
Published in Transactions on Machine Learning Research (05/2025)

Do Think Tags Really Help LLMs Plan?
A Critical Evaluation of ReAct-Style Prompting

Siddhant Bhambri∗ siddhantbhambri@asu.edu
School of Computing and AI
Arizona State University

Mudit Verma∗† muditvema@asu.edu
School of Computing and AI
Arizona State University

Subbarao Kambhampati rao@asu.edu
School of Computing and AI
Arizona State University

Reviewed on OpenReview: https: // openreview. net/ forum? id= aFAMPSmNHR

Abstract

The reasoning abilities of Large Language Models (LLMs) remain a topic of considerable
interest and debate. Among the original papers arguing for emergent reasoning abilities of
LLMs, ReAct became particularly popular by claiming to tease out LLM reasoning abilities
with special prompting involving “interleaving reasoning trace with action execution". In
this paper, we critically examine the claims of ReAct-style prompting for planning and
sequential decision-making problems. By introducing systematic variations to the input
prompt, we perform a sensitivity analysis along the original claims of ReAct. Our experiments
in AlfWorld and WebShop, domains that were used in the original ReAct work, show that
the performance is minimally influenced by the interleaved reasoning trace or by the content
of these generated reasoning traces. Instead, the performance of LLMs is primarily driven
by the unreasonably high degree of similarity between input example tasks and queries,
with shockingly little ability to generalize. In addition to raising questions on claims about
reasoning abilities, this lack of generalization also implicitly forces the prompt designer
to provide instance-specific examples, significantly increasing the cognitive burden on the
human. Our empirical results show that the perceived reasoning abilities of LLMs stem from
the exemplar-query similarity and approximate retrieval rather than any inherent reasoning
abilities, thereby leading to severe lack of generalization beyond the few-shot examples given
in the prompts. Our code and prompt settings can be found here on GitHub.

1 Introduction

Large Language Models (LLMs) have seen rapid advancements specifically in Natural Language Processing
and Understanding (NLP & NLU). LLMs have unparalleled capabilities in text generation, summarization,
translation, and question answering to name a few (Bubeck et al., 2023). Motivated by these capabilities of
LLMs, there has also been a rush to look for other emergent abilities–especially for reasoning and planning.
A popular way to improve LLM performance on reasoning/planning tasks has been in-context prompting
or prompt engineering (Sahoo et al., 2024) to include instructions (Giray, 2023), syntax structure (Marvin
et al., 2023), criticism and plan guidance with verification (Kambhampati et al., 2024), etc. Among these
approaches, ReAct (Yao et al., 2022b), presented at ICLR 2023, stands out for its claims to improve LLM

∗Equal Contribution
†Work done while a PhD student at ASU, now at Google DeepMind

1

https://openreview.net/forum?id=aFAMPSmNHR
https://github.com/sbhambr1/React_Brittleness

Published in Transactions on Machine Learning Research (05/2025)

planning abilities through the use of reasoning traces interleaved with action execution given as plan guidance.
Given the conflicting reports about the planning abilities of LLMs in the literature Valmeekam et al. (2024),
in this paper we are particularly interested in evaluating these claims.

In our initial experiments with ReAct for planning, we found that the system is overly dependent on a
high degree of syntactic similarity between the example prompt and the query, and is extremely brittle to
minor perturbations to the input prompt. For example, when provided with an explicit set of examples of
pick-and-place-object task and asked to plan for a pick-and-place-two-objects task, it should be trivial to
generalize the solution of the examples to the queried task. Unfortunately, even such a minor variation to the
original ReAct agent setup disrupts its performance.

Given the seemingly widespread adoption of ReAct methodology (as of this writing, it has 2,411 citations),
the brittleness we witnessed calls for a systematic study of the factors contributing to the performance of
ReAct-based LLM agents. Based on the claims of (Yao et al., 2022b), we isolate three possible reasons for
the claimed performance of ReAct framework: 1) the utility of interleaving reasoning trace during action
execution, 2) the utility of providing plan guidance, and, 3) the significance of example prompt provided to
the LLM.

In this work, we systematically evaluate the brittleness of ReAct by studying which potential factors contribute
to its performance. This analysis is conducted by investigating the following research questions- RQ1: Does
the agent performance depend on interleaving reasoning trace with action execution? RQ2: How does the
nature of the reasoning trace or guidance information affect the performance of LLM agents? RQ3: How
does the similarity between the example 〈problem, solution〉and the query 〈problem, ? 〉, which are present in
the prompt, affect LLM agent performance?

We conduct extensive experiments on the AlfWorld and WebShop domain using various LLM models, including
GPT-3.5-turbo, GPT-3.5-instruct, GPT-4-0314(Old Variant), GPT-4-0613 (Latest Variant), GPT-4o, Claude-
Opus and Llama 3.1-8B. Through our comprehensive empirical study, we answer each of the research questions
above. (RQ1) Rather than being dependent on reasoning trace being interleaved with action execution, we
find that LLM performance in fact improves when the reasoning trace is not interleaved with action execution.
(RQ2) Moreover, providing weaker guidance or placebo-guidance (where the text provides no information
about the task) has comparable performance to strong reasoning trace-based guidance. Answers to RQ1 and
RQ2 suggest that the source of ReAct LLM agent performance is not the interleaving aspect or the content
of the reasoning trace. Finally, in (RQ3), we see that variations to the example prompt such that it belongs
to a very similar task within the same domain, or just has a different goal or plan attributes than the queried
problem; causes the performance of ReAct-based LLM agent to plummet, highlighting the lack of length and
inter-task generalization.

This lack of generalization leads to significant brittleness with respect to prompt design. Depending on the
domain and task, prompt designers may provide abstract guidance, task-specific instructions within the same
domain, analogical examples, or global reasoning traces. ReAct’s inability to robustly adapt to such variations
underscores its limitations in handling diverse input prompts, thereby necessitating a closer examination of
its design and implementation.

Our findings highlight that the benefits of ReAct-style prompting are limited to cases where prompt engineers
can curate highly instance-specific examples. This may not scale for domains with a large number of problem
instance classes, and it places an undue burden on prompt engineers to provide instance-specific examples.
Finally, our experiments call into question claims of enhanced “emergent reasoning" of LLMs with prompt
engineering efforts; corroborating contemporary research (Verma et al., 2024; Valmeekam et al., 2024; Stechly
et al., 2024b; Ullman, 2023; Schaeffer et al., 2023; McCoy et al., 2023; Stechly et al., 2024a; Sprague et al.,
2024) questioning the reasoning abilities of LLMs.

2

Published in Transactions on Machine Learning Research (05/2025)

Interact with a household to solve a task. Here are two examples.
<EXAMPLE 1 of same task as QUERY>
You are in the middle of a room ... <Task Description> Your task is to : put some spraybottle on toilet.

Act 1: think : To solve the task, I need to find and take a spraybottle, then put it on toilet.
Obs 1: OK.
Act 2: think : First, I need to find a spraybottle. A spraybottle is more likely to appear in cabinet (1-4),
 countertop (1), toilet (1), sinkbasin (1-2), garbagecan (1).
 I can check one by one, starting with cabinet 1.
Obs 2: OK.
Act 3: go to cabinet 1.
Obs 3: On the cabinet 1, you can see cloth 1, a soapboar 1, a soapbottle 1.
...
Act 6: think : Now I find a spraybottle (2), next I need to to take it.
Obs 6: OK.
...
<EXAMPLE 2 of same task as QUERY>
...
<QUERY>
Here is the task. You are in the middle of the room ... Your task is to put some soapbottle in toilet.

ReAct

Interleaved Think tag
Reasoning Trace / Guidance
Example Task / Query Task

Figure 1: An example of ReAct in AlfWorld. We highlight the main components of ReAct, i.e., Interleaved
reasoning and acting, the reasoning trace / plan guidance and the example and query task.

2 Related Work

2.1 LLMs for Planning & Reasoning

Large Language Models have been shown to be successful in a plethora of natural language tasks (Kocoń
et al., 2023; Gilardi et al., 2023; Zhu et al., 2023; Bubeck et al., 2023; Bhattacharjee et al., 2023). However,
there are two schools of thought when it comes to utilizing off-the-shelf LLMs for planning and reasoning
tasks. Works such as Chain of Thought, ReAct, and others that followed (Wei et al., 2022; Yao et al., 2023;
Long, 2023; Yao et al., 2024; Besta et al., 2024; Fu et al., 2024; Aksitov et al., 2023), have argued about
the reasoning abilities of LLMs by proposing prompting methods. On the other hand, (Valmeekam et al.,
2024; Stechly et al., 2024b) have refuted these claims by showing the inability of LLMs to solve deterministic
planning and classical reasoning problems.

2.2 ReAct & Anthropomorphizing Reasoning

Lately, works such as ReAct, Reflexion, and their other variants (Yao et al., 2022b; Shinn et al., 2023) have
argued on the prowess of LLMs’ reasoning abilities on text-based decision-making domains such as AlfWorld
Shridhar et al. (2020) and WebShop Yao et al. (2022a). However, the use of generating reasoning traces
and interleaving them with task-specific action execution, which is the central claim of ReAct, has been
used in many other applications besides these domains. Furthermore, there have been several extensions to
ReAct that claim to boost their generalization abilities across more domains including multi-modal domains
(Yang et al., 2023; Castrejon et al., 2024), autonomous vehicles (Cui et al., 2024), table question answering
(Zhang et al., 2023), etc. While the effectiveness of ReAct is celebrated across different areas, these works
only depend on anthropomorphization of LLMs (Min et al., 2022; Peng et al., 2024) for using ReAct-based
prompting with no justification on the source of improvement in performance. This motivates our work in
investigating the components of ReAct with respect to sequential decision-making problems and analyzing
the role each component plays.

3 Preliminaries

3.1 Domains

AlfWorld: (Shridhar et al., 2020) is a synthetic text-based game built on top of a STRIPS-style PDDL
domain description (Fikes & Nilsson, 1971). ReAct (Yao et al., 2022b) defines six tasks (or problem classes)
within this domain namely - Put, Clean, Heat, Cool, Examine, and PutTwo. Each problem class consists
of several problem instances, such as put a spraybottle on toilet (see Fig. 1 is an example instance of Put

3

Published in Transactions on Machine Learning Research (05/2025)

class. Since AlfWorld is a partially observable environment, each of these problem instances can be solved
by navigating and interacting with the environment simulator via text actions. For example, this task can
be solved by the following actions- go to cabinet 2, take spraybottle 2 from cabinet 2, go to toilet 1, put
spraybottle 2 in/on toilet 1.

WebShop: (Yao et al., 2022a) is an online shopping website environment with 1.18M real-world products
and 12K human instructions. The agent is provided with an initial human instruction (for example, “I am
looking for a nightstand with drawers. It should have a nickel finish, and priced lower than $140"). The
agent’s task is to crawl the shopping environment using actions such as search ‘nightstand drawers’,
choose ‘white buttons’, back to search, etc. For this work, we randomly sample 500 test instructions
from the environment and evaluate the success rate of the agent’s task completion.

3.2 ReAct

ReAct (Yao et al., 2022b) claims to increase LLM’s performance on text-based planning tasks such as AlfWorld
and WebShop primarily by augmenting the original action space of the agent with a think action. The think
action tag provided by ReAct is claimed to comprise of Reasoning + Action trace that is provided in the
solution for the example problems (exemplars) as part of the prompt. During execution, the LLM is expected
to generate a think action tag for the queried problem instance that is semantically similar to the one provided
for the examples in the prompt.

Location of THINK tag: In ReAct, the integration of the think tag within actions serves to expand the
action space. This allows the language model (LLM) agent to execute a think action, prompting an ‘OK’
response. Through analysis of example prompts in ReAct experiments, we identify various instances of the
think action. Typically, it appears after stating the problem instance, reiterating the task, and providing
problem-specific guidance. However, the authors offer no structured guidelines for its implementation,
placement, or guidance. This observation aligns with feedback from the paper’s reviewers (OpenReview,
2024) citing inconsistencies in the prompting format.

Content of THINK tag: In ReAct, the think action consistently provides the decision-making agent with
success-oriented guidance for task completion. For instance, upon encountering a spraybottle, the prompt
might include: think: Now I find a spraybottle (2). Next, I need to take it. This guidance
exposes forthcoming actions and sub-tasks for the agent.

Few shot EXAMPLEs: In the AlfWorld domain (which is a PDDL domain), ReAct authors (Yao
et al., 2022b) classify six problem classes or tasks: Put, Clean, Heat, Cool, Examine, PutTwo. Despite
representing different tasks, they share the same environment dynamics and action space, allowing for very
similar execution trace. For instance, a Heat task might involve Putting an item into a microwave. In ReAct
experiments, authors provide two example problem-solution pairs (referred to as exemplars in our work)
before querying the LLM agent with a problem instance. Authors force ReAct agent to use examples and
queries belonging to the same problem class without motivating this design decision. However, the queried
problem may differ in objects or locations from the exemplars.

4 Evaluating ReAct Prompting

The subsequent sub-sections explore the design of exemplar prompt variations to investigate our research
questions concerning the claims of ReAct. Each variation modifies the base ReAct prompt, and we use
the AlfWorld domain as the running example for discussing these variations (see Appendix for WebShop
prompts).

4.1 RQ1: Interleaving Thinking and Acting - Location of THINK tag

Does the agent performance depend on interleaving reasoning trace with action execution?

To answer this research question, we propose collating the guidance information contained within the multiple
think tags present in the examples of the input prompt into a single think tag appended after the example

4

Published in Transactions on Machine Learning Research (05/2025)

...
Act 3: open cabinet 2
Obs 3: You open the cabinet 2. The cabinet 2 is open.
 In it, you see a candle 1, and a spraybottle 2.
Act 4: think : Now I find a spraybottle 2.
 Next, I need to take it.
Act 4: put spraybottle 2 in/on toilet.
Obs 4: Nothing happens.
...

(RQ2 a) Failure

...
Act 3: open cabinet 2
Obs 3: You open the cabinet 2. The cabinet 2 is open.
 In it, you see a candle 1, and a spraybottle 2.
Act 4: think : Now I find a spraybottle 2.
 Next, I need to take it.
Act 4: put spraybottle 2 in/on toilet.
Obs 4: Nothing happens.
Act 5: think : Nothing happens because I do not
 have spraybottle 2.
...

(RQ2 b) Failure + Explanation

...
Act 3: open cabinet 2
Obs 3: You open the cabinet 2. The cabinet 2 is open.
 In it, you see a candle 1, and a spraybottle 2.
Act 4: think : Now I find a spraybottle 2.
 Next, I need to take it.
Act 4: think : Take a deep breadth and work on
 this problem step by step.
...

(RQ2 d) Placebo Guidance

...
Act 3: open cabinet 2
Obs 3: You open the cabinet 2. The cabinet 2 is open.
 In it, you see a candle 1, and a spraybottle 2.
Act 4: think : Now I find a spraybottle 2.
 Next, I need to take it.
Act 4: think : Next, I need to take the
 spraybottle 2. Now I find a spraybottle 2.
...

(RQ2 c) Ordering

<EXAMPLE 1>
You are in the middle of a room ... <Task Description>
Your task is to : put some spraybottle on toilet.

Act 1: think : To solve the task, I need to find and take a spraybottle, then put it on toilet. First, I need to
 find a spraybottle. A spraybottle is more likely to appear in cabinet (1-4), countertop (1), toilet (1),
 sinkbasin (1-2), garbagecan (1). I can check one by one, starting with cabinet 1.
 Now Once I find a spraybottle (2), next I need to to take it.
 Now Once I take a spraybottle (2), next I need to put it in/on toilet (1).
Obs 1: OK.
Act 2: go to cabinet 1.
Obs 2: On the cabinet 1, you can see cloth 1, a soapboar 1, a soapbottle 1.
...

(RQ1 a) Exemplar-CoT

<EXAMPLE 1>
You are in the middle of a room ... <Task Description>
Your task is to : put some spraybottle on toilet.

Act 1: think : To solve the task, I need to find and
 take a spraybottle the object, then put it on toilet the desired location. First, I need to find a
 spraybottle the object. A spraybottle The object is more likely to appear in cabinet (1-4), countertop
 (1),toilet (1), sinkbasin (1-2), garbagecan (1). one of the different locations. I can check one by one,
 starting with cabinet 1 the first location.
 Now Once I find a spraybottle(2) the object, next I need to take it.
 Now Once I take a spraybottle (2) the object, next I need to put it in/on toilet (1) the desired location.
Obs 1: OK.
Act 2: go to cabinet 1.
Obs 2: On the cabinet 1, you can see cloth 1, a soapboar 1, a soapbottle 1.
...

(RQ1 b) Anonymized Exemplar-CoT

Figure 2: Example of prompt variations considered for RQ1 and RQ2.

problem is specified. This approach can be interpreted as Chain-of-Thought (Kojima et al., 2022; Wei et al.,
2022), where guidance information is generated before action execution.

Variation 1 - Exemplar-based CoT: AlfWorld is a partially observable environment where an agent can
only observe objects after reaching that location. Hence, we remove specific location and object identifiers
to modify the think actions that are originally interleaved with other actions in the environment (see RQ1
a in Figure 2). Finally, we append all the think actions together at the beginning of the example problem.
For example, we rewrite it as - think: Now Once I find a spraybottle (2), next I need to take
it. Intuition: Problem-specific guidance for a sequential decision-making agent can be given step-by-step
(as in ReAct) or all at once. Note, that this variation is possible since AlfWorld is not a dynamically changing
environment in which case providing information on the task will not be possible.

5

Published in Transactions on Machine Learning Research (05/2025)

Variation 2 - Anonymized Exemplar-CoT: We take one step further and modify the think
tag to remove references to specific locations and objects, making it more general (see RQ1 b in
Figure 2). Similarly, in WebShop we anonymize specific item options as desired options. For
example, think: To solve the task, I need to find and take a spraybottle the object, then
put it on toilet the desired location. Intuition: Exemplars can be made more general by providing
abstract guidance and exploiting LLMs ability to identify necessary semantic entity relations. This can be
useful for a prompt design that can suitably encompass a wider range of downstream tasks and mediate the
need of providing problem-specific guidance in the think tags.

4.2 RQ2: Action Guidance by Thinking - Content of THINK tag

How does the nature of the reasoning trace affect the performance of LLM?

ReAct claims to use reasoning trace as the guidance information following the think tag. For instance,
in ReAct (Yao et al., 2022b), thoughts are to (1) decompose the goal (2) track sub-goal completion (3)
determine the next sub-goal and (4) reason via common-sense where to find and object and what to do
with it. It is, however, unclear what is the motivation to use these as the reasoning trace. The potential
anthropomorphization of large language models (LLMs) may suggest that their thought processes are similar
to the abstract plans humans make, and that they must be prompted in the same manner. However, it is
unclear why this assumption should hold true.

Variation 1 - Failure: We note that none of the examples used in ReAct prompting for any task consist
of invalid actions. We inject two invalid actions in the execution trace: the first that attempts to execute the
action pertinent to the task, such as put spraybottle 2 in/on toilet, when not possible and, second, executes
some other invalid action (see RQ2 a in Figure 2). We include the expected simulator response, Nothing
happens., when invalid actions are taken. Intuition: Reasoning trace can be about what to do such as future
sub-goals, or what not to do such as mistakes in hindsight. This should be weaker guidance than in base
ReAct as the exemplars do not point out what to do next.

Variation 2 - Failure + Explanation: We place think actions after invalid actions injected in Failure
Variation which consist of explanations for the failure such as, think: Nothing happens because I do
not have a spraybottle 2 (see RQ2 b in Figure 2). Intuition: We can augment mistakes with explanations
to avoid similar failures. This is a stronger guidance signal than Failure, however, the exemplars still not
provide information on what to do next.

Variation 3 - Guidance Ordering: LLMs are known to be susceptible to minor syntactic per-
turbations to inputs. We test whether it is true for guidance information given as prompt as well
(see RQ2 c in Figure 2). We identify chain of sub-tasks in a reasoning trace S1 → S2 · · · Sn and
reverse it to be Sn → Sn−1 · · · S1. For instance, think: Now I find a spraybottle (2). Next,
I need to take it. becomes think: Next, I need to take the spraybottle (2). Now I find a
spraybottle (2). Intuition: LLM agent should be invariant to the reasoning trace syntax if the semantic
information is preserved.

Variation 4 - Placebo Guidance: It is unclear to what extent LLM agent uses the supposed helpful
thoughts for the decision making task. In this variation we replace think tag guidance with a placebo thought
that does not contain any task relevant information, such as think: Take a deep breath and work on
this problem step by step. (see RQ2 d in Figure 2), but has been widely used as prompt engineering
trick (Kojima et al., 2022). Intuition: According to claims of ReAct, we expect the performance to get
worse when the guidance does not have any information useful for task success.

4.3 RQ3: EXAMPLEs - QUERY Similarity

How does the similarity between the prompt examples and the query problem affect LLM performance?

RQ3 investigates the role of example similarity to the query in LLM agent’s performance. Establishing
problem similarity can be challenging, especially where minor variations to the problem can have varied
interpretations (such as an analogy to a different task altogether). Our work explores this challenge in a

6

Published in Transactions on Machine Learning Research (05/2025)

systematic way. During example prompt construction, prompt designers may use synonyms to refer to objects
(Domain), come up with examples where the agent task is the same as query but the goals are different
(Instance), or provide optimal solutions as the examples (Optimal) preventing LLM to obtain information
regarding exploration strategy. Furthermore, given that the domain has the same underlying action dynamics
and that the tasks reuse several actions, prompt designers may choose to provide query specific example
prompts (as in base ReAct), provide one of a different task and one of the same task (One), provide both
examples to be of a different task (Both), or take an exhaustive approach and provide one example of all
tasks (All).

Variation 1 - Synonyms (Domain): For this variation, we replace the object and location names in
the example prompts with their synonyms. For example, spraybottle → aerosolbottle, cabinet → cupboard,
and, microwave → oven. We make 36 such changes to object and location names across all the examples.1
Intuition: Exemplar guidance maybe specified with alternate synonymous object and location names.
Reasoning agents should be invariant to variable name substitution for closed world dynamics such as
PDDL-based AlfWorld. When example-based guidance needs to be provided to a sequential decision making
agent, examples may consist of synonymous object and location names. Hence, we expect to achieve similar
task performance.

Variation 2 - Problem Level (Instance): We inject instance-level changes to the examples provided in
the prompts. We change the goal location in exemplar problem to ensure that it does not match with any
of the goal locations in query problem. We also add repetitive yet futile actions in the exemplar execution
trace which does not effect the solution. Intuition: Ensuring a different goal location in exemplar from the
queried problem is a natural use-case. Moreover, exemplars may contain arbitrary exploration strategies such
as action repetition (Sharma et al., 2017).

Variation 3 - Problem Level (Both, One, All): Recall that the environment dynamics for all the tasks
are the same. In fact, several tasks subsume the use of our tasks such as Heat requires the agent to Put an
food in the microwave. In general, all the tasks share a large portion of actions (such as exploring cabinets
and locations, picking objects etc.). Motivated by how tight relationship of these tasks we come up with
three variations. First, One, uses one exemplar of an arbitrarily picked task and the other exemplar of the
same task as the query. Second, Both, uses both exemplars from an arbitrarily picked task. Finally, All,
uses a total of six exemplars corresponding to each task under consideration. Note, that while all other
prompt variations use two in-context examples, the All variation uses six in-context examples. Remember,
this includes the query task which is always present at the end in the input prompt. Intuition: With a very
similar action execution trace (such as exploration, picking and placing objects) across tasks, and shared
dynamics, LLM agent should be minimally affected by the use of exemplars of a different task.

Variation 4 - Exploration Strategy (Optimal): As noted before, ReAct does not explain the choice
of exemplars used. An important ingredient to the exemplars is the exploration strategy used. In this
variation we provide exemplars which serendipitously take the optimal actions (as if the environment were
fully observable) and therefore the example plan is the shortest possible. Intuition: Exploration strategy
exposed in exemplars (that too for the same problem task) should not impact ReAct’s performance if the
LLM agent is reasoning instead of retrieval (or pattern matching).

5 Results

While the original ReAct experiments were carried out on PaLM (currently decommissioned), we reproduce
their results with newer set of models. We use GPT-3.5-Turbo, GPT-3.5-Instruct, GPT-4, GPT-4o, and
Claude-Opus, which are all newer models than those benchmarked in ReAct (Yao et al., 2022b). Note, that
despite using newer models, our results shed doubts on the reproducibility and consistency across models of
the original paper’s results. As noted, we use the setup in (Yao et al., 2022b) for all our experiments. In
AlfWorld, GPT3.5-(Turbo, Instruct) results are on 134 instances across six tasks, GPT-4/Claude-Opus on
60 instances (10 for each task) due to cost considerations. In WebShop, GPT3.5(Turbo, Instruct), GPT-4o,
and LLAMA-3.1-8B results are on 500 samples, while GPT-4/Claude-Opus are on 50 instances due to cost

1The object names / location are unchanged for the problem query and subsequent interaction with the simulator.

7

Published in Transactions on Machine Learning Research (05/2025)

considerations. For each of the experiments, we include the Act baseline, originally used by ReAct, where
the same examples are provided to prompt the LLMs but without any think tags in their execution traces.
Naturally, in this case, the LLM is unable to produce a think tag for the queried problem, and thus, unable
to utilize any supposed reasoning guidance given as part of the in-context examples. We include the lower
and upper bound confidence intervals for all our experiments in the Appendix Section B.3.

Table 1: Average Success % of LLM for RQ1 and RQ2 on six AlfWorld tasks. The table uses a color
spectrum to represent the quality of the numbers. Cells shaded in green indicate the best performance
compared to base ReAct, transitioning to red for the worst relative performance.

Model / Prompt Act ReAct RQ1 RQ2
CoT Anon. CoT Placebo Order Failure Explanation

GPT-3.5-Turbo 34.3 27.6 46.6 41 30 28.3 43.3 41.6
GPT-3.5-Instruct 44 50.7 61.9 50.7 41 42.5 47 44.7
GPT-4-0314 (Old) - 23.3 43.3 33.3 36.6 30 50 36.6

GPT-4-0613 (Latest) 70.0 26.7 40.0 26.6 36.6 30 60 36.6
Claude-Opus 43.3 56.6 50 46.6 30 50 53.3 30

Table 2: Average Success % of LLM for RQ1 and RQ2 on WebShop tasks. The table uses a color spectrum
to represent the quality of the numbers. Cells shaded in green indicate the best performance compared to
base ReAct, transitioning to red for the worst relative performance.

Model / Prompt Act ReAct RQ1 RQ2
CoT Anon. CoT Placebo Failure Explanation

GPT-3.5-Turbo 1.12 1.04 2.20 1.88 1.52 3.48 3.48
GPT-3.5-Instruct 7.24 7.16 7.52 6.12 7.40 7.20 7.24

GPT-4-0613 (Latest) 8 4 8 8 6 8 8
GPT-4o 4.64 2.24 4.68 4.52 4.08 4.68 4.68

Claude-Opus 4 4 4 2 4 2 4
LLAMA-3.1-8B 1.44 3.16 3.28 3.92 2.04 1.20 2.16

5.1 Utility of Interleaving THINK tags (RQ1)

To recall, we create two prompt variations for RQ1: CoT and Anon. CoT. In CoT, we concatenate all the
think tag content at the beginning of the execution trace for the two examples. For Anon. CoT, we further
anonymize the object and location names in the concatenated think tag.

From Table 1 (RQ1), we note that the CoT and the Anon. CoT variations perform significantly better than
base ReAct for all OpenAI models. Moreover, the performance dips slightly for Claude-Opus along these
variations. This refutes ReAct’s first claim on the importance of interleaving reasoning trace generation with
action execution. Even in the case of Claude where there is a slight dip in performance, the models seems
to be performing at reasonably high success rate which questions the importance of interleaved reasoning
and action execution. We omit LLAMA-3.1-8B and GPT-4o (See B.2) for AlfWorld as they achieve zero
performance over baselines and all the variations. From Table 2, we find a similar pattern: CoT and Anon.
CoT variants perform closely or better than the baseline ReAct. A surprising result consistent in both the
domains is the performance of Act method. Act baseline is weaker only for two models GPT-3.5-Instruct,
Claude-Opus for both the domains, which further questions the utility of using ReAct prompting.

5.1.1 RQ1 Failure Analysis

Figure 3 shows a radar chart for four different LLMs, namely GPT-3.5-Turbo, GPT-3.5-Instruct, GPT-4, and
Claude Opus, for the RQ1 ablations indicating the failure rate (in %) across the six tasks in the AlfWorld
domain. In all but one case for Claude Opus, we note the largest shaded region in red indicating the highest
failure rate for ReAct across five AlfWorld tasks as compared to the RQ1 prompt variations. This indicates

8

Published in Transactions on Machine Learning Research (05/2025)

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

GPT 3.5 Turbo GPT 3.5 Instruct GPT 4 Claude Opus
Put

Clean

HeatExamine

PutTwo

Cool

Put
Clean

HeatExamine

PutTwo

Cool

Put
Clean

HeatExamine

PutTwo

Cool

Put
Clean

HeatExamine

PutTwo

Cool

Figure 3: RQ1 Failure Analysis: The radar chart shows the failure rates of various LLMs with different
ReAct-based prompt settings for RQ1 (Base React, Global, Anonymized) across six AlfWorld tasks (hexagon
vertices). Higher values / larger shaded region indicate worse performance.

that there is no performance gain from interleaving think tags with actions in the prompt examples, rather
has a contrary effect on majority of the tasks. CoT has the smallest average failure rate, followed by the
Anonymized CoT. We believe that this is because prompting LLMs with object and location-specific guidance
as part of think tags in the in-context demonstrations provides more useful and targeted information for
solving the downstream queried problem, which too has similar object and location identifiers as the in-context
examples. We have also included a direct comparison of the think tags generated by the ReAct framework
and by the RQ1 prompt variations in Appendix Section B.4.

5.2 Utility of THINK tag Content (RQ2)

To recall, we create four prompt variations for RQ2: Placebo, Failure, Explanation and Order. In Placebo,
we replace each think tag content with meaningless text that has no relation to the task. For Failure and
Explanation variations, we replace the think tag suggested actions to an action that does not help solve the
task, along with an explanation for the same, respectively. In Order, we switch the ordering of the sentences
that are part of each individual think tag.

Recall that reasoning trace guidance pertains to the prospective actions or behaviors an agent should execute
(foresight guidance). This type of guidance is more informative compared to other variations, such as hindsight
guidance, which focuses on past errors without providing future solution steps, and placebo guidance, which
is entirely unrelated to the task. ReAct claims that reasoning trace is crucial for LLM agent performance,
which would predict a decline in performance with hindsight guidance and a collapse with Placebo variation.
Therefore, a practitioner would expect all the rows to be a dark shade of red. In contrast, our findings in
Table 1 indicate that hindsight guidance (Failure, Explanation) actually improves the performance of
the GPT family of models. The Claude-Opus model’s performance remains stable with hindsight (Failure)
guidance and declines with Placebo guidance. This refutes ReAct’s claim that task-specific reasoning trace
is the source of LLM performance. Our argument that LLM agent’s performance is only slightly affected
by the reasoning trace explains the indifference to Order perturbation as well. If the LLM is not utilizing
the reasoning trace for decision making, change in ordering would not affect the agent’s performance. Our
arguments hold for the WebShop domain as well, where all of the variants perform closely or better than the
baseline ReAct.

Finally, contrary to the general perception that better GPT models would improve over reasoning, we find
that GPT-4-(Old)’s performance is the worst among GPT-X family further highlighting the brittleness of
claims of ReAct. GPT-4-(Latest) performs similarly to GPT-4-(Old), except for the Act baseline which again
shows the futility of ReAct prompting. In all our experiment settings, we note that LLMs replicate the exact

9

Published in Transactions on Machine Learning Research (05/2025)

Table 3: Average Success % of LLM for RQ3 on six AlfWorld tasks. OC: Out of context limit. The table uses
a color spectrum to represent the quality of the numbers. Cells shaded in green indicate the best performance
compared to base ReAct, transitioning to red for the worst relative performance.

Model / Prompt Act ReAct RQ3
Domain Instance Optimal All One Both

GPT-3.5-Turbo 34.3 27.6 1.6 30 20.1 32 28.3 1.6
GPT-3.5-Instruct 44 50.7 47.6 42.5 39.5 OC 17.9 5.2
GPT-4-0314 (Old) – 23.3 13.3 23.3 50 23.3 16.6 0

GPT-4-0613 (Latest) 70.0 26.7 10.0 20.0 53.3 23.3 20 3.3
Claude-Opus 43.3 56.6 50 46.6 43.3 50 60 6.6

steps as shown for the examples in the prompts. Hence, they do not output what ReAct claims as think tags
if those tags are not present in the original prompt.

5.2.1 RQ2 Failure Analysis

Figure 4 shows a radar chart for four different LLMs, namely GPT-3.5-Turbo, GPT-3.5-Instruct, GPT-4, and
Claude Opus, for the RQ2 ablations indicating the failure rate (in %) across the six tasks in the AlfWorld
domain. Similar to Figure 3, we note the highest failure rate for ReAct across five AlfWorld tasks as compared
to the other RQ2 prompt variations, with the smallest average failure rate for Failure prompt variation. We
hypothesize that this is because providing actions that lead to failure in the in-context demonstrations assist
in preventing similar failure-leading actions for the queried problem. Moreover, providing failure information
can be less cognitively demanding for prompt designers than providing an exact solution for the in-context
examples, as required by the ReAct framework. We have also included a direct comparison of the think tags
generated by the ReAct framework and by the RQ2 prompt variations in Appendix Section B.4.

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

0

25

50

75

100

GPT 3.5 Turbo GPT 3.5 Instruct GPT 4 Claude Opus
Put

Clean

HeatExamine

PutTwo

Cool

Put
Clean

HeatExamine

PutTwo

Cool

Put
Clean

HeatExamine

PutTwo

Cool

Put
Clean

HeatExamine

PutTwo

Cool

Figure 4: RQ2 Failure Analysis: The radar chart shows the failure rates of various LLMs with different
ReAct-based prompt settings for RQ2 (Base React, Magic, Failure, Failure+Explanation, Ordering) across
six AlfWorld tasks (hexagon vertices). Higher values / larger shaded region indicate worse performance.

5.3 Dependence on Literal Example-Query Similarity (RQ3)

To recall, we create six prompt variations for RQ3: Domain, Instance, Optimal, All, One and Both. In
Domain, we use synonymous object and location names. For Instance, we add futile but repetitive actions
while in Optimal we only include the minimum number of actions needed to reach to the goal in the examples.
For All, we include one example from each of the six tasks. We change one example task to be different from
the same category as of the query task in One and change both the example tasks from another category in
Both.

10

Published in Transactions on Machine Learning Research (05/2025)

Intuitively, the similarity of Domain examples is closest with base ReAct, followed by Instance and Optimal
variations. Finally, All contains an overload of information followed by One and Both which have the same
action space but uses different tasks as exemplars. Recall that AlfWorld being a PDDL domain has a shared
environment dynamics across all tasks with up to 80% of actions shared across execution traces. While
ReAct does not investigate impact of varied exemplars, given the popular usage, one expects LLMs to be
robust to such changes especially in a common-sense household domain. Table 3 shows the severe brittleness
of ReAct based LLM agent to even minor variations (such as Domain, Instance). Specifically, performance
of GPT-3.5-Turbo and GPT-4 plummets for Domain. Claude-Opus which was more robust in RQ1, RQ2,
is also impacted severely by Domain, Instance variations. Furthermore, the performance of all LLMs but
GPT4 drops when we do not expose the exploration strategy and only provide Optimal exemplars.

Overloading the LLMs with more exemplars All does not impact its performance. We posit, this is because
the query-task exemplar is still part of the large input prompt. Among the two exemplars, as provided in
ReAct, when one of them is of a different task (One) then the performance significantly reduces for LLMs.
When both of the exemplars are of a different task then the performance collapses to single digit success
rates for all the models. This is a key result of this work highlighting the severe dependence of LLMs on the
similarity of the exemplars to the query task and the lack of generalization with ReAct. Through sensitivity
analysis using our RQ3 variations, we could find parts of the input (the task similarity of the exemplar with
query) which is the source of ReAct performance. Essentially, the LLM is mimicking/performing approximate
retrieval from the context presented to it by trying to overfit on the information provided as part of the
in-context demonstrations (or examples). Moreover, our results corroborate the line of research that questions
the inability of LLMs to reason or plan (Verma et al., 2024; Valmeekam et al., 2024; Stechly et al., 2024b;
Ullman, 2023; Schaeffer et al., 2023; McCoy et al., 2023; Stechly et al., 2024a; Sprague et al., 2024).

The reported success-rate from the ReAct paper Yao et al. (2022b) on the WebShop domain is 40%. Due to
the absence of the exact queries used in the paper, we randomly sampled queries from the WebShop dataset
comprising 12K records. This approach possibly resulted in the decoupling of any relationship between the
exemplars and the queries. Referring to Table 2, it is evident that the performance of the WebShop ReAct
agent significantly declined, reaching single digit percentages (as well as other variants). This mirrors the
trends observed in the Both variant of the Alfworld in Table 3, further supporting our arguments.

5.3.1 RQ3 Failure Analysis

Figure 5 shows a radar chart for four different LLMs, namely GPT-3.5-Turbo, GPT-3.5-Instruct, GPT-4, and
Claude Opus, for the RQ3 ablations indicating the failure rate (in %) across the six tasks in the AlfWorld
domain. We note the highest failure rate for the Both variation across five AlfWorld tasks as compared to
the other RQ3 prompt variations, with the smallest average failure rate for Optimal prompt variation. These
results further indicate the brittle dependence of ReAct prompting on the type of in-context demonstrations
used for querying the LLM for downstream tasks. We have also included a direct comparison of the think
tags generated by the ReAct framework and by the RQ3 prompt variations in Appendix Section B.4. We
also did a preliminary study on the similarity (computed in terms of embedding distances) between the 134
prompting tasks with the originally provided examples, and the performance of ReAct. As can be seen from
Figure 6 in Appendix Section B.6, as expected, the performance degrades significantly in the off-diagonal
cases.

5.4 Length & Inter-task Generalization

Unrolling and Inter-task Similarity: We perform additional experiments to highlight the lack of length
generalization where the query task is to essentially repeat the task in the exemplar (Unrolling). For instance,
in AlfWorld, the exemplar is Put and the query is PutTwo to put two objects at given location. In this case,
the LLM has to unroll the given advice and repeat exemplar task execution to solve the query. The success
rate of GPT-3.5-Instruct (the best performing GPT model in our experiments) drops down from 52% to 9%.
Similarly, we experiment with a Inter-task Similarity variation where the exemplar task subsumes execution
of the query task. For instance, the Heat task requires the agent to pick and place object in the microwave
(which is an instantiation of Put task). One would expect that Heat is a good exemplar for Put, however, the

11

Published in Transactions on Machine Learning Research (05/2025)

Figure 5: RQ3 Failure Analysis: The radar chart shows the failure rates of various LLMs with different
ReAct-based prompt settings for RQ3 (Base React, Domain, Instance, All, Both, One) across six AlfWorld
tasks (hexagon vertices). Higher values / Larger shaded region indicate worse performance.

performance of GPT-3.5-instruct model goes from 18% to 0% in this case. These results further underscore
the brittleness and the need for instance-specific exemplars in ReAct.

Exemplar CoT prompt from RQ1 + RQ3 variations: In this case, we test the main results of our
work with the RQ1 CoT variation to identify whether our findings hold true there as well or not. That is,
we test RQ3-One and RQ3-Both with Exemplar CoT prompt variation. For GPT-3.5-Turbo, we find that
the average performance drops from 46.6% (RQ3- CoT) as in Table 1 to 28.3% in One and 10.4% in Both
variation cases, and remains at 40.3% for All variation, thereby reaffirming our hypothesis behind the lack of
generalization in ReAct-based LLM prompting framework.

6 Discussion

Operationalizing ‘think’ actions by LLMs Given the free-form nature of think tag generation and
arbitrary nature of their content (about sub-task, common-sense next steps etc.), checking whether the
generated thoughts are in-fact reasonable is a challenging problem. For completeness, we find that 40% of
the times after generation of a think tag, subsequent environment action taken by the LLM was invalid (for
GPT-3.5-instruct) in AlfWorld. It is much higher (80% for GPT-3.5-Turbo, 90% for Claude-Haiku) for
weaker LLM models. This further highlights the inability of LLMs to operationalize its generated think
action, as also seen in (Roy et al., 2024). From manual inspection we find that the typical think action would
enlist all possible locations as next locations to visit for most of the tasks. As demonstrated in Section 5.2,
the performance of LLMs actually decreases when provided with foresight guidance, as seen with the base
ReAct model.

Lack of Generalization in ReAct-Style Prompting: Recall, that ReAct claims an improved perfor-
mance for text-based planning domains, namely - AlfWorld and WebShop, where the presence of a think tag
acts as guidance for the LLM to generate the next set of actions during the LLM-environment interaction.
Through our sensitivity analysis, we dissect each component of ReAct-style prompting in a critical effort
to understand the factor that leads to the observed success rates in these domains. With variations on the
placement (RQ1) and content (RQ2) of the think tag, we eliminate it as the primary cause of any improvement.
Furthermore, slight variations in exemplar tasks (RQ3) lead to a stark decline in success rate, clearly indicating
the literal dependence of performance on the highly curated instance-specific examples provided by domain
experts. While some works on In-Context Learning point out the impact of well-curated examples (Min
et al., 2022; Peng et al., 2024), our work specifically highlights the severe lack of generalization and that
exemplar-query similarity is the primary cause of ReAct’s performance, thereby rejecting contemporary belief
that the heavy-lifting of LLM reasoning & planning is done through the think tag.

12

Published in Transactions on Machine Learning Research (05/2025)

Lack of Generalization to newer LLMs: ReAct uses the Act baseline (LLM-environment interaction
without think tags) in their work to showcase improvements due to the presence of the proposed think tag.
For AlfWorld, ReAct reports 45% success rate for Act baseline and 71% success rate for ReAct prompting
using the PaLM model. For WebShop, ReAct reports 30.1% success rate for Act baseline and 40% success
rate for ReAct prompting on PaLM. However, we note from our results on both domains that the Act
baseline performs much better than ReAct for several LLMs, which questions the compatibility of ReAct to
newer-age LLMs. ReAct performs worse with newer models as compared to the results they report on the
currently decommissioned PaLM. Moreover, this further strengthens our claim that ReAct’s performance
can’t be contributed to the presence of think tags, but is primarily due to the literal similarity between the
in-context examples and the queried problem. This observation also questions the contemporary belief that
such prompting strategies are generalizable throughout different LLM families, including newer models.

We re-iterate our key result, given any LLM model, the success rates plummet with our RQ3 variations
showing a consistent pattern of literal dependence on the provided examples irrespective of the LLM. Moreover,
the performance of all the LLMs remain quite high (if not better) when we vary the location and content
of the think tags. This highlights the need for higher rigor in agentic LLM experimentation and in-depth
evaluation seeking source of improvements.

7 Conclusion & Future Directions

ReAct based prompt engineering methods have been claimed to improve planning abilities of Large Language
Models. In this study, we critically examine ReAct along three dimensions, informed by its claims and
our hypotheses regarding its performance sources. Contrary to ReAct’s claims, our findings reveal that
its performance is neither due to interleaving reasoning trace and guidance information generation with
action execution, nor due to the specific nature of the guidance information. Instead, we identify that the
true source of LLM performance in sequential decision-making tasks, such as AlfWorld, is the high degree
of literal similarity between exemplar problems (few-shot) and the query task, thereby leading to severe
lack of generalization. Our findings caution against an uncritical adoption of ReAct-style frameworks for
their putative abilities to enhance performance in domains requiring planning. To conclude, we believe
that these results will be helpful for practitioners and future works, particularly when designing prompts
for decision-making problems, and benefit from avoiding putting any efforts into constructing non-trivial
problem-specific reasoning traces.

Broader Impact

With the surge in LLM-based applications, including those that may have critical consequences, it becomes
imperative to study the robustness of LLMs and frameworks based on them. One such case in point is that
of ReAct, which has gained popularity for its use across diverse domains. However, there has been little to no
critical analysis to understand the robustness and generalizability in the ReAct framework. These include,
but are not limited to, understanding the core reasons behind ReAct’s performance, performance of ReAct
on newer LLMs, robustness to slight deviations from the intended problems, etc. Our work presents a critical
sensitivity analysis of the framework to answer these questions via a comprehensive set of empirical results,
thereby revealing the brittleness of the proposed framework along with the over-reliance on human-provided
task-specific examples. Ideally, the impetus of providing generalization and robustness guarantees, if any,
should fall on the authors of the proposed approach. This would allow future works to have a thorough
understanding of various approaches and utilize them responsibly.

Acknowledgment

This research is supported in part by ONR grant N0001423-1-2409, DARPA grant HR00112520016, and gifts
from Qualcomm, J.P. Morgan and Amazon.

13

Published in Transactions on Machine Learning Research (05/2025)

References
Renat Aksitov, Sobhan Miryoosefi, Zonglin Li, Daliang Li, Sheila Babayan, Kavya Kopparapu, Zachary

Fisher, Ruiqi Guo, Sushant Prakash, Pranesh Srinivasan, et al. Rest meets react: Self-improvement for
multi-step reasoning llm agent. arXiv preprint arXiv:2312.10003, 2023.

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gerstenberger, Michal Podstawski, Lukas Gianinazzi, Joanna
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Piotr Nyczyk, et al. Graph of thoughts: Solving elaborate
problems with large language models. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 17682–17690, 2024.

Amrita Bhattacharjee, Raha Moraffah, Joshua Garland, and Huan Liu. Towards llm-guided causal explain-
ability for black-box text classifiers. arXiv preprint arXiv:2309.13340, 2023.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar, Peter
Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence: Early
experiments with gpt-4. arXiv preprint arXiv:2303.12712, 2023.

Lluis Castrejon, Thomas Mensink, Howard Zhou, Vittorio Ferrari, Andre Araujo, and Jasper Uijlings. Hammr:
Hierarchical multimodal react agents for generic vqa. arXiv preprint arXiv:2404.05465, 2024.

Can Cui, Yunsheng Ma, Xu Cao, Wenqian Ye, and Ziran Wang. Receive, reason, and react: Drive as you say,
with large language models in autonomous vehicles. IEEE Intelligent Transportation Systems Magazine,
2024.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving to problem
solving. Artificial intelligence, 2(3-4):189–208, 1971.

Dayuan Fu, Jianzhao Huang, Siyuan Lu, Guanting Dong, Yejie Wang, Keqing He, and Weiran Xu. Preact:
Predicting future in react enhances agent’s planning ability. arXiv preprint arXiv:2402.11534, 2024.

Fabrizio Gilardi, Meysam Alizadeh, and Maël Kubli. Chatgpt outperforms crowd workers for text-annotation
tasks. Proceedings of the National Academy of Sciences, 120(30):e2305016120, 2023.

Louie Giray. Prompt engineering with chatgpt: a guide for academic writers. Annals of biomedical engineering,
51(12):2629–2633, 2023.

Subbarao Kambhampati, Karthik Valmeekam, Lin Guan, Kaya Stechly, Mudit Verma, Siddhant Bhambri,
Lucas Saldyt, and Anil Murthy. Llms can’t plan, but can help planning in llm-modulo frameworks. arXiv
preprint arXiv:2402.01817, 2024.

Jan Kocoń, Igor Cichecki, Oliwier Kaszyca, Mateusz Kochanek, Dominika Szydło, Joanna Baran, Julita
Bielaniewicz, Marcin Gruza, Arkadiusz Janz, Kamil Kanclerz, et al. Chatgpt: Jack of all trades, master of
none. Information Fusion, 99:101861, 2023.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large language
models are zero-shot reasoners. Advances in neural information processing systems, 35:22199–22213, 2022.

Jieyi Long. Large language model guided tree-of-thought. arXiv preprint arXiv:2305.08291, 2023.

Ggaliwango Marvin, Nakayiza Hellen, Daudi Jjingo, and Joyce Nakatumba-Nabende. Prompt engineering
in large language models. In International Conference on Data Intelligence and Cognitive Informatics, pp.
387–402. Springer, 2023.

R Thomas McCoy, Shunyu Yao, Dan Friedman, Matthew Hardy, and Thomas L Griffiths. Embers of
autoregression: Understanding large language models through the problem they are trained to solve. arXiv
preprint arXiv:2309.13638, 2023.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke Zettle-
moyer. Rethinking the role of demonstrations: What makes in-context learning work? arXiv preprint
arXiv:2202.12837, 2022.

14

Published in Transactions on Machine Learning Research (05/2025)

OpenReview. ReAct: Synergizing Reasoning and Acting in Language Models. https://openreview.net/
forum?id=WE_vluYUL-X, 2024.

Keqin Peng, Liang Ding, Yancheng Yuan, Xuebo Liu, Min Zhang, Yuanxin Ouyang, and Dacheng Tao.
Revisiting demonstration selection strategies in in-context learning. arXiv preprint arXiv:2401.12087, 2024.

Shamik Roy, Sailik Sengupta, Daniele Bonadiman, Saab Mansour, and Arshit Gupta. Flap: Flow adhering
planning with constrained decoding in llms. arXiv preprint arXiv:2403.05766, 2024.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha. A
systematic survey of prompt engineering in large language models: Techniques and applications. arXiv
preprint arXiv:2402.07927, 2024.

Rylan Schaeffer, Kateryna Pistunova, Samar Khanna, Sarthak Consul, and Sanmi Koyejo. Invalid logic, equiv-
alent gains: The bizarreness of reasoning in language model prompting. arXiv preprint arXiv:2307.10573,
2023.

Sahil Sharma, Aravind Srinivas, and Balaraman Ravindran. Learning to repeat: Fine grained action repetition
for deep reinforcement learning. arXiv preprint arXiv:1702.06054, 2017.

Noah Shinn, Beck Labash, and Ashwin Gopinath. Reflexion: an autonomous agent with dynamic memory
and self-reflection. arXiv preprint arXiv:2303.11366, 2023.

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté, Yonatan Bisk, Adam Trischler, and Matthew
Hausknecht. Alfworld: Aligning text and embodied environments for interactive learning. arXiv preprint
arXiv:2010.03768, 2020.

Zayne Sprague, Fangcong Yin, Juan Diego Rodriguez, Dongwei Jiang, Manya Wadhwa, Prasann Singhal,
Xinyu Zhao, Xi Ye, Kyle Mahowald, and Greg Durrett. To cot or not to cot? chain-of-thought helps mainly
on math and symbolic reasoning. arXiv preprint arXiv:2409.12183, 2024.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. Chain of thoughtlessness: An analysis of
cot in planning. arXiv preprint arXiv:2405.04776, 2024a.

Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. On the self-verification limitations of large
language models on reasoning and planning tasks. arXiv preprint arXiv:2402.08115, 2024b.

Tomer Ullman. Large language models fail on trivial alterations to theory-of-mind tasks. arXiv preprint
arXiv:2302.08399, 2023.

Karthik Valmeekam, Matthew Marquez, Sarath Sreedharan, and Subbarao Kambhampati. On the planning
abilities of large language models-a critical investigation. Advances in Neural Information Processing
Systems, 36, 2024.

Mudit Verma, Siddhant Bhambri, and Subbarao Kambhampati. Theory of mind abilities of large language
models in human-robot interaction: An illusion? In Companion of the 2024 ACM/IEEE International
Conference on Human-Robot Interaction, pp. 36–45, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al.
Chain-of-thought prompting elicits reasoning in large language models. Advances in neural information
processing systems, 35:24824–24837, 2022.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng Liu, Ce Liu,
Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal reasoning and action.
arXiv preprint arXiv:2303.11381, 2023.

Shunyu Yao, Howard Chen, John Yang, and Karthik Narasimhan. Webshop: Towards scalable real-world
web interaction with grounded language agents. Advances in Neural Information Processing Systems, 35:
20744–20757, 2022a.

15

https://openreview.net/forum?id=WE_vluYUL-X
https://openreview.net/forum?id=WE_vluYUL-X

Published in Transactions on Machine Learning Research (05/2025)

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. In The Eleventh International Conference
on Learning Representations, 2022b.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in Neural Information
Processing Systems, 36, 2024.

Yao Yao, Zuchao Li, and Hai Zhao. Beyond chain-of-thought, effective graph-of-thought reasoning in large
language models. arXiv preprint arXiv:2305.16582, 2023.

Yunjia Zhang, Jordan Henkel, Avrilia Floratou, Joyce Cahoon, Shaleen Deep, and Jignesh M Patel. Reactable:
Enhancing react for table question answering. arXiv preprint arXiv:2310.00815, 2023.

Yiming Zhu, Peixian Zhang, Ehsan-Ul Haq, Pan Hui, and Gareth Tyson. Can chatgpt reproduce human-
generated labels? a study of social computing tasks. arXiv preprint arXiv:2304.10145, 2023.

16

Published in Transactions on Machine Learning Research (05/2025)

A Resources Used

In this work we leverage OpenAI API and Claude API for prompting the Language Models. We
use gpt-4-0613 for GPT4, gpt-3.5-turbo-0125, gpt-3.5-turbo-instruct, claude-3-opus-20240229,
claude-3-sonnet-20240229 and claude-3-haiku-20240307 for AlfWorld in April-May 2024. Results using
GPT-4-0613 (for both AlfWorld and WebShop) and all the results on WebShop were completed in Sep 2024.
As an estimate, for AlfWorld, ReAct and corresponding experiments use approximately 14M input tokens
(due to repeated prompting after each action execution) and 150K output tokens for 134 problem instances
as used by ReAct.

B Additional Considerations

B.1 Performance of Claude-Haiku

We skip on mentioning the performance of Claude-Haiku, since it was not able to generate syntactically
correct actions for any of the instances. We found that following our instruction to generate specific actions
as in the exemplar was difficult. We improved the prompt to have specific instructions for generating actions
(See D.3) but it did not yield any improvements for Claude-Haiku. However, the instruction did help with
Claude-Sonnet and Claude-Opus. We find that Claude-Sonnet follows a similar pattern as GPT-3.5-Instruct as
presented in our results, and decided to focus ourselves on the strongest/largest Claude model (Claude-Opus)
for our evaluation.

B.2 Performance of GPT-4o and LLAMA-3.1 in AlfWorld

In our experiments, we found that GPT-4o obtained zero success-rate across all variations (including Act and
ReAct and our proposed variations). Upon closer inspection, we found that GPT-4o requires significant effort
in instruction tuning for AlfWorld, specifically, it would start emitting justifications for why a previously
taken action was unsuccessful rather than generate syntactically accepted think tags and environment actions.
Even for action generation, GPT-4o would pre-pend the actions with justifications, thereby expecting the
users to write specific parsers. While stronger parsers maybe possible to implement, we hold GPT-4o to the
same expectations as other models (which do not get the benefit of stronger parsers) and report our findings
on a consistent evaluation.

LLAMA-3.1-8B obtains zero success-rate across all variations in AlfWorld as well. We observe that the
LLAMA model would generate incorrect actions and would repeat those actions exhausting the iteration
budget.

B.3 Confidence Intervals

In this subsection, we present the experiment results on Alfworld and WebShop with the confidence intervals
computed with 95% confidence level. The results have been discussed in Tables 4, 5 and 6.

Table 4: Lower & Upper bound Success % of LLM for RQ1 and RQ2 on six AlfWorld tasks with 95%
confidence interval. The table uses a color spectrum to represent the quality of the numbers. Cells shaded
in green indicate the best performance compared to base ReAct, transitioning to red for the worst relative
performance.

Model / Prompt Act ReAct RQ1 RQ2
CoT Anon. CoT Placebo Order Failure Explanation

GPT-3.5-Turbo 34.3 27.6 (36.8, 56.4) (31.4, 50.6) (21.0, 39.0) (19.5, 37.1) (33.6, 53.0) (31.9, 51.3)
GPT-3.5-Instruct 44 50.7 (52.4, 71.4) (40.9, 60.5) (31.4, 50.6) (32.8, 52.2) (37.2, 56.8) (35.0, 54.4)
GPT-4-0314 (Old) - 23.3 (33.6, 53.0) (24.1, 42.5) (27.2, 46.0) (21.0, 39.0) (40.2, 59.8) (27.2, 46.0)

GPT-4-0613 (Latest) 70.0 26.7 (30.4, 49.6) (17.9, 35.3) (27.2, 46.0) (21.0, 39.0) (50.4, 69.6) (27.2, 46.0)
Claude-Opus 43.3 56.6 (40.2, 59.8) (36.8, 56.4) (21.0, 39.0) (40.2, 59.8) (43.5, 63.1) (21.0, 39.0)

17

Published in Transactions on Machine Learning Research (05/2025)

Table 5: Lower & Upper bound Success % of LLM for RQ1 and RQ2 on WebShop tasks with 95% confidence
interval. The table uses a color spectrum to represent the quality of the numbers. Cells shaded in green
indicate the best performance compared to base ReAct, transitioning to red for the worst relative performance.

Model / Prompt Act ReAct RQ1 RQ2
CoT Anon. CoT Placebo Failure Explanation

GPT-3.5-Turbo 1.12 1.04 (0, 5.1) (0, 4.5) (0, 3.9) (0, 7.1) (0, 7.1)
GPT-3.5-Instruct 7.24 7.16 (2.4, 12.7) (1.4, 10.8) (2.3, 12.5) (2.1, 12.3) (2.2, 12.3)

GPT-4-0613 (Latest) 8 4 (2.7, 13.3) (2.7, 13.3) (1.3, 10.7) (2.7, 13.3) (2.7, 13.3)
GPT-4o 4.64 2.24 (0.5, 8.8) (0.4, 8.6) (0.2, 8.0) (0.5, 8.8) (0.5, 8.8)

Claude-Opus 4 4 (0.2, 7.8) (0, 4.7) (0.2, 7.8) (0, 4.7) (0.2, 7.8)
LLAMA-3.1-8B 1.44 3.16 (0, 6.8) (0.1, 7.7) (0, 4.8) (0, 3.3) (0, 5.0)

Table 6: Lower & Upper bound Success % of LLM for RQ3 on six AlfWorld tasks with 95% confidence
interval. OC: Out of context limit. The table uses a color spectrum to represent the quality of the numbers.
Cells shaded in green indicate the best performance compared to base ReAct, transitioning to red for the
worst relative performance.

Model / Prompt Act ReAct RQ3
Domain Instance Optimal All One Both

GPT-3.5-Turbo 34.3 27.6 (0, 4.1) (21.0, 39.0) (12.2, 28.0) (22.9, 41.1) (19.5, 37.1) (0, 4.1)
GPT-3.5-Instruct 44 50.7 (37.8, 57.4) (32.8, 52.2) (29.9, 49.1) OC (10.4, 25.4) (0.8, 9.6)
GPT-4-0314 (Old) – 23.3 (6.6, 20.0) (15.0, 31.6) (40.2, 59.8) (15.0, 31.6) (9.3, 23.9) (0, 0)

GPT-4-0613 (Latest) 70.0 26.7 (4.1, 15.9) (12.2, 27.8) (43.5, 63.1) (15.0, 31.6) (12.2, 27.8) (0, 6.8)
Claude-Opus 43.3 56.6 (40.2, 59.8) (40.2, 59.8) (33.6, 53.0) (40.2, 59.8)50 (50.4, 69.6) (1.7, 11.5)

B.4 Analysis of generated think tags

Example:

Your task is to: find some apple and put it in sidetable.

think tags for example:

> think: To solve the task, I need to find and take an apple, then put it in sidetable.

> think: First I need to find an apple. An apple is more likely to appear in fridges (1), diningtables (1-3),
sidetables (1), countertops (1), sinkbasins (1), garbagecan (1). I can check one by one, starting with fridge 1.

> ...

> think: Now I find an apple (3). Next, I need to take it.

> ...

> think: Now I find an apple (3). Next, I need to put it in/on sidetable 1.

> ...

Query:

Your task is to: put a pencil in shelf.

ReAct think tags:

> think: To solve the task, I need to find and take a pencil, then put it in a shelf.

> think: First I need to find a pencil. A pencil is more likely to appear in a desk (1-2), drawer (1-6), shelf
(1-6). I can check one by one, starting with desk 1.

> ...

18

Published in Transactions on Machine Learning Research (05/2025)

> think: Now I have the pencil (1). Next, I need to put it in a shelf.

> ...

> think: The shelf 1 is empty, so I need to find another shelf to put the pencil in. I will try shelf 2.

> ...

> think: The shelf 2 already has a mug on it, so I need to find another empty shelf to put the pencil in. I will
try shelf 3.

> ... (multiple think tags leading to failure)

> think: It appears that the pencil is not being accepted in any of the locations in the room. I may need to
reconsider the task or find a different approach to solve it.

> think: I will try putting the pencil on the desk 2, since it is the only location left that I haven’t tried yet.

> Result: FAILURE

RQ1: CoT variation think tags:

> think: To solve the task, I need to find and take a pencil, then put it in shelf. First I need to find a pencil.
A pencil is more likely to appear in desk (1-2), drawer (1-6), shelf (1-6). I can check one by one, starting with
desk 1. Once I find a pencil, next I need to take it. Once I take a pencil, next I need to put it in/on shelf.

> ...

> Result: SUCCESS

RQ1: Anonymous CoT variation think tags:

> think: To solve the task, I need to find and take the object, then put it on the desired location. First I
need to find the object. The object is more likely to appear in one of the different locations. I can check one
by one, starting with the first location. Once I find the object, next I need to take it. Once I take the object,
next I need to put it in/on the desired location.

> ...

> Result: SUCCESS

RQ2: Failure + Explanation variation think tags:

> think: Nothing happens because I am not at shelf 1.

> ...

> think: Nothing happens because I already have a pencil in shelf 1.

> ...

> think: Nothing happens because I am not at desk 1.

> ...

> Result: SUCCESS

RQ3: Both variation think tags:

> think: To solve the task, I need to find a pencil and put it in a shelf. A pencil is more likely to appear in a
drawer (1-6), desk (1-2), shelf (1-6), garbagecan (1), laundryhamper (1). I can check one by one, starting
with drawer 1.

> ...

> think: I didn’t find a pencil in drawer 1. I should check the other drawers. Next, I will check drawer 3.

> ...

19

Published in Transactions on Machine Learning Research (05/2025)

> think: I found a pencil (1) on desk 1. Next, I need to put it in a shelf. A shelf is more likely to appear in
shelf (1-6). I can check one by one, starting with shelf 1.

> ...

> think: I didn’t find a place to put the pencil in shelf 1 or shelf 2. Next, I will check shelf 3.

> ...

> think: It seems like there is no specific item in the room to place the pencil. I may need to reconsider the
task and find a different approach. Let me review the task again and see if there are any other clues or hints
that I may have missed.

> ...

> think: It seems like there are no household members available to assist me at the moment. I may need to
come back to this task later or try a different approach.

> ...

> Result: FAILURE

RQ3: One variation think tags:

> think: To solve the task, I need to find and take a pencil, then put it in a shelf. First, I need to find a
pencil. A pencil is more likely to appear in a desk (1-2), drawer (1-6), garbagecan (1), or safe (1). I can check
one by one, starting with desk 1.

> ...

> think: Now I have the pencil (1). Next, I need to find a shelf to put it in. A shelf is more likely to appear
in shelf (1-6). I can check one by one, starting with shelf 1.

> ...

> think: It seems that shelf 1 is empty. I should try putting the pencil in a different shelf. Let me try shelf 2.

> ...

> think: It appears that none of the shelves are the correct place to put the pencil. I should reconsider where
to place it. Let me try putting the pencil in the drawer instead.

> ...

> think: It seems that none of the locations in the room are suitable for putting the pencil. I may need to
reconsider the task and think of a different approach. Let me try putting the pencil back on the desk where I
found it originally.

> ...

> think: It seems that the task cannot be completed in this room. I may need to reassess the instructions or
seek further guidance to successfully complete the task.

> ...

> Result: FAILURE

B.5 Additional WebShop Experiment

We run an additional set of experiments with GPT-4o model on WebShop, as shown in Table 7 on 500 sample
problems. We once again note that the performance with the newer models as compared to the PaLM model
originally used by ReAct is much worse. We also note a similar trend in the relative performance results with
our prompt variations against the original ReAct performance, thereby emphasizing the brittleness of the
ReAct framework’s primary claims.

20

Published in Transactions on Machine Learning Research (05/2025)

B.6 Task Similarity analysis and Performance Comparison

We did a preliminary study on the similarity (computed in terms of embedding distances using the ‘MiniLM-
L6-v2’ model embeddings and computing the cosine similarity between them) between the 134 prompting
tasks with the originally provided examples, and the performance of ReAct. As can be seen from Figure 6, as
expected, the performance degrades significantly in the off-diagonal cases.

(a) Claude Opus (b) GPT-4 (c) GPT-3.5-Instruct

Figure 6: Performance Tradeoff with Task Description Similarity in AlfWorld

Table 7: Average Success % of GPT-4o for RQ1 and RQ2 on WebShop tasks. The table uses a color
spectrum to represent the quality of the numbers. Cells shaded in green indicate the best performance
compared to base ReAct, transitioning to red for the worst relative performance.

Model / Prompt Act ReAct RQ1 RQ2
CoT Anon. CoT Placebo Failure Explanation

GPT-4o 8% 4% 9% 8% 7% 8% 5%

C Experiment Design

Each of the variations proposed along RQ1, RQ2 and RQ3 modifies the few-shot examples only. Remaining
aspects such as the query problem or the interaction with the simulator is directly inherited from the ReAct
code-base Yao et al. (2022b) at publicly available at https://github.com/ysymyth/ReAct. Our code can
be found in the attached supplementary material.

Except All RQ3 variation, all other settings use the standard two exemplars for prompting the LLM.
Depending on the variation we change the content of the exemplar. Full prompts can be found in the attached
supplementary code.

C.1 Running the experiments

In our experiments, according to the variation style we take the exemplar prompts and use the same exemplar
prompts across the instances of the query task. Other than RQ3-Both, One we use the exemplar of the same
task as the query as done in ReAct (and still find brittleness of ReAct). For RQ3 - Both, One we use exactly
two exemplars but of a different task than query. Finally, RQ3-All is the only variation that provides six
exemplars (instead of two) and we force the exemplar of the query-task to be appended at the end in the
prompt. This was the best performing prompting strategy (on GPT-3.5-Turbo) than when the query-task
exemplar was placed at the beginning, at position 4 (middle) and at the end.

21

https://github.com/ysymyth/ReAct

Published in Transactions on Machine Learning Research (05/2025)

C.2 Hyperparameters

We use temperature = τ = 0 for all of the GPT and Claude models and set max-tokens = 100 which is
borrowed from ReAct’s hyperparameters. Rest of the parameters are kept to be default as specified in the
respective model’s API documentation.

D Example Prompts

The full list of curated variations can be found in the supplementary materials. However, for completeness
we reference the prompt used for base ReAct (as in (Yao et al., 2022b)) and our variations along RQ1, RQ2
and RQ3 for the Put task.

D.1 Synonym Substitution mapping for Domain

We make the following substitutions to the object names / locations in the exemplar prompt in the Domain
variation. Note that these substitutions are done only to the exemplar, and the query problem and subsequent
interaction with the AlfWorld simulator uses the original vocabulary mapping.

spraybottle -> aerosolbottle
cabinet -> cupboard
countertop -> worktop
sinkbasin -> sinkbowl
toilet -> lavatory
toiletpaperhanger -> toiletpaperholder
towelholder -> towelrack

microwave -> oven
shelf -> rack
drawer -> deskdrawer
stoveburner -> hob
diningtable -> table
garbagecan -> trashbin

fridge -> refrigerator
peppershaker -> pepperpot
room -> livingroom
bread -> breadloaf
pan -> fryingpan
pot -> saucepan
book -> notebook

creditcard -> amexcard
mirror -> lookingglass
dresser -> chestofdrawers
sofa -> couch
cellphone -> mobilephone
coffeemachine -> coffeemaker
knife -> kitchenknife
spatula -> turner
soapbottle -> liquidsoapdispenser
saltshaker -> saltpot
statue -> sculpture
vase -> flowerpot
dishsponge -> spongewipe

22

Published in Transactions on Machine Learning Research (05/2025)

desklamp -> tablelamp
sidetable -> nightstand

D.2 For All, Both, One

All: We take the exemplar prompt for each task and concatenate it together.

Both : We use the following mapping generated arbitrarily, to replace the exemplar prompt for the query
task.

VARIATION_MAPPING = {
’put’:’examine’,
’clean’:’cool’,
’heat’:’put’,
’cool’:’puttwo’,
’examine’:’clean’,
’puttwo’:’heat’

}

One : We use the first example from the above mapping, and the second example from the same task as the
query.

D.3 Building the input prompt

We inherit ReAct’s way of stiching together the exemplars and the query using the following prompt template
as :

Interact with a household to solve a task. Here are two examples.’ + eg1 + eg2 +
INSTRUCTION + Here is the task. (TASK)´

In the case of GPT models INSTRUCTION is an empty string. Claude Models gave 0% success rate (regardless
of the model size, i.e. Haiku, Sonnet and Opus) with the original ReAct prompt design. We identified that
Claude required an explicit instruction to generate only the actions for the simulator. We added a task
independent INSTRUCTION prompt as :

INSTRUCTION = " Only provide the one action at a time. Be concise, and do not provide
any extra information. Always start with the action. For example, ’pick up apple’ is
correct, but ’I want to pick up the apple’ is not."

Interestingly, GPT-3-Turbo performance dropped to 1% (averaged across 6 independent runs over 134
examples) with the inclusion of this INSTRUCTION tag. This further highlights how brittle prompt
engineering is, and cautions us against misplacing our trust with ReAct in enhancing reasoning abilities of
LLMs.

Note that, we did experiment with both prompt variations (with our explicit instruction and without) for
Claude models and picked the best-performing variant (which had the instructions) for our reported results.

23

Published in Transactions on Machine Learning Research (05/2025)

D.4 RQ1

Prompt 1: rq1-anon-exemplar

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.
> think: To solve the task, I need to find and take the object, then put it on the desired location. First I need to find the
object. The object is more likely to appear in one of the different locations. I can check one by one, starting with the first
location. Once I find the object, next I need to take it. Once I take the object, next I need to put it in/on the desired location.
OK.
> go to fridge 1
The fridge 1 is closed.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2, a mug 2, a potato 2, and a tomato 1.
> go to diningtable 1
On the diningtable 1, you see nothing.
> go to diningtable 2
On the diningtable 2, you see a pineapple 1.
> go to diningtable 3
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> go to countertop 1
On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1.
> go to sinkbasin 1
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3.
> go to garbagecan 1
On the garbagecan 1, you see a apple 3, and a egg 3.
> take apple 3 from garbagecan 1
You pick up the apple 3 from the garbagecan 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> put apple 3 in/on sidetable 1
You put the apple 3 in/on the sidetable 1.

Prompt 2: rq1-exemplar

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.
> think: To solve the task, I need to find and take an apple, then put it in sidetable. First I need to find an apple. An apple is
more likely to appear in fridges (1), diningtables (1-3), sidetables (1), countertops (1), sinkbasins (1), garbagecan (1). I can
check one by one, starting with fridge 1. Once I find an apple, next I need to take it. Once I find an apple, next I need to put
it in/on sidetable.
OK.
> go to fridge 1
The fridge 1 is closed.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2, a mug 2, a potato 2, and a tomato 1.
> go to diningtable 1
On the diningtable 1, you see nothing.
> go to diningtable 2
On the diningtable 2, you see a pineapple 1.
> go to diningtable 3
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> go to countertop 1
On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1.
> go to sinkbasin 1
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3.
> go to garbagecan 1
On the garbagecan 1, you see a apple 3, and a egg 3.
> take apple 3 from garbagecan 1
You pick up the apple 3 from the garbagecan 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> put apple 3 in/on sidetable 1
You put the apple 3 in/on the sidetable 1.

24

Published in Transactions on Machine Learning Research (05/2025)

Prompt 3: base-react

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.
> think: First I need to find an apple. An apple is more likely to appear in fridges (1), diningtables (1-3), sidetables (1),
countertops (1), sinkbasins (1), garbagecan (1). I can check one by one, starting with fridge 1.
OK.
> go to fridge 1
The fridge 1 is closed.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2, a mug 2, a potato 2, and a tomato 1.
> go to diningtable 1
On the diningtable 1, you see nothing.
> go to diningtable 2
On the diningtable 2, you see a pineapple 1.
> go to diningtable 3
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> go to countertop 1
On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1.
> go to sinkbasin 1
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3.
> go to garbagecan 1
On the garbagecan 1, you see a apple 3, and a egg 3.
> take apple 3 from garbagecan 1
You pick up the apple 3 from the garbagecan 1.
> think: Now I find a apple (3). Next, I need to put it in/on sidetable 1.
OK.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> put apple 3 in/on sidetable 1
You put the apple 3 in/on the sidetable 1.

25

Published in Transactions on Machine Learning Research (05/2025)

D.5 RQ2

Prompt 4: rq2-Explanation

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.
> go to fridge 1
The fridge 1 is closed.
> close cabinet 2.
Nothing Happens.
> think: Nothing happens because you are not at cabinet 2.
OK.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2, a mug 2, a potato 2, and a tomato 1.
> go to diningtable 1
On the diningtable 1, you see nothing.
> go to diningtable 2
On the diningtable 2, you see a pineapple 1.
> go to diningtable 3
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> go to countertop 1
On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1.
> go to sinkbasin 1
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3.
> go to garbagecan 1
On the garbagecan 1, you see a apple 3, and a egg 3.
> put apple 3 in/on sidetable.
Nothing Happens.
> think: Nothing happens because I do not have apple 3.
OK.
> take apple 3 from garbagecan 1
You pick up the apple 3 from the garbagecan 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> put apple 3 in/on sidetable 1
You put the apple 3 in/on the sidetable 1.

26

Published in Transactions on Machine Learning Research (05/2025)

Prompt 5: rq2-ordering

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.
> think: To solve the task, I need to put an apple in sidetable, for which I need to find and take an apple.
OK.
> think: An apple is more likely to appear in sidetables (1), fridges (1), countertops (1), diningtables (1-3), garbagecan (1),
sinkbasins (1). First I need to find an apple. I can check one by one, starting with fridge 1.
OK.
> go to fridge 1
The fridge 1 is closed.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2, a mug 2, a potato 2, and a tomato 1.
> go to diningtable 1
On the diningtable 1, you see nothing.
> go to diningtable 2
On the diningtable 2, you see a pineapple 1.
> go to diningtable 3
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> go to countertop 1
On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1.
> go to sinkbasin 1
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3.
> go to garbagecan 1
On the garbagecan 1, you see a apple 3, and a egg 3.
> think: Next, I need to take the apple.Now I find an apple (3).
OK.
> take apple 3 from garbagecan 1
You pick up the apple 3 from the garbagecan 1.
> think: Next, I need to put the apple in/on sidetable 1. Now I find an apple (3).
OK.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> put apple 3 in/on sidetable 1
You put the apple 3 in/on the sidetable 1.

Prompt 6: rq2-Placebo

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.
> think: Take a deep breath and work on this problem step-by-step.
OK.
> go to fridge 1
The fridge 1 is closed.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2, a mug 2, a potato 2, and a tomato 1.
> go to diningtable 1
On the diningtable 1, you see nothing.
> go to diningtable 2
On the diningtable 2, you see a pineapple 1.
> go to diningtable 3
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> go to countertop 1
On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1.
> go to sinkbasin 1
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3.
> go to garbagecan 1
On the garbagecan 1, you see a apple 3, and a egg 3.
> think: Take a deep breath and work on this problem step-by-step.
OK.
> take apple 3 from garbagecan 1
You pick up the apple 3 from the garbagecan 1.
> think: Take a deep breath and work on this problem step-by-step.
OK.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> put apple 3 in/on sidetable 1
You put the apple 3 in/on the sidetable 1.

27

Published in Transactions on Machine Learning Research (05/2025)

Prompt 7: rq2-Failure

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.
> go to fridge 1
The fridge 1 is closed.
> close cabinet 2.
Nothing Happens.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2, a mug 2, a potato 2, and a tomato 1.
> go to diningtable 1
On the diningtable 1, you see nothing.
> go to diningtable 2
On the diningtable 2, you see a pineapple 1.
> go to diningtable 3
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> go to countertop 1
On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1.
> go to sinkbasin 1
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3.
> go to garbagecan 1
On the garbagecan 1, you see a apple 3, and a egg 3.
> put apple 3 in/on sidetable.
Nothing Happens.
> take apple 3 from garbagecan 1
You pick up the apple 3 from the garbagecan 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> put apple 3 in/on sidetable 1
You put the apple 3 in/on the sidetable 1.

28

Published in Transactions on Machine Learning Research (05/2025)

D.6 RQ3

Prompt 8: rq3-Domain

You are in the middle of a livingroom. Looking quickly around you, you see a cupboard 4, a cupboard 3, a cupboard 2, a
cupboard 1, a coffeemaker 1, a worktop 1, a table 3, a table 2, a table 1, a deskdrawer 1, a refrigerator 1, a trashbin 1, a oven 1,
a nightstand 1, a sinkbowl 1, a hob 4, a hob 3, a hob 2, a hob 1, and a toaster 1.
Your task is to: find some apple and put it in nightstand.
> think: To solve the task, I need to find and take an apple, then put it in nightstand.
OK.
> think: First I need to find an apple. An apple is more likely to appear in refrigerators (1), tables (1-3), nightstands (1),
worktops (1), sinkbowls (1), trashbin (1). I can check one by one, starting with refrigerator 1.
OK.
> go to refrigerator 1
The refrigerator 1 is closed.
> oballpointpen refrigerator 1
You oballpointpen the refrigerator 1. The refrigerator 1 is oballpointpen. In it, you see a lettuce 2, a mug 2, a saucepanato 2,
and a tomato 1.
> go to table 1
On the table 1, you see nothing.
> go to table 2
On the table 2, you see a pineapple 1.
> go to table 3
On the table 3, you see a bowl 2, a bowl 1, a breadloaf 2, and a breadloaf 1.
> go to nightstand 1
On the nightstand 1, you see a cup 1, a lettuce 1, a peppersaucepan 3, a saucepanato 1, and a saltpot 1.
> go to worktop 1
On the worktop 1, you see a butterknife 1, a spongewipe 1, and a liquidsoapdispenser 1.
> go to sinkbowl 1
On the sinkbowl 1, you see a cup 2, a egg 1, a mug 1, and a saucepanato 3.
> go to trashbin 1
On the trashbin 1, you see a apple 3, and a egg 3.
> think: Now I find an apple (3). Next, I need to take it.
> take apple 3 from trashbin 1
You pick up the apple 3 from the trashbin 1.
> think: Now I find an apple (3). Next, I need to put it in/on nightstand 1.
OK.
> go to nightstand 1
On the nightstand 1, you see a cup 1, a lettuce 1, a peppersaucepan 3, a saucepanato 1, and a saltpot 1.
> put apple 3 in/on nightstand 1
You put the apple 3 in/on the nightstand 1.

29

Published in Transactions on Machine Learning Research (05/2025)

Prompt 9: rq3-Instance

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.
> think: To solve the task, I need to find and take an apple, then put it in sidetable.
OK.
> think: First I need to find an apple. An apple is more likely to appear in fridges (1), diningtables (1-3), sidetables (1),
countertops (1), sinkbasins (1), garbagecan (1). I can check one by one, starting with fridge 1.
OK.
> go to fridge 1
The fridge 1 is closed.
> open fridge 1
You open the fridge 1. The fridge 1 is open. In it, you see a lettuce 2, a mug 2, a potato 2, and a tomato 1.
> go to diningtable 1
On the diningtable 1, you see nothing.
> go to diningtable 2
On the diningtable 2, you see a pineapple 1.
> go to diningtable 3
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> go to countertop 1
On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1.
> go to sinkbasin 1
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3.
> go to diningtable 2
On the diningtable 2, you see a pineapple 1.
> go to diningtable 3
On the diningtable 3, you see a bowl 2, a bowl 1, a bread 2, and a bread 1.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> go to countertop 1
On the countertop 1, you see a butterknife 1, a dishsponge 1, and a soapbottle 1.
> go to sinkbasin 1
On the sinkbasin 1, you see a cup 2, a egg 1, a mug 1, and a potato 3.
> go to garbagecan 1
On the garbagecan 1, you see a apple 3, and a egg 3.
> think: Now I find an apple (3). Next, I need to take it.
> take apple 3 from garbagecan 1
You pick up the apple 3 from the garbagecan 1.
> think: Now I find an apple (3). Next, I need to put it in/on sidetable 1.
OK.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> put apple 3 in/on sidetable 1
You put the apple 3 in/on the sidetable 1.

Prompt 10: rq3-Optimal

You are in the middle of a room. Looking quickly around you, you see a cabinet 4, a cabinet 3, a cabinet 2, a cabinet 1, a
coffeemachine 1, a countertop 1, a diningtable 3, a diningtable 2, a diningtable 1, a drawer 1, a fridge 1, a garbagecan 1, a
microwave 1, a sidetable 1, a sinkbasin 1, a stoveburner 4, a stoveburner 3, a stoveburner 2, a stoveburner 1, and a toaster 1.
Your task is to: find some apple and put it in sidetable.
> think: To solve the task, I need to find and take an apple, then put it in sidetable.
OK.
> think: First I need to find an apple. An apple is more likely to appear in fridges (1), diningtables (1-3), sidetables (1),
countertops (1), sinkbasins (1), garbagecan (1). I can check one by one, starting with garbagecan 1.
OK.
> go to garbagecan 1
On the garbagecan 1, you see a apple 3, and a egg 3.
> think: Now I find an apple (3). Next, I need to take it.
> take apple 3 from garbagecan 1
You pick up the apple 3 from the garbagecan 1.
> think: Now I find an apple (3). Next, I need to put it in/on sidetable 1.
OK.
> go to sidetable 1
On the sidetable 1, you see a cup 1, a lettuce 1, a peppershaker 3, a potato 1, and a saltshaker 1.
> put apple 3 in/on sidetable 1
You put the apple 3 in/on the sidetable 1.

30

	Introduction
	Related Work
	LLMs for Planning & Reasoning
	ReAct & Anthropomorphizing Reasoning

	Preliminaries
	Domains
	ReAct

	Evaluating ReAct Prompting
	RQ1: Interleaving Thinking and Acting - Location of THINK tag
	RQ2: Action Guidance by Thinking - Content of THINK tag
	RQ3: EXAMPLEs - QUERY Similarity

	Results
	Utility of Interleaving THINK tags (RQ1)
	RQ1 Failure Analysis

	Utility of THINK tag Content (RQ2)
	RQ2 Failure Analysis

	Dependence on Literal Example-Query Similarity (RQ3)
	RQ3 Failure Analysis

	Length & Inter-task Generalization

	Discussion
	Conclusion & Future Directions
	Resources Used
	Additional Considerations
	Performance of Claude-Haiku
	Performance of GPT-4o and LLAMA-3.1 in AlfWorld
	Confidence Intervals
	Analysis of generated think tags
	Additional WebShop Experiment
	Task Similarity analysis and Performance Comparison

	Experiment Design
	Running the experiments
	Hyperparameters

	Example Prompts
	Synonym Substitution mapping for Domain
	For All, Both, One
	Building the input prompt
	RQ1
	RQ2
	RQ3

