Under review as a conference paper at ICLR 2026

GPTOPT: TOWARDS EFFICIENT LLM-BASED BLACK-
BoX OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Global optimization of expensive, derivative-free black-box functions demands
extreme sample efficiency. Classical methods such as Bayesian Optimization
(BO) can be effective, but they often require careful parameter tuning to each
application domain. At the same time, Large Language Models (LLMs) have
shown broad capabilities, yet state-of-the-art models remain limited in solving
continuous black-box optimization tasks. We introduce GPTOpt, an LLM-based
optimization method that equips LLMs with continuous black-box optimization
capabilities. By fine-tuning large language models on extensive synthetic datasets
derived from diverse BO parameterizations, GPTOpt leverages LLM pre-training
to generalize across optimization tasks. On a variety of black-box optimization
benchmarks, GPTOpt surpasses traditional optimizers, highlighting the capacity
of LLMs for advanced numerical reasoning and introducing a flexible framework
for global optimization without parameter tuning.

1 INTRODUCTION

Black-box optimization under tight evaluation budgets is pivotal in many scientific and engineer-
ing settings. Since derivatives are often unavailable, classical gradient-based solvers such as New-
ton’s method or conjugate-gradient are not applicable. Practitioners therefore turn to gradient-free
heuristics such as genetic algorithms, simulated annealing, and evolutionary strategies, which often
require thousands of evaluations to converge (Holland, |1992; |Kirkpatrick et al.l 1983} [Hansen &
Ostermeier, [2001). When each experiment or simulation is slow or costly, such sample counts be-
come prohibitive. Therefore, we focus on improving continuous black-box optimization under strict
evaluation constraints.

Bayesian optimization (BO) (Shahriari et al.| [2015) reduces this burden by fitting a probabilistic
surrogate (typically a Gaussian process) and selecting queries via a heuristic acquisition function
that balances exploration and exploitation. BO has driven progress in materials discovery (Erps
et al., [2021), molecular design (Griffiths & Hernandez-Lobatol 2020)), clinical prognosis (Alaa &
Schaar, 2018), and hyper-parameter tuning (Turner et al. [2021). However, BO’s success hinges
on hand-chosen kernels, acquisition functions, and hyperparameters whose optimal settings vary
across landscapes and are difficult to tune without expert insight or extra evaluations. We show this
challenge in Figure [1| where we show the gap between the performance of individual BO methods
and the best of all tested BO methods averaged over multiple synthetic 5D test spaces. We see that
selecting the best hyperparameters would greatly improve performance and remains a challenge of
using BO in practice. Therefore, there is a need for a low-budget general-purpose global optimizer
that can perform well without tuning.

The large amounts of data and increasing computing power available today have led to the develop-
ment of LLMs, which provide extraordinary capabilities over a wide range of tasks. While LLMs
have been used for specific optimization tasks (Yang et al.| 2024} [Lange et al., [2024) and assisting
BO-based methods (Liu et al.,[2024), their capabilities as standalone global optimizers remain lim-
ited. Experiments show that LLMs can solve basic optimization problems, [Huang et al.| (2024) but
even state-of-the-art current LLMs remain far-behind classical methods in black-box optimization.
We see these limitations in Figure [T| as we implemented an LLM-based black-box optimization
scheme using Gemini 2.5 Pro (Comanici et al., [2025)). Similarly to|Huang et al.|(2024), we find that

Under review as a conference paper at ICLR 2026

Best-of-GP 4

GP PI 0.0

GP LogEl 0.1

GP LogEl 0.0

GPPI 0.1

GP PI0.01
GP LogEl 0.01
GP UCB 2.576
GP UCB 1.0

GP UCB 10.0

Gemini 2.5 Pro

0.800 0.825 0.850 0.875 0.900 0.925 0.950
Mean Normalized Final Step Performance

Figure 1: Performance comparison of best BO-based method to individual BO methods and SOTA
LLM-based optimization over 10 5D synthetic functions. Performance is measured with a normal-
ized regret score where higher is better.

the native LLM-based method is unable to compete with BO-based methods. We provide further
details on this experiment in Appendix [C.2.1}

Other works have shown that pretrained transformer-based models can used in a variety of data-
driven decision making scenarios, such as machine translation (Vaswani et all 2017), regres-
sion (Song et al. 2024b), and robotic control 2021). Recent approaches have begun
exploring using pretrained models for optimization, including both transformer architectures and of-
fline pretraining (Chen et al.| [2022b}; [Krishnamoorthy et al 2022} [Maraval et al., 2024). However,
the full potential of LLMs in optimization remains untapped, in part due to the limited availability of
massive high-quality optimization datasets (Song et al.,|2024c)). Furthermore, demonstrating robust
zero-shot generalization on completely unseen problems within low evaluation budgets remains an
open challenge, as most pretrained approaches require training on similar data to which the model
is tested. Consequently, traditional optimization, such as Bayesian optimization, continues to be the
preferred choice in practical applications. Therefore, we aim to combine the power of LLMs with
high-quality optimization data to achieve performance and flexibility beyond that of current methods
and add new capabilities to LLMs.

In this paper, we introduce GPTOpt, a LLM-based general-purpose optimizer for continuous black-
box problems up to 10 D. We fine-tune Llama 3.2 3B on a diverse dataset of trajectories generated
using various BO variants over a synthetic function space (Dubey et al.}[2024). As a result, GPTOpt
demonstrates a robust understanding of optimization dynamics and demonstrates the ability to add
black-box optimization capabilities to LLMs.

In summary, our contributions are as follows.

1. We develop a diverse synthetic function generator and collect large-scale optimization tra-
Jjectories on these functions from 10 BO variants to be used as training data.

2. We design a fine-tuning approach that leverages the extensive pre-training of LLMs to add
high-quality optimization capabilities.

3. Our evaluation demonstrates that GPTOpt achieves strong zero-shot generalization per-
formance across a range of unseen global optimization benchmarks, surpassing the perfor-
mance of existing state-of-the-art BO methods, while providing the opportunity for further
extensions to our method.

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Bayesian optimization (BO): BO is a powerful global optimization technique due to its ability
to efficiently handle expensive black-box functions by balancing exploration and exploitation with
carefully designed acquisition functions, such as Expected Improvement (EI), LogEI (Ament et al.,
2023)), Upper Confidence Bound (UCB) and Vizier (Golovin et al., 2017; Song et al., 2024d). De-
signed with different principles of trading-off exploration and exploitation, they suit different types
of optimization problems. BO has been made accessible by a collection of open-source libraries and
software including Spearmint (Snoek et al.,[2012)), BoTorch (Balandat et al.,[2020), AutoOED (Tian
et al., 2021), SMAC3 (Lindauer et al., [2022), HEBO (Cowen-Rivers et al.,[2022), Openbox (Jiang
et al} [2024), etc. However, it remains a challenge for users to determine the most appropriate con-
figuration for their specific problem setting, as the selection is often heuristic and depends on the
problem landscape.

Pretrained optimization methods: The idea of learning to optimize has been studied relatively
early in continuous gradient-based optimization (Li & Malik| 2016 |Andrychowicz et al., 2016
Chen et al.| 2022a)). Many early works reformulate optimization as a sequence prediction problem,
training recurrent neural network (RNN) to predict the next point to evaluate. Yet, gradients need
to be provided as additional information and they mostly assume in-domain settings (Chen et al.,
2022a)). One notable exception are |Chen et al.|(2017), who show that trained RNNs are able to gen-
eralize from simple objective functions to a variety of other unseen test functions without gradient
information. With the increase in computation and the rise of advanced deep learning models, more
recent studies are able to scale up datasets considerably and approach optimization in new ways.

Chaybouti et al.| (2022) train a transformer optimizer using online meta RL, but still limited to learn-
ing task-specific solvers without generalization to a wide variety of unseen tasks. Similarly, neural
acquisition process (NAP) (Maraval et al.,|2024) also considers a similar online RL-based formula-
tion of the problem. They propose an additional training objective to explicitly predicting acquisition
function values to guide RL exploration more effectively. Pretrained Optimization Model (POM)
(L1 et al.,[2024) introduces a population-based model for zero-shot optimization by formulating op-
timization as an evolutionary algorithm and using meta-learning for training the model, but focus on
high-dimensional problems (>100 dimensions), which are beyond the scope we are considering.

PFNs4BO Miiller et al.| (2023) provides a novel black-box optimization method based on Prior
Fitted Networks (PFNs), which attempts to learn a model that mimics various surrogate models.
This results in a general-purpose black-box optimizer using transformers. We compare our model
to PFNs4BO in Figure [3|and Figure i] There are other works that separately study the problem of
learning the surrogate (Wang et al.,[2024)) or the acquisition function (Volpp et al., 2019;|Hsieh et al.,
2021).

BONET (Krishnamoorthy et al.| [2022) applies a causal transformer and RL-inspired pretraining to
specific optimization tasks. They focus on synthesizing optimization trajectories by reordering sam-
ples in a given dataset. The study only evaluates domain-specific extrapolation based on a relatively
large-scale dataset, instead of unseen optimization problems with just a few dozen samples.

Next, OptFormer (Chen et al.| 2022b) is a text-based transformer framework designed for hyperpa-
rameter optimization for general problem space. The model is trained on a large-scale proprietary
hyperparameter optimization database. The method shows promise for transformer-based models
trained on large datasets by outperforming traditional solutions on the given test cases, which are
drawn from similar distributions as the training data. However, the model does not start with an LLM
base and therefore does not take advantage of the rich information learned from LLM pre-training.
Additionally, the model shows performance degradation when tested on distributions different from
its training data. However, the strong performance on a large dataset marks an important step to-
wards general-purpose transformer-based optimization.

Lastly, RIBBO (Song et al., [2024a) is a transformer-based framework trained using offline rein-
forcement learning. Inspired by decision transformer, RIBBO uses conditional reward inputs to
learn to optimize better than the training data provided (Chen et al.| (2021). Although RIBBO only
evaluates results for small training and evaluation datasets from similar distributions, the ideas of
conditioned transformer-based models provides an alternative step towards outperforming BO in
transformer-based optimization.

Under review as a conference paper at ICLR 2026

LLMs as optimizers: Large language models have also been applied out of the box for global
optimization, specifically by using in-context learning (Liu et al., 2024). These methods highlight
the potential of LLMs to iteratively improve some objective, but are not specifically related to black-
box optimization.

However, specifically related to black-box optimization, Huang et al.| (2024) show that current LLMs
are not capable of performing advanced black-box optimization. Their experiments, on a variety of
state-of-the-art LLMs, show LLMs can do some basic black-box optimization tasks, but fail to come
close to the performance of classical methods. In addition, |[Lange et al.| (2024) provide a prompt-
ing strategy with the aim of making LLMs work out of the box like an evolutionary optimization
method. They show their specific prompt techniques can achieve high-quality results in some lim-
ited circumstances, but primarily show results on simple function spaces and do not compare to
state-of-the-art global optimization algorithms like BO.

These results show that current LLMs are not capable of state-of-the-art global optimization and
while carefully designed prompting can improve results, further improvements are needed for LLMs
to successfully complete optimization tasks. However, LLMs do still have a rich knowledge base
and learned embeddings that we can take advantage of while teaching the LLM to optimize. GP-
TOpt aims to provide a fine-tuning methodology that adds black-box optimization capability to
LLMs, advancing both the possible use cases of LLMs and providing a new black-box optimization
technique.

3 PROBLEM STATEMENT

For generic black-box global optimization problems, the goal is to solve x* = arg minyex f(x),
where x € R? is a vector of decision variables, X C R¢ represents the feasible search space,
f + X — Ris the black-box objective function, which is typically expensive to evaluate and lacks
gradient information, and x* is the global minimum of f(x).

In practice, the optimization process begins with an initial set of points {x1,Xa,...,X,,} ran-
domly sampled from the search space C X', along with their corresponding objective values
{f(x1), f(x2),..., f(Xm)}. The optimizer iteratively proposes new candidate points x; 1 based on
previous points and their objective values, aiming to minimize f(x) by exploring the search space.
For example, in BO, given a dataset of points and their objective values D, evaluated up to iteration
t, m(D;) = argmaxyxex a(x; D;) where o represents a particular acquisition function. However,
this process is sensitive to hyperparameter choices and choices of the GP and acquisition function.

4 APPROACH: GPTOPT

Goal: We aim to fine-tune a LLM that serves as a “plug-and-play” optimizer, capable of outper-
forming traditional black-box optimizers without hyperparameter tuning.

Challenge: Typically, fine-tuning a model of this nature requires a large dataset of examples (Brown
et al.| 2020; [Bordes et al.||2024; Kim et al.| 2024). Therefore, we need expert demonstrations illus-
trating how to choose evaluation points that minimize functions in low-budget scenarios. Unfortu-
nately, no publicly available dataset provides such demonstrations.

Key idea: Expert trajectories from synthetic data: Collecting demonstrations for real-world
black-box optimization is costly. Instead, we can train our model on large-scale synthetic data. By
defining a design space A’ and sampling random black-box functions f, we generate cheap synthetic
datasets. However, we still need demonstrations of how to select points to evaluate for optimization.

BO offers the ability to provide “expert” trajectories with the right parameterization. By testing
many parameterizations on the same synthetic functions, we can find the best parameterizations for
each individual function. We treat these best trajectories from each function space as our “expert”
trajectories, which serve as the training data for our model.

Under review as a conference paper at ICLR 2026

4.1 LEARNING TO OPTIMIZE

Optimization as sequential decision-making: We frame black-box optimization as a sequential
decision-making problem, where the optimizer acts as an agent interacting with the black-box func-

tion f. The optimizer observes a set of initial samples: {(x1, f(x1)),.-., (Xm, f(Xm))}, where
each x; € X is randomly sampled from the search space. At each step ¢, the optimizer observes
all previously evaluated points and their function values, {x1, f(xX1), ..., Xm+tt, f (Xm+t)}, selects

the next evaluation point x,,1¢+1 based on its policy 7, receives the function value f(x,,+¢+1), and
repeats this process until the number of steps ¢ hits the user-defined limit. The agent’s objective is
to find a point x that minimizes the objective value f(x) over its interactions with the environment.

Synthetic function generators: Due to the lack of available real-world test functions, we aim to
create realistic and diverse synthetic functions to generate our training data. Therefore, we use 5
different classes of synthetic functions, while also adding additional augmentations on top of the
original functions. By creating functions with these diverse methods, we provide a base for the
model to learn realistic function dynamics across a variety of possible function spaces.

We generate synthetic functions using five methods, each designed to capture different kinds of
structure. Gaussian processes provide smooth landscapes with controllable correlations. Random
neural networks create complex nonlinear surfaces shaped by layered transformations. Ordinary
differential equations simulate dynamical systems to produce rich temporal dynamics. Expression
trees combine symbolic operators to form interpretable but varied functions. Fourier expressions use
sums of sinusoidal components to generate oscillatory, multi-scale patterns. On top of these bases,
we apply augmentations such as nonlinear warps, discontinuities, and periodic ripples to increase
complexity, ensuring the model trains on a wide spectrum of challenging function behaviors.

Trajectory generation: For each of the synthetic functions generated ranging from 2D to 10D, we
run BO with 10 acquisition variants. These include LogEI (Ament et al.,|2023)), Upper Confidence
Bound (UCB), Probability of Improvement (PI) acquisition functions with various exploitation-
exploration parameters. For LogEI and PI, we adapt the exploitation-exploration level with a range
of 3 parameters and for UCB we use a range of 4 parameters. The goal is to provide a wide range
of state-of-the-art methods that work across a diverse range of functions. Further details on the BO
implementation is available in Appendix [C.2.2] Each model is initialized with 10 random points be-
fore iteratively fitting the GP and selecting new points using the acquisition function. We generate
10 trajectories per environment, each consisting of 10 initial samples followed by 40 optimization
steps, for a total of 50 evaluations.

We generate trajectories on functions ranging from 2D to 10D, with most of the data coming from
2D to 6D due to computational limits. We generate 5,000 synthetic functions for each function
subclass, totaling 50,000 functions per dimension for 2D to 6D. Due to computational limitations,
we generate 100 functions per subclass, totaling 1,000 functions per dimension for 7D to 10D. Given
we generate 10 trajectories per function, this totals around 2.5 million total trajectories.

4.2 MODEL ARCHITECTURE

We use the Llama 3.2 family of models as our base model (Dubey et al.,|2024)). Specifically, we use
the 3B model for our experiments. This is a text-only LLM that provides a model with reasonable
capabilities, but is manageable to fine-tune within our compute budget. We fine-tune the model
using low-rank adaption (LoRA) with Unsloth [Hu et al.| (2022)); Daniel Han & team| (2023). This
provides a fast and efficient framework for fine-tuning LLMs, which allows us to train models within
our computational limits.

4.2.1 TOKENIZATION

After generating training data using BO, we convert these trajectories into a textual format for the
LLM. To do this, we take advantage of the extensive LLM pre-training and utilize the native numeri-
cal tokens. The Llama 3.2 models have numerical tokens between 0 and 999, before which numbers
are split into multiple tokens. We find that small models like Llama 3.2 struggle to complete simple
math with numbers represented by multiple tokens. Therefore, to minimize the number of tokens
used and to reduce complexity, we convert all number values in the trajectory to integers in the range
of 0 to 999, meaning each value uses one token. This takes advantage of the rich pre-training and

Under review as a conference paper at ICLR 2026

complex numerical representations that the LLM has learned for each number. We begin with a few
descriptors about the problem, including some parameter setup (number of random steps, model
steps). The actions are scaled linearly within their possible range before being discretized into inte-
gers. For each trajectory, the highest objective value is given a score of 999 and the lowest a score
of 0, with all other values linearly discretized. Lastly, for each action-objective pair, we include a
True-False value indicating whether the trajectory achieves its best value up to that point or not.

Therefore, each step is represented as
[ag, a1, ...,a4—1] : s, 1{new best value achieved}.

We show sample of an example prompt below.

Instruction:

This problem is a synthetic 2D black-box optimization problem. We will begin by ini-
tializing with 10 random steps, after which you must optimize the objective with 20 ad-
ditional steps. Random Steps: Step 1:[765,488]:210,True; Step 2:[192,128]:251,False;
Step 3:[136,651]:611,False; Step 4:[350,526]:220,False; Step 5:[370,666]:226,False;
Step 6:[160,924]:999,False; Step 7:[20,451]:760,False; Step 8:[576,854]:209,True; Step
9:[686,983]:227, False; Step 10:[667,414]:207, True.

Response:

Optimization Steps: Step 1:[422,581]:208,False; Step 2:[684,642]:211,False; Step
3:[257,276]:235,False; Step 4:[446,640]:206,True; Step 5:[738,266]:269,False; Step
6:[462,736]:207,False; Step 7:[440,616]:206,False; Step 8:[449,682]:207,False; . . .

4.2.2 TRAINING

Our fine-tuning methodology treats learning both action and objective values as a sequential model-
ing problem. We represent the “expert” trajectories in text form and fine-tune the Llama 3.2 model
using Unsloth. From the full set of trajectories, we select the k best trajectories at step counts of
5, 10, 15, 20, 25, 30, 35, and 40 for each function. The best trajectories are determined by the
minimum value achieved within the given number of steps. After converting these top-k trajectories
into the text format, the dataset consists of 8 x k x 250,000 trajectories, where 8 corresponds to the
number of step counts, k is the number of selected trajectories, and 250,000 is the number of syn-
thetic functions. We fine-tune the Llama 3.2 3B model with a batch size of 128 for one epoch. We
evaluate multiple values of k (see Section[5.4) and find that & = 5 yields the best results. Additional
implementation details and hyperparameters are provided in Appendix [A]

4.2.3 INFERENCE

At inference time, we use the same prompt schema as at train time, except for the objective normal-
ization. Because we do not have access to the range of objective values our method will achieve we
have to determine a scaling strategy for the objective values. We also utilize an acquisition function
given multiple forward passes of the model to select the action with the best predicted chance of
providing an improved point. The combination of these two methodologies allows our model to
outperform the best individual BO methods.

Objective Normalization: Our model represents objective values as discrete integers in the range
[0,999]. During training, each trajectory is normalized using its observed minimum and maximum
values. At inference, however, the true global minimum and maximum are unknown, so we approx-
imate the scaling adaptively. Specifically, we set the maximum value of 999 to the largest value
observed so far in the trajectory, and define the minimum as Ch,;y (t), where ¢t is the current step. We
initialize Chyin (0) = 500 and decrease it linearly to Cy,;, (1) = 100 for the final step 7. All other
values are linearly interpolated in this range. This schedule mimics the decreasing range observed
during training without relying on the unknown true optimum.

Acquisition Function: To further improve model performance, we take advantage of the model’s
predicted objective value distribution. We run k forward passes on the model to generate & possible
actions and & predicted objective value distributions. We find that £ = 4 is a good balance of

Under review as a conference paper at ICLR 2026

performance relative to runtime cost. We then use an expected improvement acquisition function
relative to the previously achieved minimum to select the proposed action with the highest expected
improvement. This allows the model to select best predicted point from its options.

Therefore to complete inference, we begin by randomly sampling points and converting the trajec-
tory history to our prompt format. We then run multiple forward passes of the model to get multiple
possible actions, using the acquisition function to select a single action. We evaluate the selected
action and provide the updated information to the model, iteratively running the model, selecting a
sample point, and evaluating until the budget is exhausted.

5 EXPERIMENTS

5.1 BENCHMARKS AND EXPERIMENTAL SETUP

We test our methodology on in-distribution and out-of-distribution functions. We utilize our function
generators from model training to create a holdout test set of diverse functions to test in-distribution
performance. To test out-of-distribution performance, we use the Virtual Library of Simulated
Experiments (VLSE) (Surjanovic & Bingham| 2013) and Black-Box Optimization Benchmark
(BBOB) (Elhara et al,|2019). These both contain functions that are traditionally used as standard
benchmarks for global black-box optimization. We test our method on 2D to 10D function spaces.

We utilize the same global optimizers used to generate training data as our baselines. This in-
cludes the following acquisition functions: LogEI, UCB, and PI with various parameterizations.
These baselines were implemented in BoTorch (Balandat et al., 2020). We also compare to other
gradient-free optimizers, including Covariance matrix adaptation evolution strategy (CMA-ES), par-
ticle swarm optimization (PSO), tree-structured Parzen estimator (TPE), differential evolution (DE),
and PFNs4BO, a general purpose transformer-based optimization framework (Miiller et al., 2023)).

We show the performance of each method on these benchmarks using mean normalized per-
formance. Normalized performance evaluates the performance of each method in relation to
the overall regret while factoring in the scale of the function. We measure this with P =
(min({f(x1),..., f(xL)})=f*)/(fm—f*), where f* is the global minimum and f,, is the median
of the initial randomly sampled points. We report the mean performance over tested functions.

5.2 PERFORMANCE ON HOLDOUT TRAINING DISTRIBUTION

We show the performance of the model on holdout training distribution functions in Figure[2] This
includes functions from each training class in dimension 2D to 10D, Gaussian process, neural net-
work, ODE, expression tree, and Fourier expression, along with augmentations for each class. We
see that GPTOpt far outpaces any individual classical optimization method.

5.3 PERFORMANCE ON OUT-OF-DISTRIBUTION BENCHMARKS

We show the performance of the model on the BBOB and VLSE test suites over dimensions 2D to
10D in Figure[3|and Figure[d We see that GPTOpt outperforms each individual BO method over 40
steps for both test suites. In addition, other than CMA-ES performing well over initial steps on VLSE
functions, the performance of GPTOpt is superior to each BO method across the step progression,
showing robust optimization performance over steps. This is an important result because GPTOpt
was not trained on any BBOB or VLSE functions and this is a true out-of-distribution test.

5.4 ABLATIONS

Top-k Trajectories: We evaluate the effect of filtering trajectories using different top-k values
during training data selection, where k represents the top-k trajectories selected from each training
function. Specifically, we train models with k € {1, 2,5}, each for one epoch. Due to computational
constraints, we were unable to train a model on the complete dataset with & = 10. Results are shown
in Figure [5al where we observe that using more data improves performance.

Inference Method: We next ablate different inference methods. Our model has several parameters
that affect performance, most notably the sampling parameters. One key factor is the temperature

Under review as a conference paper at ICLR 2026

Mean Normalized Performance

0.8

0.7

0.6

0.4

0.55

0.60 0.65 0.70 0.75 0.80
Mean Normalized Final Step Performance

0.85

20
Step

30 40

-~- GPTOpt

CMA-ES

DE

GP LogEl 0.0
GP LogEl 0.01
GP LogEl 0.1
GP PI1 0.0

GP PI 0.01
GPPI 0.1

GP UCB 0.1
GPUCB 1.0
GP UCB 10.0
GP UCB 2.576
PSO

—— TPE

(a) Mean normalized performance at step 40. (b) Progression of performance over steps.

Figure 2: Mean normalized performance with standard error over 5 splits on holdout training distri-
bution test functions from 2D to 10D. We test over 10 functions of each type from each dimension,

totaling 900 overall functions.

GPTOpt [--- GPTOPt |
GP P10.01 — — CMAES
GPPI 0.1 — DE
GP UCB 0.1 g —— GP LogEl 0.0
GP LogEl 0.0 g GP LogEl 0.01
GP LogEl 0.01 [—— 5 GP LogEl 0.1
GPUCB 1.0 s —— GPPIO.O
GP PI 0.0 s GP PI10.01
GP UCB 2.576 —_— N GPPI0.1
GP LogEl 0.1 E GP UCB 0.1
PENS4BO s ~—— GPUCB 1.0
TPE < GP UCB 10.0
GP UCB 10.0 — 2o GP UCB 2.576
PSO —u —— PFNs4BO
CMAES PSO
oE — TPE

0.82 0.84 0.86 0.88 0.90 0.92

Mean Normalized Final Step Performance

0.94

(a) Mean normalized performance at step 40.

20
Step

30 40

(b) Progression of performance over steps.

Figure 3: Mean normalized performance with standard error over 5 splits on out-of-distribution
BBOB 2D to 10D test functions. We test over 50 functions of each type from each dimension,
totaling 450 overall functions.

of the sampling distribution, which controls the level of randomness in the generated points. We
test temperatures ¢t € {1.0,1.5,2.0} and find that ¢ = 1.5 yields the best performance. Results are
shown in Figure [5b}

6 CONCLUSION, LIMITATIONS, AND FUTURE WORK

In this work, we introduced GPTOpt, a novel approach for black-box global optimization using
a fine-tuned LLM. We formulated the optimization task as a sequential decision-making problem
and created a wide variety of synthetic functions for training. Learning from high-quality trajecto-
ries from multiple expert optimizers, our model shows strong performance on unseen optimization
problems without the need for task-specific tuning. Therefore, we show a methodology that adds
optimization capabilities to LLMs, taking advantage of their rich pre-training stage to improve upon
previous learned methods. This work highlights the potential of LLMs in advancing global opti-
mization and naturally paves the way for promising future extensions.

Our approach is currently limited to continuous, single-objective optimization less than 10D, which
restricts its applicability to problems involving combinatorial or mixed-integer decision spaces, as
well as multi-objective scenarios. Extending the model to tackle these broader categories could

Under review as a conference paper at ICLR 2026

GPTOpt -~ GPTOpt
GP UCB 0.1 —— CMA-ES
GP Pl 0.01 —_— —— DE
GP Pl 0.0 g —— GP LogEl 0.0
GPPI0.1 2 GP LogEl 0.01
GP UCB 1.0 s GP LogEl 0.1
GP LogEl 0.01 [5 —— GPPI0.0
GP LogEl 0.0 3 GP PI0.01
GP UCB 2.576 | g | N GPPI 0.1
GP LogEl 0.1 = E —— GPUCB 0.1
PFNs4BO S —— GPUCB 1.0
CMA-ES < GP UCB 10.0
GP UCB 10.0 — 2 GP UCB 2.576
PSO — —— PFNs4BO
TPE PSO
DE — TPE
0.65 0.70 0.75 0.80 0.85 0.90 0 10 20 30 40
Mean Normalized Final Step Performance Step
(a) Mean normalized performance at step 40. (b) Progression of performance over steps.

Figure 4: Mean normalized performance with standard error over 5 splits on out-of-distribution
VLSE 2D to 10D test functions. We test over 50 functions of each type from each dimension,
totaling 450 overall functions.

0.860 0.860

0.855

0.855
0.850

0.845

0.850

0.840

0.845

Mean Normalized Final Step Performance
Mean Normalized Final Step Performance

0.835

Top 5 Top 2 Top 1 Temp 1.5 Temp 2.0 Temp 1.0

(a) Ablation on top-k trajectories. We show the mean (b) Ablation on sampling temperature. We show the
normalized optimization performance with standard mean normalized optimization performance with stan-
error over 5 splits of 3 top-k models tested after 40 dard error over 5 splits of 3 temperature parameters
steps on 2D to 10D holdout training distribution func- tested after 40 steps on 2D to 10D holdout training
tions. distribution functions.

Figure 5: Ablation studies on training dataset and inference method.

significantly enhance its versatility. Finally, although GPTOpt beats all baseline BO variants over
traditional benchmarks, extending to other distributions that have more complex relationships or
behavior may degrade performance. Adding more diverse training data or fine-tuning further to
specific domains may further improve generalizability and performance.

However, there are many advantages of our LLM-based approach in comparison to BO and oppor-
tunities for future work. First, if training data is available, GPTOpt could be finetuned to meet the
needs of individual circumstances. This could result in further improved performance, even with
limited training data. Additionally, GPTOpt could be augmented to include semantic information
that is difficult to incorporate with BO-based methods. Including information such as historical data
from previous similar tests or parameter names and definitions could provide valuable information
that models based on GPTOpt could take advantage of that BO or other classical methods could
not. Lastly, scaling up with additional training data from a broader range of functions, as well as
utilizing larger models may improve performance. Therefore, GPTOpt provides a base that can be
utilized to extend to different contexts or quantities of information in a way that BO cannot. Making
these extensions possible is a valuable part of our contributions.

Under review as a conference paper at ICLR 2026

7 ETHICS STATEMENT

We do not believe this work has significant ethical concerns and is solely related to improving the
performance of black-box optimization methods. We utilized LLMs in this work as a formatting aid.

8 REPRODUCIBILITY STATEMENT

We provide details on the implementation and use of our model, both in training and inference,
throughout the paper and with further details in Appendix[A] Additionally, we will provide the code,
fine-tuned model, and dataset as open-source upon acceptance of this paper.

REFERENCES

Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. Optuna:
A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, 2019.

Ahmed Alaa and Mihaela Schaar. Autoprognosis: Automated clinical prognostic modeling via
bayesian optimization with structured kernel learning. In International conference on machine
learning, pp. 139-148. PMLR, 2018.

Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, and Eytan Bakshy. Un-
expected improvements to expected improvement for bayesian optimization. Advances in Neural
Information Processing Systems, 36:20577-20612, 2023.

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
Brendan Shillingford, and Nando De Freitas. Learning to learn by gradient descent by gradient
descent. Advances in neural information processing systems, 29, 2016.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,
Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient
Monte-Carlo Bayesian Optimization. In Advances in Neural Information Processing Sys-
tems 33, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
f5p1b89d98b7286673128a5fbll2cb9a—-Abstract.htmll

Florian Bordes, Richard Yuanzhe Pang, Anurag Ajay, Alexander C Li, Adrien Bardes, Suzanne
Petryk, Oscar Maiias, Zhiqiu Lin, Anas Mahmoud, Bargav Jayaraman, et al. An introduction to
vision-language modeling. arXiv preprint arXiv:2405.17247, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877-1901, 2020.

Sofian Chaybouti, Ludovic Dos Santos, Cedric Malherbe, and Aladin Virmaux. Meta-learning of
black-box solvers using deep reinforcement learning. In NeurIPS 2022, MetaLearn Workshop,
2022.

Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel,
Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence
modeling. Advances in neural information processing systems, 34:15084-15097, 2021.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23(189):1-59, 2022a.

Yutian Chen, Matthew W Hoffman, Sergio Gémez Colmenarejo, Misha Denil, Timothy P Lilli-

crap, Matt Botvinick, and Nando Freitas. Learning to learn without gradient descent by gradient
descent. In International Conference on Machine Learning, pp. 748-756. PMLR, 2017.

10

https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/f5b1b89d98b7286673128a5fb112cb9a-Abstract.html

Under review as a conference paper at ICLR 2026

Yutian Chen, Xingyou Song, Chansoo Lee, Zi Wang, Richard Zhang, David Dohan, Kazuya
Kawakami, Greg Kochanski, Arnaud Doucet, Marc’aurelio Ranzato, et al. Towards learning uni-
versal hyperparameter optimizers with transformers. Advances in Neural Information Processing
Systems, 35:32053-32068, 2022b.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Alexander Cowen-Rivers, Wenlong Lyu, Rasul Tutunov, Zhi Wang, Antoine Grosnit, Ryan-Rhys
Griffiths, Alexandre Maravel, Jianye Hao, Jun Wang, Jan Peters, and Haitham Bou Ammar. Hebo:
Pushing the limits of sample-efficient hyperparameter optimisation. Journal of Artificial Intelli-
gence Research, 74, 07 2022.

Michael Han Daniel Han and Unsloth team. Unsloth, 2023. URL http://github.com/
unslothai/unsloth.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv—2407, 2024.

Ouassim Elhara, Konstantinos Varelas, Duc Nguyen, Tea Tusar, Dimo Brockhoff, Nikolaus Hansen,
and Anne Auger. Coco: the large scale black-box optimization benchmarking (bbob-largescale)
test suite. arXiv preprint arXiv:1903.06396, 2019.

Timothy Erps, Michael Foshey, Mina Konakovi¢ Lukovi¢, Wan Shou, Hanns Hagen Goetzke, Herve
Dietsch, Klaus Stoll, Bernhard von Vacano, and Wojciech Matusik. Accelerated discovery of
3d printing materials using data-driven multiobjective optimization. Science advances, 7(42):
eabf7435, 2021.

Daniel Golovin, Benjamin Solnik, Subhodeep Moitra, Greg Kochanski, John Karro, and David Scul-
ley. Google vizier: A service for black-box optimization. In Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data mining, pp. 1487-1495,
2017.

Ryan-Rhys Griffiths and José Miguel Herndndez-Lobato. Constrained bayesian optimization for
automatic chemical design using variational autoencoders. Chemical science, 11(2):577-586,
2020.

Nikolaus Hansen and Andreas Ostermeier. Completely derandomized self-adaptation in evolution
strategies. Evolutionary computation, 9(2):159-195, 2001.

John H Holland. Adaptation in natural and artificial systems: an introductory analysis with appli-
cations to biology, control, and artificial intelligence. MIT press, 1992.

Bing-Jing Hsieh, Ping-Chun Hsieh, and Xi Liu. Reinforced few-shot acquisition function learning
for bayesian optimization. Advances in Neural Information Processing Systems, 34:7718-7731,
2021.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. /CLR, 1(2):3, 2022.

Beichen Huang, Xingyu Wu, Yu Zhou, Jibin Wu, Liang Feng, Ran Cheng, and Kay Chen Tan.
Exploring the true potential: Evaluating the black-box optimization capability of large language
models. arXiv preprint arXiv:2404.06290, 2024.

Huaijun Jiang, Yu Shen, Yang Li, Beicheng Xu, Sixian Du, Wentao Zhang, Ce Zhang, and Bin Cui.
Openbox: A python toolkit for generalized black-box optimization. Journal of Machine Learning
Research, 25(120):1-11, 2024.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, et al. Openvla: An open-source
vision-language-action model. arXiv preprint arXiv:2406.09246, 2024.

11

http://github.com/unslothai/unsloth
http://github.com/unslothai/unsloth

Under review as a conference paper at ICLR 2026

Scott Kirkpatrick, C Daniel Gelatt Jr, and Mario P Vecchi. Optimization by simulated annealing.
science, 220(4598):671-680, 1983.

Siddarth Krishnamoorthy, Satvik Mehul Mashkaria, and Aditya Grover. Generative pretraining for
black-box optimization. arXiv preprint arXiv:2206.10786, 2022.

Robert Lange, Yingtao Tian, and Yujin Tang. Large language models as evolution strategies. In
Proceedings of the Genetic and Evolutionary Computation Conference Companion, pp. 579-582,
2024.

Ke Li and Jitendra Malik. Learning to optimize. arXiv preprint arXiv:1606.01885, 2016.

Xiaobin Li, Kai Wu, Yujian Betterest Li, Xiaoyu Zhang, Handing Wang, and Jing Liu. Pretrained
optimization model for zero-shot black box optimization. In The Thirty-eighth Annual Conference
on Neural Information Processing Systems, 2024.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Car-
olin Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian opti-
mization package for hyperparameter optimization. Journal of Machine Learning Research, 23
(54):1-9,2022. URL|http://jmlr.org/papers/v23/21-0888.htmll

Tennison Liu, Nicolds Astorga, Nabeel Seedat, and Mihaela van der Schaar. Large language models
to enhance bayesian optimization. arXiv preprint arXiv:2402.03921, 2024.

Alexandre Maraval, Matthieu Zimmer, Antoine Grosnit, and Haitham Bou Ammar. End-to-end
meta-bayesian optimisation with transformer neural processes. Advances in Neural Information
Processing Systems, 36, 2024.

Samuel Miiller, Matthias Feurer, Noah Hollmann, and Frank Hutter. Pfns4bo: In-context learning
for bayesian optimization. In International Conference on Machine Learning, pp. 25444-25470.
PMLR, 2023.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando De Freitas. Taking the
human out of the loop: A review of bayesian optimization. Proceedings of the IEEE, 104(1):
148-175, 2015.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of machine
learning algorithms. Advances in neural information processing systems, 25, 2012.

Lei Song, Chenxiao Gao, Ke Xue, Chenyang Wu, Dong Li, Jianye Hao, Zongzhang Zhang, and
Chao Qian. Reinforced in-context black-box optimization. arXiv preprint arXiv:2402.17423,
2024a.

Xingyou Song, Oscar Li, Chansoo Lee, Daiyi Peng, Sagi Perel, Yutian Chen, et al. Omnipred:
Language models as universal regressors. arXiv preprint arXiv:2402.14547, 2024b.

Xingyou Song, Yingtao Tian, Robert Tjarko Lange, Chansoo Lee, Yujin Tang, and Yutian Chen.
Position paper: Leveraging foundational models for black-box optimization: Benefits, challenges,
and future directions. arXiv preprint arXiv:2405.03547, 2024c.

Xingyou Song, Qiuyi Zhang, Chansoo Lee, Emily Fertig, Tzu-Kuo Huang, Lior Belenki, Greg
Kochanski, Setareh Ariafar, Srinivas Vasudevan, Sagi Perel, et al. The vizier gaussian process
bandit algorithm. arXiv preprint arXiv:2408.11527, 2024d.

S. Surjanovic and D. Bingham. Virtual library of simulation experiments: Test functions and
datasets. Retrieved September 20, 2024, from http://www.sfu.ca/~ssurjano, 2013.

Yunsheng Tian, Mina Konakovi¢ Lukovié, Timothy Erps, Michael Foshey, and Wojciech Matusik.
Autooed: Automated optimal experiment design platform. arXiv preprint arXiv:2104.05959,
2021.

Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, and Isabelle
Guyon. Bayesian optimization is superior to random search for machine learning hyperparameter
tuning: Analysis of the black-box optimization challenge 2020. In NeurIPS 2020 Competition
and Demonstration Track, pp. 3-26. PMLR, 2021.

12

http://jmlr.org/papers/v23/21-0888.html
http://www.sfu.ca/~ssurjano

Under review as a conference paper at ICLR 2026

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems (NeurIPS), pp. 5998-6008, 2017.

Michael Volpp, Lukas P Frohlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, and
Christian Daniel. Meta-learning acquisition functions for transfer learning in bayesian optimiza-
tion. arXiv preprint arXiv:1904.02642, 2019.

Zi Wang, George E Dahl, Kevin Swersky, Chansoo Lee, Zachary Nado, Justin Gilmer, Jasper Snoek,
and Zoubin Ghahramani. Pre-trained gaussian processes for bayesian optimization. Journal of
Machine Learning Research, 25(212):1-83, 2024.

Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V. Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers, 2024. URL https://arxiv.org/abs/2309.
034009.

A IMPLEMENTATION DETAILS

A.1 DATA GENERATION

To construct a diverse training dataset, we implement multiple classes of continuous synthetic black-
box functions within a unified environment interface. Each environment is initialized with a dimen-
sionality and a random seed for reproducibility. Inputs are normalized to the continuous range
[~1,1]%, enabling all generators to share the same interface for sampling, evaluation, and visualiza-
tion. For reproducibility, all parameters and random draws are controlled by fixed seeds.

Gaussian Processes (GPs) GP-based functions are sampled from a Gaussian process prior defined
over the input space. Random covariance kernels are generated by combining base kernels (RBF,
Matern, Rational Quadratic, Exponential) using addition and multiplication, with up to three ker-
nels per function. Hyperparameters such as lengthscales and variances are drawn from log-uniform
distributions. A fixed set of initial points is sampled, and function values are generated from the cor-
responding multivariate Gaussian. Evaluations are obtained by conditioning on this prior, yielding
smooth but diverse optimization landscapes.

Random Neural Networks (NNs) NN-based functions are defined by randomly initialized fully-
connected feedforward networks with 5-10 hidden layers and 16-256 hidden units per layer. Ac-
tivation functions are drawn at random from a pool including ReLU, Tanh, and LeakyReLU. No
training is performed; instead, the output values are fully determined by initialization, producing
highly nonlinear but stable functions.

Ordinary Differential Equations (ODEs) ODE-based functions are generated by simulating
small dynamical systems of dimension 2—6. The system evolves according to

dy
dt
where the coefficients depend linearly on the input z. For each evaluation, the system is integrated
forward in time using a fourth-order Runge—Kutta scheme over 100-200 steps. The final state is

projected through a random readout vector to produce a scalar objective value, introducing temporal
dependencies and nonlinearities tied to the input.

A(z)y + tanh(B(2)y) + U(2) + frore(t, 2),

Expression Trees Expression-tree functions are constructed by combining elementary operations
(addition, multiplication, sine, tanh, and polynomial terms) into randomly generated symbolic for-
mulas. Each tree includes a normalized linear base term to prevent trivial constants, plus a number
of nonlinear and polynomial features. Random input rotations and optional output warps (ex: tanh)
are applied to further increase variety. This produces interpretable symbolic expressions with highly
diverse behaviors.

13

https://arxiv.org/abs/2309.03409
https://arxiv.org/abs/2309.03409

Under review as a conference paper at ICLR 2026

Fourier Expressions Fourier-based functions are generated by summing 5-50 sinusoidal terms of
the form
F(@) =3 Assin(w] z + 00),

where amplitudes A;, frequencies w;, and phases ¢; are sampled uniformly from predefined ranges.
This results in oscillatory functions with varying frequencies and interference patterns, creating
landscapes with multiple local optima.

Augmentations. To further enrich the base function classes, we apply a probabilistic augmentation
layer that introduces nonstationary and real-world-like behaviors. Augmentations include:

* Nonlinear input warps: smooth affine transformations with tanh nonlinearities.
* Discontinuity staircases: injecting sharp sigmoidal jumps at random thresholds.

* Nonlinear kinks: adding softplus hinges and odd-power bends to create local irregulari-
ties.

* Soft plateaus: differentiable quantization that snaps values toward discrete centroids.

* Frequency-modulated ripples: superimposing oscillatory signals with varying frequency
and amplitude.

Each augmentation is applied with a fixed probability and scaled relative to the natural range of the
base function, ensuring meaningful variation without overwhelming the underlying structure.

We use a variety of global optimization algorithms in each environment to generate expert trajec-
tories. For each of the synthetic functions generated ranging from 2D to 10D, we run BO with 10
acquisition variants. These include LogEI (Ament et al., 2023), Upper Confidence Bound (UCB),
Probability of Improvement (PI) acquisition functions with various exploitation-exploration param-
eters. For LogEI and PI, we adapt the exploitation-exploration level with a range of 3 parameters
and for UCB we use a range of 4 parameters. For LogEI and PI, we use £ = [0.0,0.01,0.1] and
for UCB we use x = [0.1, 1.0, 2.576, 10.0], which are all standard values for these acquisition func-
tions. We begin by sampling 10 initial points randomly to initialize each model. We then fit the GP
model to the set of points and use the specified acquisition function to sample a prospective point.
After evaluating that point, we refit the model and continue iteratively. We generate trajectories on
functions ranging from 2D to 10D, with most of the data coming from 2D to 6D due to compu-
tational limits. We generate 5,000 synthetic functions for each function subclass, totaling 50,000
functions per dimension for 2D to 6D. We then generate 100 functions per subclass, totaling 1,000
functions per dimension for 7D to 10D. Given we generate 10 trajectories per function, this totals
around 2,500,000 total 40 step trajectories.

We generate trajectories using CPU machines, primarily on an Intel Xeon Platinum 8260 system. We
find that, although BoTorch supports GPU acceleration, the most cost-efficient manner to generate
trajectories is to use parallel CPU processes. However, even with optimizations, running our baseline
global optimizers is slow, especially for higher dimensions. Therefore, we total ~ 50,000 vCPU
hours for our data generation. We were limited by the amount of trajectories we could generate and
more data may help improve the model.

A.2 TRAINING

Our full training dataset contains ~ 2,500,000 total trajectories. We use data augmentation to
expand this and enable further generalization. We augment by swapping axes, flipping the action
space, and randomizing the order of the initial points to provide additional training data. This
augmentation greatly expands the trajectory space, particularly for higher dimensions. We also
include shortened trajectories (i.e., the first 20 steps of a 40 step trajectory) to expand the dataset.
Overall, Table[I] contains the number of environments and therefore trajectories of each type before
augmentation. We input trajectories of length 5, 10, 15, 20, 25, 30, 35, and 40 to the model, where
length does not include the 10 random initial steps.

We use the Llama 3.2 family of models as our base model (Dubey et al 2024). Specifically, we
use the 3B model for our experiments. This is a text-only LLM that provides a model with rea-
sonable capabilities, but is manageable to fine-tune within our compute budget. Expanding the size

14

Under review as a conference paper at ICLR 2026

Table 1: Number of functions and trajectories for each dimension.

Dimension Functions Trajectories

2D-6D 50,000 500,000
7D-10D 1000 10,000
Total 254,000 2,540,000

of the base model is a possibility for further improvement. We fine-tune the model using low-rank
adaption (LORA) with Unsloth Hu et al.| (2022); |Daniel Han & team| (2023)). This provides a fast
and efficient framework for fine-tuning LLMs, which allows us to train models within our compu-
tational limits. We use a custom data collator to convert our trajectory data into text-based format
with augmentations.

We use the hyperparameters shown in Table [2]to fine-tune the model. The model is trained using 4
Nvidia H100 GPUs. In total, training takes ~ 1.5 days on this system.

Table 2: Hyperparameters for model training.

Hyperparameter Value

Base Model Llama 3.2 3B

Learning Rate 2 x 10~* with cosine scaling
Weight Decay 0.01

Batch Size 128 trajectories

LoraR 64

Lora Alpha 64

Bias None

Dropout 0.0

Precision BF16

Epochs 1

A.3 INFERENCE

Atinference time, we use the same prompt schema as at train time, except for the state normalization.
Because we do not have access to the range of objective values our method will achieve we have to
determine a scaling strategy for the objective values. We also utilize an acquisition function given
multiple forward passes of the model to select the action with the best predicted chance of providing
a improved point. The combination of these two methodologies allows our model to outperform the
best individual BO methods.

Objective Normalization: Our model represents objective values as discrete integers in the range
[0,999]. During training, each trajectory is normalized using its observed minimum and maximum
values. At inference, however, the true global minimum and maximum are unknown, so we approx-
imate the scaling adaptively. Specifically, we set the maximum value of 999 to the largest value
observed so far in the trajectory, and define the minimum as Cyyi, (t), where ¢ is the current step.
We initialize Cpin(0) = 500 and decrease it linearly to Cp,in (7)) = 100 for the final step 7. All
other values are linearly interpolated in this range. This schedule mimics the decreasing range ob-
served during training without relying on the unknown true optimum. This is important because we
encourage the model to further improve upon the previous states reached.

Acquisition Function: To further improve model performance, we take advantage of the model’s
predicted objective value distribution. We run k forward passes on the model to generate k possi-
ble actions and k predicted objective value distributions. We find that £ = 4 is a good balance of
performance relative to runtime cost. We then use an expected improvement acquisition function
to select the proposed action with the highest expected improvement. This uses the predicted prob-
ability distribution of each proposed action and calculates the expected value of the improvement
relative to the previously achieved minimum. This allows the model to select better actions than any
individual BO method. This is because we use the model’s learned knowledge of possible actions
with promising regions to explore to improve upon its training data.

15

Under review as a conference paper at ICLR 2026

Using these methods, we convert the model’s history to our prompt format. We then sample multiple
possible actions, using the acquisition to select a single action. We evaluate the selected action
and provide the updated information to the model, iteratively selecting points until the budget is
exhausted.

B FURTHER EXPERIMENTS

We provide further experiments to demonstrate the optimization abilities of GPTOpt.

B.1 DIMENSION BREAKDOWN

We provide a breakdown of the performance of GPTOpt over 2D to 10D for both out holdout test
functions and the out-of-distribution benchmarks in Figure [f] We see that GPTOpt is consistently
the top performing method, with some variability due to randomness. This provides further evidence
of the robustness of our method, as GPTOpt is consistent across all dimensions tested.

1.0 T e T
° -~- GPTOpt 095 -~- GPTOpt
5 —— CMA-ES £ —— CMA-ES
£09 —— DE E 000 —— DE
g —— GP LogEl 0.0 g —— GP LogEl 0.0
S GP LogEl 0.01 k4 GP LogEl 0.01
g ~+— GP LogEl 0.1 §°-55 ~+— GP LogEl 0.1
@ —— GPPI0.0 a —— GPPI 0.0
go7 GP PI0.01 Zos0 GP PI 0.01
i i
= ~~ GPPIO.1 = “ GPPIO.1
Ros —— GPUCB 0.1 Bors —— GP UCB 0.1
3 —— GPUCB 1.0 i —— GPUCB 1.0
E GP UCB 10.0 So70 GP UCB 10.0
205 GP UCB 2.576 z GP UCB 2.576
3 PSO g PSO
= =065

04 —— TPE —— TPE

2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
Dimension (D) Dimension (D)

(a) Dimension progression over holdout training dis- (b) Dimension progression over BBOB and VLSE test
tribution test functions per dimension. functions per dimension.

Figure 6: Mean normalized performance after 40 steps on test functions split over dimensions.

B.2 WIN RATE

We show the win rate of GPTOpt against all baselines on our test suites in Figure[7]] We see that
GPTOpt outperforms all baselines in win-rate. This is another important metric for an optimizer
and highlights the robustness of GPTOpt.

DE

PSO

TPE

GP UCB 10.0
CMA-ES

GP LogEl 0.1
GP PI1 0.0
GPPIO.1

GP LogEl 0.01
GP UCB 2.576
GP LogEl 0.0
GP UCB 0.1
GP PI10.01
GPUCB 1.0 54.1%

0.0 0.2

0.8 0.0 0.2 .6 0.8

0.4 0.
GPTOpt Win Rat

0.4 0.6
GPTOpt Win Rate
(a) Win rate with standard error of GPTOpt compared (b) Win rate with standard error of GPTOpt compared

to all baselines after 40 steps on 2D to 10D holdout to all baselines after 40 steps on 2D to 10D BBOB and
training distribution test functions. VLSE training distribution test functions.

Figure 7: Win rate after 40 steps of GPTOpt compared to all baselines.

16

Under review as a conference paper at ICLR 2026

C EVALUATIONS

We provide further detail into the evaluation strategy used for both benchmarks and baselines in our
experiments.

C.1 BENCHMARKS

GP: We use the function generator used for generating training data as the initial baseline for our
method. This contains diverse GP functions over a flexible dimension.

BBOB (Elhara et al.,[2019): The Black-Box Optimization Benchmarking suite was developed as
part of the COCO (Comparing Continuous Optimizers) platform to provide a rigorous and standard-
ized environment for evaluating continuous, unconstrained optimization algorithms. BBOB includes
24 benchmark functions that represent a wide range of challenges encountered in real-world opti-
mization, such as separability, multimodality, ill-conditioning, and non-convexity. Each function
is parameterized with randomized shifts, scalings, and rotations to prevent algorithms from over-
fitting to specific patterns. The suite was carefully designed through mathematical constructions
and transformations of base functions to create controlled yet diverse test cases. It supports varying
dimensions and is widely used in the black-box optimization community.

VLSE (Surjanovic & Bingham,|2013): The Virtual Library of Simulation Experiments is a bench-
mark suite aimed at simulating real-world optimization problems where the objective function is
defined by computational simulations rather than closed-form expressions. We use the optimization
test problems from this set.

C.2 BASELINES

We aim to provide state-of-the-art baselines for the various benchmarks on which our model is
tested.

C.2.1 LLM EVALUATION

Similar to|Huang et al.|(2024)), we explore the use of state-of-the-art LLMs as out-of-the-box black-
box optimizers. We explore various possible prompt formats with Gemini 2.5 Pro (Comanici et al.|
2025)). We find that this model is not capable of matching the performance of BO or other classical
black-box optimization methods, but is capable of some optimization performance. We use the fol-
lowing prompt format for Gemini, which provides the model with contextual information about the
problem and the evaluated points so far. The model responds with a specific format that corresponds
with our expected inputs.

You are an expert Al optimization assistant.

Your objective is to find the input ‘x’ that minimizes the output of a black-box function
f(@).

The input parameters and their bounds are:

- ‘param_0’: a float between —1.0 and 1.0

- ‘param_1’: a float between —1.0 and 1.0

Here are the points evaluated so far:

- Point 1: ‘param_0’: 0.532, ‘param_1’: -0.023 — 22.801

- Point 2: ‘param_0’: -0.616, ‘param_1": -0.743 — 3902.753
- Point 3: ‘param_0’: -0.728, ‘param_1": 0.303 — 37473.902
- Point 4: ‘param_0’: -0.3, ‘param_1’: 0.053 — 1015.296

- Point 5: ‘param_0’: -0.26, ‘param_1": 0.333 — 1581.922

- Point 6: ‘param_0’: -0.68, ‘param_1’: 0.849 — 73664.680

- Point 7: ‘param_0’: -0.959, ‘param_1": -0.097 — 51350.996
- Point 8: ‘param_0’: 0.152, ‘param_1": 0.711 — -46.642

- Point 9: ‘param_0’: 0.373, ‘param_1’: 0.967 — 1647.743

- Point 10: ‘param_0’: 0.335, ‘param_1’: -0.171 — -205.972

17

Under review as a conference paper at ICLR 2026

- Point 11: ‘param_0’: 0.271, ‘param_1": -0.219 — -232.627

- Point 12: ‘param_0’: 0.207, ‘param_1": -0.267 — -241.180

- Point 13: ‘param_0’: 0.143, ‘param_1": -0.315 — -233.962

So far, the best point found is ‘param_0’: 0.207, ‘param_1’: -0.267 with a value of -241.180.
Based on all this information, suggest the next point to evaluate.

Your response MUST be only a Python dictionary mapping parameter names to values.
Example: ‘param_0’: 0.1, ‘param_1’: 0.1

We iteratively provide this prompt format with the updated evaluations until the evaluation budget in
exhausted. We find that the model provides reasonable suggestions but remains significantly worse
than the performance of the BO methods.

C.2.2 BO EVALUATION

We utilize the same global optimizers used to generate training data as our baselines. This includes
the following acquisition functions for BO, implemented in BoTorch (Balandat et al., 2020):

* Log Expected Improvement (LogEI): A variant of EI that operates in log space, making
it more suitable for objectives with large dynamic ranges or multiplicative noise.
Parameters: £ = [0.0,0.01,0.1]

* Probability of Improvement (PI): Chooses points that maximize the probability of achiev-
ing an improvement over the current best observation, often leading to more exploitative
behavior.

Parameters: £ = [0.0,0.01, 0.1]

» Upper Confidence Bound (UCB): Prioritizes points with high predicted mean and uncer-
tainty, controlled by a trade-off parameter.
Parameters: x = [0.1,1.0,2.576, 10.0]

C.2.3 OTHER OPTIMIZERS

We also compare to other gradient-free global optimizers. We use implementations from|Akiba et al.
(2019) where available.

* Covariance Matrix Adaptation Evolution Strategy (CMA-ES): An evolutionary al-
gorithm that adapts the sampling distribution using covariance information for efficient
search.

* Particle Swarm Optimization (PSO): A population-based stochastic optimizer inspired
by the social behavior of birds and fish, adjusting candidate solutions based on personal
and global bests.

* Differential Evolution (DE): A population-based method that perturbs candidate solutions
using scaled differences between population members.

* Tree-structured Parzen Estimator (TPE): A sequential model-based optimization
method that builds probabilistic models of good and bad configurations and samples
promising candidates by maximizing expected improvement.

* PFN4BO Miiller et al.| (2023) : A prior-fitted network method that learns the surrogate of
various possible surrogate models. We use their code and pre-trained HEBO plus model
from their repository in our implementation.

These classical methods typically require thousands of iterations to converge but provide a strong
point of comparison to highlight the performance of our model.

18

	Introduction
	Related work
	Problem statement
	Approach: GPTOpt
	Learning to optimize
	Model architecture
	Tokenization
	Training
	Inference

	Experiments
	Benchmarks and experimental setup
	Performance on holdout training distribution
	Performance on out-of-distribution benchmarks
	Ablations

	Conclusion, limitations, and future work
	Ethics Statement
	Reproducibility Statement
	Implementation details
	Data generation
	Training
	Inference

	Further Experiments
	Dimension Breakdown
	Win Rate

	Evaluations
	Benchmarks
	Baselines
	LLM Evaluation
	BO Evaluation
	Other optimizers

