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Abstract

This paper investigates cooperative predictive target tracking using a robotic swarm oper-
ating under high prediction bias and communication uncertainty. The robots interact over
a randomly time-varying communication network and exhibit heterogeneity in onboard sen-
sors and prediction algorithms. To address these challenges, a Distributed Online learning-
based Multi-Estimate (DOME) fusion algorithm is proposed, which performs a collaborative
weighted fusion of local and socially shared predictions. The fusion weights are adapted on-
line using feedback from a prediction loss. Theoretical analysis establishes that conditional
expectations of the fusion weights converge under reasonable assumptions. Simulation stud-
ies demonstrate that DOME outperforms both covariance-based and online learning-based
decentralized fusion baselines, achieving 84.15% and 78.12% lower prediction loss in perfor-
mance and scalability tests, respectively — particularly under conditions involving significant
model drift and communication unreliability. Further, DOME fusion is implemented in a
ROS-Gazebo simulation environment.

1 Introduction

With robotics technologies becoming more economical, smaller, and reliable, robotic swarms are being con-
sidered attractive for use in hazardous and uncertain environments (Mohiuddin et al., [2020). A robotic
swarm has a wide range of applications, such as search and rescue (Scherer et al., |2015), precision drug
delivery (Nelson & Pané, 2023), and surveillance (Saska et al.l 2016|), among others, that involve tracking
a target as one of its fundamental tasks. A key challenge in target tracking with sensor-equipped robots is
the look-ahead trajectory prediction (Hao et al., |2018)); robots use predicted paths to plan their motion for
effective tracking performance.

Most prior work on target tracking using a robotic swarm focuses on path planning and control. Approaches
include coordinated control via formation flying (Ma & Hovakimyan| |[2015; [Sun et al., |2021]) and region-based
strategies (Jung & Sukhatme| [2006). Wang & Gu| (2011)) combined distributed Kalman filtering for target
localization with flocking control for tracking and collision avoidance. Hausman et al. (2015) presented a
centralized control scheme that leverages onboard sensing for target estimation. |Subbarao & Ahmed| (2017)
addressed tracking under dynamic network topologies using pinning control and consensus on target states
(Wang & Sul 2014)). In contrast, this work focuses on the estimation/prediction aspect of cooperative target
tracking, rather than control or planning.

In a robotic swarm, heterogeneous sensors and prediction algorithms can be leveraged to reduce uncertainty
in target trajectory estimation (Rizk et al., 2019)). Multi-sensor fusion in such systems commonly employs
established methods such as Kalman Filter /Fusion (KF) (Maybeckl 1982 [Uhlmann, |2003), Covariance Inter-
section (CI) (Matzka & Altendorfer, 2009; [Julier & Uhlmann| 2017, and Covariance Union (CU) (Matzka
& Altendorfer, 2009; [Reece & Roberts|, |2010)). Building on CI, |Carrillo-Arce et al.| (2013)) proposed a de-
centralized cooperative localization algorithm that reduces processing and communication overhead while
maintaining consistency under asynchronous communication. |Assa & Janabi-Sharifi (2015)) developed a non-
linear KF-based fusion framework incorporating adaptive noise compensation and iterative updates for fast
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dynamics. |Chang et al. (2021)) used CI to maintain consistency and enhance resilience in multi-robot local-
ization. [Daass et al. (2021]) compared KF- and Cl-based architectures, identifying the partially distributed
approach as optimal in terms of stability and efficiency. |Wang et al.| (2021) introduced a fully decentralized
CU-based localization method that mitigates the effects of spurious sensor data. |Jia et al|(2023) utilized CI
to estimate the covariance of initialized UWB anchor positions, thereby enabling consistent data fusion in
their distributed visual-inertial ranging odometry framework. However, these covariance-based approaches
rely on assumptions regarding consistency and inter-estimate correlations. In scenarios with significant dy-
namic biases or drift, particularly when bias and covariance are uncorrelated, such methods may degrade or
fail.

Unlike covariance-based methods, distributed online learning frameworks (Cesa-Bianchi & Lugosi, 2006;
Chang et al., |2020) operate without requiring covariance information or assumptions about consistency
and correlation. While most existing works focus on general algorithmic settings (Chang et al., [2020)),
their application and analysis within robotics remain underexplored. [Shahrampour & Jadbabaie| (2017a))
introduced a mirror descent-based algorithm for tracking the minimizer of a time-varying convex function
under adversarial noise. Similarly, [Shahrampour & Jadbabaie| (2017b)) proposed a decentralized variant for
multi-agent target tracking with unknown, unstructured disturbances. |[Eshraghi & Liang (2020) addressed
heterogeneous networks with time-varying topology, proposing any-batch mirror descent to limit latency
from slower nodes. |Jiang et al.| (2021]) developed an asynchronous gradient-push method using asymmetric
gossip and instantaneous model averaging. [Eshraghi & Liang] (2022)) extended mirror descent with multi-
iteration averaging over both decisions and gradients to improve tracking of dynamic global minimizers over
time-varying networks. These algorithms typically incorporate consensus averaging with fixed, pre-defined,
or equal weights. However, the lack of adaptive weighting limits their robustness in challenging conditions
involving large or time-varying biases, drift, or communication uncertainties.

In this regard, this paper introduces the Distributed Online learning-based Multi-Estimate (DOME) fusion
algorithm, which employs an implicit, adaptive, consensus-like update mechanism to robustly handle high
uncertainty and adversarial conditions. The cooperative target-tracking problem involves robots connected
over a random communication network, each running a potentially different prediction algorithm to generate
look-ahead trajectories of the target. Prediction accuracy may vary over time due to algorithmic differences,
scenario-specific optimizations (cf. no free lunch theorem; Murphy, |2012), or environmental and system
uncertainties. DOME performs a collaborative, online weighted fusion of local and social predictions. The
fusion weights are learned via a prediction loss-driven process inspired by the exponentially weighted fore-
caster framework (Cesa-Bianchi & Lugosil |2006]). This ensures that more accurate predictions receive higher
weight, thereby improving tracking performance.

A convergence analysis of DOME’s learning weights is presented, demonstrating that their expected values
converge over time. DOME is evaluated in a simulated environment featuring random communication link
failures and significant dynamic biases or drift in predictions. DOME is benchmarked against several decen-
tralized fusion baselines, including Averaging Consensus Fusion (ACF); three covariance-based methods —
Kalman Consensus Fusion (KCF), Covariance Intersection Consensus Fusion (CICF), and Covariance Inter-
section + Covariance Union Consensus Fusion (CICUCF); and two decentralized online learning approaches
— Greedy-Local (GL) and Distributed Mirror Descent (DMD) (Shahrampour & Jadbabaie, [2017azb)). Sim-
ulation results show that DOME consistently outperforms all baselines, achieving at least 84.15% lower
prediction loss in performance evaluations. In terms of scalability, DOME also demonstrates a minimum
of 78.12% reduction in prediction loss relative to the compared methods. Additionally, the algorithm is
validated in a ROS-Gazebo simulation environment.

The paper proceeds with the formulation of the problem (Section, followed by the DOME fusion algorithm
(Section and its theoretical analysis (Section. The simulation results are then presented (Section, and
the paper concludes with a summary and a broader impact statement (Section@. Nomenclature is provided
in the Appendix (A.1l]), along with the MATLAB simulation details , including details regarding the
baselines . Both MATLAB and ROS-Gazebo simulation videos are provided as supplementary files.
Details regarding the ROS-Gazebo simulation are included in the video itself.
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Figure 1: Decentralized cooperative predictive target-tracking using a robotic swarm. Each robot i € [N]
is equipped with a local prediction algorithm A;. The robots share information over the communication
network and aim to cooperatively predict the target position.

2 Problem Formulation

The decentralized cooperative target-tracking scenario (Fig. involves multiple robots predicting the tra-
jectory of a target with unknown dynamics over a random communication network. Each robot is equipped
with a sensor suite and a local prediction algorithm that relies solely on its own observations. While the
target is observable to all robots, differences in sensor types and algorithms may lead to varying prediction
accuracies across segments of the trajectory, particularly under system or environmental uncertainties.

In practice, full observability of the target arises mainly in two situations. The first is when robots possess
high-grade, long-range, wide—field-of-view sensors capable of independently tracking the target. The second
occurs when centralized sensing assets, such as ground radar networks, AWACS, or satellites, monitor the
target and broadcast its position to the swarm via one-way communication. In swarm robotics, this cen-
tralized sensing paradigm enhances situational awareness, reduces individual sensing demands, and enables
scalable, coordinated operation over large environments.

Robots that share a direct communication link are referred to as neighbors. The topology of the random
communication network is represented by a bi-directional random graph G(t), where ¢ is the discrete-time
variable, whose underlying base graph topology is denoted as G; the links (edges) in the digraph G drop with
a probability of p;4, called as the link-drop probability, thus, representing communication failure. Robots
can exchange information only with their neighbors and have no knowledge of the global network structure.
Let € ; denote the set of neighbors of the i*" robot at time ¢, as defined by the communication graph G(t).
Define A, ; := Q,,; U {i}, i.e., the set of i'" robot’s neighbors including itself. Similarly, let Q; denote the set
of neighbors of the i*" robot as per the base-graph topology G, and define A; := Q; U {i}.

Let N denote the number of robots in the swarm, with each robot indexed by i € [N]. The i*" robot runs
a prediction algorithm A; that estimates the target’s look-ahead trajectory using real-time onboard sensor
data. The set {A;}¥; may consist of non-identical algorithms — either differing in type or parameterization
— due to heterogeneous or complementary sensors and models. Consequently, prediction accuracy may vary
across robots and along different segments of the target’s trajectory. Even identical algorithms can yield
varying accuracy due to system or environmental uncertainties (e.g., hardware or software failures).
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Robot Model: consider the following discrete time 3-DOF kinematic model for the i*" robot, where AT is
the sampling period (seconds), Vi € [N]

. coSQy; —singyi| _
Xt+17z - Xt,z + AT sin ¢t,i oS ¢t,i Vt,z (13‘)
Gr41,i = Or i + ATwy 4 (1b)

where x;; € R? is the 2-D position vector (in m), v¢; € R? is the body-axis velocity vector (m/s), ¢:; € R
is the heading angle (radians), and w;; € R is the yaw rate (rad/s) of the i'" robot at discrete-time t,
respectively. Here, the body-axis velocity v;; and yaw rate w;; are the bounded control inputs for the ith
robot.

Target Model: the set of equations (|1f) also serves as the target’s kinematic model, but the target’s dynamic
model is unknown. The target’s position vector x; 5 € R? (in m), heading angle ¢; 5 € R (radians), body-
axis velocity v; g € R? (m/s), and yaw rate w; g € R (rad/s), respectively, can be represented by replacing
¢ with B (Bogey) in the set of equations . vi,p and w; p are the bounded control inputs for the target at
time ¢, which are considered unknown to the robots because the target’s dynamics is unknown.

Remark 1. While MATLAB simulations (Section assume an omnidirectional (holonomic) kinematic model
for both robots and the target, the proposed DOME fusion framework is model-agnostic. ROS-Gazebo
simulations (check supplementary video) demonstrate its applicability to non-holonomic systems.

Control Law: for the i*” robot, the translational control law consists of two terms as given below
Vii = VE 4+ Avy, 2
Vii = Vi AV (2)

where Vﬁi is the i*" robot’s reference command signal responsible for chasing the target by using its 7-step
look-ahead estimate of the target’s trajectory, and Av, ; is the it" robot’s correction control signal responsible
for avoiding collisions with other robots. Furthermore, consider a heading angle requirement such that the
robots are required to yaw in a way that their heading direction points towards their 1-step look-ahead
estimate of the target’s trajectory. A detailed description of the control law used in the simulations (Section
b)) is provided in the Appendix (A.3.1)).

Remark 2. As the focus of this work is on target trajectory estimation/prediction, a simplified control
strategy is employed. However, the proposed DOME fusion framework is compatible with more advanced
control schemes (e.g., obstacle avoidance (Sun et al. |2014) and formation control (Cheng et al. 2005)),
depending on application needs.

Abstract Model for Prediction Algorithm A;: let fcé;ﬂ 0.8 € R2 denote the 7-step look-ahead predic-
tion of the target’s position by algorithm A; at time ¢t. We model this prediction as:

S A;
X('prit),B = Xt+r.B + G (3)

where X;1- p is the true target position at time ¢+ 7, and ¢/; € R? is the prediction drift at time ¢. The drift
(¢, models prediction inaccuracies specific to A; and is assumed to follow an arbitrary, unknown structure
— potentially non-Gaussian and without a known distribution — capturing variability in accuracy across
algorithms {Aj}jE[N]\{’L}

With the assistance of its prediction algorithm A; and its neighboring robots as per the communication
network G(t) at time ¢, each robot aims to estimate/predict the target’s position at time ¢ + 7, i.e., X¢1r 5.

3 Distributed Online Learning based Multi-Estimate Fusion
Each iteration of the Distributed Online learning based Multi-Estimate (DOME) fusion algorithm involves a
learning phase, a local prediction fusion phase, a communication phase, and a social prediction fusion phase.

Learning Phase: at the current time step ¢, robots observe the current position of the target, x; . The
robots use this observation as the ground truth to learn the DOME fusion weights.
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The DOME fusion weights o;(t) and w;;(t) are updated using a bounded loss function I(x,y) € [0, 1], with
its arguments x € R? and y € R?.

Remark 3. The proposed algorithm applies to any suitable set X with x,y € X for which the loss function
I(x,y) € [0,1] is defined. While DOME fusion extends naturally to 3-D settings (X = R3), a 2-D case
(X = R?) is used here for simplicity.

Consider the current time step neighbor set €, ;, and A;; = Q;; U {i} as the set of it" robot’s neighbors
including itself at time t¢.

Denote )A(z tt—1),B 88 the i*" robot’s 1-step look-ahead social prediction of the target’s position at the previous
time step ¢ — 1, calculated at time ¢ — 1 using the previous time weights w;;(¢t — 1) and the previous time

J

1-step look-ahead local predictions fcé‘t_l) p» Where j € Ay_1;, can be given as follows:

N ~L;
X(tlt-1),B = Z wij(t = 1) X(tj\t—l),B (4)
Vi€EAt—1,i

where the i*" robot’s previous time 1-step look-ahead local predictions )A(ftl‘ —1),B calculated at time ¢ — 1
using algorithm A;’s previous time 1-step look-ahead prediction )AcéT —1),B 1-step look-ahead social prediction

ﬁé""tfl)AB at time ¢ — 2, and the previous time weights o;(t — 1), Vi € [N], can be given as follows:

sLi _ S A &t
X(Lt|t—1),B = ai(t=1) X{j, ) p+ (L -t —1)) X198 (5)

The DOME fusion’s local weights «;(t) are updated as follows:

Galt) = alt = 1) exp (0 10,5, %0, ) (6a)
G(t) = @j(t = 1) exp (=1 10,8 %)s-1)1-2).5)) (6b)

where 1, > 0 is the local weights’ learning rate. The weights are initialized as &;(0) = 1 and &;(0) = 1.
Note that «;(t) € [0,1].

The DOME fusion’s social weights w;;(t) are updated as follows:

@ia(t) = wia(t = 1) exp (<1 Ui %fy ) ) (7a)

where n,, > 0 is the social weights’ learning rate, and 1(-) is the indicator function; 1(j € A;;) = 1 if the
condition j € A, is satisfied, otherwise 1(j € A;;) = 0. The weights are initialized as ©;;(0) = 1. Note that

wiz(t) € [0,1] and 30y, wi(t) = 1.

DOME fusion weights «;(t) and w;;(t) are reset every T, time steps to 1, mitigating bias accumulation under
high system and environmental uncertainty. Furthermore, a decentralized normalization scheme is employed
to normalize the weights after each update (see Appendix for more details).

Local Prediction Phase: using the learned weights a;(t), the i** robot’s 7-step look-ahead local prediction
of the target’s position at time . i.e., )Ac(ti‘tfl) p» 18 given as:

oL _ S Ai &

Xtar|t),B = a;(t) Xiprt),B T (1—ai(t)) XEt-&-T—l\t—l),B (8)
where f(ét tr—1lt—1),B is the i'" robot’s previous time 7-step look-ahead social prediction of the target’s
position.
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Communication Phase: the i*" robot shares the information {t7z,x(t+1|t) B Aéil»‘r\t),B’ﬁ)ii(t)} with its

neighbors j € € ;, and receives {t,j,x(ﬂut) B’x(t'+rlt) p>W;;(t)} from its neighbors j € Q ;.

Social Prediction Phase: using equation @b along with the received ;;(t) weights via communication
we get the learned weights w;;(¢). Further, using the local predictions received from the neighbors, the i*"
robot’s 7-step look-ahead social prediction at time ¢ is calculated as follows:

&1 AL
Rirrie = O wii(t) Xy p 9)
VjEAtyi

Note that the i*" robot’s 7-step look-ahead social prediction ﬁft 4r(t).B is considered as the final 7-step look-
ahead estimate of the target’s position, and thus, is used by the control law for calculating velocity reference
(equation (2))) and yaw-rate commands (A.3.1).

Remark 4. Note that the learning phase involves comparing previous time 1-step look-ahead predictions with
the current time position of the target (using prediction loss) to update the weights. The learned weights
are then used to get the current time 7-step look-ahead predictions of the target’s position.

DOME fusion is summarized in Algorithm

Algorithm 1 DOME (for the i*" robot, i € [N])
Choose: T,T,,7 > 1 (integers); nu, Ny > 0
Initialize: w;;(0) =1, 4;(0) =1, &;(0) =1,

}A(EO|—1),B = ﬁ(flo),B’ ’227—1\—1),3 = )A((TZ‘O),B
Iteration at discrete time step t =0, 1,2

1: Observe x; p

2: if ¢ > 0 then

3 di(t) = ault — 1) exp (—nal (R, _) p>%1,8))

L a0 = @t — 1) exp (“nal (K9 poX0.8))

5: If)m(t) = If)m(t — 1) exp (77]wl(f{é‘it_l)737 Xt,B))

6: end if

7: Periodic Reset: re-initialize the weights &;(t), &;(t), and w;;(¢) to 1 after every T, discrete time steps
8 ay(t) = 61 ()

i ai(B+al ()

o %5 s = Oy o+ (L ()R]

CX(t+1t),B U)X (10,8 t\t 1),

oL _ S A; N
10: Xy ry. 5 = Q0K 5 T (1= ()R 11,5
/\L . ALJ‘ ALJ‘ ~

11: transmit {¢, 1, X(H_l‘t) B X (10,8 W;;(t)} and receive {t, j,X 111 5> Xy sy, 30 Wis(t)} from the commu-

nicating neighboring robots, Vj € {2 ;
12: Atﬂ' = Qt,i U {Z}
13wy (t) = 1(j € Ay 35 (1)
Z]( ) (] tﬂ) Zj’€/\t,i wj/j’(t)
s ~Lj
W R 1y 5 = vjen,, Wis X8

Y _ (Pl
15: Xy r10.8 = 2ovjen,, Wis DX 5

4 Convergence Analysis

This section presents the theoretical convergence analysis of DOME fusion weights. Only the analysis of the
social weights w;;(t) is presented; the analysis for local weights «;(t) follows a similar procedure.

Without loss of generality, the DOME weights w;;(t) are analyzed without considering periodic resets to
examine their convergence behavior immediately after and just before a reset. Fach reset instant can be
treated as t = 0, making the analysis applicable to any interval between two successive resets. In practice,
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with a periodic reset interval T,, a higher learning rate enables faster convergence before the next reset,
while a lower rate may prevent full convergence. Nonetheless, the underlying convergence behavior remains
consistent with the theoretical analysis presented.

Denote I7}; := l(xt,BviéTt—n,B)v and L, = Y., I4,. Denote I}, := Uxt,5,X{;;_1y,5)> and LY, =Y 15,

Denote ltLﬂ- = l(xth7§(éi\t—1),B)’ and Lf, = Sk,

s=1"s1"
Note that the loss function I(x,y) € [0,1] is bounded and its arguments x € R? and y € R%.

The history H;; relevant to the it" robot’s learning phase just before the communication phase occurs at
time t, is defined as follows:

Hei o= ({Qsi} = 1a{X(s+1|s) B}.s 1A% B 17{{X(3+1|9) plviea, Fem1) (10)

where €; is the neighbor set of the i" robot as per the base-graph topology G of the random communication
network G(t), whereas () ; is the neighbor set of the i" robot as per the random communication network
G(s) at time s.

Let n; = |Q;| denote the maximum number of neighbors the i*" robot can have in the base graph G, where
|Q;] denotes the cardinality of the set Q;. The time-varying communication graph G(t) is an undirected
random subgraph of G, with each link independently dropping with probability p;4. At time ¢, robot i can
communicate with any subset of its n; neighbors; the number of possible neighbor sets of size k is " C}, for
k=0,1,...,n;. Let Qf’l denote the {** such subset with |Qfl| = k. Further, define Af’l = Qf’l U{i}. Then
Q€ {Qf’l}kzo:nh =111, and y ; C Q,. Here, k =0 : n; implies k = 0,1,--- ,n; and [ = 1 : " C}, implies
l=1,--- ,"Cy.

Let N;(t) = || denote the number of neighbors the i'" robot has at time ¢. Since each link in the base
graph G drops independently with probability p;4, N;(t) follows a Binomial distribution: N;(t) ~ B(n;, pia),
where n; = |Q].

For some i € [N], the conditional expectation of N;(t) can be written as follows:
anok — )" Pk = (1 — pra)na (11)

where E[-] is the expectation operator. Note that E[N;(¢)|i] is independent of ¢. Further, note that

n; "iCy ng
Z Z —pua)fpliTh = Znick(l —p)pl =1 (12)
k=0 i=1 k=0

Consider 0 < @;;(0) < 1, where ¢ € [N]. For t = 1,2,---,T, based on equation ), we get w;;(t) =
w;(0) exp (—nwLi;), Vi € [N].

Consider the weight w;;(t ) After some mathematical manipulation, the expectation of w;;(t) conditioned
on the history H;;, Vj € A;, can be written as follows:

n; "iCy
Elw; (6)[Hes) = > Y (1= pia)*pl Fwli (1) (13)
k=0 [=1
where 0
. Wit
wi (t) =10 € AP ) =2 (14)

quAf’I “A’qq(t)

Here, 1(-) is the indicator function; 1(j € Af’l) = 1 if the condition j € Af’l is satisfied, otherwise 1(j €
AP =o0.

Define jff(t) = arg minj,eA?,z LtL’j,, ie., jff(t) is the index of the robot which incurs the least cumulative

loss among all other robots in the index set Af’l = Qf’l U{i} at time ¢, where Qf’l is one of the many possible
neighbor sets of the i* robot at time ¢, such that |Qfl| =k, where k =0,1,--- ,n;, and I = 1,2,--- " C}.



Under review as submission to TMLR

Assumption 1. For each k € {0,1,--- ,n;} and l € {1,2,--- ,"Cx} pair, lim;_, jff(t) exists uniquely,
such that limy_, o ]ff(t) = ]foll

Remark 5. Assumption 1 implies that the performance configuration (in terms of prediction loss) gets fixed
as t — 00, i.e., for the i*" robot at ¢t — 0o, there is a unique robot (either itself or its neighbor given by the

index jfoll) that incurs the least cumulative loss out of all the robots in the set Af’l.

Note that the cumulative loss satisfies 0 < Lf; < ¢ (since the loss function I(-,-) € [0,1]), Vj € APL and
gy s Skl gkl
LtL,jf;i’(t) < LtL’j (due to 7,7 (t)’s definition), Vj € A"\ {7 ()}

Assumption 2. Lf,j — Ltij’l(t)

Remark 6. Assumption 2 implies that the cumulative loss difference between robot j and the best-performing
robot ]ff(t) grows at most linearly (5 = 1) or sub-linearly (0 < 8 < 1) with time ¢, with both the rate and
magnitude finite but arbitrarily small (0 < e < 1, 0 < 8 <« 1). In practice, this holds when the best robot
jff (t) remains fixed for finite durations and may change intermittently.

> et? > 0, such that 5 € (0,1] and € € (0,1], Vj € AP!\ {]ff(t)}

Lemma 1. Under assumptions 1 and 2, for k = 0,1,--- n;, and l = 1,2,--- [ "Cy, the weights wfjl(t)
satisfy the following:

Jlim wii(6) =0, Ve AP\ (i) (15)
and
Jim wf}’i»%(t)(t) = Jim wfj’i’lv(ﬂ =1 (16)

where jff(t) is the index of the neighbor of the it" robot whose individual prediction incurs the least cumulative

L

loss among all other robots in the index set Af’l = Qf’l U {i} at time t, i.e., ]ff(t) = argminqu?,z Ly

Vi € [N].

Proof. For some k € {0,1,---,n;} and I € {1,2,---,"Cy}, consider the weight wfj’l(t), which can be
re-written as follows; use @;; () = ;;(0) exp (=1, L{;) in eq. and multiply both numerator and denom-
inator by exp (n,L” .., ) to get:
g, (1)
1(j € Af’l)ﬁ}jj (0) eXP{*m;(LtL,j - Ltljj’“’?(t))}
quA?l wqq(o) eXp{_nw(LtL,q - LtL,jfjf(t))}

In the above equation, separating the ﬁjjk,;( 2S)jk,;(t)(O) term from the summation in the denominator yields:

*,1

k.l
w;; (1) =

(17)

1(j € AP (0) exp{—u(Lf; — LY s )}

- Dyrag i 0+ Lgenri ity Daa(0) exp{=mu (g = L))}

(18)

Note that for the cumulative loss, the following holds true: 0 < Lf, f < t (since the loss function is bounded,

ie, l(-,-) €0,1]), Vj € Af’l, and ijk,;(t) < LtL’j (due to jff(t)’b definition), Vj € Af’l \ {]ff(t)} Further

using assumption 2, this implies that the cumulative loss for the j* robot, Vj € Af’l \ { jff (t)}, satisfies

t>L{; — Lf}jfj(t) >etP >0 (19)

where 3 € (0,1] and € € (0,1], ¥j € AP\ {511 (8)}-
Using equation in equation , we get

1(jEAF Y1b,;(0) exp{—nwt}
- ; T wcth
Wt .k:lg(t)(0)+zqe,\(f,t\{jf:§(mwqq(o)exp{ NwetP}

i (B

k1

<w;i(t) < (20)
L(GEA] )y (0) exp{—nwet”}

mjf;j(m’j;ﬁ<t>(0)+zquf*l\{j’:j(t>} qq(0) exp{=rnut}
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for Vj € Af’l \ {qul (t)}, and

Dkl g <t>(0)
w]‘f‘f<f)»ﬂ'ffﬁ<t>(0)+zq6A’“ NE Ly Wqq(0) exp{—rpwet?}
’ ’ < wy “(t)( ) < (21)
Pkl s (,)(0)
w]k Hor (t>(0)+z eakily 1(”} Wqq(0) exp{—nwt}
Now, taking lim; o (+) on equations and , under assumption 1, leads to the desired result. O

For each j € A;, consider the set M; ; defined as follows:

My o= {(k,1) : j = jil k€ {0, b, L€ {1, " Ch}} (22)
Further, consider the set J;, which is defined as

Joi={j =80 ke {0, L1, MOy} € A} (23)
Remark 7. The set M; ,; contains all the pairs (k,!) for which j = ]fclz is satisfied. The set J; consists of all
the indices joo“ fork=0,1,--- ,n;,and 1 =1,2,--- , " (.

Theorem 1. Under assumptions 1 and 2 (using Lemma , Vj € A;, DOME fusion weights w;;(t) satisfy
the following:

Jim Elwi; (6)[He] =0, Vi ¢ Ji (24)
and
lim Efw;(0)[Hea) = Y (L —pa)*pii ", Vi€ J; (25)

V(k,l)eM; ;

where piq s the communication link-drop probability.

Proof. From lemma V(k,l):k=0,1,--- ,n; 1 =1,2,--- ™ Cy, using the definition of the set J; as stated
in equation , note that the following holds true:

lim wi () =0, Vj¢J; (26)
t—o0
and
k.l k,l .
tg@owﬁm—tgmwj“():l vj€ g, (27)
Using equations (26)) and (27)) in equation (1 , along with the definition of the set M} ; as given in equation
. leads to the deblred result O

5 Performance Evaluation

The DOME fusion algorithm is simulated for cooperative target tracking with N = 6 robots over a horizon
of T = 1400 steps and a sampling period AT = 0.1 s, using a look-ahead window of 7 = 10. Robots
communicate over a bi-directional network with random link drops (drop probability, pjq = 0.1), based on an
undirected connected linear graph — chosen to represent the worst-case among connected topologies. Further,
the loss function is set as I(x,y) = min(]|x — y]||/50, 1), where || - || is the Euclidean norm (2-norm) and
x,y € RZ

The drift ¢f; in the prediction by algorithm A; (equation ) is modeled as follows:

Cri= Wi+ Vi, (28)
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Figure 2: (a) An event-based switching signal model for the dynamic bias term puj;, for 7 > 1. Here,
drift_dir = [costgir Sinta]’, such that 14, is sampled from Unif.(0,27) at the start of every simulation
run. The value for prj_rate is set to 0.05. (b) Screenshot of a simulation run in MATLAB for DOME and
a few baselines; T. is the target, T.T. is the target’s trajectory, and Ri is the i*" robot.

where uf . € Rz is a bias term (m), and v/, € Rz is zero-mean Gaussian noise (m) with covariance C7; € R2X2
t,i ’ t,% t, >0
) ) )

(m?) at time ¢. The bias pu7; is modeled as an event-driven switching signal (see Fig. [2n), offering a
more realistic alternative to the ramp signal used in [Cho & Jiang| (2012). In the growing bias state, the
bias magnitude either increases until saturation or switches to the receding bias state with probability p,p.
Conversely, in the receding bias state, it decreases toward zero or switches back with probability pg. In Fig.
, the scalar ¢, ;, indicative of the accuracy of algorithm A;, increases with prediction error. In simulations,
pgy = 0.2 and p,p = 0.5.

To simulate adverse system and environmental conditions, robots are randomly assigned either c;; = 0.01
or ¢;; = 4 at times 0.0, 23.33, 46.67, 70, and 116.67 seconds, ensuring that 3 to 4 out of N = 6 robots
have inaccurate algorithms (i.e., ¢;; = 4). For these robots, the one-step prediction bias satisfies that
each element of the vector ,u%’i lies in the range [0,40] m (see Fig. , with smax = 10). For inaccurate
robots (ct,; = 4), the associated noise covariance Cj; is either 4 - diag([1 1]) or 0.01 - diag([1 1]), each with
50% probability. For accurate robots (c;; = 0.01), C;; = 0.01 - diag([1 1]). For 7 > 1, the noise grows
as C7;, = (1 + 7 - prj_rate) - C},. This setup reflects scenarios where noise and bias are not necessarily
correlated.

Under this setup, DOME fusion employs learning rates n,, = 10 and 7, = 4, with a periodic reset interval
T, = 25, as determined through a simulation-based parametric study (see Appendix for more details).

Under the described communication and prediction uncertainties, DOME is evaluated against three
covariance-based methods — Kalman Consensus Fusion (KCF), Covariance Intersection Consensus Fusion
(CICF), and Covariance Intersection + Covariance Union Consensus Fusion (CICUCF), and two online
learning-based methods — Greedy-Local (GL) and Distributed Mirror Descent (DMD). DMD is applied by
modifying the mirror descent-based distributed online optimization algorithm proposed by [Shahrampour &

10
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Figure 3: (a) A box plot showing the average cumulative 10-step look-ahead prediction loss per robot at
140 seconds; 500 simulation runs (points) for each method — 1: DOME, 2: GL, 3: DMD, 4: CICUCEF, 5:
CICF, 6: KCF, 7: ACF. (b) Average cumulative 10-step look-ahead prediction loss per robot at 60 sec. as
a function of total no. of robots N, averaged over 100 simulation runs for each method.

lJadbabaie| (2017alb)) to fit the problem setting considered in this paper. An Averaging Consensus Fusion
(ACF) baseline is also included. A detailed description of these methods is provided in the Appendix

These algorithms are evaluated based on average cumulative 7-step look-ahead prediction loss for ¢ > 7 :
N t o .
DR [(X{gj5—r),p>%s,B), with T =10, N = 6.

Figure presents a box plot of the average cumulative 10-step look-ahead prediction loss per robot at
140 seconds, aggregated over 500 simulation runs for each method. In each box, the central line denotes
the median, while the bottom and top edges represent the 25" and 75" percentiles, respectively. Notably,
DOME achieves a substantially lower prediction loss compared to all other fusion algorithms. In terms
of median performance, DOME reduces the average cumulative prediction loss by approximately 84.15%
relative to the next best method, GL. In addition to superior accuracy, DOME also demonstrates markedly
lower variance, indicating greater consistency across simulation runs.

DOME fusion is further evaluated for scalability by measuring the average cumulative 10-step look-ahead
prediction loss per robot at the end of a 60-second horizon, averaged over 100 simulation runs, as a function
of the total number of robots N (see Fig. ) Starting from N = 2, robots are incrementally added to the
underlying linear graph structure without introducing random link drops. At times 0.0, 23.33, 46.67, 70, and
116.67 seconds, robots are randomly assigned either ¢;; = 0.01 or ¢;; = 4 (see Fig. )7 such that at least
| %] and at most |4 | +1 out of the total N robots use inaccurate prediction algorithms (c;; = 4), where

|| denotes the floor function.

The noise covariance behavior remains consistent with the previous simulation setup, representing scenarios
where noise and bias are not necessarily correlated. As shown in Fig. B, DOME consistently outperforms
all other fusion algorithms in this scalability test. Its average cumulative 10-step look-ahead prediction loss
per robot remains substantially lower — approximately 78.12% less than the next best algorithm, GL — as
N increases. Moreover, beyond N = 10, DOME’s performance remains nearly constant, indicating that the
algorithm maintains high reliability and prediction accuracy even as the swarm size grows. This suggests
that DOME enables scalable swarm behavior without compromising predictive performance.

From Figures B and Bp, it is evident that DOME consistently outperforms the other fusion methods eval-
uated in the simulation studies. Notably, DOME, GL, and DMD do not require knowledge of prediction
covariance and operate without assumptions regarding consistency or correlation. As a result, they demon-
strate superior performance compared to the covariance-based methods — KCF, CICF, and CICUCF — which
struggle to handle large prediction biases, particularly when such biases do not manifest through increased
covariance.

11
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Although both ACF and DMD assign equal weights to information from neighboring robots, DMD achieves
better performance due to its online error correction mechanism. In contrast, DOME surpasses both DMD
and GL by employing an adaptive weighting scheme based on an online learning process. Unlike DOME;,
neither ACF nor DMD includes a mechanism for adaptively filtering out biased predictions from other robots
in the network. Consequently, biased information can propagate unchecked through the communication net-
work, degrading the performance of even those robots with accurate prediction algorithms. GL outperforms
DMD by greedily selecting the most accurate local prediction; however, it does not propagate this selection
across the network.

The MATLAB simulation video is submitted as a supplementary file. Furthermore, DOME is implemented
in a Gazebo simulation environment using ROS (a simulation video is submitted as a supplementary file).

6 Conclusion

This paper presents a Distributed Online learning-based Multi-Estimate (DOME) fusion algorithm for coop-
erative predictive target tracking in a robotic swarm subject to dynamic prediction bias and communication
uncertainty. Designed for heterogeneous teams with diverse sensors and prediction models, DOME performs
a two-layer weighted fusion of local and socially shared predictions, combined with an implicit, adaptive,
consensus-like update. Fusion weights are learned online using prediction loss feedback, enabling each robot
to improve its own predictions while supporting its neighbors. Theoretical analysis shows convergence of
the expected learning weights under reasonable assumptions. DOME is computationally lightweight and
analytically tractable, making it practical for swarm deployment. Simulations under conditions of large
prediction drift and random link failures show that DOME outperforms both covariance-based and online
learning-based decentralized methods, achieving an 84.15% reduction in prediction loss compared to the
next-best method, Greedy Local (GL). It also scales well, with a 78.12% lower prediction loss than GL as
the swarm size increases. Finally, DOME is validated in a ROS-Gazebo simulation environment (check the
simulation video in the supplementary zip file). This study assumes full observability of the target; future
work will address the partially observable case.

Broader Impact Statement

The proposed DOME fusion algorithm enhances collaborative prediction accuracy in multi-agent systems
operating under communication uncertainty and prediction biases. While developed for cooperative predic-
tive target tracking using a robotic swarm, the framework generalizes across domains requiring decentralized,
privacy-preserving, and adaptive prediction fusion.

Potential applications span finance, where distributed trading models collaboratively forecast market trends;
weather and climate forecasting, where regional prediction centers integrate heterogeneous models; urban
sensing and environmental monitoring, where sensor networks fuse multi-modal data; and healthcare, where
institutions jointly improve predictive diagnostics without sharing sensitive data. In smart grids and supply
chains;, DOME can enable robust coordination among nodes by cooperatively predicting energy availability
and demand under uncertainty.
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A Appendix
A.l

Nomenclature

[|-]] 2-norm
"C,  n choose k
-y transpose operation

[ based on usage can either be the cardinality of a set or element-wise absolute value operation for a
real-valued vector

E[]  expectation operator
Pid communication link-drop probability
T time horizon — discrete-time
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T, periodic reset in DOME occurs after every T, discrete-time steps
1(-)  the indicator function

[-] the floor function

log(-) natural log

() 5y (am) = ara2a3 - - an,
N total number of robots in the swarm

G(t) undirected random communication connectivity graph at time ¢
Q:;  i'" robot’s neighbor set as per G(t) at time ¢

N;(t) it" robot’s total number of neighbors at time ¢, N;(t) = |Q ]

G base graph for the undirected random graph G(t)

Q neighbor set of the it" robot as per the base-graph G

n; maximum possible neighbors of the i*" robot as per the base-graph G, n; = |QZ|
A; it" robot’s prediction algorithm

x;;  it" robot’s position vector (in m)

x;p  target’s (Bogey’s) position vector (in m)
G drift in algorithm A;’s 7-step look-ahead prediction
ﬁélﬂ .8 T-step look-ahead prediction of target’s position given by the i*" robot’s algorithm A;

~L;
X(t4r|t),B
7

it" robot’s Local T-step look-ahead prediction of target’s position given by the i*" robot’s algorithm

ﬁft+r|t),B it" robot’s Social T-step look-ahead prediction of target’s position
I(-,-) Dbounded loss function with two arguments; I(-,-) € [0, 1]

lf}i algorithm A;’s prediction loss: l(f{éftil)’B, Tt B)
L{}Z— algorithm A;’s cumulative prediction loss: 22:1 ls;
ltLﬂ- i*" robot’s Local prediction loss: l(ﬁ(l;fi\t—l),B’ z.B)

. - . t
LE, i robot’s Local prediction’s cumulative loss: >_,_, X,
12, it" robot’s Social prediction loss: l(ﬁétlt_l) 5 Tt,B)

Lf,i ith robot’s Social prediction’s cumulative loss: 22:1 li i
lf P it" robot’s previous-time Social prediction loss w.r.t. current target position:

l(ﬁétfl\tfn,B’xt;B)
t oS-

L77 it robot’s previous-time Social prediction’s cumulative loss w.r.t. current target position: 3 o_, 15

H¢;  history relevant to the it" robot just before the communication phase begins, at time ¢

Qf L one of the many possible neighbor sets containing k neighboring robots that the i* robot is commu-
nicating with at time ¢, where k € {0,1,2,--- ,n;}, and l € {1,2,--- ,"Cy}

A QU {i}

A; Q; U {i}

Ayl Pt Ui}, where k € {0,1,2,-++ ,n;}, and L € {1,2,++ " Cy}

NasTw DOME algorithm’s learning rate parameters

Tmaez Max. limit on the no. of neighbors any robot can have in the base graph G, such that n; < Nmas

A.2 Decentralized Normalization Scheme

The weights are normalized using a decentralized normalization scheme summarized as Algorithm A
similar procedure is used for the normalization of the weights &;(t) and & (¢) as well.
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Algorithm 2 Decentralized normalization scheme for the i*" robot at time ¢, Vi € [N]

Choose: machine’s least precision § > 0
Initialize: nrment;; =0

1: if (4(t) < 0) then

2: Wi () + Wi (t) /0

3: nrment;; <— nrment;; + 1

4: end if

5: send {4, W;;(t), nrment;; } to and receive {j, w;;(t), nrment;; } from neighbors j € Q; ;
. wji(t) Vi€ A

6: i (t) = OM( : : otherwise

7. for (j € A;;) do

8: if (nrmentj; > mingen, , nrment; ;) then

9: Wy (t) +~0

10: end if

11: end for

A.3 MATLAB Simulation Details

In the simulations, the target (B) follows a unicycle model with i = B, v/ 5 = 0, where v 5 = [0} 5 U/ g’
and vy p € R, vt p € R. The target changes its speed after every 5 sec. intervals, such that v/ 5 is sampled
as vf g ~ (8 + Unif.(0,4)) m/s after every 5 seconds. Further, the target also changes its yaw rate (i g)
after every 5 sec. mtervals such that w, g (rad./s) is sampled from either of the three expressions with
equal probability: TAT — Unif. ( ,TAT) TAT + Unif. ( ,T?XT). The initial position (x¢ g)
and yaw angle (1o p) of the target are randomly sampled as xo g ~ [Unif.(0,20) Unif.(0,20)]" m and
o, ~ Unif.(—m, m) rad., respectively, at the start of each simulation run.

For the robots, the velocity control input is bounded as |v;;| < [10,10]" m/s, and the yaw-rate control
input is bounded as |w; ;| < 0.524 rad./s, where | - | is the element-wise absolute value operation. The
initial position x;; and yaw angle 1, ; of the it robot is set to be x¢; = [10-4,0] m and ¢, ; = 7/2 rad.,
respectively. The control law parameters are set to be dg = 10 m, ky = 4, ko = 10, and k3 = 10. The loss
function is defined to be I(x,y) = min(||x — y||/50, 1), where x,y € R2.

A.3.1 Control Law

Translational Control Law: for the i*" robot, the translational control law consists of two terms as given
below
Vi = Vi + AV, (29)

where Vfi is the i*" robot’s reference command signal responsible for chasing the target, and Av,; is the i*"
robot’s correction control signal responsible for avoiding collisions with other robots.

Denote R;; € R2%2 a5 the " robot’s body-global rotation matrix at time ¢, defined as R;; =
cosy;  —singy;
sings;  cos ¢y

The " robot’s reference command signal V1 is given as
ki

AX?
t+rt),B ;
= R, TP (Al - d) (30)
1A% 1r10), ]
where (-)" represents the transpose operation, || - || is the 2-norm, k; > 0 is a control parameter. Axi, B =

X¢,B — Xt;, Where x; p is the target’s position vector at time ¢, and x;; is the i*" robot’s position vector at
time ¢. dg > 0 (m) indicates the distance each robot should maintain from the target while chasing it. Here,
A&%HTW g is defined as

Aﬁét—&-rlt),B = f‘ém—ﬂt),B — Xtyi (31)
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Avg. Final Cumul. Pred. Loss at 140 sec. for To = 45

Avg. Final Cumul. Pred. Loss at 140 sec. for To = 25

Ty

’I]a

Std. Dev. of Final Cumul. Pred. Loss at 140 sec. for To = 45

Figure 4: The mean and standard deviation of the average social cumulative prediction loss of all the robots
at t = 140 sec. (averaged over 50 sim. runs) versus the learning rates for: (a) T, = 45 and (b) T, = 25.

where fc% thr(t), B is i'" robot’s T-step look-ahead prediction of target’s position at time ¢, and x; ; is i*" robot’s
position at time ¢.

Further, we assume that each robot is equipped with a collision avoidance system, which ensures that while
chasing the target, robots do not collide. Considering eq., this behavior can be modeled by the correction
control signal Av,; for the it" robot by using an inter-robot collision avoidance control law given as follows:

_ Xipi — Xti
Avm = _kQRLi _t 3 (32)
|1z pi — %l
where (-)’ represents the transpose operation, || - || is the 2-norm or the Euclidean norm, ks > 0 is a control

parameter, pi € [N]\ {i} is the index of the robot spatially nearest to i** robot at time ¢, formally defined
as pj := argmin;jen) i} |1%¢,; — X¢,4/[. Thus, X, pi 18 the position vector of the robot spatially nearest to the
ith robot at time t.

Heading Control Law: consider a heading angle requirement such that the robots are required to
yaw in a way that their heading direction should point towards their 1-step look-ahead estimate of the
target’s position )Acthlt)’B. The angle between Aﬁ%t-&-lﬁ),B (from eq and the i*" robot’s heading di-
rection hy; = [cos @i sin (bt,i]/, with respect to the A)A(f;_HVB direction, can be obtained as Agbi’ew =
atan2 (hy; x A%} i b A% ), Where the first argument involves a cross-product and the second ar-
gument involves dot-product. As per the heading angle requirement, i*" robot’s yaw control law can be given

as
Wy ; = k3 A} (33)

t.err

where k3 > 0 is a control parameter.

A.3.2 Baselines

For the above-described simulation setup with an adverse setting, DOME is compared against three
covariance-based (Kalman Consensus Fusion, Covariance Intersection Consensus Fusion, Covariance Inter-
section + Covariance Union Consensus Fusion) and two online learning-based (Greedy-Local, Distributed
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’ T, ‘ Na ‘ M H Ming, o, { 2oy Lri0o.i} H

5 10 15 76.62
10 | 10 | 13.9 49.49
15 | 10 | 9.6 40.30
20 | 10 | 64 36.33
25 | 10 | 54 32.56
30 | 10 | 4.3 32.75
35 | 88 | 3.2 34.54
40 | 7.5 | 3.2 33.15
45 | 8.8 | 3.2 30.55
50 | 10 | 2.2 34.05
95 | 10 | 2.2 34.59
60 | 6.3 | 2.2 34.55
65 | 7.5 | 2.2 34.48
70 | 88 | 1.1 42.71
7163 1.1 37.56
80 | 6.3 ] 1.1 41.28
8 [ 63| 1.1 42.93
90 | 6.3 | 1.1 39.62
95 | 6.3 ] 1.1 40.77
100 | 6.3 | 1.1 42.30

Table 1: Optimal learning rates for different T, values from a simulation-based parametric study of DOME.

Mirror Descent) decentralized prediction fusion methods, along with the Averaging Consensus Fusion base-
line, which are briefly described as follows:

Averaging Consensus Fusion (ACF): instead of updating the weights &;(t), &;(t), and @;;(t) as per the

DOME fusion weight update mechanism, keep the fixed as &;(t) = 1, &(t) = 1, and w;;(¢) = 1 and calculate
the predictions.

Kalman Consensus Fusion (KCF) (Maybeck], [1982; [Uhlmann| 2003): assumes that the predictions being
fused are uncorrelated and their associated zero-mean Gaussian noises’ covariance (C7 ;) are known.

. . aL; a1 . L; 7 .
Consider the covariance of X(i4rl0),B and X(t—14rlt—1),B BS C(H-Tlt),B and C(t—1+7—|t—1),B’ respectively. Con-

sider C7 ; as the covariance for )A(ézr‘r\t),B'
Local prediction phase:
i - 1 i — T \—
(Clior,s) ™" = 5 (Clecrirp. )™ +(CL)T) (34)

-1
oL _ i - T \— T \—1gAi i —1gi
X(t+7|t)’3 - ((C(t71+7|t71)73) ! + (Ct,i,) 1) ((Ct,i) lx(t+r|t),B + (C(t71+r|t—1),3) 1X(t71+'r\t71),B)

(35)
Communication phase: The it" robot sends the information {t’i’&éitﬂt),B’C(LtiJr'r\tLB} and receives the
information {t, j, fcé{i-‘r\t),B’ Cé{let),B} from its communicating neighbors j € €, ;.
Social prediction phase: With n, ; = | ;|, we have
. 1 L.
-1 _ ; -1
(CEtJrTlt),B) - nes +1 Z (C(tJJr'r\t),B) (36)
’ VieN ;
-1
o . L; 1 L; 1aL;
th-{—T\t),B - (ZV]'EAW; (C(t{‘rﬂ"t),B) ) ZVjEAt,i(C(tJ#»ﬂt),B) X(t{i*ﬂ"t),B (37)
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DOME: gumul. Pred. Loss of the 3" Robot and its Neighbors vs Time
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Figure 5: The first plot shows the cumulative prediction losses for selected robots for a duration of 5 seconds.
The second plot illustrates how the weights change in response to the prediction losses shown in the first
plot; note that random link drops occur, which means that the nominal neighbors may not be neighbors at
all times.

Covariance Intersection Consensus Fusion (CICF) (Matzka & Altendorfer, 2009} |Julier & Uhlmann),
2017): consider the equations - ; each robot employs the Covariance Intersection (CI) method
for the fusion of the predictions instead of Kalman Fusion. CI assumes that the predictions being fused
are consistent and their associated zero-mean Gaussian noises’ covariance (C7 ;) is known, but their cross-
correlation is unknown.

Covariance Intersection + Covariance Union Consensus Fusion (CICUCF) (Matzka & Altendor-|
12009; Reece & Roberts| [2010)): consider the equations — (37); first, each robot employs the Covariance
Intersection (CI) method for the fusion in the local prediction phase instead of Kalman fusion. After this,
the output of CI is fused with the Cl-predictions from the neighbors in the social prediction phase using
Covariance Union (CU) instead of Kalman fusion. In CU, while trying to keep the fused predictions con-
sistent, the resultant fused covariance is increased. Therefore, CI is applied in the next iteration to reduce
the predictions’ covariance. CU assumes that the predictions being fused can be inconsistent and their
cross-correlation is unknown, but their associated zero-mean Gaussian noises’ covariance (C7 ;) is known.

~Aj
= XFupn),

which incurs the least cumulative loss among all the

Greedy-Local (GL): each robot uses the one-step look-ahead prediction )?:f
LA,

(t4r]t), B
predictions that are shared by its neighbors and its own prediction algorithm, i.e., j. = argminjey, , LA

t,jo
Vi € [N]. Here, I, = (x4 X{¢jt—1),5° Xt ) and Ly}, = et 12

t+1|t),B p and the

T-step look-ahead prediction x(t +r6),B = X

s=1"s,i"

Distributed Mirror Descent (DMD): Mirror Descent is applied to our problem setting by modifying
the Mirror Descent-based distributed online optimization algorithm proposed by |Shahrampour & Jadbabaie,
2017albl leading to the following;:

~A] AAj
t|t) B~ nge/\t i i (t )[th\t_l),B + (Xt — X(t|t_1),B)] (38)
oi Wi (£)(&7 & 39
Xt+1lt),B = X(t\t) BT Zv]eAt (t>(x(t+1|t),B - X(t\tfl),B) (39)

19



Under review as submission to TMLR

N i ~ A AA.

X(4r)t),B = X(tjt),B T ZV]’GA“ Wi; (t)(x(tiﬂt),B - X(t'\]tq),B) (40)
Here, 7,, > 0 is a learning parameter, and W;;(t) € R>( are the weights for the consensus-based fusion.
The weights W;;(t) are considered to be equal for all the neighbors at any time ¢, i.e., W;;(¢) = (ne; + 1)1,
where 1y ; = |Q¢ 4], Vi € Ay ;.

A.3.3 Parametric Study

Table [I] shows the optimal learning rates for which the mean of the average social cumulative prediction loss
of all the robots at ¢t = 140 sec. (i.c., § Z?:l Lf4007i) is minimum for different 7, values. From table |1} the
best mean performance occurs at T, = 45, with n,, = 8.8 and 1, = 3.2. A similar study is performed to get
the optimal learning rates for which the standard deviation of the average social cumulative prediction loss
of all the robots at ¢ = 140 sec. (i.e., %Z?Zl L%400.4) is minimum for different T, values, which shows that
the standard deviation is the least at around T, = 25, with n,, = 10.0 and 7, = 5.4. Figures [fh and @b show
the contour plots for the mean and standard deviation of the average social cumulative prediction loss of all
the robots at ¢ = 140 sec. (i.e., %Z?Zl Lf400,i) versus the combination of learning parameters (7, 1,,) for
T, = 45 and T, = 25, respectively. Note the sensitivity in both the mean and standard deviation due to the
learning parameter 7.

A.3.4 DOME Weights' Behavior

A screenshot of a sample simulation run is shown in Fig. 2b. The dynamic behavior of DOME weights
ws;(t), j € Ay for a time duration of 5 seconds is shown in Fig. [5{along with the corresponding cumulative
local prediction losses for the 3¢ robot and its nominal neighbors robot 2 and robot 4 (note that random
link drops occur, due to which the nominal neighbors may not be neighbors at all times), along with the
cumulative social prediction loss for the 3" robot.
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