
Under review as submission to TMLR

DOME: Distributed Online Learning based Multi-Estimate
Fusion for Cooperative Predictive Target Tracking Using a
Robotic Swarm

Anonymous authors
Paper under double-blind review

Abstract

This paper investigates cooperative predictive target tracking using a robotic swarm oper-
ating under high prediction bias and communication uncertainty. The robots interact over
a randomly time-varying communication network and exhibit heterogeneity in onboard sen-
sors and prediction algorithms. To address these challenges, a Distributed Online learning-
based Multi-Estimate (DOME) fusion algorithm is proposed, which performs a collaborative
weighted fusion of local and socially shared predictions. The fusion weights are adapted on-
line using feedback from a prediction loss. Theoretical analysis establishes that conditional
expectations of the fusion weights converge under reasonable assumptions. Simulation stud-
ies demonstrate that DOME outperforms both covariance-based and online learning-based
decentralized fusion baselines, achieving 84.15% and 78.12% lower prediction loss in perfor-
mance and scalability tests, respectively – particularly under conditions involving significant
model drift and communication unreliability. Further, DOME fusion is implemented in a
ROS-Gazebo simulation environment.

1 Introduction

With robotics technologies becoming more economical, smaller, and reliable, robotic swarms are being con-
sidered attractive for use in hazardous and uncertain environments (Mohiuddin et al., 2020). A robotic
swarm has a wide range of applications, such as search and rescue (Scherer et al., 2015), precision drug
delivery (Nelson & Pané, 2023), and surveillance (Saska et al., 2016), among others, that involve tracking
a target as one of its fundamental tasks. A key challenge in target tracking with sensor-equipped robots is
the look-ahead trajectory prediction (Hao et al., 2018); robots use predicted paths to plan their motion for
effective tracking performance.

Most prior work on target tracking using a robotic swarm focuses on path planning and control. Approaches
include coordinated control via formation flying (Ma & Hovakimyan, 2015; Sun et al., 2021) and region-based
strategies (Jung & Sukhatme, 2006). Wang & Gu (2011) combined distributed Kalman filtering for target
localization with flocking control for tracking and collision avoidance. Hausman et al. (2015) presented a
centralized control scheme that leverages onboard sensing for target estimation. Subbarao & Ahmed (2017)
addressed tracking under dynamic network topologies using pinning control and consensus on target states
(Wang & Su, 2014). In contrast, this work focuses on the estimation/prediction aspect of cooperative target
tracking, rather than control or planning.

In a robotic swarm, heterogeneous sensors and prediction algorithms can be leveraged to reduce uncertainty
in target trajectory estimation (Rizk et al., 2019). Multi-sensor fusion in such systems commonly employs
established methods such as Kalman Filter/Fusion (KF) (Maybeck, 1982; Uhlmann, 2003), Covariance Inter-
section (CI) (Matzka & Altendorfer, 2009; Julier & Uhlmann, 2017), and Covariance Union (CU) (Matzka
& Altendorfer, 2009; Reece & Roberts, 2010). Building on CI, Carrillo-Arce et al. (2013) proposed a de-
centralized cooperative localization algorithm that reduces processing and communication overhead while
maintaining consistency under asynchronous communication. Assa & Janabi-Sharifi (2015) developed a non-
linear KF-based fusion framework incorporating adaptive noise compensation and iterative updates for fast

1

Under review as submission to TMLR

dynamics. Chang et al. (2021) used CI to maintain consistency and enhance resilience in multi-robot local-
ization. Daass et al. (2021) compared KF- and CI-based architectures, identifying the partially distributed
approach as optimal in terms of stability and efficiency. Wang et al. (2021) introduced a fully decentralized
CU-based localization method that mitigates the effects of spurious sensor data. Jia et al. (2023) utilized CI
to estimate the covariance of initialized UWB anchor positions, thereby enabling consistent data fusion in
their distributed visual-inertial ranging odometry framework. However, these covariance-based approaches
rely on assumptions regarding consistency and inter-estimate correlations. In scenarios with significant dy-
namic biases or drift, particularly when bias and covariance are uncorrelated, such methods may degrade or
fail.

Unlike covariance-based methods, distributed online learning frameworks (Cesa-Bianchi & Lugosi, 2006;
Chang et al., 2020) operate without requiring covariance information or assumptions about consistency
and correlation. While most existing works focus on general algorithmic settings (Chang et al., 2020),
their application and analysis within robotics remain underexplored. Shahrampour & Jadbabaie (2017a)
introduced a mirror descent-based algorithm for tracking the minimizer of a time-varying convex function
under adversarial noise. Similarly, Shahrampour & Jadbabaie (2017b) proposed a decentralized variant for
multi-agent target tracking with unknown, unstructured disturbances. Eshraghi & Liang (2020) addressed
heterogeneous networks with time-varying topology, proposing any-batch mirror descent to limit latency
from slower nodes. Jiang et al. (2021) developed an asynchronous gradient-push method using asymmetric
gossip and instantaneous model averaging. Eshraghi & Liang (2022) extended mirror descent with multi-
iteration averaging over both decisions and gradients to improve tracking of dynamic global minimizers over
time-varying networks. These algorithms typically incorporate consensus averaging with fixed, pre-defined,
or equal weights. However, the lack of adaptive weighting limits their robustness in challenging conditions
involving large or time-varying biases, drift, or communication uncertainties.

In this regard, this paper introduces the Distributed Online learning-based Multi-Estimate (DOME) fusion
algorithm, which employs an implicit, adaptive, consensus-like update mechanism to robustly handle high
uncertainty and adversarial conditions. The cooperative target-tracking problem involves robots connected
over a random communication network, each running a potentially different prediction algorithm to generate
look-ahead trajectories of the target. Prediction accuracy may vary over time due to algorithmic differences,
scenario-specific optimizations (cf. no free lunch theorem; Murphy, 2012), or environmental and system
uncertainties. DOME performs a collaborative, online weighted fusion of local and social predictions. The
fusion weights are learned via a prediction loss-driven process inspired by the exponentially weighted fore-
caster framework (Cesa-Bianchi & Lugosi, 2006). This ensures that more accurate predictions receive higher
weight, thereby improving tracking performance.

A convergence analysis of DOME’s learning weights is presented, demonstrating that their expected values
converge over time. DOME is evaluated in a simulated environment featuring random communication link
failures and significant dynamic biases or drift in predictions. DOME is benchmarked against several decen-
tralized fusion baselines, including Averaging Consensus Fusion (ACF); three covariance-based methods –
Kalman Consensus Fusion (KCF), Covariance Intersection Consensus Fusion (CICF), and Covariance Inter-
section + Covariance Union Consensus Fusion (CICUCF); and two decentralized online learning approaches
– Greedy-Local (GL) and Distributed Mirror Descent (DMD) (Shahrampour & Jadbabaie, 2017a;b). Sim-
ulation results show that DOME consistently outperforms all baselines, achieving at least 84.15% lower
prediction loss in performance evaluations. In terms of scalability, DOME also demonstrates a minimum
of 78.12% reduction in prediction loss relative to the compared methods. Additionally, the algorithm is
validated in a ROS-Gazebo simulation environment.

The paper proceeds with the formulation of the problem (Section 2), followed by the DOME fusion algorithm
(Section 3) and its theoretical analysis (Section 4). The simulation results are then presented (Section 5), and
the paper concludes with a summary and a broader impact statement (Section 6). Nomenclature is provided
in the Appendix (A.1), along with the MATLAB simulation details (A.3), including details regarding the
baselines (A.3.2). Both MATLAB and ROS-Gazebo simulation videos are provided as supplementary files.
Details regarding the ROS-Gazebo simulation are included in the video itself.

2

Under review as submission to TMLR

Figure 1: Decentralized cooperative predictive target-tracking using a robotic swarm. Each robot i ∈ [N]
is equipped with a local prediction algorithm Ai. The robots share information over the communication
network and aim to cooperatively predict the target position.

2 Problem Formulation

The decentralized cooperative target-tracking scenario (Fig. 1) involves multiple robots predicting the tra-
jectory of a target with unknown dynamics over a random communication network. Each robot is equipped
with a sensor suite and a local prediction algorithm that relies solely on its own observations. While the
target is observable to all robots, differences in sensor types and algorithms may lead to varying prediction
accuracies across segments of the trajectory, particularly under system or environmental uncertainties.

In practice, full observability of the target arises mainly in two situations. The first is when robots possess
high-grade, long-range, wide–field-of-view sensors capable of independently tracking the target. The second
occurs when centralized sensing assets, such as ground radar networks, AWACS, or satellites, monitor the
target and broadcast its position to the swarm via one-way communication. In swarm robotics, this cen-
tralized sensing paradigm enhances situational awareness, reduces individual sensing demands, and enables
scalable, coordinated operation over large environments.

Robots that share a direct communication link are referred to as neighbors. The topology of the random
communication network is represented by a bi-directional random graph G(t), where t is the discrete-time
variable, whose underlying base graph topology is denoted as Ḡ; the links (edges) in the digraph Ḡ drop with
a probability of pld, called as the link-drop probability, thus, representing communication failure. Robots
can exchange information only with their neighbors and have no knowledge of the global network structure.
Let Ωt,i denote the set of neighbors of the ith robot at time t, as defined by the communication graph G(t).
Define Λt,i := Ωt,i ∪ {i}, i.e., the set of ith robot’s neighbors including itself. Similarly, let Ω̄i denote the set
of neighbors of the ith robot as per the base-graph topology Ḡ, and define Λ̄i := Ω̄i ∪ {i}.

Let N denote the number of robots in the swarm, with each robot indexed by i ∈ [N]. The ith robot runs
a prediction algorithm Ai that estimates the target’s look-ahead trajectory using real-time onboard sensor
data. The set {Ai}N

i=1 may consist of non-identical algorithms – either differing in type or parameterization
– due to heterogeneous or complementary sensors and models. Consequently, prediction accuracy may vary
across robots and along different segments of the target’s trajectory. Even identical algorithms can yield
varying accuracy due to system or environmental uncertainties (e.g., hardware or software failures).

3

Under review as submission to TMLR

Robot Model: consider the following discrete time 3-DOF kinematic model for the ith robot, where ∆T is
the sampling period (seconds), ∀i ∈ [N]

xt+1,i = xt,i + ∆T
[
cosϕt,i − sinϕt,i

sinϕt,i cosϕt,i

]
v̄t,i (1a)

ϕt+1,i = ϕt,i + ∆Tw̄t,i (1b)

where xt,i ∈ R2 is the 2-D position vector (in m), v̄t,i ∈ R2 is the body-axis velocity vector (m/s), ϕt,i ∈ R
is the heading angle (radians), and w̄t,i ∈ R is the yaw rate (rad/s) of the ith robot at discrete-time t,
respectively. Here, the body-axis velocity v̄t,i and yaw rate w̄t,i are the bounded control inputs for the ith

robot.

Target Model: the set of equations (1) also serves as the target’s kinematic model, but the target’s dynamic
model is unknown. The target’s position vector xt,B ∈ R2 (in m), heading angle ϕt,B ∈ R (radians), body-
axis velocity v̄t,B ∈ R2 (m/s), and yaw rate w̄t,B ∈ R (rad/s), respectively, can be represented by replacing
i with B (Bogey) in the set of equations (1). v̄t,B and w̄t,B are the bounded control inputs for the target at
time t, which are considered unknown to the robots because the target’s dynamics is unknown.
Remark 1. While MATLAB simulations (Section 5) assume an omnidirectional (holonomic) kinematic model
for both robots and the target, the proposed DOME fusion framework is model-agnostic. ROS-Gazebo
simulations (check supplementary video) demonstrate its applicability to non-holonomic systems.

Control Law: for the ith robot, the translational control law consists of two terms as given below

v̄t,i = v̄R
t,i + ∆v̄t,i (2)

where v̄R
t,i is the ith robot’s reference command signal responsible for chasing the target by using its τ -step

look-ahead estimate of the target’s trajectory, and ∆v̄t,i is the ith robot’s correction control signal responsible
for avoiding collisions with other robots. Furthermore, consider a heading angle requirement such that the
robots are required to yaw in a way that their heading direction points towards their 1-step look-ahead
estimate of the target’s trajectory. A detailed description of the control law used in the simulations (Section
5) is provided in the Appendix (A.3.1).
Remark 2. As the focus of this work is on target trajectory estimation/prediction, a simplified control
strategy is employed. However, the proposed DOME fusion framework is compatible with more advanced
control schemes (e.g., obstacle avoidance (Sun et al., 2014) and formation control (Cheng et al., 2005)),
depending on application needs.

Abstract Model for Prediction Algorithm Ai: let x̂Ai

(t+τ |t),B ∈ R2 denote the τ -step look-ahead predic-
tion of the target’s position by algorithm Ai at time t. We model this prediction as:

x̂Ai

(t+τ |t),B = xt+τ,B + ζτ
t,i (3)

where xt+τ,B is the true target position at time t+τ , and ζτ
t,i ∈ R2 is the prediction drift at time t. The drift

ζτ
t,i models prediction inaccuracies specific to Ai and is assumed to follow an arbitrary, unknown structure

– potentially non-Gaussian and without a known distribution – capturing variability in accuracy across
algorithms {Aj}j∈[N]\{i}.

With the assistance of its prediction algorithm Ai and its neighboring robots as per the communication
network G(t) at time t, each robot aims to estimate/predict the target’s position at time t+ τ , i.e., xt+τ,B .

3 Distributed Online Learning based Multi-Estimate Fusion

Each iteration of the Distributed Online learning based Multi-Estimate (DOME) fusion algorithm involves a
learning phase, a local prediction fusion phase, a communication phase, and a social prediction fusion phase.

Learning Phase: at the current time step t, robots observe the current position of the target, xt,B . The
robots use this observation as the ground truth to learn the DOME fusion weights.

4

Under review as submission to TMLR

The DOME fusion weights αi(t) and wij(t) are updated using a bounded loss function l(x,y) ∈ [0, 1], with
its arguments x ∈ R2 and y ∈ R2.
Remark 3. The proposed algorithm applies to any suitable set X with x,y ∈ X for which the loss function
l(x,y) ∈ [0, 1] is defined. While DOME fusion extends naturally to 3-D settings (X = R3), a 2-D case
(X = R2) is used here for simplicity.

Consider the current time step neighbor set Ωt,i, and Λt,i = Ωt,i ∪ {i} as the set of ith robot’s neighbors
including itself at time t.

Denote x̂i
(t|t−1),B as the ith robot’s 1-step look-ahead social prediction of the target’s position at the previous

time step t − 1, calculated at time t − 1 using the previous time weights wij(t − 1) and the previous time
1-step look-ahead local predictions x̂Lj

(t|t−1),B , where j ∈ Λt−1,i, can be given as follows:

x̂i
(t|t−1),B =

∑
∀j∈Λt−1,i

wij(t− 1) x̂Lj

(t|t−1),B (4)

where the ith robot’s previous time 1-step look-ahead local predictions x̂Li

(t|t−1),B , calculated at time t − 1
using algorithm Ai’s previous time 1-step look-ahead prediction x̂Ai

(t|t−1),B , 1-step look-ahead social prediction
x̂Ai

(t|t−1),B at time t− 2, and the previous time weights αi(t− 1), ∀i ∈ [N], can be given as follows:

x̂Li

(t|t−1),B = αi(t− 1) x̂Ai

(t|t−1),B + (1− αi(t− 1)) x̂i
(t−1|t−2),B (5)

The DOME fusion’s local weights αi(t) are updated as follows:

α̂i(t) = α̂i(t− 1) exp
(
−ηα l(xt,B , x̂Ai

(t|t−1),B)
)

(6a)

α̂′
i(t) = α̂′

i(t− 1) exp
(
−ηα l(xt,B , x̂i

(t−1|t−2),B)
)

(6b)

αi(t) = α̂i(t)
α̂i(t) + α̂′

i(t)
(6c)

where ηα > 0 is the local weights’ learning rate. The weights are initialized as α̂i(0) = 1 and α̂′
i(0) = 1.

Note that αi(t) ∈ [0, 1].

The DOME fusion’s social weights wij(t) are updated as follows:

ŵii(t) = ŵii(t− 1) exp
(
−ηw l(xt,B , x̂Li

(t|t−1),B)
)

(7a)

wij(t) = 1(j ∈ Λt,i)
ŵjj(t)∑

j′∈Λt,i
ŵj′j′(t) (7b)

where ηw > 0 is the social weights’ learning rate, and 1(·) is the indicator function; 1(j ∈ Λt,i) = 1 if the
condition j ∈ Λt,i is satisfied, otherwise 1(j ∈ Λt,i) = 0. The weights are initialized as ŵii(0) = 1. Note that
wij(t) ∈ [0, 1] and

∑
j∈Λt,i

wij(t) = 1.

DOME fusion weights αi(t) and wij(t) are reset every To time steps to 1, mitigating bias accumulation under
high system and environmental uncertainty. Furthermore, a decentralized normalization scheme is employed
to normalize the weights after each update (see Appendix A.2 for more details).

Local Prediction Phase: using the learned weights αi(t), the ith robot’s τ -step look-ahead local prediction
of the target’s position at time t. i.e., x̂Li

(t|t−1),B , is given as:

x̂Li

(t+τ |t),B = αi(t) x̂Ai

(t+τ |t),B + (1− αi(t)) x̂i
(t+τ−1|t−1),B (8)

where x̂i
(t+τ−1|t−1),B is the ith robot’s previous time τ -step look-ahead social prediction of the target’s

position.

5

Under review as submission to TMLR

Communication Phase: the ith robot shares the information {t, i, x̂Li

(t+1|t),B , x̂
Li

(t+τ |t),B , ŵii(t)} with its
neighbors j ∈ Ωt,i, and receives {t, j, x̂Lj

(t+1|t),B , x̂
Lj

(t+τ |t),B , ŵjj(t)} from its neighbors j ∈ Ωt,i.

Social Prediction Phase: using equation (7b) along with the received ŵjj(t) weights via communication,
we get the learned weights wij(t). Further, using the local predictions received from the neighbors, the ith

robot’s τ -step look-ahead social prediction at time t is calculated as follows:

x̂i
(t+τ |t),B =

∑
∀j∈Λt,i

wij(t) x̂Lj

(t+τ |t),B (9)

Note that the ith robot’s τ -step look-ahead social prediction x̂i
(t+τ |t),B is considered as the final τ -step look-

ahead estimate of the target’s position, and thus, is used by the control law for calculating velocity reference
(equation (2)) and yaw-rate commands (A.3.1).
Remark 4. Note that the learning phase involves comparing previous time 1-step look-ahead predictions with
the current time position of the target (using prediction loss) to update the weights. The learned weights
are then used to get the current time τ -step look-ahead predictions of the target’s position.

DOME fusion is summarized in Algorithm 1.

Algorithm 1 DOME (for the ith robot, i ∈ [N])
Choose: T, To, τ ≥ 1 (integers); ηα, ηw > 0
Initialize: ŵii(0) = 1, α̂i(0) = 1, α̂′

i(0) = 1,
x̂i

(0|−1),B = x̂Ai

(1|0),B , x̂i
(τ−1|−1),B = x̂Ai

(τ |0),B

Iteration at discrete time step t = 0, 1, 2, · · · :
1: Observe xt,B

2: if t > 0 then
3: α̂i(t) = α̂i(t− 1) exp (−ηαl(x̂Ai

(t|t−1),B ,xt,B))
4: α̂′

i(t) = α̂′
i(t− 1) exp (−ηαl(x̂i

(t−1|t−2),B ,xt,B))
5: ŵii(t) = ŵii(t− 1) exp (−ηwl(x̂Li

(t|t−1),B ,xt,B))
6: end if
7: Periodic Reset: re-initialize the weights α̂i(t), α̂′

i(t), and ŵii(t) to 1 after every To discrete time steps
8: αi(t) = α̂i(t)

α̂i(t)+α̂′
i
(t)

9: x̂Li

(t+1|t),B = αi(t)x̂Ai

(t+1|t),B + (1− αi(t))x̂i
(t|t−1),B

10: x̂Li

(t+τ |t),B = αi(t)x̂Ai

(t+τ |t),B + (1− αi(t))x̂i
(t−1+τ |t−1),B

11: transmit {t, i, x̂Li

(t+1|t),B , x̂
Li

(t+τ |t),B , ŵii(t)} and receive {t, j, x̂Lj

(t+1|t),B , x̂
Lj

(t+τ |t),B , ŵjj(t)} from the commu-
nicating neighboring robots, ∀j ∈ Ωt,i

12: Λt,i = Ωt,i ∪ {i}
13: wij(t) = 1(j ∈ Λt,i) ŵjj(t)∑

j′∈Λt,i
ŵj′j′ (t)

14: x̂i
(t+1|t),B =

∑
∀j∈Λt,i

wij(t)x̂Lj

(t+1|t),B

15: x̂i
(t+τ |t),B =

∑
∀j∈Λt,i

wij(t)x̂Lj

(t+τ |t),B

4 Convergence Analysis

This section presents the theoretical convergence analysis of DOME fusion weights. Only the analysis of the
social weights wij(t) is presented; the analysis for local weights αi(t) follows a similar procedure.

Without loss of generality, the DOME weights wij(t) are analyzed without considering periodic resets to
examine their convergence behavior immediately after and just before a reset. Each reset instant can be
treated as t = 0, making the analysis applicable to any interval between two successive resets. In practice,

6

Under review as submission to TMLR

with a periodic reset interval To, a higher learning rate enables faster convergence before the next reset,
while a lower rate may prevent full convergence. Nonetheless, the underlying convergence behavior remains
consistent with the theoretical analysis presented.

Denote lAt,i := l(xt,B , x̂Ai

(t|t−1),B), and LA
t,i =

∑t
s=1 l

A
s,i. Denote lSt,i := l(xt,B , x̂i

(t|t−1),B), and LS
t,i =

∑t
s=1 l

S
s,i.

Denote lLt,i := l(xt,B , x̂Li

(t|t−1),B), and LL
t,i =

∑t
s=1 l

L
s,i.

Note that the loss function l(x,y) ∈ [0, 1] is bounded and its arguments x ∈ R2 and y ∈ R2.

The history Ht,i relevant to the ith robot’s learning phase just before the communication phase occurs at
time t, is defined as follows:

Ht,i := ({Ωs,i}t−1
s=1, {x̂

Ai

(s+1|s),B}
t
s=1, {xs,B}t

s=1, {{x̂
Li

(s+1|s),B}∀j∈Ω̄i
}t

s=1) (10)

where Ω̄i is the neighbor set of the ith robot as per the base-graph topology Ḡ of the random communication
network G(t), whereas Ωs,i is the neighbor set of the ith robot as per the random communication network
G(s) at time s.

Let ni = |Ω̄i| denote the maximum number of neighbors the ith robot can have in the base graph Ḡ, where
|Ω̄i| denotes the cardinality of the set Ω̄i. The time-varying communication graph G(t) is an undirected
random subgraph of Ḡ, with each link independently dropping with probability pld. At time t, robot i can
communicate with any subset of its ni neighbors; the number of possible neighbor sets of size k is niCk, for
k = 0, 1, . . . , ni. Let Ωk,l

i denote the lth such subset with |Ωk,l
i | = k. Further, define Λk,l

i := Ωk,l
i ∪ {i}. Then

Ωt,i ∈ {Ωk,l
i }k=0:ni, l=1:ni Ck

, and Ωt,i ⊆ Ω̄i. Here, k = 0 : ni implies k = 0, 1, · · · , ni and l = 1 : niCk implies
l = 1, · · · , niCk.

Let Ni(t) = |Ωt,i| denote the number of neighbors the ith robot has at time t. Since each link in the base
graph Ḡ drops independently with probability pld, Ni(t) follows a Binomial distribution: Ni(t) ∼ B(ni, pld),
where ni = |Ω̄i|.

For some i ∈ [N], the conditional expectation of Ni(t) can be written as follows:

E[Ni(t)|i] =
ni∑

k=0

niCk(1− pld)kpni−k
ld k = (1− pld)ni (11)

where E[·] is the expectation operator. Note that E[Ni(t)|i] is independent of t. Further, note that
ni∑

k=0

ni Ck∑
l=1

(1− pld)kpni−k
ld =

ni∑
k=0

niCk(1− pld)kpni−k
ld = 1 (12)

Consider 0 < ŵii(0) ≤ 1, where i ∈ [N]. For t = 1, 2, · · · , T , based on equation (7a), we get ŵjj(t) =
ŵjj(0) exp (−ηwL

L
t,j), ∀j ∈ [N].

Consider the weight wij(t). After some mathematical manipulation, the expectation of wij(t) conditioned
on the history Ht,i, ∀j ∈ Λ̄i, can be written as follows:

E[wij(t)|Ht,i] =
ni∑

k=0

ni Ck∑
l=1

(1− pld)kpni−k
ld wk,l

ij (t) (13)

where
wk,l

ij (t) := 1(j ∈ Λk,l
i) ŵjj(t)∑

q∈Λk,l
i
ŵqq(t) (14)

Here, 1(·) is the indicator function; 1(j ∈ Λk,l
i) = 1 if the condition j ∈ Λk,l

i is satisfied, otherwise 1(j ∈
Λk,l

i) = 0.

Define jk,l
∗,i(t) := arg minj′∈Λk,l

i
LL

t,j′ , i.e., jk,l
∗,i(t) is the index of the robot which incurs the least cumulative

loss among all other robots in the index set Λk,l
i = Ωk,l

i ∪{i} at time t, where Ωk,l
i is one of the many possible

neighbor sets of the ith robot at time t, such that |Ωk,l
t | = k, where k = 0, 1, · · · , ni, and l = 1, 2, · · · , niCk.

7

Under review as submission to TMLR

Assumption 1. For each k ∈ {0, 1, · · · , ni} and l ∈ {1, 2, · · · , niCk} pair, limt→∞ jk,l
∗,i(t) exists uniquely,

such that limt→∞ jk,l
∗,i(t) = jk,l

∞,i.
Remark 5. Assumption 1 implies that the performance configuration (in terms of prediction loss) gets fixed
as t→∞, i.e., for the ith robot at t→∞, there is a unique robot (either itself or its neighbor given by the
index jk,l

∞,i) that incurs the least cumulative loss out of all the robots in the set Λk,l
i .

Note that the cumulative loss satisfies 0 ≤ LL
t,j ≤ t (since the loss function l(·, ·) ∈ [0, 1]), ∀j ∈ Λk,l

i , and
LL

t,jk,l
∗,i

(t)
< LL

t,j (due to jk,l
∗,i(t)’s definition), ∀j ∈ Λk,l

i \ {j
k,l
∗,i(t)}.

Assumption 2. LL
t,j − LL

t,jk,l
∗,i

(t)
≥ ϵtβ > 0, such that β ∈ (0, 1] and ϵ ∈ (0, 1], ∀j ∈ Λk,l

i \ {j
k,l
∗,i(t)}.

Remark 6. Assumption 2 implies that the cumulative loss difference between robot j and the best-performing
robot jk,l

∗,i(t) grows at most linearly (β = 1) or sub-linearly (0 < β < 1) with time t, with both the rate and
magnitude finite but arbitrarily small (0 < ϵ ≪ 1, 0 < β ≪ 1). In practice, this holds when the best robot
jk,l

∗,i(t) remains fixed for finite durations and may change intermittently.
Lemma 1. Under assumptions 1 and 2, for k = 0, 1, · · · , ni, and l = 1, 2, · · · , niCk, the weights wk,l

ij (t)
satisfy the following:

lim
t→∞

wk,l
ij (t) = 0, ∀j ∈ Λk,l

i \ {j
k,l
∞,i} (15)

and
lim

t→∞
wk,l

ijk,l
∗,i

(t)
(t) = lim

t→∞
wk,l

ijk,l
∞,i

(t) = 1 (16)

where jk,l
∗,i(t) is the index of the neighbor of the ith robot whose individual prediction incurs the least cumulative

loss among all other robots in the index set Λk,l
i = Ωk,l

i ∪ {i} at time t, i.e., jk,l
∗,i(t) = arg minq∈Λk,l

i
LL

t,q,
∀i ∈ [N].

Proof. For some k ∈ {0, 1, · · · , ni} and l ∈ {1, 2, · · · , niCk}, consider the weight wk,l
ij (t), which can be

re-written as follows; use ŵjj(t) = ŵjj(0) exp (−ηwL
L
t,j) in eq.(14) and multiply both numerator and denom-

inator by exp (ηwL
L
t,jk,l

∗,i
(t)

) to get:

wk,l
ij (t) =

1(j ∈ Λk,l
i)ŵjj(0) exp{−ηw(LL

t,j − LL
t,jk,l

∗,i
(t)

)}∑
q∈Λk,l

i
ŵqq(0) exp{−ηw(LL

t,q − LL
t,jk,l

∗,i
(t)

)}
(17)

In the above equation, separating the ŵjk,l
∗,i

(t)jk,l
∗,i

(t)(0) term from the summation in the denominator yields:

wk,l
ij (t) =

1(j ∈ Λk,l
i)ŵjj(0) exp{−ηw(LL

t,j − LL
t,jk,l

∗,i
(t)

)}

ŵjk,l
∗,i

(t)jk,l
∗,i

(t)(0) +
∑

q∈Λk,l
i

\{jk,l
∗,i

(t)} ŵqq(0) exp{−ηw(LL
t,q − LL

t,jk,l
∗,i

(t)
)}

(18)

Note that for the cumulative loss, the following holds true: 0 ≤ LL
t,j ≤ t (since the loss function is bounded,

i.e., l(·, ·) ∈ [0, 1]), ∀j ∈ Λk,l
i , and LL

t,jk,l
∗,i

(t)
< LL

t,j (due to jk,l
∗,i(t)’s definition), ∀j ∈ Λk,l

i \ {j
k,l
∗,i(t)}. Further

using assumption 2, this implies that the cumulative loss for the jth robot, ∀j ∈ Λk,l
i \ {j

k,l
∗,i(t)}, satisfies

t ≥ LL
t,j − LL

t,jk,l
∗,i

(t) ≥ ϵt
β > 0 (19)

where β ∈ (0, 1] and ϵ ∈ (0, 1], ∀j ∈ Λk,l
i \ {j

k,l
∗,i(t)}.

Using equation (19) in equation (18), we get
1(j∈Λk,l

i
)ŵjj(0) exp{−ηwt}

ŵ
j

k,l
∗,i

(t),j
k,l
∗,i

(t)
(0)+

∑
q∈Λk,l

i
\{j

k,l
∗,i

(t)}
ŵqq(0) exp{−ηwϵtβ}

≤ wk,l
ij (t) ≤

1(j∈Λk,l
i

)ŵjj(0) exp{−ηwϵtβ}
ŵ

j
k,l
∗,i

(t),j
k,l
∗,i

(t)
(0)+

∑
q∈Λk,l

i
\{j

k,l
∗,i

(t)}
ŵqq(0) exp{−ηwt}

(20)

8

Under review as submission to TMLR

for ∀j ∈ Λk,l
i \ {j

k,l
∗,i(t)}, and

ŵ
j

k,l
∗,i

(t),j
k,l
∗,i

(t)
(0)

ŵ
j

k,l
∗,i

(t),j
k,l
∗,i

(t)
(0)+

∑
q∈Λk,l

i
\{j

k,l
∗,i

(t)}
ŵqq(0) exp{−ηwϵtβ}

≤ wijk,l
∗,i

(t)(t) ≤
ŵ

j
k,l
∗,i

(t),j
k,l
∗,i

(t)
(0)

ŵ
j

k,l
∗,i

(t),j
k,l
∗,i

(t)
(0)+

∑
q∈Λk,l

i
\{j

k,l
∗,i

(t)}
ŵqq(0) exp{−ηwt}

(21)

Now, taking limt→∞(·) on equations (20) and (21), under assumption 1, leads to the desired result.

For each j ∈ Λ̄i, consider the set Mj,i defined as follows:

Mj,i := {(k, l) : j = jk,l
∞,i; k ∈ {0, · · · , ni}, l ∈ {1, · · · , niCk}} (22)

Further, consider the set Ji, which is defined as

Ji := {j : j = jk,l
∞,i; k ∈ {0, · · · , ni}, l ∈ {1, · · · , niCk}, j ∈ Λ̄i} (23)

Remark 7. The set Mj,i contains all the pairs (k, l) for which j = jk,l
∞,i is satisfied. The set Ji consists of all

the indices jk,l
∞,i, for k = 0, 1, · · · , ni, and l = 1, 2, · · · , niCk.

Theorem 1. Under assumptions 1 and 2 (using Lemma 1), ∀j ∈ Λ̄i, DOME fusion weights wij(t) satisfy
the following:

lim
t→∞

E[wij(t)|Ht,i] = 0, ∀j /∈ Ji (24)

and
lim

t→∞
E[wij(t)|Ht,i] =

∑
∀(k,l)∈Mj,i

(1− pld)kpni−k
ld , ∀j ∈ Ji (25)

where pld is the communication link-drop probability.

Proof. From lemma 1, ∀(k, l) : k = 0, 1, · · · , ni; l = 1, 2, · · · , niCk, using the definition of the set Ji as stated
in equation (23), note that the following holds true:

lim
t→∞

wk,l
ij (t) = 0, ∀j /∈ Ji (26)

and
lim

t→∞
wk,l

ij (t) = lim
t→∞

wk,l

ijk,l
∞

(t) = 1 ∀j ∈ Ji (27)

Using equations (26) and (27) in equation (13), along with the definition of the set Mj,i as given in equation
(22), leads to the desired result.

5 Performance Evaluation

The DOME fusion algorithm is simulated for cooperative target tracking with N = 6 robots over a horizon
of T = 1400 steps and a sampling period ∆T = 0.1 s, using a look-ahead window of τ = 10. Robots
communicate over a bi-directional network with random link drops (drop probability, pld = 0.1), based on an
undirected connected linear graph – chosen to represent the worst-case among connected topologies. Further,
the loss function is set as l(x,y) = min(||x − y||/50, 1), where || · || is the Euclidean norm (2-norm) and
x,y ∈ R2.

The drift ζτ
t,i in the prediction by algorithm Ai (equation (3)) is modeled as follows:

ζτ
t,i = µτ

t,i + ντ
t,i (28)

9

Under review as submission to TMLR

(a)

x1 (m)
-500 -490 -480 -470

x
2
(m

)

-260

-250

-240

-230

GL

x1 (m)
-500 -490 -480 -470

x
2
(m

)

-260

-250

-240

-230

CICF

x1 (m)
-500 -490 -480 -470

x
2
(m

)

-260

-250

-240

-230

DMD

T.T.

R1

R2

R3

R4

R5

R6

T.

x1 (m)
-500 -490 -480 -470

x
2
(m

)

-260

-250

-240

-230

DOME

Time = 111.1 sec.

(b)

Figure 2: (a) An event-based switching signal model for the dynamic bias term µτ
t,i, for τ > 1. Here,

drift_dir = [cosψdir sinψdir]′, such that ψdir is sampled from Unif.(0, 2π) at the start of every simulation
run. The value for prj_rate is set to 0.05. (b) Screenshot of a simulation run in MATLAB for DOME and
a few baselines; T. is the target, T.T. is the target’s trajectory, and Ri is the ith robot.

where µτ
t,i ∈ R2 is a bias term (m), and ντ

t,i ∈ R2 is zero-mean Gaussian noise (m) with covariance Cτ
t,i ∈ R2×2

≥0
(m2) at time t. The bias µτ

t,i is modeled as an event-driven switching signal (see Fig. 2a), offering a
more realistic alternative to the ramp signal used in Cho & Jiang (2012). In the growing bias state, the
bias magnitude either increases until saturation or switches to the receding bias state with probability prb.
Conversely, in the receding bias state, it decreases toward zero or switches back with probability pgb. In Fig.
2a, the scalar ct,i, indicative of the accuracy of algorithm Ai, increases with prediction error. In simulations,
pgb = 0.2 and prb = 0.5.

To simulate adverse system and environmental conditions, robots are randomly assigned either ct,i = 0.01
or ct,i = 4 at times 0.0, 23.33, 46.67, 70, and 116.67 seconds, ensuring that 3 to 4 out of N = 6 robots
have inaccurate algorithms (i.e., ct,i = 4). For these robots, the one-step prediction bias satisfies that
each element of the vector µ1

t,i lies in the range [0, 40] m (see Fig. 2a, with smax = 10). For inaccurate
robots (ct,i = 4), the associated noise covariance C1

t,i is either 4 · diag([1 1]) or 0.01 · diag([1 1]), each with
50% probability. For accurate robots (ct,i = 0.01), C1

t,i = 0.01 · diag([1 1]). For τ > 1, the noise grows
as Cτ

t,i = (1 + τ · prj_rate) · C1
t,i. This setup reflects scenarios where noise and bias are not necessarily

correlated.

Under this setup, DOME fusion employs learning rates ηw = 10 and ηα = 4, with a periodic reset interval
To = 25, as determined through a simulation-based parametric study (see Appendix A.3.3 for more details).

Under the described communication and prediction uncertainties, DOME is evaluated against three
covariance-based methods – Kalman Consensus Fusion (KCF), Covariance Intersection Consensus Fusion
(CICF), and Covariance Intersection + Covariance Union Consensus Fusion (CICUCF), and two online
learning-based methods – Greedy-Local (GL) and Distributed Mirror Descent (DMD). DMD is applied by
modifying the mirror descent-based distributed online optimization algorithm proposed by Shahrampour &

10

Under review as submission to TMLR

1 2 3 4 5 6 7

0

200

400

600

800

(a)

5 10 15 20

0

100

200

300

400

(b)

Figure 3: (a) A box plot showing the average cumulative 10-step look-ahead prediction loss per robot at
140 seconds; 500 simulation runs (points) for each method – 1: DOME, 2: GL, 3: DMD, 4: CICUCF, 5:
CICF, 6: KCF, 7: ACF. (b) Average cumulative 10-step look-ahead prediction loss per robot at 60 sec. as
a function of total no. of robots N , averaged over 100 simulation runs for each method.

Jadbabaie (2017a;b) to fit the problem setting considered in this paper. An Averaging Consensus Fusion
(ACF) baseline is also included. A detailed description of these methods is provided in the Appendix A.3.2.

These algorithms are evaluated based on average cumulative τ -step look-ahead prediction loss for t ≥ τ :
1
N

∑N
i=1

∑t
s=τ l(x̂i

(s|s−τ),B ,xs,B), with τ = 10, N = 6.

Figure 3a presents a box plot of the average cumulative 10-step look-ahead prediction loss per robot at
140 seconds, aggregated over 500 simulation runs for each method. In each box, the central line denotes
the median, while the bottom and top edges represent the 25th and 75th percentiles, respectively. Notably,
DOME achieves a substantially lower prediction loss compared to all other fusion algorithms. In terms
of median performance, DOME reduces the average cumulative prediction loss by approximately 84.15%
relative to the next best method, GL. In addition to superior accuracy, DOME also demonstrates markedly
lower variance, indicating greater consistency across simulation runs.

DOME fusion is further evaluated for scalability by measuring the average cumulative 10-step look-ahead
prediction loss per robot at the end of a 60-second horizon, averaged over 100 simulation runs, as a function
of the total number of robots N (see Fig. 3b). Starting from N = 2, robots are incrementally added to the
underlying linear graph structure without introducing random link drops. At times 0.0, 23.33, 46.67, 70, and
116.67 seconds, robots are randomly assigned either ct,i = 0.01 or ct,i = 4 (see Fig. 2a), such that at least
⌊N

2 ⌋ and at most ⌊N
2 ⌋ + 1 out of the total N robots use inaccurate prediction algorithms (ct,i = 4), where

⌊·⌋ denotes the floor function.

The noise covariance behavior remains consistent with the previous simulation setup, representing scenarios
where noise and bias are not necessarily correlated. As shown in Fig. 3b, DOME consistently outperforms
all other fusion algorithms in this scalability test. Its average cumulative 10-step look-ahead prediction loss
per robot remains substantially lower – approximately 78.12% less than the next best algorithm, GL – as
N increases. Moreover, beyond N = 10, DOME’s performance remains nearly constant, indicating that the
algorithm maintains high reliability and prediction accuracy even as the swarm size grows. This suggests
that DOME enables scalable swarm behavior without compromising predictive performance.

From Figures 3a and 3b, it is evident that DOME consistently outperforms the other fusion methods eval-
uated in the simulation studies. Notably, DOME, GL, and DMD do not require knowledge of prediction
covariance and operate without assumptions regarding consistency or correlation. As a result, they demon-
strate superior performance compared to the covariance-based methods – KCF, CICF, and CICUCF – which
struggle to handle large prediction biases, particularly when such biases do not manifest through increased
covariance.

11

Under review as submission to TMLR

Although both ACF and DMD assign equal weights to information from neighboring robots, DMD achieves
better performance due to its online error correction mechanism. In contrast, DOME surpasses both DMD
and GL by employing an adaptive weighting scheme based on an online learning process. Unlike DOME,
neither ACF nor DMD includes a mechanism for adaptively filtering out biased predictions from other robots
in the network. Consequently, biased information can propagate unchecked through the communication net-
work, degrading the performance of even those robots with accurate prediction algorithms. GL outperforms
DMD by greedily selecting the most accurate local prediction; however, it does not propagate this selection
across the network.

The MATLAB simulation video is submitted as a supplementary file. Furthermore, DOME is implemented
in a Gazebo simulation environment using ROS (a simulation video is submitted as a supplementary file).

6 Conclusion

This paper presents a Distributed Online learning-based Multi-Estimate (DOME) fusion algorithm for coop-
erative predictive target tracking in a robotic swarm subject to dynamic prediction bias and communication
uncertainty. Designed for heterogeneous teams with diverse sensors and prediction models, DOME performs
a two-layer weighted fusion of local and socially shared predictions, combined with an implicit, adaptive,
consensus-like update. Fusion weights are learned online using prediction loss feedback, enabling each robot
to improve its own predictions while supporting its neighbors. Theoretical analysis shows convergence of
the expected learning weights under reasonable assumptions. DOME is computationally lightweight and
analytically tractable, making it practical for swarm deployment. Simulations under conditions of large
prediction drift and random link failures show that DOME outperforms both covariance-based and online
learning-based decentralized methods, achieving an 84.15% reduction in prediction loss compared to the
next-best method, Greedy Local (GL). It also scales well, with a 78.12% lower prediction loss than GL as
the swarm size increases. Finally, DOME is validated in a ROS-Gazebo simulation environment (check the
simulation video in the supplementary zip file). This study assumes full observability of the target; future
work will address the partially observable case.

Broader Impact Statement

The proposed DOME fusion algorithm enhances collaborative prediction accuracy in multi-agent systems
operating under communication uncertainty and prediction biases. While developed for cooperative predic-
tive target tracking using a robotic swarm, the framework generalizes across domains requiring decentralized,
privacy-preserving, and adaptive prediction fusion.

Potential applications span finance, where distributed trading models collaboratively forecast market trends;
weather and climate forecasting, where regional prediction centers integrate heterogeneous models; urban
sensing and environmental monitoring, where sensor networks fuse multi-modal data; and healthcare, where
institutions jointly improve predictive diagnostics without sharing sensitive data. In smart grids and supply
chains, DOME can enable robust coordination among nodes by cooperatively predicting energy availability
and demand under uncertainty.

References
Akbar Assa and Farrokh Janabi-Sharifi. A kalman filter-based framework for enhanced sensor fusion. IEEE

Sensors Journal, 15(6):3281–3292, 2015.

Luis C Carrillo-Arce, Esha D Nerurkar, José L Gordillo, and Stergios I Roumeliotis. Decentralized multi-
robot cooperative localization using covariance intersection. In 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems, pp. 1412–1417. IEEE, 2013.

Nicolo Cesa-Bianchi and Gábor Lugosi. Prediction, learning, and games. Cambridge university press, 2006.

Tsang-Kai Chang, Kenny Chen, and Ankur Mehta. Resilient and consistent multirobot cooperative local-
ization with covariance intersection. IEEE Transactions on Robotics, 2021.

12

Under review as submission to TMLR

Tsung-Hui Chang, Mingyi Hong, Hoi-To Wai, Xinwei Zhang, and Songtao Lu. Distributed learning in the
nonconvex world: From batch data to streaming and beyond. IEEE Signal Processing Magazine, 37(3):
26–38, 2020.

Jimming Cheng, Winston Cheng, and Radhika Nagpal. Robust and self-repairing formation control for
swarms of mobile agents. In AAAI, volume 5, 2005.

Sungwhan Cho and Jin Jiang. Detection and estimation of sensor drifts using kalman filters with a demon-
stration on a pressurizer. Nuclear engineering and design, 242:389–398, 2012.

Bilal Daass, Denis Pomorski, and Kamel Haddadi. Design of multi-sensor fusion architectures based on
the covariance intersection algorithm—estimating calculation burdens. Journal of Intelligent & Robotic
Systems, 101(4):1–16, 2021.

Nima Eshraghi and Ben Liang. Distributed online optimization over a heterogeneous network with any-batch
mirror descent. In International Conference on Machine Learning, pp. 2933–2942. PMLR, 2020.

Nima Eshraghi and Ben Liang. Improving dynamic regret in distributed online mirror descent using primal
and dual information. In Learning for Dynamics and Control Conference, pp. 637–649. PMLR, 2022.

Jingxuan Hao, Yimin Zhou, Guoshan Zhang, Qin Lv, and Qingtian Wu. A review of target tracking algorithm
based on uav. In 2018 IEEE International Conference on Cyborg and Bionic Systems (CBS), pp. 328–333.
IEEE, 2018.

Karol Hausman, Jörg Müller, Abishek Hariharan, Nora Ayanian, and Gaurav S Sukhatme. Cooperative
multi-robot control for target tracking with onboard sensing. The International Journal of Robotics Re-
search, 34(13):1660–1677, 2015.

Shenhan Jia, Rong Xiong, and Yue Wang. Distributed initialization for visual-inertial-ranging odometry
with position-unknown uwb network. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 6246–6252. IEEE, 2023.

Jiyan Jiang, Wenpeng Zhang, Jinjie Gu, and Wenwu Zhu. Asynchronous decentralized online learning.
Advances in Neural Information Processing Systems, 34:20185–20196, 2021.

Simon Julier and Jeffrey K Uhlmann. General decentralized data fusion with covariance intersection. In
Handbook of multisensor data fusion, pp. 339–364. CRC Press, 2017.

Boyoon Jung and Gaurav S Sukhatme. Cooperative multi-robot target tracking. In Distributed Autonomous
Robotic Systems 7, pp. 81–90. Springer, 2006.

Lili Ma and Naira Hovakimyan. Cooperative target tracking with time-varying formation radius. In 2015
European Control Conference (ECC), pp. 1699–1704. IEEE, 2015.

Stephan Matzka and Richard Altendorfer. A comparison of track-to-track fusion algorithms for automotive
sensor fusion. In Multisensor Fusion and Integration for Intelligent Systems, pp. 69–81. Springer, 2009.

Peter S Maybeck. Stochastic models, estimation, and control. Academic press, 1982.

Abdullah Mohiuddin, Taha Tarek, Yahya Zweiri, and Dongming Gan. A survey of single and multi-uav
aerial manipulation. Unmanned Systems, 8(02):119–147, 2020.

Kevin P Murphy. Machine learning: a probabilistic perspective. MIT press, 2012.

Bradley J Nelson and Salvador Pané. Delivering drugs with microrobots. Science, 382(6675):1120–1122,
2023.

Steven Reece and Stephen Roberts. Generalised covariance union: A unified approach to hypothesis merging
in tracking. IEEE Transactions on Aerospace and Electronic Systems, 46(1):207–221, 2010.

13

Under review as submission to TMLR

Yara Rizk, Mariette Awad, and Edward W Tunstel. Cooperative heterogeneous multi-robot systems: A
survey. ACM Computing Surveys (CSUR), 52(2):1–31, 2019.

Martin Saska, Vojtěch Vonásek, Jan Chudoba, Justin Thomas, Giuseppe Loianno, and Vijay Kumar. Swarm
distribution and deployment for cooperative surveillance by micro-aerial vehicles. Journal of Intelligent &
Robotic Systems, 84(1):469–492, 2016.

Jürgen Scherer, Saeed Yahyanejad, Samira Hayat, Evsen Yanmaz, Torsten Andre, Asif Khan, Vladimir
Vukadinovic, Christian Bettstetter, Hermann Hellwagner, and Bernhard Rinner. An autonomous multi-
uav system for search and rescue. In Proceedings of the First Workshop on Micro Aerial Vehicle Networks,
Systems, and Applications for Civilian Use, pp. 33–38, 2015.

Shahin Shahrampour and Ali Jadbabaie. Distributed online optimization in dynamic environments using
mirror descent. IEEE Transactions on Automatic Control, 63(3):714–725, 2017a.

Shahin Shahrampour and Ali Jadbabaie. An online optimization approach for multi-agent tracking of dy-
namic parameters in the presence of adversarial noise. In 2017 American Control Conference (ACC), pp.
3306–3311. IEEE, 2017b.

K Subbarao and M Ahmed. Target tracking using multiple unmanned aerial vehicles: Graph theoretic
nonlinear control approach. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, 231(3):570–586, 2017.

Dali Sun, Alexander Kleiner, and Bernhard Nebel. Behavior-based multi-robot collision avoidance. In 2014
IEEE international conference on robotics and automation (ICRA), pp. 1668–1673. IEEE, 2014.

Zhiyong Sun, Hector Garcia de Marina, Brian Anderson, and Changbin Yu. Collaborative target-tracking
control using multiple autonomous fixed-wing unmanned aerial vehicles with constant speeds. J. Guid.
Control Dyn, 44(2):238–250, 2021.

Jeffrey K Uhlmann. Covariance consistency methods for fault-tolerant distributed data fusion. Information
Fusion, 4(3):201–215, 2003.

Xiaofan Wang and Housheng Su. Pinning control of complex networked systems: A decade after and beyond.
Annual Reviews in Control, 38(1):103–111, 2014.

Xuedong Wang, Shudong Sun, Tiancheng Li, and Yaqiong Liu. Fault tolerant multi-robot cooperative
localization based on covariance union. IEEE Robotics and Automation Letters, 6(4):7799–7806, 2021.

Zongyao Wang and Dongbing Gu. Cooperative target tracking control of multiple robots. IEEE Transactions
on Industrial Electronics, 59(8):3232–3240, 2011.

A Appendix

A.1

Nomenclature

|| · || 2-norm
nCk n choose k
(·)′ transpose operation
| · | based on usage can either be the cardinality of a set or element-wise absolute value operation for a

real-valued vector
E[·] expectation operator
pld communication link-drop probability
T time horizon – discrete-time

14

Under review as submission to TMLR

To periodic reset in DOME occurs after every To discrete-time steps
1(·) the indicator function
⌊·⌋ the floor function
log(·) natural log
Π(·) Πno

m=1(am) = a1a2a3 · · · ano

N total number of robots in the swarm
G(t) undirected random communication connectivity graph at time t
Ωt,i ith robot’s neighbor set as per G(t) at time t
Ni(t) ith robot’s total number of neighbors at time t, Ni(t) = |Ωt,i|
Ḡ base graph for the undirected random graph G(t)
Ω̄i neighbor set of the ith robot as per the base-graph Ḡ

ni maximum possible neighbors of the ith robot as per the base-graph Ḡ, ni = |Ω̄i|
Ai ith robot’s prediction algorithm
xt,i ith robot’s position vector (in m)
xt,B target’s (Bogey’s) position vector (in m)
ζτ

t,i drift in algorithm Ai’s τ -step look-ahead prediction
x̂Ai

(t+τ |t),B τ -step look-ahead prediction of target’s position given by the ith robot’s algorithm Ai

x̂Li

(t+τ |t),B ith robot’s Local τ -step look-ahead prediction of target’s position given by the ith robot’s algorithm
Ai

x̂i
(t+τ |t),B ith robot’s Social τ -step look-ahead prediction of target’s position
l(·, ·) bounded loss function with two arguments; l(·, ·) ∈ [0, 1]
lAt,i algorithm Ai’s prediction loss: l(x̂Ai

(t|t−1),B , xt,B)

LA
t,i algorithm Ai’s cumulative prediction loss:

∑t
s=1 ls,i

lLt,i ith robot’s Local prediction loss: l(x̂Li

(t|t−1),B , xt,B)

LL
t,i ith robot’s Local prediction’s cumulative loss:

∑t
s=1 l

L
s,i

lSt,i ith robot’s Social prediction loss: l(x̂i
(t|t−1),B , xt,B)

LS
t,i ith robot’s Social prediction’s cumulative loss:

∑t
s=1 l

S
s,i

lS−
t,i ith robot’s previous-time Social prediction loss w.r.t. current target position:

l(x̂i
(t−1|t−2),B , xt,B)

LS−
t,i ith robot’s previous-time Social prediction’s cumulative loss w.r.t. current target position:

∑t
s=1 l

S−
s,i

Ht,i history relevant to the ith robot just before the communication phase begins, at time t
Ωk,l

t one of the many possible neighbor sets containing k neighboring robots that the ith robot is commu-
nicating with at time t, where k ∈ {0, 1, 2, · · · , ni}, and l ∈ {1, 2, · · · , niCk}

Λt,i Ωt,i ∪ {i}
Λ̄i Ω̄i ∪ {i}
Λk,l

t,i Ωk,l
t,i ∪ {i}, where k ∈ {0, 1, 2, · · · , ni}, and l ∈ {1, 2, · · · , niCk}

ηα, ηw DOME algorithm’s learning rate parameters
nmax max. limit on the no. of neighbors any robot can have in the base graph Ḡ, such that ni ≤ nmax

A.2 Decentralized Normalization Scheme

The weights are normalized using a decentralized normalization scheme summarized as Algorithm 2. A
similar procedure is used for the normalization of the weights α̂i(t) and α̂′

i(t) as well.

15

Under review as submission to TMLR

Algorithm 2 Decentralized normalization scheme for the ith robot at time t, ∀i ∈ [N]
Choose: machine’s least precision δ > 0
Initialize: nrmcntii = 0

1: if (ŵii(t) ≤ δ) then
2: ŵii(t)← ŵii(t)/δ
3: nrmcntii ← nrmcntii + 1
4: end if
5: send {i, ŵii(t), nrmcntii} to and receive {j, ŵjj(t), nrmcntjj} from neighbors j ∈ Ωt,i

6: ŵij(t) =
{
ŵjj(t) : ∀j ∈ Λt,i

0 : otherwise
7: for (j ∈ Λt,i) do
8: if (nrmcntjj > minj′∈Λt,i

nrmcntj′j′) then
9: ŵij(t)← 0

10: end if
11: end for

A.3 MATLAB Simulation Details

In the simulations, the target (B) follows a unicycle model with i = B, v̄y
t,B = 0, where v̄t,B = [v̄x

t,B v̄y
t,B]′

and v̄x
t,B ∈ R, v̄y

t,B ∈ R. The target changes its speed after every 5 sec. intervals, such that v̄x
t,B is sampled

as v̄x
t,B ∼ (8 + Unif.(0, 4)) m/s after every 5 seconds. Further, the target also changes its yaw rate (w̄t,B)

after every 5 sec. intervals, such that w̄t,B (rad./s) is sampled from either of the three expressions with
equal probability: − 6π

T ·∆T − Unif.
(
0, 6π

T ·∆T

)
, 0, and 6π

T ·∆T + Unif.
(
0, 6π

T ·∆T

)
. The initial position (x0,B)

and yaw angle (ψ0,B) of the target are randomly sampled as x0,B ∼ [Unif.(0, 20) Unif.(0, 20)]′ m and
ψ0,B ∼ Unif.(−π, π) rad., respectively, at the start of each simulation run.

For the robots, the velocity control input is bounded as |v̄t,i| ≤ [10, 10]′ m/s, and the yaw-rate control
input is bounded as |w̄t,i| ≤ 0.524 rad./s, where | · | is the element-wise absolute value operation. The
initial position xt,i and yaw angle ψt,i of the ith robot is set to be xt,i = [10 · i, 0]′ m and ψt,i = π/2 rad.,
respectively. The control law parameters are set to be dS = 10 m, k1 = 4, k2 = 10, and k3 = 10. The loss
function is defined to be l(x,y) = min(||x− y||/50, 1), where x,y ∈ R2.

A.3.1 Control Law

Translational Control Law: for the ith robot, the translational control law consists of two terms as given
below

v̄t,i = v̄R
t,i + ∆v̄t,i (29)

where v̄R
t,i is the ith robot’s reference command signal responsible for chasing the target, and ∆v̄t,i is the ith

robot’s correction control signal responsible for avoiding collisions with other robots.

Denote Rt,i ∈ R2×2 as the ith robot’s body-global rotation matrix at time t, defined as Rt,i =[
cosϕt,i − sinϕt,i

sinϕt,i cosϕt,i

]
.

The ith robot’s reference command signal v̄R
t,i is given as

v̄R
t,i = k1R′

t,i

∆x̂i
(t+τ |t),B

||∆x̂i
(t+τ |t),B ||

(||∆xi
t,B || − dS) (30)

where (·)′ represents the transpose operation, || · || is the 2-norm, k1 > 0 is a control parameter. ∆xi
t,B :=

xt,B − xt,i, where xt,B is the target’s position vector at time t, and xt,i is the ith robot’s position vector at
time t. dS > 0 (m) indicates the distance each robot should maintain from the target while chasing it. Here,
∆x̂i

(t+τ |t),B is defined as
∆x̂i

(t+τ |t),B := x̂i
(t+τ |t),B − xt,i (31)

16

Under review as submission to TMLR

Avg. Final Cumul. Pred. Loss at 140 sec. for To = 45

3
3

3
3

3
5

3
5

4
0

40

4
0

5
0

50

5
0

6
0

60

6
0

8
0

80

8
0

100
100

1
0
0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

2

4

6

8

10

w

Std. Dev. of Final Cumul. Pred. Loss at 140 sec. for To = 45

8

8

8

1
0

10

1
0

2020

2
0

30

3
0

3
0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

2

4

6

8

10

w

(a)

Avg. Final Cumul. Pred. Loss at 140 sec. for To = 25

3
3

3
5

3
5

4
0

40

4
0

5
0

50

50

6
0

60
60

6
0

8
0

80
80

8
0

1
0
0

100
100

1
0
0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

2

4

6

8

10

w

Std. Dev. of Final Cumul. Pred. Loss at 140 sec. for To = 25

6

6

8

8
8

8

1
0

10
10

1
0

2
0

2020

2
0

30

3
0

3
0

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5

0

2

4

6

8

10

w

(b)

Figure 4: The mean and standard deviation of the average social cumulative prediction loss of all the robots
at t = 140 sec. (averaged over 50 sim. runs) versus the learning rates for: (a) To = 45 and (b) To = 25.

where x̂i
(t+τ |t),B is ith robot’s τ -step look-ahead prediction of target’s position at time t, and xt,i is ith robot’s

position at time t.

Further, we assume that each robot is equipped with a collision avoidance system, which ensures that while
chasing the target, robots do not collide. Considering eq.(29), this behavior can be modeled by the correction
control signal ∆v̄t,i for the ith robot by using an inter-robot collision avoidance control law given as follows:

∆v̄t,i = −k2R′
t,i

xt,pi
t
− xt,i

||xt,pi
t
− xt,i||2

(32)

where (·)′ represents the transpose operation, || · || is the 2-norm or the Euclidean norm, k2 > 0 is a control
parameter, pi

t ∈ [N] \ {i} is the index of the robot spatially nearest to ith robot at time t, formally defined
as pi

t := arg minj∈[N]\{i} ||xt,j − xt,i||. Thus, xt,pi
t

is the position vector of the robot spatially nearest to the
ith robot at time t.

Heading Control Law: consider a heading angle requirement such that the robots are required to
yaw in a way that their heading direction should point towards their 1-step look-ahead estimate of the
target’s position x̂i

(t+1|t),B . The angle between ∆x̂i
(t+1|t),B (from eq.31) and the ith robot’s heading di-

rection ht,i =
[
cosϕt,i sinϕt,i

]′, with respect to the ∆x̂i
t+1,B direction, can be obtained as ∆ϕi

t,err =
atan2

(
ht,i ×∆x̂i

t+1,B ,ht,i ·∆x̂i
t+1,B

)
, where the first argument involves a cross-product and the second ar-

gument involves dot-product. As per the heading angle requirement, ith robot’s yaw control law can be given
as

w̄t,i = k3∆ϕi
t,err (33)

where k3 > 0 is a control parameter.

A.3.2 Baselines

For the above-described simulation setup with an adverse setting, DOME is compared against three
covariance-based (Kalman Consensus Fusion, Covariance Intersection Consensus Fusion, Covariance Inter-
section + Covariance Union Consensus Fusion) and two online learning-based (Greedy-Local, Distributed

17

Under review as submission to TMLR

To ηα ηw minηα,ηw
{ 1

6
∑6

i=1 L
S
1400,i}

5 10 15 76.62
10 10 13.9 49.49
15 10 9.6 40.30
20 10 6.4 36.33
25 10 5.4 32.56
30 10 4.3 32.75
35 8.8 3.2 34.54
40 7.5 3.2 33.15
45 8.8 3.2 30.55
50 10 2.2 34.05
55 10 2.2 34.59
60 6.3 2.2 34.55
65 7.5 2.2 34.48
70 8.8 1.1 42.71
75 6.3 1.1 37.56
80 6.3 1.1 41.28
85 6.3 1.1 42.93
90 6.3 1.1 39.62
95 6.3 1.1 40.77
100 6.3 1.1 42.30

Table 1: Optimal learning rates for different To values from a simulation-based parametric study of DOME.

Mirror Descent) decentralized prediction fusion methods, along with the Averaging Consensus Fusion base-
line, which are briefly described as follows:

Averaging Consensus Fusion (ACF): instead of updating the weights α̂i(t), α̂′
i(t), and ŵii(t) as per the

DOME fusion weight update mechanism, keep the fixed as α̂i(t) = 1, α̂′
i(t) = 1, and ŵii(t) = 1 and calculate

the predictions.

Kalman Consensus Fusion (KCF) (Maybeck, 1982; Uhlmann, 2003): assumes that the predictions being
fused are uncorrelated and their associated zero-mean Gaussian noises’ covariance (Cτ

t,i) are known.

Consider the covariance of x̂Li

(t+τ |t),B and x̂i
(t−1+τ |t−1),B as CLi

(t+τ |t),B and Ci
(t−1+τ |t−1),B , respectively. Con-

sider Cτ
t,i as the covariance for x̂Ai

(t+τ |t),B .

Local prediction phase:

(CLi

(t+τ |t),B)−1 = 1
2

(
(Ci

(t−1+τ |t−1),B)−1 + (Cτ
t,i)−1

)
(34)

x̂Li

(t+τ |t),B =
(

(Ci
(t−1+τ |t−1),B)−1 + (Cτ

t,i)−1
)−1 (

(Cτ
t,i)−1x̂Ai

(t+τ |t),B + (Ci
(t−1+τ |t−1),B)−1x̂i

(t−1+τ |t−1),B

)
(35)

Communication phase: The ith robot sends the information {t, i, x̂Li

(t+τ |t),B ,C
Li

(t+τ |t),B} and receives the
information {t, j, x̂Lj

(t+τ |t),B ,C
Lj

(t+τ |t),B} from its communicating neighbors j ∈ Ωt,i.

Social prediction phase: With nt,i = |Ωt,i|, we have

(Ci
(t+τ |t),B)−1 = 1

nt,i + 1
∑

∀j∈Λt,i

(CLj

(t+τ |t),B)−1 (36)

x̂i
(t+τ |t),B =

(∑
∀j∈Λt,i

(CLj

(t+τ |t),B)−1
)−1 ∑

∀j∈Λt,i
(CLj

(t+τ |t),B)−1x̂Lj

(t+τ |t),B
(37)

18

Under review as submission to TMLR

time (sec.)
10 11 12 13 14 15

C
u
m
u
l.
P
re
d
.
L
o
ss

0

2

4

6

8
DOME: Cumul. Pred. Loss of the 3rd Robot and its Neighbors vs Time

LL
t,2

LL
t,3

LL
t,4

LS
t,3

time (sec.)
10 11 12 13 14 15

W
ei
g
h
t
V
a
lu
es

0

0.2

0.4

0.6

0.8

1
DOME Weights: w32, w33, w34 vs time

w32

w33

w34

Figure 5: The first plot shows the cumulative prediction losses for selected robots for a duration of 5 seconds.
The second plot illustrates how the weights change in response to the prediction losses shown in the first
plot; note that random link drops occur, which means that the nominal neighbors may not be neighbors at
all times.

Covariance Intersection Consensus Fusion (CICF) (Matzka & Altendorfer, 2009; Julier & Uhlmann,
2017): consider the equations (34) – (37); each robot employs the Covariance Intersection (CI) method
for the fusion of the predictions instead of Kalman Fusion. CI assumes that the predictions being fused
are consistent and their associated zero-mean Gaussian noises’ covariance (Cτ

t,i) is known, but their cross-
correlation is unknown.

Covariance Intersection + Covariance Union Consensus Fusion (CICUCF) (Matzka & Altendor-
fer, 2009; Reece & Roberts, 2010): consider the equations (34) – (37); first, each robot employs the Covariance
Intersection (CI) method for the fusion in the local prediction phase instead of Kalman fusion. After this,
the output of CI is fused with the CI-predictions from the neighbors in the social prediction phase using
Covariance Union (CU) instead of Kalman fusion. In CU, while trying to keep the fused predictions con-
sistent, the resultant fused covariance is increased. Therefore, CI is applied in the next iteration to reduce
the predictions’ covariance. CU assumes that the predictions being fused can be inconsistent and their
cross-correlation is unknown, but their associated zero-mean Gaussian noises’ covariance (Cτ

t,i) is known.

Greedy-Local (GL): each robot uses the one-step look-ahead prediction x̂i
(t+1|t),B = x̂Aj∗

(t+1|t),B and the
τ -step look-ahead prediction x̂i

(t+τ |t),B = x̂Aj∗
(t+τ |t),B , which incurs the least cumulative loss among all the

predictions that are shared by its neighbors and its own prediction algorithm, i.e., j∗ = arg minj∈Λt,i
LA

t,j ,
∀i ∈ [N]. Here, lAt,i = l(x̂Ai

(t|t−1),B ,xt,B) and LA
t,i =

∑t
s=1 l

A
s,i.

Distributed Mirror Descent (DMD): Mirror Descent is applied to our problem setting by modifying
the Mirror Descent-based distributed online optimization algorithm proposed by Shahrampour & Jadbabaie,
2017a;b, leading to the following:

x̂i
(t|t),B =

∑
∀j∈Λt,i

Wij(t)[x̂j
(t|t−1),B + ηm(xt,B − x̂Aj

(t|t−1),B)] (38)

x̂i
(t+1|t),B = x̂i

(t|t),B +
∑

∀j∈Λt,i
Wij(t)(x̂Aj

(t+1|t),B − x̂Aj

(t|t−1),B) (39)

19

Under review as submission to TMLR

x̂i
(t+τ |t),B = x̂i

(t|t),B +
∑

∀j∈Λt,i
Wij(t)(x̂Aj

(t+τ |t),B − x̂Aj

(t|t−1),B) (40)

Here, ηm > 0 is a learning parameter, and Wij(t) ∈ R≥0 are the weights for the consensus-based fusion.
The weights Wij(t) are considered to be equal for all the neighbors at any time t, i.e., Wij(t) = (nt,i + 1)−1,
where nt,i = |Ωt,i|, ∀j ∈ Λt,i.

A.3.3 Parametric Study

Table 1 shows the optimal learning rates for which the mean of the average social cumulative prediction loss
of all the robots at t = 140 sec. (i.e., 1

6
∑6

i=1 L
S
1400,i) is minimum for different To values. From table 1, the

best mean performance occurs at To = 45, with ηw = 8.8 and ηα = 3.2. A similar study is performed to get
the optimal learning rates for which the standard deviation of the average social cumulative prediction loss
of all the robots at t = 140 sec. (i.e., 1

6
∑6

i=1 L
S
1400,i) is minimum for different To values, which shows that

the standard deviation is the least at around To = 25, with ηw = 10.0 and ηα = 5.4. Figures 4a and 4b show
the contour plots for the mean and standard deviation of the average social cumulative prediction loss of all
the robots at t = 140 sec. (i.e., 1

6
∑6

i=1 L
S
1400,i) versus the combination of learning parameters (ηα, ηw) for

To = 45 and To = 25, respectively. Note the sensitivity in both the mean and standard deviation due to the
learning parameter ηα.

A.3.4 DOME Weights’ Behavior

A screenshot of a sample simulation run is shown in Fig. 2b. The dynamic behavior of DOME weights
w3j(t), j ∈ Λt,3 for a time duration of 5 seconds is shown in Fig. 5 along with the corresponding cumulative
local prediction losses for the 3rd robot and its nominal neighbors robot 2 and robot 4 (note that random
link drops occur, due to which the nominal neighbors may not be neighbors at all times), along with the
cumulative social prediction loss for the 3rd robot.

20

	Introduction
	Problem Formulation
	Distributed Online Learning based Multi-Estimate Fusion
	Convergence Analysis
	Performance Evaluation
	Conclusion
	Appendix
	
	Decentralized Normalization Scheme
	MATLAB Simulation Details
	Control Law
	Baselines
	Parametric Study
	DOME Weights' Behavior

