
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

POINTER-CAD: UNIFYING B-REP AND COMMAND
SEQUENCES VIA POINTER-BASED EDGES & FACES
SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Constructing computer-aided design (CAD) models is labor-intensive but essential
for engineering and manufacturing. Recent advances in Large Language Model
(LLM) have inspired the LLM-based CAD generation by representing CAD as
command sequences. But these methods struggle in practical scenarios because
command sequence representation does not support entity selection (e.g. faces or
edges), limiting its ability to support complex editing operations such as chamfer
or fillet. Further, the discretization of a continuous variable during sketch and ex-
trude operations may result in topological errors. To address these limitations, we
present Pointer-CAD, a novel LLM-based CAD generation framework that lever-
ages a pointer-based command sequence representation to explicitly incorporate
the geometric information of B-rep models into sequential modeling. In partic-
ular, Pointer-CAD decomposes CAD model generation into steps, conditioning
the generation of each subsequent step on both the textual description and the
B-rep generated from previous steps. Whenever an operation requires the selec-
tion of a specific geometric entity, the LLM predicts a Pointer that selects the most
feature-consistent candidate from the available set. Such a selection operation also
reduces the quantization error in the command sequence-based representation. To
support the training of Pointer-CAD, we develop a data annotation pipeline that
produces expert-level natural language descriptions and apply it to build a dataset
of approximately 575K CAD models. Extensive experimental results demonstrate
that Pointer-CAD effectively supports the generation of complex geometric struc-
tures and reduces segmentation error to the order of 10−3, a 100× improvement
over prior methods, thereby significantly mitigating the topological inaccuracies
introduced by quantization error.

1 INTRODUCTION

Computer-Aided Design (CAD) plays an essential role in modern engineering, enabling precise and
efficient design across diverse industry domains Rapp et al. (2021); Castellino (2005). The con-
ventional CAD design workflow typically begins with 2D sketches(e.g. lines, circles), progresses to
3D modeling operations(e.g. extrude, chamfer, fillet), and culminates in models stored in Boundary
Representation (B-rep) (Lambourne et al., 2021) format by software. However, this process remains
heavily reliant on manual input, making it time-consuming, particularly for intricate designs.

Recent efforts (Wu et al., 2025a; Xu et al., 2024b; Alam & Ahmed, 2024; Xu et al., 2022) in CAD
generation have explored parametric design synthesis with large generative models, aiming for fully
autonomous CAD creation in an autoregressive manner. Inspired by the reasoning capabilities of
large language models (LLMs) (Achiam et al., 2023; Yang et al., 2025), several works (Xu et al.,
2024a; Khan et al., 2024a; You et al., 2024; Alrashedy et al., 2024; Wang et al., 2025; Li et al.,
2025a) leverage LLMs or multimodal LLMs (MLLMs) to generate CAD models from natural lan-
guage or other input modalities. Despite these advances, as shown in Figure 1, existing sequential
representations remain limited to basic operations such as sketch and extrude. More sophisticated
editing operations, including chamfer and fillet, are insufficiently supported. These operations re-
fine designs by modifying existing geometry rather than creating new entities, and their correct
execution demands explicit selections of geometric structures, an ability that current command se-
quence representations lack. Furthermore, the discretization of a continuous variable often suffer

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Select

ExtrudeExtrude SelectSelect FilletFillet SketchSketch SnapSnap ExtrudeExtrude

Pointer-CAD
Edge Pointers

Edge PointerEdge Pointer

Extrude Select Fillet Sketch Snap Extrude

Pointer-CAD
Edge Pointers

Edge Pointer

ExtrudeExtrude SketchSketch
ExtrudeExtrude

Command Sequence-Based Method

Location Quantization

Step

Error

Location Quantization

Step

Error

Location Quantization

Step

ErrorFillet

Prompt
Sketch a square and extrude it upward to form a cube. Apply fillets to the four
bottom edges and the four vertical edges. On the top face, draw a smaller square

by connecting edge midpoints and extrude it upward to form another cube.

Figure 1: Illustration of the strength of our proposed pointer-based command sequence compared to
the command sequence-based CAD representation. Command sequences suffer from the inability to refer
to specific edges or faces, and discretization-induced quantization errors. In contrast, Pointer-CAD leverages
edge pointers to directly refer to B-rep entities, enabling precise operations such as sketch snapping, thereby
reducing quantization errors and faithfully following complex text instructions.

from quantization errors, which can disrupt otherwise continuous topological structures and hinder
the effectiveness in practical applications.

To address these limitations, inspired by Pointer Networks (Vinyals et al., 2015), we propose a
pointer-based representation that explicitly references B-rep elements (e.g., edges and faces). This
design mimics an engineer’s interaction with CAD software, enabling direct faces/edges selection
and extending operations such as chamfer and fillet , which are crucial in industrial CAD model-
ing. Moreover, by snapping predictions to referenced B-rep elements indicated by these pointer,
our representation can mitigate coordinate errors from regression or quantization. Building on the
proposed pointer, we introduce a novel LLM-based text-to-CAD framework, Pointer-CAD. Unlike
prior approaches that generate full CAD models in a single step, Pointer-CAD adopts a multi-step
strategy by decomposing the model into distinct steps: at each step, the B-rep from previous steps
and the textual description condition the LLM to generate the parametric subsequent components.
Specifically, we extract geometric cues from B-rep faces and edges, construct a face-adjacency graph
G, and use graph neural networks (GNNs) (Scarselli et al., 2008) to aggregate local features from
neighboring elements. Leveraging the reasoning capabilities of large language models, our frame-
work outputs three complementary components, Label Tokens, Value Tokens, and Pointer, which
can be directly translated into executable commands of CAD models. When an operation requires
geometric dependency on a previously generated structure, such as applying a chamfer to an existing
edge, the Pointer is activated to select the most feature matching candidate face or edge.

To facilitate the performance evaluation of text-to-CAD generation, we design a CAD annotation
pipeline by leveraging Qwen2.5-VL (Bai et al., 2025) to generate high-level textual descriptions
from multi-view CAD renderings. Building on the re-captioned OmniCAD dataset Xu et al. (2024a)
and further extending it with chamfer and fillet operations, we obtain a total of 575,559 models.
For fair comparison with existing baselines, we adopt the DeepCAD Wu et al. (2021) split from
this re-captioned dataset. Our Pointer-CAD achieves strong performance on text-conditioned CAD
generation, improving validity, command sequence accuracy, and geometric reconstruction fidelity.
Notably, segment-level topological fidelity, measured by the Segment Error (SegE) metric, is re-
duced to the 10−3 scale—approximately 100× lower than previous methods (Khan et al., 2024b;
Govindarajan et al., 2025).
To conclude, our contributions can be summarized as follows: (1) A pointer-based CAD repre-
sentation that enables selection of edges and faces, and making generation of advanced operations
such as chamfer and fillet feasible to autoregressive methods and reducing the errors caused by
quantization; (2) We introduce Pointer-CAD, an LLM-based text-to-CAD framework built on the
proposed representation and employing a multi-step generation strategy, where each step is condi-
tioned on both the textual description and the B-rep generated from previous steps; (3) Pointer-CAD
outperforms baseline methods on text-conditioned generation in terms of validity, reconstruction
quality, and topological consistency.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

Boundary Representation (B-rep) (Ansaldi et al., 1985) uses a tree structure to organize vertices,
edges, and faces in a hierarchical way. Several methods generate B-reps by progressively construct-
ing these hierarchical structures (Nash et al., 2020; Guo et al., 2022; Jayaraman et al., 2022). Addi-
tionally, some recent approaches (Xu et al., 2024b; Liu et al., 2025) leverage latent spaces to encode
the complex topology of B-reps. Based on these B-rep latent representation, CMT (Wu et al., 2025a)
takes an effort to utilize a continuous autoregressive manner for B-rep generation. Although B-reps
provide a direct representation of 3D models, the intricate relationships among elements make them
challenging to generate.

Constructive Solid Geometry (CSG) (Foley, 1996) represents objects by combining primitive shapes
through Boolean operations. Due to the non-uniqueness of CSG representations, researchers often
employ unsupervised training methods (Sharma et al., 2018; Du et al., 2018; Kania et al., 2020).
Recent works propose CSG-like representations (Ren et al., 2021) and learnable primitives (Yu
et al., 2023; 2022) to improve generation quality. However, CSG methods struggle to represent
curved surfaces such as rounded corners, limiting their capacity for complex geometries.

With the emergence of large-scale CAD datasets (Koch et al., 2019; Willis et al., 2021), researchers
have begun to leverage deep models for CAD generation. DeepCAD (Wu et al., 2021) introduces
a sequential representation by encoding design parameters as command sequences. SkexGen (Xu
et al., 2022) proposes to integrate primitive hierarchy with command sequence for the autoregressive
method. Some works (Ma et al., 2024; Zhang et al., 2025; Yu et al., 2025) further employ token-
based diffusion models to generate command sequences. Recent research has explored the use of
LLMs for CAD models and sketches generation from point clouds (Khan et al., 2024a), images
(Chen et al., 2025; Niu et al., 2025; Wu et al., 2025b), and text (Khan et al., 2024b; Li et al., 2025c).
CAD-MLLM (Xu et al., 2024a) proposes a multi-modal LLM framework that integrates these three
modalities, and CAD-GPT (Wang et al., 2025) integrates images and text. Other methods represent
the modeling process directly in plain text to simplify finetuning for LLMs (Zhang et al., 2024;
Govindarajan et al., 2025; Guan et al., 2025; Li et al., 2025a). Additionally, some studies aim to
enhance the geometric reasoning capabilities of LLMs through Chain-of-Thought (CoT) prompting
(Li et al., 2025b) or hierarchical model structures (Dupont et al., 2024; Khan et al., 2024a). Ex-
isting command sequence representations lack explicit topological information, which remains a
major challenge for autoregressive generation methods. A recent work (Fan et al., 2025) attempts
to enable entity selection by labeling faces based on each operation and edges as intersections of
faces. However, edges derived from face intersections may not be unique, leading to ambiguity in
the selection function. A more robust solution for entity selection remains an open problem.

3 POINTER-BASED COMMAND SEQUENCES

Contemporary CAD software allows users to select operation targets directly on rendered geometry,
e.g., clicking a plane for sketching or an edge for chamfering. In contrast, prior works (Wu et al.,
2021; Khan et al., 2024b; Xu et al., 2024a; Govindarajan et al., 2025) represent operations only
as numerical sequences, ignoring the geometric context from previous steps. As shown in Figure
1, this leads to two key issues: (i) operations like chamfer and fillet require explicit references to
geometric entities and cannot be executed without corresponding edges or faces selection, making
the operations unsupported; (ii) newly drawn curves often fail to snap to existing edges, or sketch
planes can be misaligned with target faces. This issue arises because LLM-based sequential gen-
eration requires quantization of all continuous rotation and position parameters, introducing small
errors that hinder precise geometric connectivity or alignment during sequential generation. Thus,
motivated by Pointer Networks (Vinyals et al., 2015), we propose a novel pointer-based command
sequence representation that explicitly integrates B-rep geometry into sequential modeling.

In our representation, each token belongs to one of three types: Label Token, Value Token, or Pointer.
The Label Token carries explicit semantic information, indicating the type of an operation or a
structural boundary in the sequence, as detailed in Table 1. The Value Token provides numerical
data, such as coordinates or degrees. Notably, the continuous parameters are quantized into 2q

levels and expressed as q-bit integers. The Pointer is used to reference a face or an edge from the
B-rep. Different operations are then defined by specific combinations and sequential order of these
tokens. We decompose the entire CAD model construction process into a sequence of steps, each

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Table 1: Label Token Definitions. This table provides a comprehensive list of all Label Tokens used in our
command sequence representation, along with their semantic descriptions.

Command Description Command Description

<ss> Start of sketch <sx> Start of curve
<se> Start of extrusion <or> Orientation token group (Clockwise, Counter-Clockwise)
<sc> Start of chamfer <dr> Direction token group (X+, X-, Y+, Y-, Z+, Z-)
<sf> Start of fillet <bo> Boolean token group (New, Join, Cut, Intersect)
<sp> Start of profile End of model (this step is the final step of the model)
<sl> Start of loop <es> End of step (additional steps are required after this one)

consisting of one of three fundamental operations: a sketch-extrude combination, a chamfer, or a
fillet. And a CAD model is therefore represented by an ordered sequence of these operations.

Sketch-extrude combination step. Following prior works (Wu et al., 2021; Govindarajan et al.,
2025; Khan et al., 2024b), we define a 2D sketch hierarchically: a sketch consists of faces, each
bounded by one or more loops. A loop is formed by a sequence of primitive curves (lines or arcs) or
a single circle, with consecutive curves sharing endpoints. The primitives are parameterized as: (i)
Line : (x, y), where (x, y) defines the start point of a line; (ii) Arc : (x, y, α, o) which defines an
arc with the start point (x, y) and sweep angle α. o refers to the orientation flag (denoted as <or>);
(iii) Circle : (x, y, r), where (x, y) is the center of an circle with a radius r.

For sketch plane selection, we replace the conventional parameterization using six values (three
Euler angles and three translation parameters) with a pointer mechanism. This approach directly
selects a target face from the B-rep representation to serve as the sketch plane. Once selected,
a local 2D coordinate system is established on this plane, providing a consistent reference frame
for all subsequent sketch operations (see Appendix A.2 for construction details). This pointer-based
approach reformulates plane selection from a 3D rotation regression problem into a discrete selection
over a finite set of candidate faces, reducing the search space and mitigating misalignment caused
by inaccurate regression or quantization errors.

For the extrude operation, since the sketch plane has been determined, the operation can be simpli-
fied to be E : (ep, en, b), where ep, en denotes the extrusion distance towards the positive direction
and negative direction of the sketch plane normal respectively, and b (denoted as <bo>) is the type
argument specifying the volume boolean type (e.g. New, Join, Cut, Intersect)

Chamfer or fillet operations step. Mirroring the workflow in modern CAD software, both chamfer
and fillet operations first require the selection of one or more target edges, followed by specifying
a single numerical parameter. In our representation, a chamfer operation is expressed as C : (p, c)
and a fillet as F : (p, f). Here, p = {p1, p2, . . . , pn} represents a set of pointers, with each pointer
pi identifying a target edge from the B-rep. The parameters c and f denote the chamfer distance and
fillet radius, which are applied uniformly across all selected edges.

4 METHOD

Building on the proposed pointer-based command sequence, we introduce Pointer-CAD, a frame-
work that transforms natural language descriptions into 3D CAD models. In addition, we introduce
an annotation pipeline and construct a new dataset to fully unleash the potential of Pointer-CAD.
This section details the overall architecture, training objectives, and the annotation pipeline.

4.1 OVERALL ARCHITECTURE

As illustrated in Figure 2, unlike previous approaches that treat generation as a whole sequence,
Pointer-CAD separates the process into multiple steps that are predicted sequentially in an autore-
gressive manner. Each prediction conditions on the text description and the B-rep geometry accu-
mulated so far, ensuring global consistency and faithful design semantics. Pointer-CAD comprises
three key components: a Multimodal Fusion Module that integrates text and B-rep geometry, an
LLM for sequence generation, and a Vector Translation Module that converts command sequences
into B-rep representations following the construction process described in Section 3.

4.1.1 MULTIMODAL FUSION MODULE

The Multimodal Fusion Module takes tokenized text and B-rep geometry as inputs and integrates
them to provide structured information for subsequent processing. The textual description is tok-

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

<128>

<dr>

< f1>

<ss>

<128>

<dr>

< f1>

<ss>

<bo>

<0>

<51>

<se>

<bo>

<0>

<51>

<se>

<es>

G
N
N

edge

face

899569 137 899569 137 … - - - -- - - - - - - -- - - -… … 325 126325 126899569 137 … - - - - - - - -… … 325 126899569 137 … - - - - - - - -… … 325 126

Multimodal Fusion Module Large
 Lan

gu
age M

o
d

e
l (Q

w
e

n
2

.5
)

Vector (Step N)

First, draw a 4cm square on the sketch plane
and extrude it upward to form a cube . Next,
sketch a 3cm-diameter circle on the top face,
centered on the face. Then, on the ……

TokenizerTokenizer

h(0)ijh(0)ij

h(0)ih(0)i

B-Rep (Step N-1)

face

edge

Extru
d

e th
e

sketch
 u

p
w

a
rd

…
…

D
ra

w
 a

sketch

 o
n

 f
1

En
d

 o
f

step

Embedding

Embedding

B-Rep (Step N) Component (Step N)

Vector Translation

Figure 2: Pointer-CAD Pipeline. At each generation step, the full user prompt is tokenized, while the B-rep
is updated with all geometry generated so far. A multimodal fusion module combines the textual prompt with
the evolving B-rep, which is further encoded via a graph neural network over its faces and edges. The fused
representation is then processed by a large language model to predict the vector for the current step, which is
subsequently translated into geometry to update the B-rep.

enized once and reused across all steps, while the B-rep is updated after each operation; at the first
step, it is empty, so the model conditions only on text.

B-rep Encoder. We represent the B-rep as an undirected face-adjacency graph G(V ,E), where
nodes correspond to faces and edges to shared boundaries. Following (Jayaraman et al., 2021;
Yin et al., 2025), we construct the initial graph G by sampling geometric cues from the parametric
domains of B-rep faces and edges. Each face is represented as S(u, v) and uniformly sampled
on a 32×32 grid in the (u, v) domain, with 3D coordinates, surface normals, Gaussian curvature,
and visibility indicator concatenated as features. Similarly, each edge is parameterized as C(t) and
uniformly sampled with 32 points, extracting the 3D coordinates, tangent and its reverse vector,
and first-order derivative. Point-wise features are aggregated via average pooling and projected to a
128-d embedding, yielding node features h(0)

i , and the edge feature h
(0)
ij , where i, j are the indices

of the faces for the initial graph G. Further details are in the Appendix B.1.

Graph Processing. After obtaining the initial features, we take into account the structural prop-
erties of the B-rep and apply a K-layer Graph Neural Network (GNN)(Scarselli et al., 2008) to
propagate information across the graph. Specifically, node features are updated by aggregating mes-
sages from their neighboring faces, while edge features require more nuanced handling. In B-reps,
edges are not only incident to two adjacent faces but may also be indirectly related to other ele-
ments through shared vertices. To capture these dependencies, we update them using a Multi-Head
Attention (MHA)(Vaswani et al., 2017) over all node features.

At the k-th layer, the updates are formulated as:

h
(k)
i = ϕ(k)

(
(1 + ϵ(k))h

(k−1)
i +

∑
j∈N (i)

fΘ(h
(k−1)
ij)⊙ h

(k−1)
j

)
, (1)

h
(k)
ij = MHA

(
Q = h

(k−1)
ij , K, V = {h(k−1)

l | l ∈ V}
)
+ h

(k−1)
ij , (2)

where ϕ(k) denotes an MLP, ϵ(k) is a learnable scalar, and fΘ projects edge features into the node fea-
ture space. The resulting node and edge embeddings, h(k)

i and h
(k)
ij , are serialized into the LLM in-

put via structured prompting: edge embeddings are wrapped as <brep edge start> edge embedding
<brep edge end> and face embeddings as <brep face start> face embedding <brep face end>,
providing the LLM with explicit structural cues to distinguish B-rep components.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4.1.2 SUPERVISED FINETUNING OF LARGE LANGUAGE MODELS

LLMs have demonstrated strong understanding and reasoning capabilities over structured inputs.
In Pointer-CAD, we adopt Qwen2.5 (Team, 2024) as the backbone LLM and leverage Low-Rank
Adaptation (LoRA) (Hu et al., 2022) to reduce trainable parameters. To align with our representation
system, we append two separate fully connected layers to the final hidden state of the LLM: one
predicts the Label Token and Value Token, while the other predicts the Pointer. Outputs are then
translated into executable command sequences according to the rules detailed in the Appendix A.1.

Pointer-based Referencing. In the pointer-enabled setting, the LLM predicts a Pointer to select
the target face or edge from a set of candidates. We denote the complete set of faces (including
the three base planes: Right, Front, and Top) and edges as Sf and Se, respectively. The ground-
truth target is defined as a subset of these candidates, potentially containing more than one element,
because geometric relationships (e.g., coplanar faces, collinear edges) naturally admit multiple valid
references. Precise definitions of these geometric special cases are provided in the Appendix A.3.
Formally, for the m-th predicted face pointer, we define the ground-truth set as Pm ⊆ Sf , and
Nm = Sf \ Pm is negative. Similarly, Pn ⊆ Se and Nn = Se \ Pn for the n-th predicted edge
pointer. Each candidate uses its initial feature: h

(0)
i for the i-th face in Sf , and h

(0)
ij for the edge

shared by the i-th and j-th faces in Se, with three base planes encoded as distinct learnable 128-d
embeddings, aligning with features in both Sf and Se. To predict a face or edge pointer, the LLM
outputs a 128-d vector, and then matched to the candidate geometric element with highest cosine
similarity.
4.2 TRAINING OBJECTIVE

Based on the structure of the command sequence, our training objective is to jointly predict the
correct token value and referenced pointer representation.

Label and Value Token Prediction. The prediction of both Label Tokens and Value Tokens is
formulated as a classification task. Given the constrained output space, we employ a cross-entropy
loss with label smoothing, defined as:

Lv = −
N∑
i=1

[
(1− α) · δi,y +

α

N − 1
· (1− δi,y)

]
log pi, (3)

where δi,y is the Kronecker delta (1 if i = y, 0 otherwise), y is the correct class, N is the number
of classes, α is the label smoothing factor, and pi is the predicted probability of class i, obtained via
softmax over the model logits.

Pointer Prediction. Pointer prediction is cast as a regression task. Since multiple valid pointers
may exist simultaneously, we adopt a contrastive-style loss:

Lp = − 1

|P|+ |N |

[∑
j∈P

log

(
σ

(
cos(p, cj)

τ

))
+

∑
j∈N

log

(
1− σ

(
cos(p, cj)

τ

))]
, (4)

where P and N denote the sets of valid and invalid candidates, p is the predicted pointer embedding,
cj is the embedding of candidate j, σ is the sigmoid function, and τ is a learnable temperature.

Overall Objective. The overall loss is a weighted sum of the two objectives:

L = λv · Lv + λp · Lp, (5)

where λv and λp are hyperparameters controlling the relative contributions of these two components.

4.3 ANNOTATION PIPELINE

As shown in Figure 3, we render four multi-view images per model using Blender and use Qwen2.5-
VL (Bai et al., 2025) to generate a one-word label and single-sentence caption for global shape un-
derstanding. For each sketch plane, six images are rendered from different angles with the plane
highlighted in red, and Qwen2.5-VL provides a macro-level spatial location description. These vi-
sual and textual annotations offer a more comprehensive understanding of both the model geometry
and the sketch plane location. Following Text2CAD (Khan et al., 2024b), we further convert the raw
JSON files into a minimal and human-readable JSON format, enhanced with textual descriptions to
improve interpretability. We also employ Qwen2.5 (Yang et al., 2024) to generate natural language
modeling instructions, with all dimension parameters wrapped in <v> tags.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Step 2:
Place a cube on

the plate

Step 3:
Chamfer the top

edges of the cube

Raw JsonRaw Json

Convert

Step 1

Step 2

Step 3

{
 "steps": {
 "step_1": {
 "sketches": {
 "sketch_1": {......}
 },
 "extrusion": { [......] },
 "description": { [......],
 "label": "Plate",
 "caption": "Thin planar surface."
 }
 },
 "step_2": {
 "sketches": {
 "sketch_1": { [......]
 "coordinate_system": { [.......],
 "description": "Top of plate."
 }
 }
 },
 "extrusion": { [......] },
 "description": { [......]
 "label": "Assembly",
 "caption": "Cube on thin plate."
 }
 },
 "step_3": {
 "chamfer": { [......] },
 "description": {
 "label": "Assembly",
 "caption": "Chamfered cube on plate."
 }
 },
 "dimensions": {......}
} Minimal JsonMinimal Json

{
 "steps": {
 "step_1": {
 "sketches": {
 "sketch_1": {......}
 },
 "extrusion": { [......] },
 "description": { [......],
 "label": "Plate",
 "caption": "Thin planar surface."
 }
 },
 "step_2": {
 "sketches": {
 "sketch_1": { [......]
 "coordinate_system": { [.......],
 "description": "Top of plate."
 }
 }
 },
 "extrusion": { [......] },
 "description": { [......]
 "label": "Assembly",
 "caption": "Cube on thin plate."
 }
 },
 "step_3": {
 "chamfer": { [......] },
 "description": {
 "label": "Assembly",
 "caption": "Chamfered cube on plate."
 }
 },
 "dimensions": {......}
} Minimal Json

Step 1:
Create a thin plate

Multi-view RendersMulti-view Renders

Annotation Prompt

Sketch Plane

Q
w

en2.5-VL-72B
Q

w
en2.5-VL-72B

Qwen2.5-72BQwen2.5-72BQwen2.5-72B

Description

On the TOP plane, sketch a
<v>1</v> × <v>1</v> square
centered at the origin. Extrude
it upward by <v>0.1</v>,
transforming the square into a
thin, flat plate. On the top
face of the plate, draw a
<v>0.5</v> × <v>0.5</v> square
also centered at the origin.
Extrude it by <v>0.5</v> to form
a cube. To refine the geometry
and complete the design, apply a
<v>0.25</v> chamfer to the four
top edges of the cube, breaking
the sharp corners with a beveled
edge. This results in a
chamfered cube on a plate.

Description

On the TOP plane, sketch a
<v>1</v> × <v>1</v> square
centered at the origin. Extrude
it upward by <v>0.1</v>,
transforming the square into a
thin, flat plate. On the top
face of the plate, draw a
<v>0.5</v> × <v>0.5</v> square
also centered at the origin.
Extrude it by <v>0.5</v> to form
a cube. To refine the geometry
and complete the design, apply a
<v>0.25</v> chamfer to the four
top edges of the cube, breaking
the sharp corners with a beveled
edge. This results in a
chamfered cube on a plate.

The sketch planes are captured from 6 renders
along the cardinal axes (±X, ±Y, ±Z). The
model's appearance is captured in 4 renders by
uniformly rotating the camera around the object.

Figure 3: Dataset construction pipeline. Raw JSON files are converted into a minimal JSON format con-
taining only annotation-relevant elements. Sketch planes and models are rendered, and Qwen2.5-VL generates
textual descriptions that are integrated into the minimal JSON. Finally, Qwen2.5 produces step-by-step natural
language instructions, with dimension parameters wrapped in special tags for future data augmentation.

Building on OmniCAD (Xu et al., 2024a), we apply its augmentation strategy by splitting full mod-
els into sub-models by intermediate stages, annotate all sub-models via our pipeline, and denote the
re-captioned dataset as Recap-OmniCAD. Since OmniCAD originally lacks chamfer and fillet oper-
ations, which were skipped during augmentation, we reintegrate them and extend the dataset, yield-
ing Recap-OmniCAD+. Dataset statistics and annotation prompts are reported in the Appendix C.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. To demonstrate the effectiveness of Pointer-CAD and ensure fair comparison, we addi-
tionally annotate a subset of the DeepCAD dataset, denoted as Recap-DeepCAD, which contains
176,439 CAD models. For the ablation studies, we train on the Recap-OmniCAD+ dataset by de-
fault. Following OmniCAD’s evaluation protocol, no data augmentation is applied to the test set,
which consists of 13,971 models.

Implementation Details. We adopt Qwen2.5-0.5B (Yang et al., 2024) as the base LLM for im-
plementing Pointer-CAD, unless otherwise specified. The model is trained for 10 epochs on 16
NVIDIA H800 GPUs. Further details are provided in the Appendix B.3.

Metrics. We evaluate the quality of generated CAD models using model validity, reconstruction
quality and topological accuracy metrics following Text2CAD (Khan et al., 2024b) and CADmium
(Govindarajan et al., 2025). Specifically, we report Invalidity Ratio (IR), F1 score, Chamfer Dis-
tance (CD), Segment Error (SegE), Dangling Edge Length (DangEL), Self-Intersection Ratio (SIR),
and Flux Enclosure Error (FluxEE). The F1 score reflects command sequence accuracy, while CD
captures geometric reconstruction fidelity. SegE, DangEL, and SIR measure different aspects of
topological soundness, and FluxEE quantifies the deviation from a watertight, enclosed solid. All
reported CD and FluxEE values are scaled by 103 for clarity.

5.2 COMPARISON ON TEXT CONDITIONED CAD GENERATION

We involve two open-source text-to-CAD baselines for comparison: Text2CAD (Khan et al., 2024b)
and CADmium (Govindarajan et al., 2025). In addition, we adapt DeepCAD (Wu et al., 2021) for
text-conditioned generation by reusing its pretrained latent-space decoder, which was trained on
the DeepCAD dataset, and training a new encoder to map text inputs into the corresponding la-
tent vectors. To ensure fair comparison, all the baseline methods and Pointer-CAD are trained
on Recap-DeepCAD. As shown in Table 2(a), Pointer-CAD-1.5B achieves the best IR, sketch op-
eration F1, CD, while Pointer-CAD-0.5B attains the best performance on the remaining metrics.
Notably, our method achieves a SegE over 100× smaller than all baselines, demonstrating that the
proposed pointer mechanism effectively mitigates discontinuities caused by even tiny quantization
errors, which can separate newly drawn parts from existing geometry. Moreover, our method attains
superior overall performance with a 0.5B model size compared to the 7B-LLM-based CADmium.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Quantitative comparison on different datasets. (a) Recap-DeepCAD dataset: Pointer-CAD
(0.5B/1.5B) achieves the highest operation F1 scores and lowest CD errors, outperforming other baselines and
larger LLM-based method CADmium-7B. (b) Recap-OmniCAD+ dataset: Pointer-CAD uniquely supports
chamfer and fillet operations with high accuracy, while other methods fail, and further demonstrates superior
geometric fidelity and topology quality.

(a) Recap-DeepCAD (b) Recap-OmniCAD+

Metric DeepCAD Text2CAD

CADmium Pointer-CAD

DeepCAD Text2CAD

CADmium Pointer-CAD

1.5B 3B 7B 0.5B 1.5B 1.5B 3B 7B 0.5B 1.5B

IR ↓ 39.23 30.16 42.84 36.34 31.79 15.02 8.80 43.87 34.60 48.11 43.74 38.76 25.37 19.15
Line F1 ↑ 80.14 88.12 85.47 82.25 85.13 97.70 98.73 82.40 86.37 81.26 81.81 82.78 94.37 95.79
Arc F1 ↑ 31.41 45.19 19.35 20.44 25.68 85.70 95.14 27.97 37.04 19.61 25.47 23.87 67.62 74.98

Circle F1 ↑ 79.04 87.03 75.64 72.66 74.94 98.27 98.66 64.11 73.41 64.88 64.52 67.35 95.61 96.03
Extrusion F1 ↑ 92.34 98.53 92.50 88.50 90.75 99.67 99.61 90.21 98.11 91.68 88.42 90.62 99.22 99.20
Chamfer F1 ↑ - - - - - - - - - - - - 89.74 94.32

Fillet F1 ↑ - - - - - - - - - - - - 82.54 89.85
CD mean ↓ 37.47 17.48 11.51 12.22 10.53 3.81 2.58 39.89 19.80 19.35 17.93 13.84 5.49 2.86

CD median ↓ 12.56 3.38 0.57 0.47 0.44 0.54 0.30 12.71 3.52 0.98 0.99 0.88 0.53 0.34
SegE ↓ 0.53 0.44 0.47 0.64 1.21 1.33e-3 1.38e-3 0.84 0.53 0.73 0.89 1.78 1.41e-3 1.01e-3

DangEL ↓ 1.80 0.71 3.27 3.88 5.33 0.16 0.20 4.80 1.67 3.32 4.79 4.95 0.28 0.26
SIR ↓ 0.15 0.07 0.10 0.13 0.20 0.01 0.02 0.19 0.11 0.13 0.15 0.21 0.02 0.02

FluxEE ↓ 25.85 17.75 38.63 29.73 32.22 1.99 3.02 40.06 27.54 36.47 31.03 36.30 3.57 3.37

Qualitative comparison can be observed from Figure 4. Baseline methods frequently produce de-
fective CAD models, exhibiting issues such as overly thin surfaces or incorrect spatial arrangement
of internal structures. In contrast, our method explicitly incorporates geometric information from
B-rep into the modeling process, leading to significantly improved structural accuracy. Overall, our
pointer-based command sequence representation, together with the training strategy, shows strong
compatibility with autoregressive models.

FailedFailedFailedFailed

Ground
 Truth

DeepCAD

FailedFailedFailedFailed

CADmium
7B

Ours
0.5B

Text2CAD

… on the Front plane … Draw a circle …
center at the origin … Extrude … depth
to 45mm … on the Back plane … Draw a
circle … Extrude … depth to 8mm …

… on the Front plane … Draw a circle …
center at the origin … Extrude … depth
to 45mm … on the Back plane … Draw a
circle … Extrude … depth to 8mm …

… on the Top plane … draw four circles:
The first circle … center at (0, 0)cm …
second circle … center at (0, 3)cm …
third circle … extend it 0.3cm …

… on the Top plane … draw four circles:
The first circle … center at (0, 0)cm …
second circle … center at (0, 3)cm …
third circle … extend it 0.3cm …

… Outer Profile … arc starting from …
another arc … Draw a line … another line
… Inner Cutouts … Draw a circle at (0,
0)mm … circle … Extrude 27 mm …

… Outer Profile … arc starting from …
another arc … Draw a line … another line
… Inner Cutouts … Draw a circle at (0,
0)mm … circle … Extrude 27 mm …

Draw an octagon profile using eight
lines, from (24, 10)mm to … Add a
circular cutout … radius of 14 mm …
Extrude … depth of 19 millimeter …

Draw an octagon profile using eight
lines, from (24, 10)mm to … Add a
circular cutout … radius of 14 mm …
Extrude … depth of 19 millimeter …

Prompt

FailedFailedFailedFailed

Figure 4: Qualitative performance comparison on Recap-DeepCAD dataset. Our method (Pointer-CAD-
0.5B) consistently produces accurate and faithful geometry aligned with the ground truth, while competing
methods often fail to capture geometric details or even collapse entirely. Among LLM-based methods, Pointer-
CAD achieves superior results despite its significantly smaller model size compared to CADmium.

5.3 VALIDATION OF SUPPORT FOR Chamfer AND Fillet OPERATIONS

To assess our model’s capability on chamfer and fillet operations, we train it on the Recap-
OmniCAD+ dataset, which includes these two additional operation types. Baseline methods, which
do not support chamfer and fillet, are trained on the Recap-DeepCAD dataset instead. As illustrated
in Figure 5, existing methods often fail to execute these operations correctly, producing invalid re-
sults. In contrast, our approach faithfully reconstructs these operations, achieving higher F1 scores,
better geometric accuracy, and superior topology quality compared to all baselines, as in Table 2(b).

5.4 ABLATION ON THE PARAMETER QUANTIZATION LEVEL

As discussed in Section 3, command sequences discretize continuous parameters (e.g., coordinates,
extrusion distances, angles) into 2q levels. To evaluate the effect of different quantization levels on
our model’s performance, we train Pointer-CAD-0.5B on the Recap-OmniCAD+ dataset with levels
of 64, 256, and 1024. As shown in Table 3, models across different quantization levels achieve
comparable IR, while the 1024-level setting notably attains the highest F1 score across all operation

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Ours
0.5B

Ground
 Truth

… Base Cylinder: … Top plane … circle … radius of
7cm … extrude to 2cm … Pedestal Column: … top
of the base cylinder … circle … radius of 1 c m …
extrude to 2 0 c m … Apply a chamfer to the top
edge of the pedestal column … distance to 1cm …

… Draw the outer profile … Draw an arc … Draw the
inner circular cutouts … Draw a circle … extrusion
depth: 1cm … Select the edge pass (2, 2, 1) … fillet
… 0.2cm … along tangent edges …

… Base Cylinder … Draw a circle … Extrude …
Select the top edge of the cylinder … fillet with a
radius of 3 m m … Hexagonal Cutout … Draw a
hexagon with vertices at … Extrude … Bolt Shaft …
on the Bottom Plane … Draw a circle … Extrude …

… Rectangular Plate with Corner Holes … Draw a
rectangle … Add four circular cutouts … Extrude …
depth to 25mm … Chamfer the Edges … Select the
edges of the circular cutouts at each corner of
the plate … distance of 1cm …

DeepCAD
CADmium

7B
Text2CADPrompt

FailedFailedFailed

FailedFailedFailed FailedFailedFailed

FailedFailedFailed

FailedFailedFailed

Figure 5: Qualitative performance comparison on Recap-OmniCAD+ dataset. Our method (Pointer-CAD-
0.5B) accurately recovers detailed structures that closely match the ground truth for complex CAD models
involving chamfer or fillet operations. In contrast, competing methods often miss fine-grained features even
when they do not fail entirely, resulting in outputs that deviate from the user’s intended design.

Table 3: Performance of Pointer-CAD-0.5B un-
der different integer quantization levels on Recap-
OmniCAD+. While IR remain comparable across reso-
lutions, the 1024 setting achieves the highest command
sequence F1 score and best results in CD, demonstrat-
ing improved fidelity in geometric reconstruction.

Quantization Level 64 256 1024

IR ↓ 25.45 25.37 25.79
Line F1 ↑ 93.00 94.37 94.94
Arc F1 ↑ 63.35 67.62 72.06

Circle F1 ↑ 94.81 95.61 96.16
Extrusion F1 ↑ 99.26 99.22 99.44
Chamfer F1 ↑ 90.75 89.74 91.16

Fillet F1 ↑ 77.96 82.54 87.93
CD mean ↓ 5.92 5.49 4.93

CD median ↓ 0.77 0.53 0.52

Add a cylinder on the
selected face

Add a cylinder on the
selected face

Apply a fillet to the
selected edges.

Apply a fillet to the
selected edges.

Cut a cylinder from the
selected face.

Cut a cylinder from the
selected face.

Figure 6: Illustration of our interactive edit-
ing functionality. Users can directly click on a
face or edge of the CAD model and provide a
text prompt to specify the desired operation.

types in the command sequence evaluation. It also achieves competitive results in CD, highlighting
that finer quantization levels yield better geometric fidelity.

5.5 EXTENSION TO CLICK INTERACTION EDITING APPLICATION

Since our proposed pointer-based command sequence allows entity selection at each step, we extend
the model with token concatenation to incorporate user-interactive selections alongside text instruc-
tions, enabling an immersive editing experience. As illustrated in Figure 6, users can interactively
select faces or edges on the current B-rep to explicitly specify the operation target, enabling more
precise and intuitive editing through direct manipulation in conjunction with text instructions.

6 CONCLUSION

In this work, we present Pointer-CAD, an LLM-based framework supporting chamfer and fillet
operations for generating complex CAD models. To ensure geometric accuracy and enable entity
selection, we introduce a pointer-based command sequence that explicitly incorporates B-rep geom-
etry, allowing the model to reference existing faces and edges. We further enhance training with a
dedicated dataset annotation pipeline. Extensive experiments show that Pointer-CAD can produce
models with higher topological accuracy and geometric fidelity conditioned on the input text.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

The models and annotations are used solely for research purposes, and our pipeline does not produce
outputs that could compromise privacy or safety. Meanwhile, we also acknowledge potential misuse
in automated CAD generation, such as intellectual property concerns. We encourage responsible
use of our work in research and industry, adhering to ethical standards and respecting ownership of
CAD designs.

REPRODUCIBILITY STATEMENT

We provide detailed training information in Appendix D. The pretrained LLM weights used, in-
cluding Qwen2.5 and Qwen2.5-VL, are publicly available. Annotated prompts are provided in Ap-
pendix C.2. The datasets used, DeepCAD (Wu et al., 2021) and OmniCAD (Xu et al., 2024a), are
publicly accessible. The extended content in OmniCAD is derived from ABC (Koch et al., 2019)
using the index split provided by OmniCAD, which can be publicly accessed. Finally, we will re-
lease all training and inference code along with the re-captioned text descriptions of OmniCAD to
facilitate reproducibility.

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Md Ferdous Alam and Faez Ahmed. Gencad: Image-conditioned computer-aided design gen-
eration with transformer-based contrastive representation and diffusion priors. arXiv preprint
arXiv:2409.16294, 2024.

Kamel Alrashedy, Pradyumna Tambwekar, Zulfiqar Zaidi, Megan Langwasser, Wei Xu, and
Matthew Gombolay. Generating cad code with vision-language models for 3d designs. arXiv
preprint arXiv:2410.05340, 2024.

Silvia Ansaldi, Leila De Floriani, and Bianca Falcidieno. Geometric modeling of solid objects by
using a face adjacency graph representation. ACM SIGGRAPH Computer Graphics, 19(3):131–
139, 1985.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2.5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

Ronald A Castellino. Computer aided detection (cad): an overview. Cancer Imaging, 5(1):17, 2005.

Tianrun Chen, Chunan Yu, Yuanqi Hu, Jing Li, Tao Xu, Runlong Cao, Lanyun Zhu, Ying Zang,
Yong Zhang, Zejian Li, et al. Img2cad: Conditioned 3-d cad model generation from single image
with structured visual geometry. IEEE Transactions on Industrial Informatics, 2025.

Tao Du, Jeevana Priya Inala, Yewen Pu, Andrew Spielberg, Adriana Schulz, Daniela Rus, Armando
Solar-Lezama, and Wojciech Matusik. Inversecsg: Automatic conversion of 3d models to csg
trees. ACM Transactions on Graphics (TOG), 37(6):1–16, 2018.

Elona Dupont, Kseniya Cherenkova, Dimitrios Mallis, Gleb Gusev, Anis Kacem, and Djamila
Aouada. Transcad: A hierarchical transformer for cad sequence inference from point clouds.
In European Conference on Computer Vision, pp. 19–36. Springer, 2024.

Rubin Fan, Fazhi He, Yuxin Liu, Yupeng Song, Linkun Fan, and Xiaohu Yan. A parametric and
feature-based cad dataset to support human-computer interaction for advanced 3d shape learning.
Integrated Computer-Aided Engineering, 32(1):75–96, 2025.

James D Foley. Computer graphics: principles and practice, volume 12110. Addison-Wesley
Professional, 1996.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Prashant Govindarajan, Davide Baldelli, Jay Pathak, Quentin Fournier, and Sarath Chandar. Cad-
mium: Fine-tuning code language models for text-driven sequential cad design. arXiv preprint
arXiv:2507.09792, 2025.

Yandong Guan, Xilin Wang, Xingxi Ming, Jing Zhang, Dong Xu, and Qian Yu. Cad-coder: Text-
to-cad generation with chain-of-thought and geometric reward. arXiv preprint arXiv:2505.19713,
2025.

Haoxiang Guo, Shilin Liu, Hao Pan, Yang Liu, Xin Tong, and Baining Guo. Complexgen: Cad
reconstruction by b-rep chain complex generation. ACM Transactions on Graphics (TOG), 41(4):
1–18, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

Pradeep Kumar Jayaraman, Aditya Sanghi, Joseph G Lambourne, Karl DD Willis, Thomas Davies,
Hooman Shayani, and Nigel Morris. Uv-net: Learning from boundary representations. In Pro-
ceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11703–
11712, 2021.

Pradeep Kumar Jayaraman, Joseph G Lambourne, Nishkrit Desai, Karl DD Willis, Aditya Sanghi,
and Nigel JW Morris. Solidgen: An autoregressive model for direct b-rep synthesis. arXiv
preprint arXiv:2203.13944, 2022.

Kacper Kania, Maciej Zieba, and Tomasz Kajdanowicz. Ucsg-net-unsupervised discovering of con-
structive solid geometry tree. Advances in neural information processing systems, 33:8776–8786,
2020.

Mohammad Sadil Khan, Elona Dupont, Sk Aziz Ali, Kseniya Cherenkova, Anis Kacem, and
Djamila Aouada. Cad-signet: Cad language inference from point clouds using layer-wise sketch
instance guided attention. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4713–4722, 2024a.

Mohammad Sadil Khan, Sankalp Sinha, Talha Uddin, Didier Stricker, Sk Aziz Ali, and Muham-
mad Zeshan Afzal. Text2cad: Generating sequential cad designs from beginner-to-expert level
text prompts. Advances in Neural Information Processing Systems, 37:7552–7579, 2024b.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Bur-
naev, Marc Alexa, Denis Zorin, and Daniele Panozzo. Abc: A big cad model dataset for geomet-
ric deep learning. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 9601–9611, 2019.

Joseph G Lambourne, Karl DD Willis, Pradeep Kumar Jayaraman, Aditya Sanghi, Peter Meltzer,
and Hooman Shayani. Brepnet: A topological message passing system for solid models. In
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp. 12773–
12782, 2021.

Jiahao Li, Weijian Ma, Xueyang Li, Yunzhong Lou, Guichun Zhou, and Xiangdong Zhou. Cad-
llama: Leveraging large language models for computer-aided design parametric 3d model gener-
ation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 18563–18573, June 2025a.

Xueyang Li, Jiahao Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Seek-cad: A self-refined
generative modeling for 3d parametric cad using local inference via deepseek. arXiv preprint
arXiv:2505.17702, 2025b.

Xueyang Li, Jiahao Li, Yu Song, Yunzhong Lou, and Xiangdong Zhou. Seek-cad: A self-refined
generative modeling for 3d parametric cad using local inference via deepseek, 2025c.

Yilin Liu, Duoteng Xu, Xingyao Yu, Xiang Xu, Daniel Cohen-Or, Hao Zhang, and Hui Huang.
Hola: B-rep generation using a holistic latent representation. ACM Transactions on Graphics
(TOG), 44(4):1–25, 2025.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Weijian Ma, Shuaiqi Chen, Yunzhong Lou, Xueyang Li, and Xiangdong Zhou. Draw step by step:
Reconstructing cad construction sequences from point clouds via multimodal diffusion. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 27154–
27163, 2024.

Charlie Nash, Yaroslav Ganin, SM Ali Eslami, and Peter Battaglia. Polygen: An autoregressive
generative model of 3d meshes. In International conference on machine learning, pp. 7220–7229.
PMLR, 2020.

Ke Niu, Zhuofan Chen, Haiyang Yu, Yuwen Chen, Teng Fu, Mengyang Zhao, Bin Li, and Xiangyang
Xue. Creft-cad: Boosting orthographic projection reasoning for cad via reinforcement fine-tuning,
2025.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PmLR, 2021.

Martin Rapp, Hussam Amrouch, Yibo Lin, Bei Yu, David Z Pan, Marilyn Wolf, and Jörg Henkel.
Mlcad: A survey of research in machine learning for cad keynote paper. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 41(10):3162–3181, 2021.

Daxuan Ren, Jianmin Zheng, Jianfei Cai, Jiatong Li, Haiyong Jiang, Zhongang Cai, Junzhe Zhang,
Liang Pan, Mingyuan Zhang, Haiyu Zhao, et al. Csg-stump: A learning friendly csg-like represen-
tation for interpretable shape parsing. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 12478–12487, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, and Subhransu Maji. Csgnet:
Neural shape parser for constructive solid geometry. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 5515–5523, 2018.

Qwen Team. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Siyu Wang, Cailian Chen, Xinyi Le, Qimin Xu, Lei Xu, Yanzhou Zhang, and Jie Yang. Cad-gpt:
Synthesising cad construction sequence with spatial reasoning-enhanced multimodal llms. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 39, pp. 7880–7888, 2025.

Karl DD Willis, Yewen Pu, Jieliang Luo, Hang Chu, Tao Du, Joseph G Lambourne, Armando Solar-
Lezama, and Wojciech Matusik. Fusion 360 gallery: A dataset and environment for programmatic
cad construction from human design sequences. ACM Transactions on Graphics (TOG), 40(4):
1–24, 2021.

Jianyu Wu, Yizhou Wang, Xiangyu Yue, Xinzhu Ma, Jingyang Guo, Dongzhan Zhou, Wanli
Ouyang, and Shixiang Tang. Cmt: A cascade mar with topology predictor for multimodal condi-
tional cad generation. arXiv preprint arXiv:2504.20830, 2025a.

Rundi Wu, Chang Xiao, and Changxi Zheng. Deepcad: A deep generative network for computer-
aided design models. in 2021 ieee. In CVF International Conference on Computer Vision (ICCV),
pp. 6772–6782, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Sifan Wu, Amir Hosein Khasahmadi, Mor Katz, Pradeep Kumar Jayaraman, Yewen Pu, Karl Willis,
and Bang Liu. Cadvlm: Bridging language and vision in the generation of parametric cad
sketches. In Aleš Leonardis, Elisa Ricci, Stefan Roth, Olga Russakovsky, Torsten Sattler, and
Gül Varol (eds.), Computer Vision – ECCV 2024, pp. 368–384, Cham, 2025b. Springer Nature
Switzerland. ISBN 978-3-031-72897-6.

Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 3733–3742, 2018.

Jingwei Xu, Chenyu Wang, Zibo Zhao, Wen Liu, Yi Ma, and Shenghua Gao. Cad-mllm: Unifying
multimodality-conditioned cad generation with mllm. arXiv preprint arXiv:2411.04954, 2024a.

Xiang Xu, Karl DD Willis, Joseph G Lambourne, Chin-Yi Cheng, Pradeep Kumar Jayaraman, and
Yasutaka Furukawa. Skexgen: Autoregressive generation of cad construction sequences with
disentangled codebooks. arXiv preprint arXiv:2207.04632, 2022.

Xiang Xu, Joseph Lambourne, Pradeep Jayaraman, Zhengqing Wang, Karl Willis, and Yasutaka
Furukawa. Brepgen: A b-rep generative diffusion model with structured latent geometry. ACM
Transactions on Graphics (TOG), 43(4):1–14, 2024b.

An Yang, Anfeng Li, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu,
Chang Gao, Chengen Huang, Chenxu Lv, et al. Qwen3 technical report. arXiv preprint
arXiv:2505.09388, 2025.

Qwen An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan
Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu,
Jianwei Zhang, Jianxin Yang, Jiaxin Yang, Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu,
Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng Xue, Pei Zhang, Qin Zhu, Rui Men, Runji
Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren, Yang Fan, Yang Su, Yi-Chao
Zhang, Yunyang Wan, Yuqi Liu, Zeyu Cui, Zhenru Zhang, Zihan Qiu, Shanghaoran Quan, and
Zekun Wang. Qwen2.5 technical report. ArXiv, abs/2412.15115, 2024. URL https://api.
semanticscholar.org/CorpusID:274859421.

Xiaolong Yin, Xingyu Lu, Jiahang Shen, Jingzhe Ni, Hailong Li, Ruofeng Tong, Min Tang, and
Peng Du. Rlcad: Reinforcement learning training gym for revolution involved cad command
sequence generation. arXiv preprint arXiv:2503.18549, 2025.

Yang You, Mikaela Angelina Uy, Jiaqi Han, Rahul Thomas, Haotong Zhang, Suya You, and
Leonidas Guibas. Img2cad: Reverse engineering 3d cad models from images through vlm-
assisted conditional factorization. arXiv preprint arXiv:2408.01437, 2024.

Fenggen Yu, Zhiqin Chen, Manyi Li, Aditya Sanghi, Hooman Shayani, Ali Mahdavi-Amiri, and Hao
Zhang. Capri-net: Learning compact cad shapes with adaptive primitive assembly. In Proceedings
of the IEEE/CVF conference on computer vision and pattern recognition, pp. 11768–11778, 2022.

Fenggen Yu, Qimin Chen, Maham Tanveer, Ali Mahdavi Amiri, and Hao Zhang. D2csg: Unsuper-
vised learning of compact csg trees with dual complements and dropouts. Advances in Neural
Information Processing Systems, 36:22807–22819, 2023.

Nomi Yu, Md Ferdous Alam, A. John Hart, and Faez Ahmed. Gencad-three-dimensional:
Computer-aided design program generation using multimodal latent space alignment and syn-
thetic dataset balancing. Journal of Mechanical Design, 148(3):031703, 09 2025. ISSN 1050-
0472. doi: 10.1115/1.4069276.

Aijia Zhang, Weiqiang Jia, Qiang Zou, Yixiong Feng, Xiaoxiang Wei, and Ye Zhang. Diffusion-cad:
Controllable diffusion model for generating computer-aided design models. IEEE Transactions
on Visualization and Computer Graphics, 2025.

Zhanwei Zhang, Shizhao Sun, Wenxiao Wang, Deng Cai, and Jiang Bian. Flexcad: Unified and
versatile controllable cad generation with fine-tuned large language models. arXiv preprint
arXiv:2411.05823, 2024.

13

https://api.semanticscholar.org/CorpusID:274859421
https://api.semanticscholar.org/CorpusID:274859421

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Supplementary Material

In these supplementary materials, we provide the following:

• Details of the proposed pointer-based representation, including sketch plane selection method,
specific vector translation rules, and definitions of geometric special cases in pointer-based
referencing;

• Details of the training framework, covering the B-rep encoder, implementation details of the
autoregressive decoder, and the training objective;

• Visualization of some dataset cases, the prompts used for annotation, and dataset statistics;

• Detailed Implementation Details;

• Discussions on future directions;

• Role of LLM usage in our work.

A DETAILS OF THE POINTER-BASED REPRESENTATION

This section elaborates on the implementation logic of the pointer-based representation and the
methodology for sketch plane selection.

A.1 SPECIFIC VECTOR TRANSLATION RULES

Each token is classified as one of three types: Label Token, Value Token, or Pointer. To simplify
the model architecture, we assign non-overlapping integer ranges to label and value tokens, allow-
ing them to be decoded by a single prediction head. However, since a pointer is a reference to a
geometric entity rather than a simple value, it requires a separate prediction head for decoding. To
distinguish pointers from label and value tokens, we reserve two specific integer values within the
label/value token space. When the model predicts one of these integers, it signals that the current
token is a pointer. These two integers also represent the pointer’s state: as shown in Table 4, <pe>
indicates an enabled pointer that references an edge or face, whereas <pd> signifies a disabled (in-
active) pointer. Specifically, for <nv> and <ag>, we quantize all continuous parameters into 2q

levels and express them using q-bit integers. And then the value is normalized to the expected range.

Table 4: Special Token Definitions. This table provides a comprehensive list of all Special Tokens
used in our command sequence representation, along with their semantic descriptions.

Notation ID Type Description

 1 Label Token End of model (this step is the final step of the model)
<es> 2 Label Token End of step (additional steps are required after this one)
<ss> 3 Label Token Start of sketch
<se> 4 Label Token Start of extrusion
<sc> 5 Label Token Start of chamfer
<sf> 6 Label Token Start of fillet
<sp> 7 Label Token Start of profile
<sl> 8 Label Token Start of loop
<sx> 9 Label Token Start of curve
<pe> 10 Pointer Pointer to an Edge or Face
<pd> 11 Pointer Empty pointer
<or> {12, 13} Label Token Orientation (Clockwise, Counter-Clockwise)
<dr> [14, 19] Label Token Direction (X+, X-, Y+, Y-, Z+, Z-)
<bo> [20, 23] Label Token Boolean (New, Join, Cut, Intersect)
<nv> [24, 24 + 2q) Value Token Normalized to [0, 1] and then quantize to 2q level
<ag> [24, 24 + 2q) Value Token Normalized to angle [0◦, 360◦) and then quantize to 2q level

Based on the notation in Table 4, we define the translation rules for each command as shown in Table
5. A CAD model is represented as a sequence of valid sequences, with only the last valid sequence
is end with .

1

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Table 5: Sequence definitions. Each sequence is defined by a specific combination of commands.
The superscript [+] denotes that the element appears one or more times, while the symbol [/]
indicates that one of the alternatives can be chosen.

Notation Sequence Description

[P] <nv> <nv> <pe / pd> 2D point (x, y), snapped to reference or placed freely

[L] <sx> [P] Line starting from a 2D point (x, y)
[C] <sx> [P] <nv> Circle with center at (x, y) and radius r
[A] <sx> [P] <ag> <or> Arc starting from (x, y) with angle α and orientation

[Loop] <sl> [L / C / A]+ Closed loop composed of multiple curves
[Profile] <sp> [Loop]+ 2D Region defined by one or more loops

[CS] <dr> [P] <ag> <nv> 2D coordinate system in 3D space
[Sketch] <ss> <pe> [CS] [Profile]+ Sketch on a plane specified by pointer

[Extrude] <se> <nv> <nv> <bo> Extrude operation with depth and Boolean type
[EPart] [Sketch]+ [Extrude] Solid part constructed by extrusion

[Chamfer] <sc> <nv> <pe>+ Chamfer operation on referenced edges
[Fillet] <sf> <nv> <pe>+ Fillet operation on referenced edges

[VSeq] [EPart / Chamfer / Fillet] <es / em> Valid sequence

A.2 SKETCH PLANE SELECTION

As defined in the [Sketch] notation, a sketch plane is specified by a Pointer to a face and a 2D
coordinate system [CS]. The construction process, illustrated in Figure 7, unfolds in three main
steps: First, a base plane is established by selecting a face with the Pointer, as shown in Figure 7a.
The resulting sketch plane is coplanar with this face. Second, a local coordinate system U ′V ′W ′ is
constructed on this plane. The normal axis, W ′, is aligned with the face normal that has a positive
dot product with a world axis direction, n, specified by the Label Token <dr>. The primary in-
plane axis, U ′, is determined by projecting an auxiliary direction, d (listed in Table 6), onto the
sketch plane. The second in-plane axis, V ′, is then derived using the right-hand rule, completing
the orthogonal basis U ′V ′W ′. As depicted in Figure 7b, the origin of this system is defined by
projecting a point P from a world coordinate plane onto the sketch plane along the direction n.
Finally, as shown in Figure 7c, the final sketch coordinate system UVW is obtained by applying a
counterclockwise in-plane rotation to U ′V ′W ′ about the W -axis. An optional scaling factor may
also be applied to mitigate quantization errors.

Table 6: Direction mapping. In command <dr>, each symbol corresponds to a primary direction
and its auxiliary direction.

Symbol Direction Auxiliary Direction

14 X+ Y+
15 X- Z+
16 Y+ Z+
17 Y- X+
18 Z+ X+
19 Z- Y+

A.3 GEOMETRIC SPECIAL CASES IN POINTER REFERENCING

While a pointer is generally intended to reference a single, unique geometric entity (i.e., an edge
or a face), this one-to-one correspondence breaks down in certain ”geometric special cases.” These
cases occur when multiple entities are geometrically equivalent from a modeling standpoint, such
as coplanar faces or collinear edges. In such scenarios, selecting any one of these equivalent entities
would result in the same final geometry. Therefore, the ground truth for a pointer is not a single ob-

2

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Z

X
Y

(a) Face selection.

Z

X
Y

P(x, y)

Origin (u, v)

W’

U’
V’

Z

X
Y

P(x, y)

Origin (u, v)

W’

U’
V’

(b) Origin definition.

W

U’

V
U

θ

(c) Rotation definition.

Figure 7: Sketch coordinate system construction. The sketch plane, axes, origin, and rotation are
defined step by step to form the local coordinate system UVW .

ject but rather a set of valid candidates. This section provides precise definitions for these geometric
special cases.

Coplanar-Adjacent Faces. A face pointer selects a base face to define a sketch plane. If two or
more faces are coplanar (i.e., they lie on the same geometric plane), selecting any of them will result
in the same sketch plane definition. Therefore, all faces within such a coplanar group are considered
valid candidates for the face pointer.

Collinear-Connected Edges. Snapping a sketch point to an existing edge requires an edge pointer.
If other edges are collinear with the target edge, pointing to any of them will produce the same
snapping result. Therefore, all edges within such a collinear group are considered valid candidates
for the edge pointer.

B DETAILS OF THE TRAINING FRAMEWORK.

B.1 B-REP ENCODER

For each B-rep edge, we uniformly sample 32 points along its parametric curve in 3D space and ex-
tract four quantities at each location: point coordinates, tangent and its reverse vector, and first-order
derivatives. Each is represented as a 3D vector, and their concatenation yields a 12-dimensional fea-
ture per sample. Collecting all samples forms an edge feature tensor of shape 32× 12, which serves
as input for edge embedding.

For each B-rep face, we uniformly sample its parametric (u, v) domain to construct a regular UV
grid of size 32 × 32. At each grid point, we compute the 3D coordinates, unit surface normal,
Gaussian curvature, and a binary visibility mask (set to 1 for interior or boundary samples and 0
otherwise). Concatenating these quantities channel-wise gives an 8-dimensional feature per location,
i.e., 3 + 3 + 1 + 1, producing a face tensor of shape 32× 32× 8.

Node embeddings are obtained by applying 2D convolutions to the face tensor, expanding it to 256
channels, followed by global adaptive average pooling and a linear projection to a 128-dimensional
vector, denoted h

(0)
i . Similarly, edge embeddings are obtained by applying 1D convolutions to the

edge tensor, expanding it to 256 channels, followed by global adaptive average pooling and a linear
projection to a 128-dimensional vector, denoted h

(0)
ij . Thus, the graph G is initialized with node

features h(0)
i and edge features h(0)

ij for downstream processing.

B.2 IMPLEMENTATION DETAILS OF THE AUTOREGRESSIVE DECODER

To translate the output of the LLM into our defined command sequence, we process the last hidden
state from the model’s transformer decoder at each autoregressive decoding step. We employ a
dual-head architecture to decode the hidden state into the appropriate token type.

3

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

The first head, which we refer to as the Label/Value Head, is a linear layer responsible for predicting
both Label Tokens and Value Tokens. Its output dimension is size(Label Token) + 2 + 2q , which
aligns with the tokenization scheme described previously:

• size(Label Token) corresponds to the vocabulary size of all possible Label Tokens defined in
Table 4.

• 2 represents the two special tokens, <pe> and <pd>, that signal a pointer’s state. When the
model predicts one of these, it indicates that the current token is a pointer, and the output from
the second head should be used.

• 2q represents the quantized bins for all continuous Value Tokens, such as those for <nv> and
<ag>.

The second head, the Pointer Head, is another linear layer specifically designed for decoding point-
ers. This head’s output is a 128-dimensional vector. When the Label/Value Head predicts a pointer
state, this 128-dimensional vector is used to perform a similarity search (via cosine similarity)
against the 128-dimensional embeddings of all candidate geometric entities (faces and edges) gen-
erated by the B-rep encoder. The entity with the highest similarity score is selected as the pointer’s
reference. This mechanism allows the model to dynamically ground its generation in the existing
B-rep geometry.

B.3 DETAILS OF TRAINING OBJECTIVE

Pointer Prediction. Following CLIP Radford et al. (2021), we employ a learnable temperature
parameter τ to control the scale of the logits in the loss computation. The parameter is initialized to
0.07, following Wu et al. (2018). To improve training stability, we reparameterize τ as its reciprocal
s = 1/τ and optimize log s during training, with s clipped to s ≤ 100 to avoid excessive scaling of
the logits. The learning rate for s is set to lrs = 0.1× lr, and weight decay is not applied during its
optimization.

Overall Objective. The overall training objective L combines the cross-entropy loss for la-
bel/value tokens (Lv) and the contrastive loss for pointer tokens (Lp). The final loss is a weighted
sum of these two components, controlled by hyperparameters λv and λp. In all our experiments, we
set λv = 0.5 and λp = 0.5 to give them equal weight.

C DETAILS OF THE DATASET

C.1 DATASET VISUALIZATION

Figure 8 presents several representative samples from the Recap-OmniCAD+ dataset, showcasing a
wide spectrum of model complexity and diversity. As illustrated, our dataset contains a rich variety
of models that not only feature complex geometric details such as fillets and chamfers but also
exhibit diverse topological structures like holes, pockets, and multi-body components.

C.2 DETAILS OF ANNOTATION PROMPTS

In our dataset construction process, we employ a multi-step approach to generate rich and detailed
annotations for each CAD model. First, we utilize the Qwen2.5-vl-72B model to generate a visual
description of the model’s appearance, using the prompt shown in Figure 11. Next, we use the same
model to describe the relative position of the sketch plane within the model, guided by the prompt in
Figure 12. To ensure a clear and accurate understanding for the model, we dynamically replace the
placeholders in the prompt with the actual sketch plane surface normal vector and facing direction
for each CAD model.

The resulting annotations are then combined with modeling parameters extracted from the raw JSON
file to create a structured ”minimal JSON,” as illustrated in Figure 13. This minimal JSON, along
with the prompt shown in Figure 14, is then passed to Qwen2.5-72B-Instruct to generate a final
natural language description of the modeling process.

4

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 8: Representative samples from the Recap-OmniCAD+ dataset. The figure displays a
range of models with varying complexity, from simpler parts with basic features to intricate compo-
nents incorporating numerous fillets, chamfers, and complex sketches.

C.3 DATASET STATISTICS

We provide a statistical analysis of our dataset in Figure 9 and Figure 10.

Figure 9 illustrates the distribution of modeling operations. Notably, Recap-OmniCAD+ includes
chamfer and fillet operations, which are absent in the original OmniCAD. The reintegration of these
features results in a higher count for all operation types in Recap-OmniCAD+ compared to Omni-
CAD.

In Pointer-CAD, the command sequence of a complete CAD model is decomposed into three types
of operations: sketch–extrude combinations, chamfers, and fillets. Figure 10 presents the statistics of
our dataset according to this decomposition. The inclusion of chamfer and fillet operations increases
the overall complexity and the average number of steps required to construct a model. This is
reflected in the distribution, where Recap-OmniCAD+ has a slightly lower count of models with
a single operation but a consistently higher count for models requiring more than one operation
compared to OmniCAD.

Furthermore, both figures highlight that OmniCAD and Recap-OmniCAD+ are significantly more
complex than DeepCAD. They feature a greater total number of operations and a higher proportion
of models requiring a large number of construction steps. This demonstrates that our datasets are
more challenging and better reflect the complexity of real-world CAD modeling tasks.

Sketch Extrude Chamfer Fillet
0

2×104

2.6×105

2.8×105

5.2×105

5.4×105

5.6×105

5.8×105

6.0×105

Co
un

t

Operation

 DeepCAD
 OmniCAD
 Recap-OmniCAD+

Figure 9: Distribution of modeling opera-
tions across datasets. The figure illustrates
the total count of each modeling operation
type for the DeepCAD, OmniCAD, and Recap-
OmniCAD+ datasets.

1 2 3 4 5 6 7 8 9 10 ≥11
0.0

2.0×104

4.0×104

6.0×104

8.0×104

1.0×105

1.2×105

1.4×105

1.6×105

1.8×105

Co
un

t

Solid Modeling Operation

 DeepCAD
 OmniCAD
 Recap-OmniCAD+

Figure 10: Distribution of modeling steps per
model. The figure compares the number of
solid modeling operations required per model
across the datasets.

5

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D DETAILS OF IMPLEMENTATION DETAILS

For the default 0.5B model setting, the entire training process requires approximately 23 hours on 16
NVIDIA H800 GPUs. We use the AdamW optimizer (Loshchilov & Hutter, 2017) with a learning
rate of 1 × 10−4 and a linear decay schedule. For LoRA, the dropout rate is set to 0.1. We use a
micro-batch size of 9 with 2 gradient accumulation steps per GPU. The maximum sequence length
is 3,072 tokens.

E FUTURE DIRECTIONS

Our work introduces a pointer-based command sequence representation and a corresponding model
architecture that closely mimics the ”select-then-operate” workflow of modern CAD systems. This
design is inherently general and not restricted to the operations demonstrated in this work. In princi-
ple, it can be extended to a wide range of CAD modeling operations, including revolve, sweep, loft,
and shell, since all of them require selecting geometric entities and specifying parameters. However,
due to the limited accessibility to CAD models involving these operations, they are not included in
this study. A key avenue for future research is to expand the dataset to include a wider variety of
operations, thereby validating and unlocking the full potential of our approach on a more compre-
hensive set of modeling tasks.

F LLM USAGE

We utilized LLMs, including ChatGPT, GitHub Copilot, to assist in the writing and refinement of
this paper. The primary use of these models was to improve grammar, clarity, and readability. All
content, including the core ideas, experimental results, and conclusions, was conceived and critically
reviewed by the authors. The authors take full responsibility for the final version of the manuscript.

You are a senior CAD engineer. I will provide you with four images of
a 3D model. Your task is to:

1. Generate a one-word name for the object, enclosed in
<name></name>.

2. Write a clear and concise one-sentence caption for the object,
enclosed in <caption></caption>, summarizing its overall shape
and key structural features. Focus on geometric form, symmetry,
major extrusions or cutouts, and distinctive elements. Avoid
interpretation or unnecessary detail.

Figure 11: Prompt for visual description. This prompt is used with the Qwen2.5-vl-72B model to
generate a description of the CAD model’s visual appearance.

6

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Right Left Back Front Top Bottom

You are given six orthographic views of the same 3D object in the following fixed order
(each image also has a label at the bottom-right corner indicating its view):

1. Right view
2. Left view
3. Back view
4. Front view
5. Top view
6. Bottom view

A red planar surface on a light blue object is highlighted.

Red planar surface normal vector (numeric):
(nx, ny, nz) = (REPLACE_NX, REPLACE_NY, REPLACE_NZ)

Authoritative facing-direction hints (precomputed; use exactly as given):
- current X direction: REPLACE_X_DIR (one of: right / left / none)
- current Y direction: REPLACE_Y_DIR (one of: back / front / none)
- current Z direction: REPLACE_Z_DIR (one of: up / down / none)

Coordinate system (right-handed):
- X-axis: left (−) to right (+)
- Y-axis: front (−) to back (+)
- Z-axis: bottom (−) to top (+)

View-to-object 2D mapping rules:
- Right view: left side of image = front, right side of image = back.
- Left view: left side of image = back, right side of image = front.
- Back view: left side of image = right, right side of image = left.
- Front view: left side of image = left, right side of image = right.
- Top view: bottom of image = front, top of image = back.
- Bottom view: top of image = front, bottom of image = back.

………

Figure 12: Prompt for sketch plane description. This prompt guides the model to describe the
relative position of the sketch plane, with placeholders for the normal vector and facing direction
being dynamically replaced.

7

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Minimal JsonMinimal Json

{
"parts": {

"part_1": {
"sketches": {

"sketch_1": {
"name": "Cylinder 1",
"profile_1": {

"loop_1": {
"curve_1": {

"type": "Circle",
"center": [0.0, 0.0],
"radius": 0.5

}
}

},
"coordinate_system": {

"reference_plane": "Top",
"rotation": [0.0, 0.0, 0.0],
"position": [0.0, 0.0, 0.0]

}
}

},
"extrusion": {

"name": "Extrude 1",
"extrude_operation_type": "NewBodyFeatureOperation",
"extrude_extent_mode": "OneSideFeatureExtentType",
"extrude_depth_towards_normal": 0.5,
"extrude_depth_opposite_normal": 0.0

},
"description": {

"label": "Cylinder",
"caption": "A cylinder with a height equal to

half of its diameter.",
"length": 1.0,
"width": 1.0,
"height": 0.5

}
},
"part_2": {

"fillet": {
"name": "Top Fillet",
"fillet_edges": {

"edge_1": {
"type": "3D Circle",
"center": [0.0, 0.0, 0.5],
"via": [1.0, 0.0, 0.5]

}
}
"fillet_radius": 0.1,
"fillet_tangent_chain": true

},
"description": {

"label": "Cylinder",
"caption": "A cylinder with a fillet along its top

edge."
}

},
},
"dimensions": {

"x_length": 1.0,
"y_length": 1.0,
"z_length": 0.5

}

}

{
"parts": {

"part_1": {
"sketches": {

"sketch_1": {
"name": "Cylinder 1",
"profile_1": {

"loop_1": {
"curve_1": {

"type": "Circle",
"center": [0.0, 0.0],
"radius": 0.5

}
}

},
"coordinate_system": {

"reference_plane": "Top",
"rotation": [0.0, 0.0, 0.0],
"position": [0.0, 0.0, 0.0]

}
}

},
"extrusion": {

"name": "Extrude 1",
"extrude_operation_type": "NewBodyFeatureOperation",
"extrude_extent_mode": "OneSideFeatureExtentType",
"extrude_depth_towards_normal": 0.5,
"extrude_depth_opposite_normal": 0.0

},
"description": {

"label": "Cylinder",
"caption": "A cylinder with a height equal to

half of its diameter.",
"length": 1.0,
"width": 1.0,
"height": 0.5

}
},
"part_2": {

"sketches": {
"sketch_1": {

"name": "Cylinder 2",
"profile_1": {

"loop_1": {
"curve_1": {

"type": "Circle",
"center": [0.0, 0.0],
"radius": 0.25

}
}

},
"coordinate_system": {

"description": "On the top face of the cylinder.",
"reference_plane": "Top",
"rotation": [0.0, 0.0, 0.0],
"position": [0.0, 0.0, 0.5]

}
}

},
"extrusion": {

"name": "Extrude 2",
"extrude_operation_type": "NewBodyFeatureOperation",
"extrude_extent_mode": "OneSideFeatureExtentType",
"extrude_depth_towards_normal": 0.1,
"extrude_depth_opposite_normal": 0.0

},
"description": {

"label": "Cylinder",
"caption": "A very flat cylinder.",
"length": 0.5,
"width": 0.5,
"height": 0.1

}
},

},
"dimensions": {

"x_length": 1.0,
"y_length": 1.0,
"z_length": 0.6

}

}

Minimal JsonMinimal Json

Figure 13: Examples of the minimal JSON structure. This figure illustrates two structured ’min-
imal JSONs’ format, which integrates visual annotations and key modeling parameters for the lan-
guage model.

8

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Annotation Prompt

You are a senior CAD engineer. Your task is to read a CAD
model construction process described in JSON format and
generate clear, natural language instructions that a junior
designer can follow to build the model step by step.
Each part in the JSON is constructed independently and may
include:
1. One or more 2D sketches. Each sketch may contain lines,
arcs, and circles: (i) A line is defined by a start point
and an end point; (ii) An arc is defined by a center point, a
start point, a sweep angle, and a direction; (iii) A circle
is defined by a center point and a radius.
2. A coordinate system that positions the sketch in 3D space
using: (i) A sketch plane (Top, Right, or Front), which
defines the basis for the coordinate system; (ii) Rotation
angles following Z-Y-X order (first rotate around Z, then Y,
then X); (iii) Translation along the x, y, and z directions;
(iv) Optionally, a description field may be present, giving
a high-level spatial context of the coordinate system’s
placement in 3D space.
3. An extrusion operation applied to the sketch or sketches.
It includes: (i) extrude operation type, which defines how
the extrusion modifies geometry. This may involve adding
material, cutting, intersecting, or creating new bodies or
components; (ii) extrude extent mode, which defines how far
and in which direction the sketch is extruded. Interpret and
explain this mode naturally based on the data.
4. A fillet operation, defined by: (i) fillet radius,
which specifies the radius of the fillet; (ii)
fillet tangent chain, which indicates whether the fillet
continues smoothly along tangent edges; (iii) fillet edges,
which specifies the edges to which the fillet is applied.
5. A chamfer operation, defined by: (i) chamfer distance,
which specifies the distance of the chamfer; (ii)
chamfer tangent chain, which indicates whether the chamfer
continues smoothly along tangent edges; (iii) chamfer edges,
which specifies the edges to which the chamfer is applied.
Instructions must follow these rules: 1. Explicitly
mention each sketch, even if it has only one shape; 2.
Omit unimportant fields like sketch name or body/component
name; 3. Wrap all numeric values (coordinates, radii,
lengths, distances) in <v></v>; 4. Do not wrap angles,
including rotation and sweep angle; 5. Do not add units;
<v></v> implies units; 6. Ignore rotations/translations that
are all zero and omit zero-valued axes; 7. Use concise,
natural engineering language; 8. You may use paragraphs
for readability but avoid lists or step numbers; 9. Ignore
captions/visualizations that conflict with construction
steps; 10. If a coordinate system has a description,
integrate it naturally for high-level context.
You will receive only the JSON content in the prompt.
Interpret and process it directly.

Figure 14: Prompt for generating the final natural language description.

9

	Introduction
	Related Work
	Pointer-Based Command Sequences
	Method
	Overall Architecture
	Multimodal Fusion Module
	Supervised Finetuning of Large Language Models

	Training Objective
	Annotation Pipeline

	Experiments
	Experimental Setup
	Comparison on Text Conditioned CAD Generation
	Validation of Support for Chamfer and Fillet Operations
	Ablation on the Parameter Quantization Level
	Extension to Click Interaction Editing Application

	Conclusion
	Details of the Pointer-based Representation
	Specific Vector Translation Rules
	Sketch Plane Selection
	Geometric Special Cases in Pointer Referencing

	Details of the training framework.
	B-rep encoder
	Implementation Details of the Autoregressive Decoder
	Details of Training Objective

	Details of the Dataset
	Dataset Visualization
	Details of Annotation Prompts
	Dataset Statistics

	Details of Implementation Details
	Future Directions
	LLM Usage

