

value 𝑣 ′. Therefore, it is incentive compatible. The second constraint

implies that the acquiring vectors 𝑥 (𝑣, 𝑠) are monotone in score 𝑠 .

We notice that any linear combination of a set of feasible so-

lutions to the linear programming is feasible. Hence, any linear

combination of a set of optimal solutions is feasible and optimal.

So, the set of optimal mechanisms is convex. □

We provide an 𝑂𝑀1 as an example.

Example 2.5. The set of possible factual quality is 𝑉 = 𝑆 =

{0, 1

3
, 2

3
, 1} and the probabilities of the values are 𝑑 (0) = 0.264,

𝑑 ( 1

3
) = 0.539, 𝑑 ( 2

3
) = 0.186, 𝑑 (1) = 0.012. The quality bar is 𝑡 = 0.5.

The stochastic matrix 𝑅 and the acquiring matrix 𝑋 by solving the

linear programming shown below:

𝑅 =


0.762 0.122 0.072 0.044

0.009 0.792 0.136 0.063

0.038 0.127 0.825 0.010

0.031 0.052 0.171 0.746

 ,
𝑋 =


0.044 0.044 0.044 0.044

0.0 0.0 0.37931 0.37931

0.0 0.0 0.37931 0.37931

0.0 0.0 0.0 1.0

 .
In this example, the row rank of the acquiring matrix 𝑋 is three,

and each linearly independent row can be viewed as a different

menu to the owner [21, 38]. Since simple mechanisms, in terms of

providing fewer menus for the owner to choose from, are preferable,

we bound the size of menus in an optimal mechanism as below.

Theorem 2.6. Denote 𝑉𝐵 , the set of factual qualities with a value
above the quality bar 𝑡 . That is, 𝑉𝐵 = {𝑣 | 𝑣 ∈ 𝑉 , 𝑣 > 𝑡}. There exists
an optimal mechanism OM1 whose menu size is at most |𝑉𝐵 |.

Proof. Suppose 𝑋 = [𝑥 (𝑣, 𝑠)] is an optimal solution to the opti-

mization problem. For any 𝑣 ≤ 𝑡 , we define a mapping 𝑓 as

𝑓 (𝑣) = arg max

𝑣>𝑡

∑︁
𝑠∈𝑆

𝑥 (𝑣, 𝑠)𝑟 (𝑣, 𝑠) .

Given any 𝑣 ≤ 𝑡 , which corresponds to one menu 𝑥 (𝑣, 𝑠), 𝑓 (𝑣)
maps it to a value above the quality bar, which corresponds to an

existing menu of the optimal mechanism defined by 𝑋 = [𝑥 (𝑣, 𝑠)].
Therefore, we have a new mechanism 𝑋 = 𝑥 (𝑣, 𝑠), where

𝑥 (𝑣, 𝑠) =
{
𝑥 (𝑓 (𝑣), 𝑠), if 𝑣 ≤ 𝑡,

𝑥 (𝑣, 𝑠), if 𝑣 > 𝑡 .

Clearly, the menu size of the new mechanism 𝑋 is bound by |𝑉𝐵 |.
In addition, 𝑥 (𝑣, 𝑠) satisfies the linear programming constraints,

so it is indeed a feasible solution. For optimality, since the map-

ping 𝑓 (𝑣) reduces the feasible region when 𝑣 ≤ 𝑡 , the acquir-

ing probability becomes weakly smaller, i.e.,

∑
𝑠∈𝑆 𝑥 (𝑣, 𝑠)𝑟 (𝑣, 𝑠) ≥∑

𝑠∈𝑆 𝑥 (𝑣, 𝑠)𝑟 (𝑣, 𝑠),∀ 𝑣 ≤ 𝑡 . Therefore, the objective value of the

linear programming becomes weakly larger. For 𝑣 > 𝑡 , nothing

changes. In all, 𝑋 = [𝑥 (𝑣, 𝑠)] is an optimal mechanism whose menu

size is at most |𝑉𝐵 |. □

Finally, we compare the expected reward of the collector in

the above mechanisms. For this purpose, the approximation ratio,

which originated from theoretical computer science, turns out to be

a compelling language [3, 20, 22]. In our context, the approximation
ratio is the largest ratio between the expected reward from two

mechanisms.

Theorem 2.7. The approximation ratio of TMM to SOM, is un-
bounded. The approximation ratio of 𝑂𝑀1 to TMM, is unbounded.

In other words, considering the menu size of SOM, TMM, and

𝑂𝑀1 are 0, 2, and at most |𝑉𝐵 |, respectively, these ratios imply

that simple mechanisms with a small menu size cannot ensure any

positive fraction of the optimal reward of mechanisms with a larger

menu size.

The proof is by constructing instances that an unbounded ratio

between two mechanisms is attained. The proof is deferred to the

Appendix.

3 MULTI-ITEM MECHANISMS
In the multi-item setting, the owner has 𝑘 items. Denote the factual

quality of item 𝑖 by 𝑣𝑖 ∈ 𝑉 , 𝑖 ∈ [𝑘], and the quality vector ®𝑣 =

(𝑣1, · · · , 𝑣𝑘 ) . Each factual quality 𝑣𝑖 independently and identically

follows the discrete probability distribution 𝐷 . Denote 𝑟 (𝑣𝑖 , 𝑠𝑖 ) the
probability that item 𝑖’s factual quality is 𝑣𝑖 , and it is deemed as

score 𝑠𝑖 by the independent appraiser, where 𝑠𝑖 ∈ 𝑆, 𝑖 ∈ [𝑘], and the
score vector ®𝑠 = (𝑠1, · · · , 𝑠𝑘 ). The quality bar 𝑡 is item independent,

i.e., the value of 𝑡 is the same for all items. The collector’s acquiring

decision is represented by 𝑋 = (𝑋1, · · · , 𝑋𝑘 ), where 𝑋𝑖 = [𝑥𝑖 (®𝑣, ®𝑠)]
is the acquiring matrix for item 𝑖 . Therefore, the owner’s objective
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is to maximize the total probability of her items being acquired,

which is ∑︁
®𝑠

∑︁
𝑖∈[𝑘 ]

(
𝑥𝑖 (®𝑣, ®𝑠)

∏
𝑗∈[𝑘 ]

𝑟 (𝑣 𝑗 , 𝑠 𝑗 )
)
.

The Optimal Mechanisms (OM𝑘 ). The acquiring matrices

𝑋 = (𝑋1, · · · , 𝑋𝑘 ) of the optimal mechanisms that maximize the

collector’s expected reward is the solution to the following linear

programming.

max

∑︁
®𝑣,®𝑠

∑︁
𝑖∈[𝑘 ]

(
(𝑣𝑖 − 𝑡)𝑥𝑖 (®𝑣, ®𝑠)

∏
𝑗∈[𝑘 ]

𝑟 (𝑣 𝑗 , 𝑠 𝑗 )𝑑 (𝑣 𝑗 )
)

𝑠 .𝑡 .
∑︁
®𝑠

∑︁
𝑖∈[𝑘 ]

(
𝑥𝑖 (®𝑣, ®𝑠)

∏
𝑗∈[𝑘 ]

𝑟 (𝑣 𝑗 , 𝑠 𝑗 )
)

≥
∑︁
®𝑠

∑︁
𝑖∈[𝑘 ]

(
𝑥𝑖 (®𝑣 ′, ®𝑠)

∏
𝑗∈[𝑘 ]

𝑟 (𝑣 𝑗 , 𝑠 𝑗 )
)
, ∀ 𝑖, ®𝑣 ′, ®𝑣, ®𝑠,

𝑥𝑖 (®𝑣, (®𝑠−𝑖 , 𝑠𝑖 )) ≥ 𝑥𝑖 (®𝑣, (®𝑠−𝑖 , 𝑠′𝑖 )), ∀ 𝑖, ®𝑣, ®𝑠−𝑖 , 𝑠𝑖 ≥ 𝑠′𝑖 ,

𝑥𝑖 (®𝑣, ®𝑠) ∈ [0, 1], ∀ 𝑖, ®𝑣, ®𝑠 .

(5)

Similar to (4), this linear programming aims to maximize the col-

lector’s expected reward. The first constraint guarantees incentive

compatibility of the mechanism, and the second constraint implies

monotonicity. Although OM𝑘 retains these desired properties, the

size of the linear programming grows exponentially in the number

of items. As a matter of course, we strive to design simple mech-

anisms for ease of implementation. We start by exploring ordinal

mechanisms that only take the owner’s ranking of the items as

input.

Su [35] considered an author-assisted peer-reviewing problem.

They proposed a truthful mechanism that takes only the author’s

ranking of the papers to produce a more accurate cardinal grading.

In light of this, we design a mechanism for our problem that takes

only the owner’s ranking of the items to maximize the collector’s

expected reward. For simplicity, we present the mechanism in the

form of only two items and investigate the incentive compatibility

of the mechanism.

The Ranking Mechanism (RM). Let the factual quality of the

owner’s two items be 𝑣1 and 𝑣2, and the owner’s reports be 𝑣 ′
1

and 𝑣 ′
2
. Denote 𝑉𝑔 = {(𝑣 ′

1
, 𝑣 ′

2
) | 𝑣 ′

1
> 𝑣 ′

2
}, 𝑉𝑒 = {(𝑣 ′

1
, 𝑣 ′

2
) | 𝑣 ′

1
= 𝑣 ′

2
},

𝑉𝑠 = {(𝑣 ′
1
, 𝑣 ′

2
) | 𝑣 ′

1
< 𝑣 ′

2
}, and 𝑉𝑟𝑎𝑛𝑘 = {𝑉𝑔,𝑉𝑒 ,𝑉𝑠 }. Essentially, the

mechanism only needs to take one of the elements in𝑉𝑟𝑎𝑛𝑘 as input,

rather than the exact values of 𝑣 ′
1
and 𝑣 ′

2
. Given the owner’s reports,

the Ranking Mechanism computes the conditional expected values

of the factual quality, i.e., for 𝑖 = 1, 2,

𝐸 [𝑣𝑖 |𝑠1, 𝑠2,𝑉𝑟𝑎𝑛𝑘 ] =
∑

(𝑣1,𝑣2 ) ∈𝑉𝑟𝑎𝑛𝑘 𝑣𝑖𝑑 (𝑣1)𝑑 (𝑣2)𝑟 (𝑣1, 𝑠1)𝑟 (𝑣2, 𝑠2)∑
(𝑣1,𝑣2 ) ∈𝑉𝑟𝑎𝑛𝑘 𝑑 (𝑣1)𝑑 (𝑣2)𝑟 (𝑣1, 𝑠1)𝑟 (𝑣2, 𝑠2)

.

Then, the mechanism acquires item 𝑖 if the expected factual value

conditioning on the ranking and deemed quality is greater than the

quality bar. That is,

𝑥𝑖,𝑟𝑎𝑛𝑘 (𝑠1, 𝑠2) =
{

1, 𝐸 [𝑣𝑖 | 𝑠1, 𝑠2,𝑉𝑟𝑎𝑛𝑘 ] ≥ 𝑡,

0, otherwise.

Finally, the total probability of acquiring both itemswhen the owner

reports 𝑉𝑟𝑎𝑛𝑘 is

𝑥𝑟𝑎𝑛𝑘 =
∑︁

𝑠1,𝑠2∈𝑆
𝑟 (𝑣1, 𝑠1)𝑟 (𝑣2, 𝑠2) (𝑥1,𝑟𝑎𝑛𝑘 (𝑠1, 𝑠2) + 𝑥

2,𝑟𝑎𝑛𝑘 (𝑠1, 𝑠2)) .

Theorem 3.1. The Ranking Mechanism RM is not incentive com-
patible.

Next, we propose a class of mechanisms – the UnionMechanisms

– each consists of single-item mechanisms (SOM, TMM, OM1, and

a combination of them or any other mechanisms). Recall |𝑉 | = 𝑛,

and denote the 𝑛 discrete values in 𝑉 by 𝑣 (1) , · · · , 𝑣 (𝑛) .
The Union Mechanisms (UM). A Union Mechanism consists

of 𝑘 independent single-item mechanisms, each applied to an item

𝑖 ∈ [𝑘]. Denote 𝑌𝑖 = [𝑦𝑖 (𝑣𝑖 , 𝑠𝑖 )] the acquiring matrix of item 𝑖 . Let

Γ𝑦 (®𝑣, ®𝑠) =
∑
𝑖 𝑦𝑖 (𝑣𝑖 , 𝑠𝑖 ). There must exist a number 𝑞 ∈ [𝑛] such

that ���{𝑖 | 𝑣𝑖 > 𝑣 (𝑞) }
��� < Γ𝑦 (®𝑣, ®𝑠) ≤

���{𝑖 | 𝑣𝑖 ≥ 𝑣 (𝑞) }
��� . (6)

The acquiring probability of item 𝑖 in the Union Mechanism is

𝑥𝑖 (®𝑣, ®𝑠) =


1, if 𝑣𝑖 > 𝑣 (𝑞) ,
Γ𝑦 (®𝑣,®𝑠 )−

��{𝑖 | 𝑣𝑖>𝑣 (𝑞) }��
|{𝑖 | 𝑣𝑖=𝑣 (𝑞) } | , if 𝑣𝑖 = 𝑣 (𝑞) ,

0, if 𝑣𝑖 < 𝑣 (𝑞) .

We establish the following properties of any Union Mechanism.

Theorem 3.2. If each of the 𝑘 single-item mechanisms is incentive
compatible, then the Union Mechanism is incentive compatible. If
𝑦𝑖 (𝑣𝑖 , 𝑠𝑖 ) is monotone in 𝑠𝑖 , then 𝑥𝑖 (®𝑣, ®𝑠) is monotone in 𝑠𝑖 , for any ®𝑣
and ®𝑠−𝑖 .

The Union Mechanism weakly improves the conference profit

on every valuation and score profile. The idea is to reduce the

likelihood of getting low-quality items and increase the likelihood

of getting high-quality items. It always performs weakly better than

we use mechanisms for single paper submissions independently.

Recall that SOM attains the smallest reward amongst several

single-item mechanisms, and its reward gap with the omniscient

mechanism is lower bounded. Therefore, in a multi-item setting,

we can lower bound the reward gap between a Union Mechanism

consisting of any single-item mechanisms with the omniscient

mechanism. For example, we present the following two results

regarding the collector’s expected reward maximization.

Corollary 3.3. The reward gap between the omniscient mecha-
nism and the UnionMechanism consisting of𝑘 TwoMenuMechanisms
is lower bounded by 𝑘 times of total bias.

Proof. Essentially, a UnionMechanism aggregates the acquiring

probabilities of 𝑘 single-item mechanisms and redistributes the

probabilities amongst the 𝑘 items whose qualities are above the

threshold value 𝑣 (𝑞) in an even manner. So, the composite Union

Mechanism is incentive compatible when the underlying 𝑘 single-

item mechanisms are incentive compatible.

For any ®𝑣 and ®𝑠−𝑖 , when 𝑠𝑖 increases, then 𝑦𝑖 (𝑣𝑖 , 𝑠𝑖 ) increases,
hence Γ𝑦 (®𝑣, ®𝑠) increases. So,𝑥𝑖 (®𝑣, (®𝑠−𝑖 , 𝑠𝑖 )) increases, since it is either
independent of 𝑠𝑖 or increasing in 𝑠𝑖 . □
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Theorem 3.4. In the 𝑘-item setting, the approximation ratio of
the optimal multi-item mechanism 𝑂𝑀𝑘 to the Union Mechanism
consisting of 𝑘 optimal single-item mechanisms 𝑂𝑀1 is unbounded.
The approximation ratio of the Union Mechanism consisting of 𝑘
optimal single-item mechanisms 𝑂𝑀1 to the sum of the collector’s
rewards in 𝑘 optimal single-item mechanisms 𝑂𝑀1 is unbounded.

4 EXPERIMENTAL RESULTS
In the preceding sections, we devoted our efforts to designing mech-

anisms for the item-acquiring problem, with a focus on optimizing

the collector’s expected reward while ensuring specific desirable

properties. In this section, we present the results of our experiments,

aimed at achieving two key objectives. Firstly, we assess the robust-

ness of these mechanisms concerning the independent appraiser’s

assessment accuracy. Secondly, we investigate the impact of these

mechanisms on the items’ acquiring rate when put into practice.

The item-acquiring problem bears striking similarities to the peer-

reviewing process prevalent in the academic world [35, 36]. To gain

insights into the effectiveness of these mechanisms in a real-world

academic context, we conduct experiments to evaluate how well

they perform when reviewers’ assessments are subject to random

noises. Additionally, we analyze the implications of deploying dif-

ferent mechanisms on the item acquiring rate, shedding light on

their practicality and efficacy in this academic setting. These experi-

ments allow us to better understand the behavior of themechanisms

under various scenarios, providing valuable insights for potential

improvements and real-world applications.

4.1 Experimental Setting
We set 𝑉 = 𝑆 = {0, 1

6
, 2

6
, 3

6
, 4

6
, 5

6
, 1} and 𝑡 = 0.25. We consider two

scenarios: one involving the acquisition of a single item and the

other involving the acquisition of two items, i.e., 𝑘 = 2. For our

experiments, we vary two parameters: the distribution 𝐷 that the

factual quality 𝑣 follows and the distribution 𝑟 (𝑣, ·) when 𝑣 is fixed.

We compare these mechanisms when these probabilities follow

normal and log-normal distributions.

Normal distribution. We set 𝐷 ∼ 𝑁 (0.3, 0.25). We discretize

the normal distribution by dividing the real axis into seven intervals

and scale the probabilities of values falling into each interval so

that they sum to 1. That is, 𝑑 (0) = 0.1377, 𝑑 ( 1

6
) = 0.245, 𝑑 ( 2

6
) =

0.2804, 𝑑 ( 3

6
) = 0.2054, 𝑑 ( 4

6
) = 0.0968, 𝑑 ( 5

6
) = 0.0291, 𝑑 (1) = 0.0057.

For each 𝑣 ∈ 𝑉 , we let 𝑟 (𝑣, ·) follow normal distributions with the

mean value 𝑣 ; the variance varies within the range [0, 0.6] and has

a step size of 0.001.

Log-normal distribution. In practice, the log-normal distri-

bution is commonly used to model systems’ reliability [26]. In

particular, it models the failure rates of complex systems that have

multiple failure modes, each with its own distribution. This is par-

ticularly relevant to our problem since the quality of an item can be

influenced by a wide range of factors, such as material quality and

manufacturing processes. For a direct comparison with the normal

distribution, we choose the same mean and variance values.

4.2 Results
For single-item acquiring, we can compute the acquiring matrix

of the Score-Only Mechanism (SOM) when the distributions are

(a) Normal Distribution

(b) Log-Normal Distribution

Figure 1: Subfigures (a) and (b) illustrate the collector’s ex-
pected reward when 𝐷 and 𝑟 (𝑣, ·) follow the normal and log-
normal distributions, respectively. For multiple-item mecha-
nisms, the figures show the collector’s expected reward di-
vided by the number of items.

fixed. For Two Menu Mechanisms (TMM), we compute the opti-

mal 𝛼,𝑏1, 𝑏2 that maximizes the collector’s expected reward and

compare this optimal TMM with other mechanisms. In the case

of Optimal Mechanisms (OM𝑘 ), there may be multiple optimal so-

lutions and we select the solution provided by Gurobi, a linear

programming solver. For multiple-item acquiring, we consider two

types of Union Mechanisms. One is UM𝑇𝑀𝑀 , which is the Union

Mechanism consisting of 𝑘 Two Menu Mechanisms. The other is

UMOPT, which is the optimal Union Mechanism that consists of 𝑘

single-item mechanisms.

Collector’s expected reward.We first look at how these mech-

anisms perform when 𝐷 and 𝑟 (𝑣, ·) follow normal distributions

(Figure 1a). For the single-item case, we notice that the collector’s

expected reward drops when the variance of the normal distribution

𝑟 (𝑣, ·) increases, and the difference between three single-item mech-

anisms, SOM, OM1, and TMM, is very small. In the multiple-item

case, we compute the collector’s expected reward of the multiple

items and show the average reward (per item) in the same figure.We

observe that the greater the accuracy of the independent appraiser’s

assessment, the higher the collector’s anticipated reward. Further-

more, the collector’s expected reward is higher when employing a

multi-item mechanism, such as OM𝑘 , UMOPT, or UM𝑇𝑀𝑀 , com-

pared to using a single-item mechanism multiple times. When 𝐷
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(a) Normal Distribution

(b) Log-Normal Distribution

Figure 2: Subfigures (a) and (b) illustrate the item acquiring
rate when 𝐷 and 𝑟 (𝑣, ·) follow the normal and log-normal
distributions, respectively.

and 𝑟 (𝑣, ·) follow log-normal distributions (Figure 1b), we obtain

similar results.

Item acquiring rate. Figure 2a presents our results in terms of

the item acquiring rate when 𝑟 (𝑣, ·) follows the normal distribution

𝑁 (𝑣, 0.25) for any 𝑣 ∈ 𝑉 . It is important to note that the UM𝑇𝑀𝑀

outperforms the single-item mechanism regardless of the quality of

the item. Compared to TMM, it reduces the likelihood of getting low-

quality items and increase the likelihood of getting high-quality

items. The results for log-normal distributions are presented in

Figure 2b. The observed trends closely resemble those observed in

the case of normal distributions.

5 CONCLUSION AND FUTUREWORK
In our research, we introduced a compelling item-acquiring prob-

lem in which the owner holds confidential information about item

quality. Her goal is to maximize the collector’s chances of acquiring

these items, while the collector, armed with the appraiser’s assess-

ment and public data, aims to maximize the expected reward from

acquisitions. The inherent information asymmetry between them

posed a challenge: designing incentive-compatible mechanisms

to encourage the owner’s truthful disclosure of item quality. To

address this, we proposed various deterministic and randomized

mechanisms for single-item and multi-item scenarios, each with

different menu sizes. By rigorously evaluating and comparing these

mechanisms, we aimed to identify effective strategies for eliciting

truthful information from the owner and optimizing the acquisition

process. Our study sheds light on the intricate dynamics between

owners and collectors in the digital marketplace, offering insights

for improving real-world item-acquiring scenarios.

We addressed this challenge as a mechanism design problem

without payments. Its fundamental nature distinguishes itself from

classic mechanism design problems. In future work, we can explore

it as a mechanism design problem with payments, which could

have potential applications in various domains, as indicated below.

The used carmarkets.Akerlof’s theory of the "Market for Lemons"

serves as a classic illustration of how information asymmetry can

significantly impact market outcomes [2]. Specifically, in this sce-

nario, the seller of a low-quality car (a "lemon") is aware of its true

condition, while the seller of a high-quality car possesses knowl-

edge about its superior quality. Since buyers lack the ability to

easily distinguish between the two types of cars, an information

gap arises between buyers and sellers. Consequently, buyers are

more inclined to purchase low-quality cars because they cannot dif-

ferentiate them from high-quality ones, leading to adverse selection.

This, in turn, can lead to market failure. Akerlof’s theory proposes

that a potential solution to this problem is to devise mechanisms

that encourage sellers to reveal the true quality of their products.

By finding ways to elicit genuine information from sellers, we can

mitigate the adverse effects of information asymmetry and improve

market efficiency. This theory continues to be relevant and influ-

ential in the study of market dynamics and strategies to address

information imbalances.

Antique collection. The quest for rare and unique items is a com-

petitive and demanding endeavor. Antique collectors frequently

turn to independent third-party experts for guidance when evalu-

ating the value and quality of potential acquisitions. These experts

can be appraisers, dealers, auction houses, or specialized consul-

tants with in-depth knowledge in a specific category of antiques. An

independent appraisal offers collectors an objective and impartial

assessment of an item’s authenticity and condition. Nonetheless,

it’s important to note that the owner of an antique item usually pos-

sesses more detailed knowledge about its provenance and unique

characteristics compared to a collector and appraiser. This informa-

tion asymmetry between the owner and the collector can present

unique challenges when evaluating and acquiring these treasured

artifacts.

In these applications, there is a monetary exchange between the

seller and the buyer, which differs from the relationship between

the item owner and the collector. In the case of the seller, the goal

may be to maximize revenue, while the buyer may have quasi-linear

utilities and budget constraints.

Another fascinating avenue for exploration is to approach this

problem through the lens of the learning-augmented mechanism

design framework. This approach leverages predictions to enhance

decision-making, as demonstrated in previous works [1, 12]. Incor-

porating predictive elements could provide valuable insights and

potentially optimize the mechanism further, warranting further in-

vestigation and potential breakthroughs in addressing this problem

from different angles.

2023-10-03 11:52. Page 8 of 1–11.



U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

On Truthful Item-Acquiring Mechanisms for
Reward Maximization TheWebConf2024, May 13 - May 17, 2024, Singapore

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

REFERENCES
[1] Priyank Agrawal, Eric Balkanski, Vasilis Gkatzelis, Tingting Ou, and Xizhi Tan.

2022. Learning-Augmented Mechanism Design: Leveraging Predictions for Facil-

ity Location. In EC. ACM, 497–528.

[2] George A. Akerlof. 1970. The Market for "Lemons": Quality Uncertainty and the

Market Mechanism. The Quarterly Journal of Economics 84, 3 (1970), 488–500.
[3] Saeed Alaei, Jason D. Hartline, Rad Niazadeh, Emmanouil Pountourakis, and

Yang Yuan. 2019. Optimal auctions vs. anonymous pricing. Games Econ. Behav.
118 (2019), 494–510.

[4] Moshe Babaioff, Yannai A. Gonczarowski, and Noam Nisan. 2022. The menu-size

complexity of revenue approximation. Games Econ. Behav. 134 (2022), 281–307.
[5] Glenn W Brier et al. 1950. Verification of forecasts expressed in terms of proba-

bility. Monthly weather review 78, 1 (1950), 1–3.

[6] Jochen Bröcker. 2012. Evaluating raw ensembles with the continuous ranked

probability score. Quarterly Journal of the Royal Meteorological Society 138, 667

(2012), 1611–1617.

[7] Anirban Dasgupta and Arpita Ghosh. 2013. Crowdsourced judgement elicitation

with endogenous proficiency. In Proceedings of the 22nd international conference
on World Wide Web. 319–330.

[8] John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan

Xu. 2019. Balancing Relevance and Diversity in Online Bipartite Matching via

Submodularity. In Proceedings of the Thirty-Third AAAI Conference on Artificial
Intelligence. 1877–1884.

[9] Boi Faltings and Goran Radanovic. 2017. Game theory for data science: Eliciting

truthful information. Synthesis Lectures on Artificial Intelligence and Machine
Learning 11, 2 (2017), 1–151.

[10] Tanner Fiez, Nihar Shah, and Lillian Ratliff. 2020. A SUPER* algorithm to optimize

paper bidding in peer review. In Conference on Uncertainty in Artificial Intelligence.
PMLR, 580–589.

[11] Emily Ford. 2013. Defining and characterizing open peer review: A review of the

literature. Journal of Scholarly Publishing 44, 4 (2013), 311–326.

[12] Dimitris Fotakis, Evangelia Gergatsouli, Themis Gouleakis, and Nikolas Patris.

2021. Learning Augmented Online Facility Location. CoRR abs/2107.08277 (2021).

[13] Rafael Frongillo and Jens Witkowski. 2017. A geometric perspective on minimal

peer prediction. ACM Transactions on Economics and Computation (TEAC) 5, 3
(2017), 1–27.

[14] Xi Alice Gao, Jie Zhang, and Yiling Chen. 2013. What you jointly know determines

how you act: strategic interactions in prediction markets. In Proceedings of the
fourteenth ACM Conference on Electronic Commerce. ACM-EC, 489–506.

[15] Anthony Garratt, Kevin Lee, M Hashem Pesaran, and Yongcheol Shin. 2003.

Forecast uncertainties in macroeconomic modeling: An application to the UK

economy. J. Amer. Statist. Assoc. 98, 464 (2003), 829–838.
[16] Tilmann Gneiting and Adrian E Raftery. 2007. Strictly proper scoring rules,

prediction, and estimation. Journal of the American statistical Association 102,

477 (2007), 359–378.

[17] Judy Goldsmith and Robert H Sloan. 2007. The AI conference paper assignment

problem. In Proceedings AAAI Workshop on Preference Handling for Artificial
Intelligence, Vancouver. AAAI Workshop, Vancouver, Canada, 53–57.

[18] IJ Good. 1971. Comment on “Measuring information and uncertainty” by Robert

J. Buehler. Foundations of Statistical Inference (1971), 337–339.
[19] Irving John Good. 1992. Rational decisions. In Breakthroughs in statistics. Springer,

365–377.

[20] Venkatesan Guruswami, Jason D. Hartline, Anna R. Karlin, David Kempe, Claire

Kenyon, and Frank McSherry. 2005. On profit-maximizing envy-free pricing. In

SODA. SIAM, 1164–1173.

[21] Sergiu Hart and Noam Nisan. 2013. The menu-size complexity of auctions. In

Proceedings of the fourteenth ACM conference on Electronic commerce. 565–566.
[22] Yaonan Jin, Pinyan Lu, Zhihao Gavin Tang, and Tao Xiao. 2019. Tight Revenue

Gaps among Simple Mechanisms. In SODA. SIAM, 209–228.

[23] Yuqing Kong. 2020. Dominantly truthful multi-task peer prediction with a

constant number of tasks. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 2398–2411.

[24] Yuqing Kong and Grant Schoenebeck. 2018. Water from two rocks: Maximizing

the mutual information. In Proceedings of the 2018 ACM Conference on Economics
and Computation. 177–194.

[25] Yuqing Kong and Grant Schoenebeck. 2019. An information theoretic framework

for designing information elicitation mechanisms that reward truth-telling. ACM
Transactions on Economics and Computation (TEAC) 7, 1 (2019), 1–33.

[26] J.Marsalek M.A.Van Buren, W.E.Watt. 1997. Application of the log-normal and

normal distributions to stormwater quality parameters. Water Research 31, 1

(1997), 95–104.

[27] Reshef Meir, Jérôme Lang, Julien Lesca, Nicholas Mattei, and Natan Kaminsky.

2021. A market-inspired bidding scheme for peer review paper assignment. In

35th AAAI Conference on Artificial Intelligence. AAAI Press, Palo Alto, United

State, 4776–4784.

[28] Nolan Miller, Paul Resnick, and Richard Zeckhauser. 2005. Eliciting informative

feedback: The peer-prediction method. Management Science 51, 9 (2005), 1359–
1373.

[29] Natalia Nolde and Johanna F Ziegel. 2017. Elicitability and backtesting: Per-

spectives for banking regulation. The annals of applied statistics 11, 4 (2017),

1833–1874.

[30] Tim N Palmer. 2002. The economic value of ensemble forecasts as a tool for risk

assessment: From days to decades. Quarterly Journal of the Royal Meteorological
Society: A journal of the atmospheric sciences, applied meteorology and physical
oceanography 128, 581 (2002), 747–774.

[31] Drazen Prelec. 2004. A Bayesian truth serum for subjective data. science 306,
5695 (2004), 462–466.

[32] Nihar B Shah. 2022. Challenges, experiments, and computational solutions in

peer review. Commun. ACM 65, 6 (2022), 76–87.

[33] Victor Shnayder, Arpit Agarwal, Rafael Frongillo, and David C Parkes. 2016.

Informed truthfulness in multi-task peer prediction. In Proceedings of the 2016
ACM Conference on Economics and Computation. 179–196.

[34] Ivan Stelmakh, Nihar B Shah, Aarti Singh, and Hal Daumé III. 2021. A novice-

reviewer experiment to address scarcity of qualified reviewers in large confer-

ences. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 35.
4785–4793.

[35] Weijie J. Su. 2021. You Are the Best Reviewer of Your Own Papers: An Owner-

Assisted Scoring Mechanism. In NeurIPS. 27929–27939.
[36] Weijie J. Su. 2022. A Truthful Owner-Assisted Scoring Mechanism. CoRR

abs/2206.08149 (2022).

[37] Mengyi Sun, Jainabou Barry Danfa, and Misha Teplitskiy. 2022. Does double-

blind peer review reduce bias? Evidence from a top computer science conference.

Journal of the Association for Information Science and Technology 73, 6 (2022),

811–819.

[38] Zihe Wang and Pingzhong Tang. 2014. Optimal mechanisms with simple menus.

In Proceedings of the fifteenth ACM conference on Economics and computation.
227–240.

[39] Jibang Wu, Haifeng Xu, Yifan Guo, and Weijie Su. 2023. An Isotonic Mechanism

for Overlapping Ownership. arXiv preprint arXiv:2306.11154 (2023).
[40] Shu Zhao, Dong Zhang, Zhen Duan, Jie Chen, Yan-ping Zhang, and Jie Tang. 2018.

A novel classification method for paper-reviewer recommendation. Scientometrics
115, 3 (2018), 1293–1313.

2023-10-03 11:52. Page 9 of 1–11.



U
n
p
u
b
li
s
h
e
d
w
o
r
k
in
g
d
r
a
ft
.

N
o
t
fo
r
d
is
tr
ib
u
ti
o
n
.

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

TheWebConf2024, May 13 - May 17, 2024, Singapore Submission ID: 178

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

APPENDIX: MISSING PROOFS
In this section, we provide the proofs omitted in the paper due to

space limits.

Proof of Theorem 2.7:

Proof. First, we construct an instance to show that the approx-

imation ratio of TMM to SOM, is unbounded. In this instance,

we use the following settings to find special examples. 𝑡 = 0.5,

𝑉 = {0, 0.33, 0.66, 1}, 𝑆 = {0, 0.33, 0.66, 1}. 𝑑 [0] = 0.262, 𝑑 [ 1

3
] =

0.535, 𝑑 [ 2

3
] = 0.191, 𝑑 [1] = 0.012. The matrix 𝑅 is constructed as

follows:

𝑅 =


0.754 0.133 0.077 0.036

0.013 0.701 0.261 0.025

0.008 0.173 0.814 0.005

0.017 0.030 0.037 0.916

 .
In this instance, the acquiring matrix of the two mechanisms are

that

𝑋𝑆𝑂𝑀 =


0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

 ,
𝑋𝑇𝑀𝑀 =


0.0 0.0 0.0 1.0

0.0 0.0 0.08741 0.08741

0.0 0.0 0.08741 0.08741

0.0 0.0 0.0 1.0

 .
In this particular case, the collector’s reward in 𝑆𝑂𝑀 is 0, while

the collector’s reward in 𝑇𝑀𝑀 is 0.0002075. Hence, the approxima-

tion ratio is unbounded.

Next, we construct an instance to show that the approxima-

tion ratio of OM1 to TMM, is unbounded. In this instance, we

use the following settings to find special examples. 𝑡 = 0.5, 𝑉 =

{0, 0.33, 0.66, 1}, 𝑆 = {0, 0.33, 0.66, 1}. 𝑑 [0] = 0.262, 𝑑 [ 1

3
] = 0.535,

𝑑 [ 2

3
] = 0.191, 𝑑 [1] = 0.012. The matrix 𝑅 is constructed as follows:

𝑅 =


0.71 0.13 0.11 0.05

0.03 0.82 0.09 0.06

0.11 0.13 0.72 0.04

0.01 0.08 0.15 0.76

 .
In this instance, the acquiring matrix of the two mechanisms are

that

𝑋𝑂𝑀1
=


0.0 0.0 0.4 0.4

0.06 0.06 0.06 0.06

0.0 0.0 0.4 0.4

0.0 0.0 0.0 1.0

 ,
𝑋𝑇𝑀𝑀 =


0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

 .
In this particular case, the collector’s reward in 𝑇𝑀𝑀 is 0, while

the collector’s reward in𝑂𝑀1 is 0.000503. Hence, the approximation

ratio is unbounded.

□

Proof of Theorem 3.1

Proof. By constructing a counterexample, we prove that the

Ranking Mechanism is not incentive compatible. Our example

shows that the owner can increase his expected utility by reporting

an untruthful value ranking of two items.

The example is as follows:

Let 𝑡 = 0.5,𝑉 =
{
0, 1

3
, 2

3
, 1
}
, 𝑆 =

{
0, 1

3
, 2

3
, 1
}
,𝑑 (0) = 0.262, 𝑑 ( 1

3
) =

0.535, 𝑑 ( 2

3
) = 0.191, 𝑑 (1) = 0.012,

𝑅(𝑣, 𝑠) =


0.84 0.12 0.02 0.02

0.14 0.80 0.05 0.01

0.07 0.18 0.72 0.03

0.06 0.08 0.14 0.72

 .
After computation, we can obtain:

𝑥𝑉𝑔 =


0.1724 0.8510 0.8320 0.2372

0.1758 0.8195 0.3372 0.1562

0.7820 0.9550 0.8670 0.7840

0.8924 1.0110 1.4468 0.9804

 ,
𝑥𝑉𝑒 =


0.0032 0.0048 0.0600 0.0688

0.0048 0.0072 0.0900 0.1032

0.0600 0.0900 1.1250 1.2900

0.0688 0.1032 1.2900 1.4792

 ,
𝑥𝑉𝑠 =


0.1724 0.1758 0.7820 0.8924

0.8510 0.8195 0.9550 1.0110

0.8320 0.3372 0.8670 1.4468

0.2372 0.1562 0.7840 0.9804

 .
A counter-case can be identified in the preceding examples to

demonstrate that the mechanism lacks truthfulness. Specifically,

when 𝑣1 equals
2

3
and 𝑣2 equals 0, we observe that 𝑥𝑉𝑔 ( 2

3
, 0) =

0.7820, which is less than 𝑥𝑉𝑠 ( 2

3
, 0) = 0.8320. This example indicates

that the probability of accepting the sum of two items that truthfully

disclose 𝑉𝑔 is 0.782, but if the Owner provides false information by

disclosing 𝑉𝑠 , then the probability of accepting two items increases

to 0.832. Thus, the mechanism is not incentive-compatible. □

Proof of Theorem 3.4:
First, we construct an instance to show that the approximation

ratio of OM𝑘 to UM𝑂𝑀1
is unbounded. To simplify the complex

situation, we assume that the owner has only two items. Then we

compare the collector’s expected reward in these two mechanisms.

We set 𝑡 = 0.5, 𝑉 = {0, 0.33, 0.66, 1}, 𝑆 = {0, 0.33, 0.66, 1}. 𝑑 [0] =
0.2645, 𝑑 [ 1

3
] = 0.5386, 𝑑 [ 2

3
] = 0.1861, 𝑑 [1] = 0.0109. The matrix 𝑅

is constructed as follows:

𝑅 =


0.522 0.232 0.145 0.101

0.022 0.708 0.221 0.049

0.004 0.427 0.515 0.054

0.066 0.113 0.270 0.551

 .
Therefore, the collector’s expected reward are 0 for the objective

of 𝑈𝑀𝑂𝑀1
and 0.0085264 for 𝑂𝑀2. Thus, we can conclude that the

approximation ratio is unbounded. For a detailed account of the

results, please refer to the following anonymous URL due to page

constraints: https://anonymous.4open.science/r/On-Truthful-Item-

Acquiring-Mechanisms-for-Reward-Maximization-FD9C

Next, we construct an instance to show that the approximation

ratio of UM𝑂𝑀1
to 𝑘× OM1 is unbounded. To simplify the complex
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situation, we assume that the owner has only two items. Then we

compare the collector’s expected reward in these two mechanisms.

We set 𝑡 = 0.5, 𝑉 = {0, 0.33, 0.66, 1}, 𝑆 = {0, 0.33, 0.66, 1}. 𝑑 [0] =
0.2645, 𝑑 [ 1

3
] = 0.5386, 𝑑 [ 2

3
] = 0.1861, 𝑑 [1] = 0.0109. The matrix 𝑟

is constructed as follows:

𝑅 =


0.749 0.128 0.074 0.049

0.057 0.737 0.190 0.016

0.018 0.086 0.834 0.062

0.144 0.147 0.209 0.500

 .
Therefore, the collector’s expected reward is 0 for the objective of

2×𝑂𝑀1 and 0.0248746 for𝑈𝑀𝑂𝑀1
. Thus, we can conclude that the

approximation ratio is unbounded. For a detailed account of the re-

sults, please refer to the following anonymous URL, which has been

provided due to page limitations: https://anonymous.4open.science/

r/On-Truthful-Item-Acquiring-Mechanisms-for-Reward-

Maximization-FD9C

Code from experiment:
The experimental section of this paper employs Python code,

utilizing Gurobi as a solver for both linear programming and integer

programming tasks. For a detailed of the code, please refer to the

following anonymous URL, which has been provided due to page

limitations: https://anonymous.4open.science/r/On-Truthful-Item-

Acquiring-Mechanisms-for-Reward-Maximization-FD9C
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