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Abstract

Despite its widespread use in neural networks, error backpropagation has faced1

criticism for its lack of biological plausibility, suffering from issues such as the2

backward locking problem and the weight transport problem. These limitations3

have motivated researchers to explore more biologically plausible learning algo-4

rithms that could potentially shed light on how biological neural systems adapt5

and learn. Inspired by the counter-current exchange mechanisms observed in6

biological systems, we propose counter-current learning (CCL), a biologically7

plausible framework for credit assignment in neural networks. This framework8

employs a feedforward network to process input data and a feedback network to9

process targets, with each network enhancing the other through anti-parallel signal10

propagation. By leveraging the more informative signals from the bottom layer11

of the feedback network to guide the updates of the top layer of the feedforward12

network and vice versa, CCL enables the simultaneous transformation of source13

inputs to target outputs and the dynamic mutual influence of these transforma-14

tions. Experimental results on MNIST, FashionMNIST, CIFAR10, CIFAR100, and15

STL-10 datasets using multi-layer perceptrons and convolutional neural networks16

demonstrate that CCL achieves comparable performance to other biologically plau-17

sible algorithms while offering a more biologically realistic learning mechanism.18

Furthermore, we showcase the applicability of our approach to an autoencoder19

task, underscoring its potential for unsupervised representation learning. Our work20

presents a direction for biologically inspired and plausible learning algorithms,21

offering an alternative mechanisms of learning and adaptation in neural networks.22

1 Introduction23

In deep learning, biological plausibility refers to the properties that deep learning algorithms could24

respect to avoid inconsistency with current understandings of neural circuitry or violation of funda-25

mental physical constraints, such as the localized nature of synaptic plasticity [Grossberg, 1987, Crick,26

1989]. Consequently, error backpropagation (BP), despite its wide application, has been frequently27

criticized for its lack of biological plausibility, particularly for the following three challenges: (a)28

The weight transport problem, which arises because BP requires the feedback pathway to use the29

same set of weights as the feedforward process, a mechanism not observed in biological systems30

[Burbank and Kreiman, 2012, Bengio et al., 2015, Lillicrap et al., 2016]. (b) The non-local credit31

assignment problem arises because backpropagation relies on the global error signal to update the32

synaptic weights throughout the network, instead of depending on local errors derived from local loss33

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.



computation.1. (c) The backward locking problem occurs because, in BP, each data sample must await34

the completion of both forward and backward computations of the previous sample, impeding online35

learning capabilities [Jaderberg et al., 2017, Czarnecki et al., 2017]. These limitations have propelled36

the development of alternative credit assignment methods that aim to better align with biological37

principles and address these significant issues [Lillicrap et al., 2016, Crafton et al., 2019, Launay38

et al., 2020, Nøkland, 2016, Bengio, 2014, Lee et al., 2015, Ororbia and Mali, 2019, Meulemans39

et al., 2020, 2021, Dellaferrera and Kreiman, 2022, Shibuya et al., 2023].40

Reaching Biological Plausibility With a Dual Network Structure. To address the weight transport41

problem, we leverage a dual network architecture for processing feedback signals, which uses a42

different set of weights from the forward network. To tackle the non-local credit assignment issue, we43

use pairwise local loss, computing the difference in layerwise activations between the feedforward44

and feedback networks, and ensuring the local loss only updates local weight parameters through45

gradient detaching. We solve the backward-locking problem by preventing the feedback network46

from reusing latent activations and output signals from the feedforward networks. Since the feedback47

network operates independently of the output (prediction), the forward and feedback processes can48

occur simultaneously. These enhancements make our approach not only more biologically plausible49

but also potentially more effective in complex scenarios.50

Analogy to Biological Counter-Current Mechanism. Our scheme draws inspiration from nature’s51

counter-current exchange mechanisms, observed in fish gills, animal vessels, and renal systems. These52

physiological mechanisms use an anti-parallel structure to optimize resource or energy exchange53

between two flows. Similarly, our dual network learning scheme allows the input signals in the54

forward network, flowing from input space to target space, to receive target domain information55

from the target-to-source signal flow (in the feedback network) and reciprocally share their source56

information. Therefore, we name our learning scheme "counter-current learning," as this reciprocal57

exchange mirrors the efficiency and optimization seen in biological systems.58

Contributions. This paper aims to introduce counter-current learning as a novel, biologically59

plausible alternative. We validate our approach through experiments on MNIST, FashionMNIST,60

CIFAR10, CIFAR100, and STL-10 using MLP or CNN architectures. Additionally, we demonstrate61

the effectiveness of our model in autoencoder-based tasks, which, to our knowledge, represents the62

first application of biologically plausible algorithms in this area. By effectively addressing the weight63

transposition, non-local credit assignment, and backward locking issues, the counter-current learning64

framework provides a promising avenue for advancing biological plausibility.65

2 Literature Review66

Target Propagation: Addressing Biological Plausibility. The target propagation (TP) family [Ben-67

gio, 2014] and its variants (e.g., local target representations) [Ororbia et al., 2018, 2023], first68

explored in the late 1980s [Le Cun, 1986, Le Cun and Fogelman-Soulié, 1987], have been developed69

to optimize the neural networks by using locally generated error signals. TP explicitly constructs70

local targets for each layer using a separate feedback network. Take difference target propagation71

(DTP) Lee et al. [2015] for example, an idealized global target signal is computed based on the72

labels and the prediction error at the output layer. Then, the local idealized targets are generated73

by (1) propagating the idealized global targets through the feedback network and (2) computing74

a linear correction using the activations from the forward network. Subsequently, local losses are75

computed by comparing the layer activations with their corresponding local targets. The weights of76

both the forward and feedback networks are updated based on these local losses. Notable variants77

such as Direct Difference Target Propagation (DDTP) [Meulemans et al., 2020], Local-Difference78

Reconstruction Loss (L-DRL) [Ernoult et al., 2022], and Fixed-Weight Target Propagation Shibuya79

et al. [2023] further refine this approach by introducing mechanisms to improve feedback weight80

training and enhance the accuracy of local error signals. Despite these advancements, TP methods81

still encounter the backward locking issue, since TP methods depend on the forward network’s82

outputs and intermediate activations to compute targets. Moreover, recent iterations of TP algorithms,83

such as DDTP and L-DRL, can be computationally expensive. They require additional feedback84

1In biological systems, synaptic plasticity is believed to be governed by local learning rules, such as Hebbian
learning, where synaptic changes depend on the correlated activity of the pre-and post-synaptic neurons [Dan
and Poo, 2004, Bartunov et al., 2018, Whittington and Bogacz, 2019]
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Figure 1: Overview of the Counter-Current Learning Framework: (a) At initialization, the
counter-current learning framework establishes a dual network structure, with a forward network that
maps the input to the target output, and a complementary feedback network that mirrors the forward
network’s architecture but propagates information in the opposite direction. Due to random weight
initialization, the information content in both networks decreases from the bottom to the top layers.
Notably, the dependency of the gradient on earlier layer parameters is interrupted using the gradient
detachment operator. (b) During training, the losses are computed in a layer-wise manner, i.e., by
calculating the difference of activations from corresponding layer pairs between the forward and
feedback networks, allowing the networks to learn from each other’s complementary information.

weight update loop per data batch, leading to a three to six-fold increase in training time compared to85

traditional backpropagation [Meulemans et al., 2020, Ernoult et al., 2022, Shibuya et al., 2023].86

Other Efforts in Enhancing Biological Plausibility. In addition to TP, several other methods87

have been proposed to overcome the biological implausibility of traditional backpropagation. The88

feedback alignment (FA) [Lillicrap et al., 2016, Nøkland, 2016, Crafton et al., 2019, Launay et al.,89

2020, Refinetti et al., 2021] family uses random feedback weights, instead of the transpose of the90

weight in the feedforward layer, to approximate the error gradient, thereby eliminating the need for91

precise synaptic symmetry. To resolve the backward locking problem, direct random target projection92

(DRTP) [Frenkel et al., 2021] proposed to randomly project the target signals to each layer as ideal93

targets. While achieving biological plausibility, DRTP encounters a significant performance drop94

concerning BP compared to FA algorithms Frenkel et al. [2021], Dellaferrera and Kreiman [2022].95

Block-local learning (BLL) Kappel et al. [2023] explores block-wise target signal propagation;96

however, the algorithm requires backpropagation to update layers in the same block.97

3 Counter-Current Learning Framework98

In this section, we present the counter-current learning (CCL) framework, as shown in Figure 1,99

focusing on its formulation and key components.100

Setup and Feedforward Network. Consider input space X and output space Y , each with dimensions101

d0 and dL, respectively. The objective is to learn a mapping F : X → Y that minimizes the102

discrepancy between the predicted output and the target. We adopt an L-layered feed-forward103

neural network with activation function σ. Let gl(·) denote the operation at layer l, and define104

Ffw = gL ◦ gL−1 ◦ . . . ◦ g1. Each gl is parameterized by weights Ul. The output of layer l is105

al = gl(al−1) = σ(Ulal−1), where a0 = x.106

Feedback Network. The proposed learning scheme introduces a complementary backward function107

Ffw that mirrors Ffw in an anti-parallel manner. Fbw comprises layers [hL, . . . , h1], with each hl108

parameterized by weights Vl. We define Fbw = h1 ◦ . . .◦hL. The output of layer l is bl−1 = hl(bl) =109

σ(Vlbl), with bL = y. The dimensions of hidden layers align between Ffw and Fbw.110

Stop Gradient Operation. To address the backward locking problem and ensure local synaptic111

learning, we use the SG() operation to decouple activations from weights in previous layers, disrupting112

the long error-backpropagation chain into local update segments. The SG() can be implemented113

using PyTorch gradient detach operation easily. In CCL, each layer’s input is processed with the114
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1 from torch.nn import Linear, Module
2 import torch.nn.functional as F
3
4 class C2Model(Module):
5 def __init__(self):
6 super(C2Model, self).__init__()
7 self.enc1 = C2Linear(784, 256)
8 self.enc2 = C2Linear(256, 20)
9 self.enc3 = C2Linear(20, 10)

10 def fw_pass(self, x, detach):
11 a1 = self.enc1.fw_pass(x, detach)
12 a2 = self.enc2.fw_pass(a1, detach)
13 a3 = self.enc3.fw_pass(a2, detach)
14 return [x, a1, a2, a3]
15 def bw_pass(self, target, detach):
16 b2 = self.enc3.bw_pass(target, detach)
17 b1 = self.enc2.bw_pass(b2, detach)
18 b0 = self.enc1.bw_pass(b1, detach)
19 return [b0, b1, b2, target]
20
21 class C2Linear(Module):
22 def __init__(self, in_dims, out_dims):
23 super(C2Linear, self).__init__()
24 self.fw_layer = Linear(in_dims, out_dims)
25 self.bw_layer = Linear(out_dims, in_dims)
26 def fw_pass(self, x, detach):
27 if detach: x = x.detach()
28 return F.elu(self.fw_layer(x))
29 def bw_pass(self, x, detach):
30 if detach: x = x.detach()
31 return F.elu(self.bw_layer(x))

1 from torchvision.datasets import MNIST
2 from torch.utils.data import DataLoader
3 from nn.functional import one_hot
4 from torch import optim
5
6 def train_CCL_step(model, inputs, labels):
7 fw_actvs = model.fw_pass(inputs, True)
8 bw_actvs = model.bw_pass(labels, True)
9 loss = 0

10 for a, b in zip(fw_actvs, bw_actvs):
11 loss += F.mse_loss(a, b)
12 return loss
13
14 def train_BP_step(model, inputs, labels):
15 fw_acts = model.fw_pass(inputs, False)
16 return F.mse_loss(fw_acts[-1], labels)
17
18 train_dataset = MNIST(root='./data')
19 train_loader = DataLoader(train_dataset)
20 model = C2Model()
21 optimizer = optim.Adam(model.parameters())
22 for inputs, labels in dataloader:
23 inputs = inputs.view(inputs.size(0), -1)
24 # For CCL
25 labels = one_hot(labels, 10).float()
26 loss = train_CCL_step(model, inputs, labels)
27 # For BackProp
28 # loss = train_BP_step(model, inputs, labels)
29 # For both CCL and BackProp
30 loss.backward()
31 optimizer.step()

Figure 2: Code Snippet For Counter-Current Learning With Dual Network Architecture.

SG() operation. To avoid confusion, we use the hat symbol to denote the exact activations in the CCL115

paradigm. Specifically, for 1 ≤ l ≤ L:116

âl = ĝl(âl−1) = σ(UlSG(âl−1)),

b̂l−1 = ĥl(b̂l) = σ(VlSG(b̂l)),
(1)

where â0 = x and b̂L = y.117

Loss Objective Function. The objective of the counter-current learning algorithm is to minimize the118

difference between activations of Ffw and Fbw across all layers:119

min
θ

L∑
l=0

∥âl − b̂l∥, (2)

where θ = {U1, . . . , UL, V1, . . . , VL} are learnable parameters. For example, let us consider the120

local loss function at the first layer (i.e., l = 1), where the loss function is minθ∥â1 − b̂1∥. Plugging121

Eq. 1 gives us min{U1,V2}∥σ(U1SG(â0)) − σ(V2SG(b̂2))∥, where SG(â0) and SG(b̂2) are treated as122

constants due to the stop gradient operation.123

Biological Plausibility. We examine the biological plausibility of the proposed counter current124

learning scheme. This framework mitigates the weight transport problem by using a different weight125

parameterization for the feedback network. For the non-local credit assignment problem, the update126

of the parameters is driven by local loss, instead of the back-propagated global error signals. Finally,127

we address the backward update problem by removing the dependency of the backward network and128

the forward network with careful gradient detachment.129

Implementation. In Figure 2, we present a code snippet for the CCL algorithm in PyTorch, tailored130

for an MNIST classification. It shows the independence of the forward process and the feedback131

(backward) process from each other. The main C2Model module comprises three C2Linear layers,132

each inherits from nn.Module and consists of fw_pass and bw_pass for forward propagation and133

backward propagation, respectively. These functions accept an additional Boolean input, detach,134

allowing for the quick toggling between non-local (i.e., BP) and local learning (i.e., CCL) modes.135

For loss computation, the train_CCL_step function calculates the loss for counter-current learning.136

Conversely, the train_BP_step function computes the loss for error backpropagation.137
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Before training After 10 CCL updates After 100 CCL updates After 1000 CCL updates

Figure 3: Dynamic Feature Alignment Between Forward and Backward Models During Counter-
Current Learning. This series of t-SNE plots demonstrates the evolution of feature space alignment
over different stages of training. Circular dots represent features from the forward network processing
MNIST images, while squares depict features from the feedback network handling one-hot encoded
labels. Each color represents a distinct class, with every subplot providing an independent t-SNE
visualization. This emphasizes how distinct classes increasingly converge within and across the
forward and backward models as training progresses, highlighting the dynamic and reciprocal nature
of learning within the counter-current framework.

Table 1: Test performance on MNIST, FashionMNIST, CIFAR10, and CIFAR100, evaluated using
multi-layer perceptrons. Performance metrics are reported for error backpropagation (BP), feedback
alignment (FA), target propagation (DTP), DTP with difference reconstruction loss (DRL), local
difference reconstruction loss (L-DRL), fixed-weight difference target propagation (FW-DTP), and
cross-correlation loss (CCL). Best values per task are bolded, and second-best values are underlined.

MNIST FASHIONMNIST CIFAR10 CIFAR100

BP [RUMELHART ET AL., 1986] 98.19 ± 0.10 89.58 ± 0.25 50.03 ± 0.31 22.55 ± 0.19

FA [LILLICRAP ET AL., 2016] 96.96 ± 0.05 87.38 ± 0.12 45.76 ± 0.38 22.13 ± 0.41
DTP NØKLAND [2016] 97.27 ± 0.06 87.35 ± 0.99 42.86 ± 1.94 19.87 ± 1.50
DRL MEULEMANS ET AL. [2020] 93.05 ± 0.24 83.40 ± 0.18 42.09 ± 0.27 19.94 ± 0.28
L-DRL ERNOULT ET AL. [2022] 93.29 ± 0.21 83.60 ± 0.20 42.19 ± 0.30 19.96 ± 0.27
FW-DTP SHIBUYA ET AL. [2023] 97.20 ± 0.16 87.78 ± 0.47 45.91 ± 0.60 21.09 ± 0.31
DRTP FRENKEL ET AL. [2021] 92.16 ± 0.18 82.03 ± 0.56 33.85 ± 0.43 15.53 ± 0.33
CCL (OURS) 98.13 ± 0.10 88.58 ± 0.29 52.73 ± 0.59 21.76 ± 0.22

Code Availability. The code is available in the supplementary material.138

4 Experiments139

4.1 Counter Current Learning Facilitates Dual Network Feature Alignment140

To investigate the alignment of latent features within the counter-current learning framework, we141

visualized embeddings from the penultimate layer of the forward network and the corresponding142

second layer of the feedback network at various stages of training. We employ a six-layer neural net143

trained on MNIST and analyze embeddings from both networks. t-SNE was applied independently to144

these embeddings at each training iteration to effectively visualize the evolution of feature spaces.145

As illustrated in Figure 3, the embeddings from the forward model trained on MNIST data are146

represented by colored dots, while the embeddings from the backward model related to one-hot147

encoded labels are denoted by outlined squares of the same color. Throughout the training process,148

embeddings from the same class progressively align between the forward and backward models,149

suggesting that the forward and backward models mutually guide each other’s feature representations150

toward a coherent and discriminative structure.151

4.2 Classification Performance152

Task Setup. We evaluate the performance of our proposed method against several biologically plau-153

sible algorithms, including direct target propagation (DTP), DTP with difference reconstruction loss154
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(DRL), local difference reconstruction loss (L-DRL), and fixed-weight difference target propagation155

(FW-DTP). The evaluation is conducted on MNIST, FashionMNIST, CIFAR-10, and CIFAR-100.156

All experiments are performed using stochastic gradient descent optimization with 100 epochs. We157

use cross-validation over 5 different random seeds and report the testing performance. The models158

are implemented using the PyTorch deep learning framework, and the code is available in the Supple-159

mentary Material. For the experiments on multi-layer perceptrons, we apply image normalization160

as a preprocessing step. For the convolutional neural network experiments, we use additional data161

augmentation techniques, including cropping and horizontal flipping. For the counter-current learning162

(CCL) algorithm, we search across different learning rates and gradient norm clipping values to find163

the optimal hyperparameters following cross-validation, as detailed in Appendix 6.1.164

Multi-Layer Perceptrons (MLP). We follow Shibuya et al. [2023]2 for experimental setup and165

hyperparameter selection. For MNIST and FashionMNIST, we employ a fully connected network166

with 6 layers, each having 256 units. For CIFAR-10 and CIFAR-100, we use a fully connected167

network with 4 layers, each containing 1,024 units. We use the hyperbolic tangent activation function168

for BP and TP variant algorithms, while CCL adopts an ELU activation function. The results for169

MLPs are shown in Table 1, which demonstrates that the CCL obtains comparable results to error170

backpropagation and bears consistency with other biologically plausible algorithms.171

Table 2: Training Time Comparison on MNIST and CIFAR10. The average running time of
Error backpropagation (BP) serves as baselines, utilized for calculating the averaged training time
ratio along with the standard deviation of the other algorithms. FA and DRTP are not shown for their
algorithmic similarity with BP. Best values per task are bolded, second best are underlined.

MNIST CIFAR10
ARCHITECUTURE 6 LAYERS 4 LAYERS

BP 1.00 1.00
DTP 4.40 ±1.31 2.86 ±0.41
DRL 9.63 ±2.93 4.56 ±0.69
L-DRL 7.74 ±2.35 4.79 ±1.02
FWDTP-BN 2.92 ±0.83 1.99 ±0.50
CCL (OURS) 1.14 ±0.83 1.12 ±0.50

Table 3: Test Accuracy on CIFAR10, CIFAR100, and STL10 Using Convolutional Neural
Network. The metrics are reported for error backpropagation (BP) and cross-correlation loss (CCL).

CIFAR10 CIFAR100 STL10

BP 87.12 ±1.76 51.92 ±0.48 51.27 ±1.90
CCL (OURS) 82.94 ±0.53 56.29 ±0.25 45.28 ±2.58

MLP Runtime Analysis. To assess the runtime efficiency of the algorithms, we compare the training172

time across MLP models and datasets (Table 2). The results show that counter-current learning (CCL)173

consistently outperforms the TP family algorithms in terms of training time. Note that the forward174

and feedback process for CCL is performed sequentially in this experiment.175

Convolutional Neural Network. We also evaluate CCL on convolutional neural networks (CNN)176

consisting of five convolutional layers (each with a kernel size of 3 and a max-pooling operation177

with a kernel size of 2) followed by a linear classifier, tested on CIFAR-10, CIFAR-100, and STL-178

10. As shown in Table 3, our CCL-based model performs comparably to, or slightly inferiorly179

than, the BP-based model. Additionally, we visualize the kernels in the first convolutional layer to180

inspect the learned representations in Figure 4, demonstrating that CCL enables the model to learn181

meaningful convolutional kernels without using error backpropagation. Furthermore, we compare182

our CNN results on CIFAR-10 with those of L-DRL Ernoult et al. [2022] in Appendix 6.2, while183

FW-DTP Shibuya et al. [2023] does not include CNN implementations.184

2Codebase: https://github.com/TatsukichiShibuya/Fixed-Weight-Difference-Target-Propagation/
tree/main
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Figure 4: Visualization of First Layer Convolutional Kernels of the Forward Model Trained
on CIFAR-10 Using Counter-Current Learning. The left subplot shows the randomly initialized
kernels and the right subplot shows the kernels learned after training for 10 epochs.
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Figure 5: Qualitative Comparison of an Eight-Layered Convolutional Autoencoder Trained
Using Error Backpropagation (BP) and Counter-Current Learning (CCL). The network structure
does not contain skip connections. Testing set reconstruction results highlight CCL’s comparable
reconstruction as BP while achieving biological plausibility.

4.3 Auto-Encoder Performance185

We explore the applicability of the counter-current learning (CCL) algorithm to autoencoders.186

Auto-Encoder on STL-10 Dataset. A convolutional autoencoder with a four-layer encoder and a four-187

layer decoder is used. Different from the classification tasks, this architecture replaces the 2x2 kernel188

max-pooling with convolution layers with a stride of 2. Batch normalization is applied following each189

linear projection and before activation functions to ensure both stability and optimal performance. The190

hidden layers of the network are structured with dimensions of [128, 256, 1024, 2048]. Orthogonal191

weight initialization is used for training stability. Data augmentation techniques such as random192

cropping and horizontal flipping are incorporated. Hyperparameters including gradient clipping,193

learning rate, momentum, and weight decay are subjected to grid search, while cross-validation across194

five different seeds is employed to assess the reconstruction L2 loss.195

Results. The test set’s reconstruction metric—mean square error—is quantified as 0.0059± 0.0001196

for BP and 0.0086± 0.0001 for CCL. The outcomes, illustrated in Figure 5, underscore the models’197

proficiency on the test set. While both BP and CCL adeptly capture the general image structure,198

occasional artifact introduction, such as blurring, is observed in CCL compared to BP. This suggests199

that while CCL augments certain facets of autoencoder training, further refinement or architectural200

adjustments may be imperative to minimize visual artifacts and enhance detail preservation.201

4.4 Empirical Analysis of Learning Dynamics for Counter-Current Learning202

In this section, we provide insights into the functioning of the proposed Counter-Current Learning203

(CCL) algorithm by examining the representation similarity between the forward and feedback204

networks. We start by analyzing the feature similarity between randomly initialized feedforward and205

feedback models. Following this, we focus on the feature alignment in the high-level feature regime.206

Our investigation reveals the emergence of a reciprocal learning structure, where the top layers of207

both networks benefit from the bottom layers of each other during training.208

We trained a model on the MNIST classification task using a configuration of five convolutional209

layers topped with a linear classification head. The training was conducted over 160 steps with a210

7



b0
b1
b2
b3
b4
b5

target

CK
A    

t = 0 t = 20 t = 40 t = 80 t = 160

in
pu

t
a1 a2 a3 a4 a5 a6

Forward net 
 (bottom top)

b0
b1
b2
b3
b4
b5

target

CK
A

 
 Fe

ed
ba

ck
 n

et
 

 (t
op

bo
tto

m
)

in
pu

t
a1 a2 a3 a4 a5 a6

in
pu

t
a1 a2 a3 a4 a5 a6

in
pu

t
a1 a2 a3 a4 a5 a6

in
pu

t
a1 a2 a3 a4 a5 a6

0.1

0.3

0.5

0.7

0.1

0.0

0.1

Figure 6: Counter-Current Signal Propagation Enables Learning Through Reciprocal Repre-
sentation Alignment. (Top) Centered Kernel Alignment (CKA) between the forward and feedback
networks during training. At the initial training step (t = 0), cross-network CKA is minimal, suggest-
ing a low similarity between networks. As training progresses, CKA significantly increases, especially
in the top layers of both networks, indicating high similarity in learned high-level representations.
(Bottom) Changes in CKA between consecutive training steps (i.e., from step t to step t+ 1) reveal
significant increases in the top layers of both networks, consistent with our counter-current learning
insights. Notably, increases are concentrated in the a4, a5, a6 columns of the forward network and in
the b0, b1, b2 rows of the feedback network, as highlighted by the green dotted box. These changes
align with the expected reciprocal and complementary learning dynamics.

batch size of 32, achieving an average testing accuracy of 88.88%. To measure the cross-network211

representational similarity, we utilized Centered Kernel Alignment (CKA) Kornblith et al. [2019],212

a metric known for its robustness to invertible linear transformations. This was applied to evaluate213

layer and architecture similarity. The results, obtained using five different seeds, are presented as214

averaged CKA values on the test set. Figure 6 displays the horizontal axis marking the activations of215

forward layers, ranging from the input MNIST images to the logits (i.e., a6), whereas the vertical216

axis denotes the activations of the feedback network starting from one-hot labels (i.e., target).217

Observation 1: Initialization Shows Noisy Top Layers and Misalignment Between Networks.218

At initialization, our premise that the bottom layers contain more relevant information is validated.219

The initial CKA (t = 0, top-left subplot in Figure 6) reveals low similarity between the a6 column220

(i.e., the top layer of the forward network) and the feedback network. Similarly, the b0 row (i.e., the221

top layer of the feedback network) shows low CKA values with the forward layers, confirming our222

hypothesis of feature misalignment at random initialization.223

Observation 2: Alignment of High-Level Features During Training. As training progresses,224

high-level features (i.e., the top layers of the forward network and the bottom layers of the feedback225

network) begin to show increasing CKA values (Figure 6, t = 20 to t = 160, top row). This trend226

suggests that the forward and feedback networks gradually align their high-level representations.227

Observation 3: Emergence of a Counter-Current Reciprocal Structure. The dynamics of the228

counter-current learning algorithm reveal significant changes in CKA, particularly at higher layers229

(illustrated in the bottom subplots of Figure 6). Notably, the increases are concentrated in the a4, a5,230

a6 columns of the forward network and the b0, b1, b2 rows of the feedback network. This pattern231

supports the counter-current intuition that top layers benefit from the more informative bottom layers,232

fostering a reciprocal learning structure that guides each network’s optimization process using the233

most informative features available.234

This empirical analysis underscores the hypothesis that the counter-current learning scheme effectively235

leverages complementary and reciprocal alignment of representations between the forward and236

feedback networks. By exploiting the informative features from the bottom layers of one network237

to refine the noisy features in the top layers of the other, the counter-current signal propagation238

algorithm achieves a biologically plausible and efficient learning mechanism.239
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Figure 7: Learning With Asymmetric Learning Rates in the Networks. We investigate the
influence of asymmetric learning rate in the forward and backward MLPs. This study demonstrates
that effective learning can occur with asymmetric learning rates, even when the feedback network has
a fixed random configuration (i.e., the learning rate for the feedback net is zero).

4.5 Ablation on Asymmetric Learning Rates for Dual Network Optimization240

We delve deeper into the effects of varying learning rates between forward and feedback networks in241

CCL. As illustrated in Figure 7, our experiments confirm that asymmetric learning rates in forward and242

feedback networks facilitate effective and robust learning. Particularly noteworthy is our observation243

that robust learning outcomes are achievable even when the feedback network operates under a fixed244

random setting—specifically, with a zero learning rate (refer to the bottom rows of the figure). This245

suggests that the random projection of target labels by the feedback network conveys meaningful246

target domain information, echoing findings from the DRTP [Frenkel et al., 2021]. Moreover, our247

experiments indicate superior performance compared to the DRTP approach (refer to Table 1),248

possibly hinting that a random, non-linear neural network projection (i.e., CCL with a feedback249

learning rate of zero) is more beneficial than a mere random linear projection (i.e., DRTP) of labels.250

This could be due to the neural network’s ability to maintain and leverage more inductive biases,251

which can be crucial for the hierarchical learning processes.252

5 Conclusion253

In this paper, we introduced the counter-current learning framework, a novel approach addressing254

the critical limitations of traditional error backpropagation. Our dual network architecture enables a255

dynamic and reciprocal interaction between feedforward and feedback pathways, supporting local256

learning and effectively resolving the backward locking problem. Our learning framework is validated257

across a diverse set of datasets including MNIST, FashionMNIST, CIFAR10, CIFAR100, and STL10,258

and in autoencoder tasks, demonstrates comparable performance with existing learning methods259

without compromising learning speed. This underscores the potential of our model to efficiently260

handle complex neural tasks and highlights its suitability for broader applications.261

Limitations and Future Directions. We acknowledge several limitations that can guide future262

research in this field. Firstly, there is a need for further theoretical insights into the counter-current263

learning scheme, focusing on its learning dynamics, stability analysis, and inductive biases. Secondly,264

continuous exploration of this dual model architecture is essential, such as integrating residual265

connections or self-attention modules. Thirdly, hardware acceleration to streamline forward-feedback266

computation through parallelization could potentially reduce computation time and yield improved267

results within the same time frame. Lastly, exploring the integration of counter-current learning with268

other biologically plausible alternatives holds promise for advancing research in this domain.269
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6 Appendix356

6.1 Experimental Setup357

Hyperparameter Search. For experiments with MLP architectures, we conduct hyperparameter358

searches for each algorithm. We run all the combinations of the hyperparameters with 5 different ran-359

dom seeds and then select the hyperparameter set with the highest accuracies (or lowest loss for auto-360

encoder task) evaluated on the validation set and test on the testing set. For DTP, DRL, L-DRL, and361

FWDTP, we search across forward learning rates [0.3, 1, 3], step sizes [0.001, 0.003, 0.01, 0.03, 0.1],362

and backward learning rates [0.0001, 0.0003, 0.001, 0.003, 0.01]. Note that FWDTP-BN does not363

have the backward learning rate hyperparameter. For DRTP, the search space includes learning rates364

[0.010.030.10.3] and mean ([0.0.05]) and standard deviation ([0.010.030.10.3]) for random project365

matrix. For BP and FA, we use learning rates [0.4, 0.2, 0.1, 0.05, 0.02, 0.01] for hyperparameter366

search. and gradient clip values of [0.5, 1]. For CCL, the search space includes learning rates367

[0.2, 0.5, 1, 1.5, 2] and gradient clip values of [0.5, 1].368

Implementation Details. Training MLP and CNN models with CCL can be unstable initially since369

both the forward and feedback networks are randomly initialized. We use learning rate warm-up for370

the initial 200 steps for CCL, which is adopted in Ernoult et al. [2022]. Moreover, unlike algorithms371

in the target propagation family [Meulemans et al., 2020, Ernoult et al., 2022], where the feedback372

network weights are trained using additional for-loops to tune the weights for each data batch, we373

introduce some techniques to stabilize the training course. We found that normalizing the activations374

during loss computation helps stabilize the training process. Additionally, as counter-current learning375

can also suffer from feature collapse, where a trivial solution to all pairwise losses is to produce376

constant activations, we introduce a remedy. Inspired by layer-wise training, for each latent activation377

X ∈ Rb×d, where b stands for batch size and d stands for feature dimension, we added an additional378

L2 loss to minimize the difference between norm(X)norm(X)⊤ and the identity matrix. Finally, in379

contrast to error backpropagation, where the error signals can be zero and the weight updates can be380

small at the end of training, the layer-wise losses in CCL are seldom zero, thus the weights can keep381

changing during the training. This can lead to worse minima. To accommodate this, we use gradient382

centralization [Yong et al., 2020] to centralize the gradient for parameters for both BP and CCL383

and flooding method [Ishida et al., 2020] to prevent some weights from updating if the sample-wise384

difference between output and target is smaller than 0.2 in CCL on CNN.385

6.2 Comparison of Implementation386

Table 4: Comparison of Results on CIFAR10 Using VGG-like Convolutional Neural Network. ∗

indicates that we report the results from the literature. .

OUR IMPLEMENTATION L-DRL ERNOULT ET AL. [2022]

TRAIN ON VALIDATION SET × ✓

BP 87.12 ±1.76 89.07 ±0.22∗

L-DRL ERNOULT ET AL. [2022] - 89.38 ±0.20∗

CCL (OURS) 82.94 ±0.53 -

We compare the results on CIFAR-10 using a VGG-like network architecture. As shown in Table 4, the387

results indicate that L-DRL [Ernoult et al., 2022] achieved similar testing accuracies to BP, reaching388

89%. However, there are some issues with their implementation, as discussed in their GitHub389

repository. Specifically, they trained the models on the full training set, and the hyperparameter390

search space and the implementation of cross-validation were not disclosed in their paper.391
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NeurIPS Paper Checklist392

The checklist is designed to encourage best practices for responsible machine learning research,393

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove394

the checklist: The papers not including the checklist will be desk rejected. The checklist should395

follow the references and follow the (optional) supplemental material. The checklist does NOT count396

towards the page limit.397

Please read the checklist guidelines carefully for information on how to answer these questions. For398

each question in the checklist:399

• You should answer [Yes] , [No] , or [NA] .400

• [NA] means either that the question is Not Applicable for that particular paper or the relevant401

information is Not Available.402

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).403

The checklist answers are an integral part of your paper submission. They are visible to the404

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it405

(after eventual revisions) with the final version of your paper, and its final version will be published406

with the paper.407

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.408

While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a409

proper justification is given (e.g., "error bars are not reported because it would be too computationally410

expensive" or "we were unable to find the license for the dataset we used"). In general, answering411

"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we412

acknowledge that the true answer is often more nuanced, so please just use your best judgment and413

write a justification to elaborate. All supporting evidence can appear either in the main paper or the414

supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification415

please point to the section(s) where related material for the question can be found.416

IMPORTANT, please:417

• Delete this instruction block, but keep the section heading “NeurIPS paper checklist",418

• Keep the checklist subsection headings, questions/answers and guidelines below.419

• Do not modify the questions and only use the provided macros for your answers.420

1. Claims421

Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s422

contributions and scope?423

Answer: [Yes]424

Justification: [Yes] The claim is supported by our extensive experiments using MLPs and CNNs.425

Guidelines:426

• The answer NA means that the abstract and introduction do not include the claims made in427

the paper.428

• The abstract and/or introduction should clearly state the claims made, including the contribu-429

tions made in the paper and important assumptions and limitations. A No or NA answer to430

this question will not be perceived well by the reviewers.431

• The claims made should match theoretical and experimental results, and reflect how much432

the results can be expected to generalize to other settings.433

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are434

not attained by the paper.435

2. Limitations436

Question: Does the paper discuss the limitations of the work performed by the authors?437

Answer: [Yes]438

Justification: [Yes] We discuss thoroughly the limitation and future work in the conclusion section439
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Guidelines:440

• The answer NA means that the paper has no limitation while the answer No means that the441

paper has limitations, but those are not discussed in the paper.442

• The authors are encouraged to create a separate "Limitations" section in their paper.443

• The paper should point out any strong assumptions and how robust the results are to vi-444

olations of these assumptions (e.g., independence assumptions, noiseless settings, model445

well-specification, asymptotic approximations only holding locally). The authors should446

reflect on how these assumptions might be violated in practice and what the implications447

would be.448

• The authors should reflect on the scope of the claims made, e.g., if the approach was only449

tested on a few datasets or with a few runs. In general, empirical results often depend on450

implicit assumptions, which should be articulated.451

• The authors should reflect on the factors that influence the performance of the approach. For452

example, a facial recognition algorithm may perform poorly when image resolution is low or453

images are taken in low lighting. Or a speech-to-text system might not be used reliably to454

provide closed captions for online lectures because it fails to handle technical jargon.455

• The authors should discuss the computational efficiency of the proposed algorithms and how456

they scale with dataset size.457

• If applicable, the authors should discuss possible limitations of their approach to address458

problems of privacy and fairness.459

• While the authors might fear that complete honesty about limitations might be used by review-460

ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that461

aren’t acknowledged in the paper. The authors should use their best judgment and recognize462

that individual actions in favor of transparency play an important role in developing norms463

that preserve the integrity of the community. Reviewers will be specifically instructed to not464

penalize honesty concerning limitations.465

3. Theory Assumptions and Proofs466

Question: For each theoretical result, does the paper provide the full set of assumptions and a467

complete (and correct) proof?468

Answer: [NA]469

Justification: [NA]470

Guidelines:471

• The answer NA means that the paper does not include theoretical results.472

• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.473

• All assumptions should be clearly stated or referenced in the statement of any theorems.474

• The proofs can either appear in the main paper or the supplemental material, but if they appear475

in the supplemental material, the authors are encouraged to provide a short proof sketch to476

provide intuition.477

• Inversely, any informal proof provided in the core of the paper should be complemented by478

formal proofs provided in appendix or supplemental material.479

• Theorems and Lemmas that the proof relies upon should be properly referenced.480

4. Experimental Result Reproducibility481

Question: Does the paper fully disclose all the information needed to reproduce the main482

experimental results of the paper to the extent that it affects the main claims and/or conclusions483

of the paper (regardless of whether the code and data are provided or not)?484

Answer: [Yes]485

Justification: [Yes] We specify the hyperparameter search space and use five random seeds for all486

main experiments.487

Guidelines:488

• The answer NA means that the paper does not include experiments.489

• If the paper includes experiments, a No answer to this question will not be perceived well by490

the reviewers: Making the paper reproducible is important, regardless of whether the code491

and data are provided or not.492
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• If the contribution is a dataset and/or model, the authors should describe the steps taken to493

make their results reproducible or verifiable.494

• Depending on the contribution, reproducibility can be accomplished in various ways. For495

example, if the contribution is a novel architecture, describing the architecture fully might496

suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary497

to either make it possible for others to replicate the model with the same dataset, or provide498

access to the model. In general. releasing code and data is often one good way to accomplish499

this, but reproducibility can also be provided via detailed instructions for how to replicate the500

results, access to a hosted model (e.g., in the case of a large language model), releasing of a501

model checkpoint, or other means that are appropriate to the research performed.502

• While NeurIPS does not require releasing code, the conference does require all submissions503

to provide some reasonable avenue for reproducibility, which may depend on the nature of504

the contribution. For example505

(a) If the contribution is primarily a new algorithm, the paper should make it clear how to506

reproduce that algorithm.507

(b) If the contribution is primarily a new model architecture, the paper should describe the508

architecture clearly and fully.509

(c) If the contribution is a new model (e.g., a large language model), then there should either510

be a way to access this model for reproducing the results or a way to reproduce the model511

(e.g., with an open-source dataset or instructions for how to construct the dataset).512

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are513

welcome to describe the particular way they provide for reproducibility. In the case of514

closed-source models, it may be that access to the model is limited in some way (e.g.,515

to registered users), but it should be possible for other researchers to have some path to516

reproducing or verifying the results.517

5. Open access to data and code518

Question: Does the paper provide open access to the data and code, with sufficient instructions to519

faithfully reproduce the main experimental results, as described in supplemental material?520

Answer: [Yes]521

Justification: [Yes] The data is publicly available and the code is included in supplement.522

Guidelines:523

• The answer NA means that paper does not include experiments requiring code.524

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/525

guides/CodeSubmissionPolicy) for more details.526

• While we encourage the release of code and data, we understand that this might not be527

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including528

code, unless this is central to the contribution (e.g., for a new open-source benchmark).529

• The instructions should contain the exact command and environment needed to run to530

reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.531

cc/public/guides/CodeSubmissionPolicy) for more details.532

• The authors should provide instructions on data access and preparation, including how to533

access the raw data, preprocessed data, intermediate data, and generated data, etc.534

• The authors should provide scripts to reproduce all experimental results for the new proposed535

method and baselines. If only a subset of experiments are reproducible, they should state536

which ones are omitted from the script and why.537

• At submission time, to preserve anonymity, the authors should release anonymized versions538

(if applicable).539

• Providing as much information as possible in supplemental material (appended to the paper)540

is recommended, but including URLs to data and code is permitted.541

6. Experimental Setting/Details542

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,543

how they were chosen, type of optimizer, etc.) necessary to understand the results?544

Answer: [Yes]545
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Justification: [Yes] We use the default train-test split, specify the hyperparameter search space546

and use cross-validation to choose them, and use vanilla SGD with momentum.547

Guidelines:548

• The answer NA means that the paper does not include experiments.549

• The experimental setting should be presented in the core of the paper to a level of detail that550

is necessary to appreciate the results and make sense of them.551

• The full details can be provided either with the code, in appendix, or as supplemental material.552

7. Experiment Statistical Significance553

Question: Does the paper report error bars suitably and correctly defined or other appropriate554

information about the statistical significance of the experiments?555

Answer: [Yes]556

Justification: [Yes] Mean with standard deviation are shown.557

Guidelines:558

• The answer NA means that the paper does not include experiments.559

• The authors should answer "Yes" if the results are accompanied by error bars, confidence560

intervals, or statistical significance tests, at least for the experiments that support the main561

claims of the paper.562

• The factors of variability that the error bars are capturing should be clearly stated (for example,563

train/test split, initialization, random drawing of some parameter, or overall run with given564

experimental conditions).565

• The method for calculating the error bars should be explained (closed form formula, call to a566

library function, bootstrap, etc.)567

• The assumptions made should be given (e.g., Normally distributed errors).568

• It should be clear whether the error bar is the standard deviation or the standard error of the569

mean.570

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably571

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality572

of errors is not verified.573

• For asymmetric distributions, the authors should be careful not to show in tables or figures574

symmetric error bars that would yield results that are out of range (e.g. negative error rates).575

• If error bars are reported in tables or plots, The authors should explain in the text how they576

were calculated and reference the corresponding figures or tables in the text.577

8. Experiments Compute Resources578

Question: For each experiment, does the paper provide sufficient information on the computer579

resources (type of compute workers, memory, time of execution) needed to reproduce the580

experiments?581

Answer: [Yes]582

Justification: [Yes] We reveal the running time for different algorithms.583

Guidelines:584

• The answer NA means that the paper does not include experiments.585

• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or586

cloud provider, including relevant memory and storage.587

• The paper should provide the amount of compute required for each of the individual experi-588

mental runs as well as estimate the total compute.589

• The paper should disclose whether the full research project required more compute than the590

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it591

into the paper).592

9. Code Of Ethics593

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS594

Code of Ethics https://neurips.cc/public/EthicsGuidelines?595

Answer: [Yes]596
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Justification: [Yes] Anonymity is ensured.597

Guidelines:598

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.599

• If the authors answer No, they should explain the special circumstances that require a deviation600

from the Code of Ethics.601

• The authors should make sure to preserve anonymity (e.g., if there is a special consideration602

due to laws or regulations in their jurisdiction).603

10. Broader Impacts604

Question: Does the paper discuss both potential positive societal impacts and negative societal605

impacts of the work performed?606

Answer: [NA]607

Justification: [NA] This paper is about a new learning scheme, as an alternative to back propaga-608

tion. The algorithm itself does not have societal impacts.609

Guidelines:610

• The answer NA means that there is no societal impact of the work performed.611

• If the authors answer NA or No, they should explain why their work has no societal impact or612

why the paper does not address societal impact.613

• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,614

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-615

ment of technologies that could make decisions that unfairly impact specific groups), privacy616

considerations, and security considerations.617

• The conference expects that many papers will be foundational research and not tied to618

particular applications, let alone deployments. However, if there is a direct path to any619

negative applications, the authors should point it out. For example, it is legitimate to point out620

that an improvement in the quality of generative models could be used to generate deepfakes621

for disinformation. On the other hand, it is not needed to point out that a generic algorithm622

for optimizing neural networks could enable people to train models that generate Deepfakes623

faster.624

• The authors should consider possible harms that could arise when the technology is being625

used as intended and functioning correctly, harms that could arise when the technology is626

being used as intended but gives incorrect results, and harms following from (intentional or627

unintentional) misuse of the technology.628

• If there are negative societal impacts, the authors could also discuss possible mitigation629

strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms630

for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,631

improving the efficiency and accessibility of ML).632

11. Safeguards633

Question: Does the paper describe safeguards that have been put in place for responsible release634

of data or models that have a high risk for misuse (e.g., pretrained language models, image635

generators, or scraped datasets)?636

Answer: [NA]637

Justification: [NA]638

Guidelines:639

• The answer NA means that the paper poses no such risks.640

• Released models that have a high risk for misuse or dual-use should be released with necessary641

safeguards to allow for controlled use of the model, for example by requiring that users adhere642

to usage guidelines or restrictions to access the model or implementing safety filters.643

• Datasets that have been scraped from the Internet could pose safety risks. The authors should644

describe how they avoided releasing unsafe images.645

• We recognize that providing effective safeguards is challenging, and many papers do not646

require this, but we encourage authors to take this into account and make a best faith effort.647

12. Licenses for existing assets648
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Question: Are the creators or original owners of assets (e.g., code, data, models), used in the649

paper, properly credited and are the license and terms of use explicitly mentioned and properly650

respected?651

Answer: [Yes]652

Justification: [Yes] The asset is cited and its original link is shown. The authors do not specify653

their license on Github.654

Guidelines:655

• The answer NA means that the paper does not use existing assets.656

• The authors should cite the original paper that produced the code package or dataset.657

• The authors should state which version of the asset is used and, if possible, include a URL.658

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.659

• For scraped data from a particular source (e.g., website), the copyright and terms of service660

of that source should be provided.661

• If assets are released, the license, copyright information, and terms of use in the package662

should be provided. For popular datasets, paperswithcode.com/datasets has curated663

licenses for some datasets. Their licensing guide can help determine the license of a dataset.664

• For existing datasets that are re-packaged, both the original license and the license of the665

derived asset (if it has changed) should be provided.666

• If this information is not available online, the authors are encouraged to reach out to the667

asset’s creators.668

13. New Assets669

Question: Are new assets introduced in the paper well documented and is the documentation670

provided alongside the assets?671

Answer: [Yes]672

Justification: [Yes] Please check the README.md in the supplementary material.673

Guidelines:674

• The answer NA means that the paper does not release new assets.675

• Researchers should communicate the details of the dataset/code/model as part of their sub-676

missions via structured templates. This includes details about training, license, limitations,677

etc.678

• The paper should discuss whether and how consent was obtained from people whose asset is679

used.680

• At submission time, remember to anonymize your assets (if applicable). You can either create681

an anonymized URL or include an anonymized zip file.682

14. Crowdsourcing and Research with Human Subjects683

Question: For crowdsourcing experiments and research with human subjects, does the paper684

include the full text of instructions given to participants and screenshots, if applicable, as well as685

details about compensation (if any)?686

Answer: [NA]687

Justification: [NA]688

Guidelines:689

• The answer NA means that the paper does not involve crowdsourcing nor research with690

human subjects.691

• Including this information in the supplemental material is fine, but if the main contribution of692

the paper involves human subjects, then as much detail as possible should be included in the693

main paper.694

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or695

other labor should be paid at least the minimum wage in the country of the data collector.696

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human697

Subjects698
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Question: Does the paper describe potential risks incurred by study participants, whether such699

risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or700

an equivalent approval/review based on the requirements of your country or institution) were701

obtained?702

Answer: [NA]703

Justification: [NA]704

Guidelines:705

• The answer NA means that the paper does not involve crowdsourcing nor research with706

human subjects.707

• Depending on the country in which research is conducted, IRB approval (or equivalent) may708

be required for any human subjects research. If you obtained IRB approval, you should709

clearly state this in the paper.710

• We recognize that the procedures for this may vary significantly between institutions and711

locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines712

for their institution.713

• For initial submissions, do not include any information that would break anonymity (if714

applicable), such as the institution conducting the review.715
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