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Abstract
While attention-based models have demonstrated
the remarkable ability of in-context learning
(ICL), the theoretical understanding of how these
models acquired this ability through gradient de-
scent training is still preliminary. Towards an-
swering this question, we study the gradient de-
scent dynamics of multi-head linear self-attention
trained for in-context linear regression. We exam-
ine two parametrizations of linear self-attention:
one with the key and query weights merged as
a single matrix (common in theoretical studies),
and one with separate key and query matrices
(closer to practical settings). For the merged
parametrization, we show that the training dynam-
ics has two fixed points and the loss trajectory
exhibits a single, abrupt drop. We derive an an-
alytical time-course solution for a certain class
of datasets and initialization. For the separate
parametrization, we show that the training dynam-
ics has exponentially many fixed points and the
loss exhibits saddle-to-saddle dynamics, which
we reduce to scalar ordinary differential equations.
During training, the model implements principal
component regression in context with the number
of principal components increasing over training
time. Overall, we provide a theoretical description
of how ICL abilities evolve during gradient de-
scent training of linear attention, revealing abrupt
acquisition or progressive improvements depend-
ing on how the key and query are parametrized.

1. Introduction
Self-attention-based models, such as transformers (Vaswani
et al., 2017), exhibit a remarkable ability known as in-
context learning (Brown et al., 2020). That is, these models
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can solve unseen tasks based on exemplars in the context of
an input prompt. In-context learning (ICL) is critical to the
flexibility of large language models, allowing them to solve
tasks not explicitly included in their training data. How-
ever, it remains unclear how architectures like self-attention
acquire this ability through gradient descent training.

Seminal work by Olsson et al. (2022) identified an intrigu-
ing trait in the training dynamics of ICL: the ICL ability
often emerges abruptly, coinciding with an abrupt drop in
loss during training. This abrupt learning phase can reflect
the formation of an induction head in the ICL setting (Ols-
son et al., 2022; Reddy, 2024; Singh et al., 2024; Edelman
et al., 2024), and can also occur more broadly in transformer
training dynamics (Nanda et al., 2023; Chen et al., 2024a;
Hoffmann et al., 2024; Gopalani et al., 2024). Furthermore,
Singh et al. (2023) found that ICL may often be a transient
ability that the transformers acquire and then lose over the
course of long training time, a phenomenon that has since
been reproduced in many settings (He et al., 2024; Anand
et al., 2025; Chan et al., 2025; Nguyen & Reddy, 2025; Park
et al., 2025; Singh et al., 2025). These findings underscore
the importance of understanding not only the ICL ability in
trained models, but its full training dynamics.

This work aims to provide a theoretical description of how
the ICL ability evolves in gradient descent training. To do
so, we consider the increasingly common setup of linear
attention1 (Von Oswald et al., 2023) trained on an in-context
linear regression task (Garg et al., 2022). The in-context
linear regression task, in which the model needs to perform
linear regression on the data in context, is a canonical in-
stantiation of ICL (Garg et al., 2022; Akyürek et al., 2023;
Von Oswald et al., 2023; Ahn et al., 2023; Bai et al., 2023).
The linear attention model, which has been used in many
prior studies (Schlag et al., 2021; Von Oswald et al., 2023;
Ahn et al., 2023; Zhang et al., 2024a; Wu et al., 2024; Fu
et al., 2024; Mahankali et al., 2024; Duraisamy, 2024; Li
et al., 2024; Yau et al., 2024; Lu et al., 2024; Frei & Vardi,
2025), reproduces key optimization properties of practical
transformers (Ahn et al., 2024) and is more amenable to
theoretical analysis. Importantly, despite its name, linear
attention is a nonlinear model, as it removes the softmax
operation but is still a nonlinear function of the input.

1We refer to linear self-attention as linear attention in this paper.
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We study two common parametrizations of multi-head linear
attention: (i) ATTNM, linear attention where the key and
query matrices in each head are merged into a single matrix,
a reparametrization procedure widely used in theoretical
studies on transformers (Ahn et al., 2023; Tian et al., 2023;
Ataee Tarzanagh et al., 2023; Zhang et al., 2024a;b; Chen
et al., 2024b; Wu et al., 2024; Kim & Suzuki, 2024; Huang
et al., 2024b; Wang et al., 2024b; Ildiz et al., 2024; Ren et al.,
2024; Tarzanagh et al., 2024; Vasudeva et al., 2025; Lu et al.,
2024; Chen & Li, 2024; Julistiono et al., 2024; Yau et al.,
2024; Anwar et al., 2024; Huang et al., 2025a); (ii) ATTNS,
linear attention with separate key and query matrices, which
is closer to the implementation of attention in real-world
transformers (Vaswani et al., 2017). We specify the fixed
points in the loss landscapes, as well as how gradient descent
training dynamics traverses the landscape. Our findings are
summarized as follows.

• We find two fixed points in the training dynamics of
ATTNM, and exponentially many fixed points in that of
ATTNS.

• We show a single, abrupt loss drop in training ATTNM
from small initialization and derive an analytical time-
course solution when the input token covariance is white.
We show saddle-to-saddle training dynamics in training
ATTNS from small initialization and reduce the high-
dimensional training dynamics to scalar ordinary differ-
ential equations through an ansatz. We demonstrate the
rank of the separate key and query weights affects the
dynamics by shortening the duration of certain plateaus.

• We identify the in-context algorithm of the converged
and early stopped models. When ATTNM and ATTNS
are trained to convergence, they approximately imple-
ment least squares linear regression in context. When
the training of ATTNS early stops during the (m+ 1)-th
loss plateau, it approximately implements principal com-
ponent regression in context with the first m principal
components.

• As a tool for our analysis, we show that when trained on
in-context linear regression tasks, ATTNM is equivalent
to a two-layer fully-connected linear network with a cubic
feature map as input, and ATTNS is equivalent to a sum
of three-layer convolutional linear networks with the same
cubic feature map as input.

• We empirically demonstrate that the single and multiple
loss drops also occur in softmax ATTNM and ATTNS,
respectively.

Comparing the two models, we find that the ICL ability
evolves differently in them: ATTNM acquires the in-context
linear regression ability through one abrupt loss drop, while
ATTNS acquires this ability by progressively improving on
in-context principal component regression. This makes a
theoretical case for the progressive improvements of ICL

in gradient descent training. Our results also reveal how
parametrization, such as merged versus separate key and
query and the rank of the separate key and query weights,
influences the loss landscape and training dynamics. This
motivates future research to take the parametrization factor
into account when studying the landscape and dynamics of
attention models.

2. Preliminaries
Notation. Non-bold small and capital symbols are scalars.
Bold small symbols are column vectors. Bold capital sym-
bols are matrices. ∥ · ∥ denotes the ℓ2 norm of a vector or
the Frobenius norm of a matrix. vec(·) represents flatten-
ing a matrix to a column vector by stacking its columns.

For example, vec
[
1 3
2 4

]
=
[
1 2 3 4

]⊤
. We use

i = 1, · · · , H to denote the index of an attention head,
µ = 1, · · · , P to denote the index of a training sample, and
n = 1, · · · , N to denote the index of a token in a sample.

2.1. In-Context Linear Regression Task

We study a standard ICL task of predicting the next token.
The input is a sequence {x1, y1,x2, y2, · · · ,xN , yN ,xq}
and the desired output is yq. We refer to xq as the query
token, {x1, y1,x2, y2, · · · ,xN , yN} as the context, and N
as the context length. By convention (Ahn et al., 2023;
Zhang et al., 2024a;b; Chen et al., 2024b; Huang et al.,
2024b), the input sequence is presented to the model as a
matrix X , defined as

X =

[
x1 x2 · · · xN xq

y1 y2 · · · yN 0

]
∈ R(D+1)×(N+1), (1)

where x1, · · · ,xN ,xq ∈ RD and y1, · · · , yN ∈ R.

We are given a training dataset {Xµ, yµ,q}Pµ=1 consisting
of P samples. All x tokens are independently sampled
from a D-dimensional zero-mean normal distribution with
covariance Λ,

xµ,n,xµ,q ∼ N (0,Λ), n = 1, · · · , N, µ = 1, · · · , P. (2)

We consider the in-context linear regression task, where the
yn in context and the target output yq are generated as a lin-
ear map of the corresponding xn and xq (Garg et al., 2022).
For each sequence Xµ, we independently sample a task
vector wµ from a D-dimensional standard normal distribu-
tion, wµ ∼ N (0, I), and generate yµ,n = w⊤

µ xµ,n, yµ,q =

w⊤
µ xµ,q, n = 1, · · · , N, µ = 1, · · · , P . Note that the task

vector wµ is fixed for all tokens in one sample sequence but
varies across different samples, and is independent of the
tokens xµ,1, · · · ,xµ,N ,xµ,q .

2.2. Multi-Head Self-Attention

A standard multi-head softmax self-attention layer (Vaswani
et al., 2017) takes the matrix X as input and returns a matrix
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of the same size,

ATTN(X) = X +

H∑
i=1

W V
i Xsmax

(
X⊤WK

i
⊤
WQ

i X

ρ

)
where H is the number of heads, ρ is a scaling factor, and
W V

i ,WK
i ,WQ

i are the trainable value, key, and query
matrices in the i-th head. The prediction for yq is the bottom
right entry of the output matrix:

ŷq = ATTN(X)D+1,N+1. (3)

In this work, we consider multi-head linear self-attention,
where we remove the softmax operation and take ρ = N .
Specifically, we study two common parametrizations of
linear attention: (i) linear attention with merged key and
query introduced in Section 2.3 and analyzed in Section 3;
(ii) linear attention with separate key and query introduced
in Section 2.4 and analyzed in Sections 4 and 5.

2.3. Linear Attention with Merged Key and Query

The multi-head linear attention ATTNM with the key and
query matrices in each head merged as a single matrix
WK

i
⊤
WQ

i = WKQ
i computes

ATTNM(X) = X +

H∑
i=1

1

N
W V

i XX⊤WKQ
i X,

where the terms can be written in block form,

XX⊤ =

[(
xqx

⊤
q +

∑N
n=1 xnx

⊤
n

) ∑N
n=1 xnyn∑N

n=1 ynx
⊤
n

∑N
n=1 y

2
n

]
,

and

W V
i =

[
∗ ∗
v⊤
i vi

]
,WKQ

i =

[
Ui ∗
u⊤
i ∗

]
.

The blocks have dimensionalities vi,ui ∈ RD, vi ∈
R,Ui ∈ RD×D. The ∗ blocks denote entries that do not con-
tribute to the computation of ATTN(X)D+1,N+1. Follow-
ing Ahn et al. (2023); Zhang et al. (2024a); Kim & Suzuki
(2024); Huang et al. (2024b), we initialize vi,ui = 0 as they
are not required for this model to achieve global minimum
loss on the in-context linear regression task. When vi and
ui are initialized to zero, they will remain zero throughout
training (see Appendix D.1). With the reduction vi,ui = 0,
the prediction for yq, which is the bottom right entry of
ATTNM(X), is

ATTNM(X)D+1,N+1 =

H∑
i=1

viβ
⊤Uixq, (M)

where β is the correlation between xn and yn in context,

β ≡ 1

N

N∑
n=1

ynxn. (4)

2.4. Linear Attention with Separate Key and Query

In multi-head attention with separate key and query, we
follow the standard practice (Vaswani et al., 2017) of using
low-rank key and query matrices where the rank R ≤ D and
RH ≥ D. In practice, usually RH = D. The multi-head
linear attention ATTNS with separate rank-R key and query
matrices computes

ATTNS(X) = X +

H∑
i=1

1

N
W V

i XX⊤WK
i

⊤
WQ

i X.

We can write the value, key, and query weights in block
form,

W V
i =

[
∗ ∗
v⊤
i vi

]
,WK

i =

k
⊤
i,1 ki,1
...

...
k⊤
i,R ki,R

 ,WQ
i =

q
⊤
i,1 ∗
...

...
q⊤
i,R ∗

 .

The blocks have dimensionalities vi, ki,r ∈ R and
vi,ki,r, qi,r ∈ RD (r = 1, · · · , R). Similarly to the case
with merged key and query, we initialize vi = 0, ki,r =
0; they will remain zero throughout training (see Ap-
pendix F.1). With vi = 0 and ki,r = 0, the multi-head
linear attention with separate rank-one key and query matri-
ces computes

ATTNS(X)D+1,N+1 =

H∑
i=1

R∑
r=1

viβ
⊤ki,rq

⊤
i,rxq, (S)

where β is the input-output correlation in context defined
in Equation (4). The expression of Equation (S) already
reveals interesting insight. It implies that linear attention
with H heads and rank-R key and query differs from linear
attention with RH heads and rank-one key and query only
in the sharing of certain value weights.

2.5. Gradient Flow Training Dynamics

We train the linear attention model using gradient descent
on squared loss of the query token2, that is L = E(yq− ŷq)

2.
We analyze the gradient flow dynamics on the loss, given by

τ
dW

dt
= −1

2

∂L
∂W

= E
[
(yq − ŷq)

∂ŷq
∂W

]
, (5)

where τ is the time constant. The gradient flow dynamics
captures the behavior of gradient descent in the limit of a
small learning rate.

3. Linear Attention with Merged Key and
Query

We first study multi-head linear attention with the key and
query matrices merged as a single matrix, as described by
Equation (M).

2We can also handle next token prediction loss (Appendix A.3).
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Figure 1. Multi-head linear attention with merged key and query, ATTNM(X)D+1,N+1, is equivalent to a two-layer fully-connected
linear network with cubic feature input, MLP(z). Left: Schematic of the equivalence. Right: Loss trajectories of linear attention and
the fully-connected linear network match well. The two models are trained with the same data and initialization. Both exhibit the
characteristic abrupt loss drop documented by prior work on the ICL dynamics in linear (Von Oswald et al., 2023) and softmax attention
(Singh et al., 2024). Here D = 4, N = 31, H = 8.

3.1. Connection to A Fully-Connected Linear Network

The H-head linear attention with input sequence X defined
in Equation (M) can be viewed as a two-layer width-H
fully-connected linear network with a cubic feature z(X)
as input,

ATTNM(X)D+1,N+1 =

H∑
i=1

viβ
⊤Uixq

=

H∑
i=1

vivec(Ui)
⊤vec

(
βx⊤

q

)
= w⊤

2 W1z = MLP(z), (6)

where

w2 =


v1
v2
...
vH

 ,W1 =


vec(U1)

⊤

vec(U2)
⊤

...
vec(UH)⊤

 , z(X) = vec
(
βx⊤

q

)
.

(7)

The feature z ∈ RD2

, whose entries are cubic functions
of the entries in the original sequence X , is the input to
the equivalent two-layer fully-connected linear network.
The stacked value weights correspond to the second-layer
weights w2 ∈ RH of the fully-connected linear network.
The stacked merged key-query weights correspond to the
first-layer weights W1 ∈ RH×D2

of the fully-connected
linear network. A schematic of this equivalence is given in
Figure 1.

3.2. Loss Landscape: Two Fixed Points

The gradient flow training dynamics of the linear attention
or the equivalent two-layer fully-connected linear network
given in Equation (6) is

τẆ1 = w2

(
E
(
yqz

⊤)−w⊤
2 W1E

(
zz⊤)) , (8a)

τẇ2 = W1

(
E
(
yqz

⊤)−w⊤
2 W1E

(
zz⊤))⊤ . (8b)

There are two manifolds of fixed points in this dynamical
system: one is the unstable fixed point at zero, denoted
M0, and the other is a manifold of stable fixed points at the
global minimum, denoted M∗,

M0 = {w2 = 0,W1 = 0} (9a)

M∗ =
{
w2,W1

∣∣w⊤
2 W1 = E

(
yqz

⊤)E (zz⊤)−1
}

(9b)

3.3. Training Dynamics: An Abrupt Drop in the Loss

We have shown the linear attention defined in Equation (M)
is equivalent to a fully-connected linear network with cubic
feature input. Since this equivalence holds at the level of
the computation of the model, the equivalence applies to
the training dynamics with any initialization and optimizer.
Here we discuss the training dynamics from small initial-
ization, commonly referred to as the rich learning regime
(Woodworth et al., 2020).

With small initialization, the network is initially near the
unstable fixed point, M0, at zero. As training progresses,
the network escapes from the unstable fixed point, and sub-
sequently converges to a stable fixed point on the global min-
imum manifold, M∗. The time it takes to escape from the
unstable fixed point is approximately τ

∥Λ2∥ ln
1

winit
, where

the initialization scale winit is the initial ℓ2 norm of a layer
(see Appendix D.6.1). Because the time to escape from the
unstable fixed point starting from small initialization is long,
the loss exhibits an initial plateau followed by an abrupt
drop, as validated by simulations in Figure 1. In particular,
when the input token covariance is white Λ = I and the
initialization is infinitesimally small, we exploit the equiva-
lence between linear attention and linear networks to derive
an analytical time-course solution (see Appendix D.5) and
obtain

ATTNM(X; t)D+1,N+1 = σ(t)β⊤xq,

where σ(t) =
e2

√
D t

τ(
1 + 1+D

N

) (
e2

√
D t

τ − 1
)
+

√
D

w2
init

. (10)
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Since σ(t) is a rescaled and shifted sigmoid function, the
weights and the loss trajectories have sigmoidal shapes,
characterized by a plateau followed by a rapid drop.

3.4. ICL Algorithm: Least Squares Regression

When the linear attention model converges to the global
minimum manifold M∗ at the end of training, the model
implements

ATTNM(X)D+1,N+1 = E
(
yqz

⊤)E (zz⊤)−1
z

= β⊤
(
Λ+

Λ+ tr(Λ)I

N

)−1

xq,
(11)

where the first equality follows directly from Equations (6)
and (9b) and the second equality is proved in Appendix D.4.
Equation (11) reveals an intriguing duality: the linear regres-
sion solution in the cubic feature space of z is the in-context
linear regression solution in the original space of the xn, yn
token pairs in a sequence X . The first line of Equation (11)
is the linear regression solution of fitting yµ,q with zµ for
all training sequences µ = 1, · · · , P . The second line of
Equation (11) is approximately the in-context linear regres-
sion solution, which fits yµ,n with xµ,n(n = 1, · · · , N) for
each sequence Xµ. When the sequence length N is large,
the model recovers the inverse of the true covariance matrix,

lim
N→∞

β⊤
(
Λ+

Λ+ tr(Λ)I

N

)−1

xq = β⊤Λ−1xq.

Here β is the xn, yn correlation in a sequence X , and Λ
is the covariance of all xn tokens in all training sequences,
which approximates the covariance of xn in each individual
sequence.

4. Linear Attention with Separate Rank-One
Key and Query

We now study multi-head linear attention with separate low-
rank key and query matrices. Because the rank-one case
captures most of the behaviors of the general rank-R case,
we focus on the rank-one case in this section and defer the
rank-R case to Section 5. When R = 1, the model definition
in Equation (S) simplifies to

ATTNS(X)D+1,N+1 =

H∑
i=1

viβ
⊤kiq

⊤
i xq. (12)

4.1. Connection to Convolutional Linear Networks

The H-head linear attention with separate rank-one key and
query can be viewed as a sum of H three-layer convolu-
tional linear network with the cubic feature z defined in
Equation (7) as input. Specifically, Equation (12) can be

𝒌𝐻𝒌1

⋯

⋯

Figure 2. Multi-head linear attention with separate rank-one key
and query ATTNS(X)D+1,N+1 is a sum of H (number of heads)
three-layer convolutional linear networks with the cubic feature
z as input. Here we take D = 3 to avoid clutter. Entries in the
vectors are denoted as xq =

[
x1
q, x

2
q, x

3
q

]⊤
,β =

[
β1, β2, β3

]⊤.

rewritten as

ATTNS(X)D+1,N+1 =

H∑
i=1

viq
⊤
i Kiz,

where Ki =


k⊤
i 0⊤

D . . . 0⊤
D

0⊤
D k⊤

i . . . 0⊤
D

...
...

. . .
...

0⊤
D 0⊤

D . . . k⊤
i

 ∈ RD×D2

. (13)

The matrix Ki is a convolutional matrix with kernel size D
and stride D. A schematic of the three-layer convolutional
linear network is given in Figure 2.

When the number of heads satisfies H ≥ D, the linear at-
tention with separate rank-one key and query, ATTNS(X),
can express any linear map of z(X) and has the same ex-
pressivity as linear attention with merged key and query,
ATTNM(X). However, the two models correspond to multi-
layer linear networks with different connectivity and depths,
resulting in different loss landscape (Kohn et al., 2022; 2024)
and training dynamics (Saxe et al., 2014; 2019).

4.2. Loss Landscape: Exponentially Many Fixed Points

The gradient flow training dynamics of linear attention with
separate rank-one key and query, derived in Appendix E.2,
is given by

τ v̇i = k⊤
i

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi, (14a)

τ k̇i = vi

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi, (14b)

τ q̇i = vi

(
Λ2 −Λ

H∑
i′=1

vi′ki′q
⊤
i′ E
(
Λ̂2
))

ki, (14c)
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Figure 3. Multi-head linear attention with separate rank-one key and query exhibits saddle-to-saddle dynamics. (a) The loss curve has
D abrupt drops, separated by plateaus (six runs from different random initialization are plotted). The loss at each plateau matches our
theoretical prediction in Equation (19) (dashed gray lines). (b) The value weight vi in each head for one of the runs in (a) is plotted in
solid blue curves. The numerical solutions of vi from Equation (21) are plotted in dashed blue curves and match the simulations well. The
shades of blue distinguish different heads. (c) The key weights during the loss plateau are plotted in color. When the model moves from
one fixed point to the next, the key weight in a head, ki, aligns with a new eigenvector of the input token covariance Λ. The key weights
k1:4 and the eigenvectors e1:4 are rows in the heatmaps. A video of the dynamics is provided at URL. Here D = 4, N = 31, H = 4, and
Λ has eigenvalues 0.4, 0.3, 0.2, 0.1 and eigenvectors as plotted in (c).

where we denote the in-context covariance of xn tokens as
Λ̂ =

∑N
n=1 xnx

⊤
n /N and the expectation of Λ̂2 is

E
(
Λ̂2
)
= Λ2 +

Λ+ tr(Λ)I

N
Λ (15)

This dynamical system contains 2D fixed points in the func-
tion space of ATTNS(X)D+1,N+1. We specify the fixed
points below and prove their validity in Appendix E.3.

Let λ1, · · · , λD be the eigenvalues of the covariance matrix
Λ arranged in descending order, and e1, · · · , eD be the
corresponding normalized eigenvectors. We use M(Sm) to
denote a set of fixed points that correspond to learning m
(m = 0, 1, · · · , D) out of the D eigenvectors,

M(Sm) =
{
(v,k, q)1:H

∣∣conditions (C1)-(C3)
}
, (16)

where the set Sm specifies the indices of the learned eigen-
vectors,

Sm ⊆ {1, 2, · · · , D}, |Sm| = m. (17)

The three conditions for Equation (16) are:

(C1) The heads sum to fit the eigenvectors with indices in
the set Sm

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λ−1
d

(
1 +

1 + tr(Λ)/λd

N

)−1

ede
⊤
d .

(18)

(C2) For heads with a nonzero value weight, vi ̸= 0, both
ki and qi lie in the span of {ed}d∈Sm

.

(C3) For heads with a zero value weight, vi = 0, at least
one of ki or qi lies in the span of {ed}d∈Sm .

Since there are
(
D
m

)
possible ways of choosing m out of

D indices to define Sm in Equation (17), the total num-
ber of possible choices summed over m = 0, · · · , D is∑D

m=0

(
D
m

)
= 2D. Each choice corresponds to a different

condition (C1) in Equation (18) and thus a different function,
ATTNS(X)D+1,N+1. Hence, the gradient flow dynamics
in Equation (14) has 2D fixed points in the function space. 3

The two fixed points of ATTNM (Section 3.2) are contained
in the 2D fixed points of ATTNS: the zero fixed point in
Equation (9a) corresponds to M(S0), i.e., learning no eigen-
vector; the global minimum fixed point in Equation (9b)
corresponds to M(SD), i.e., learning all D eigenvectors.

4.3. Training Dynamics: Saddle-to-Saddle Dynamics

Building on the exponentially many fixed points we have
identified, we now analyze which fixed points are actually
visited in gradient flow training and in what order. We
find that starting from small initialization, the model visits
(D + 1) out of the 2D fixed points.

With small initialization, the model is initially near the
unstable zero fixed point, M0 = M(∅). As training
progresses, the model sequentially visits the fixed points
in M1,M2, · · · ,MD, where Mm = M({1, 2, · · · ,m}).
That is, the model trained from small initialization sequen-
tially learns to fit the first eigenvector (the eigenvector of Λ
with the largest eigenvalue), the second eigenvector, and so
on. As shown in Figure 3a, the loss goes through D abrupt
drops in training, each corresponding to the transition from
one fixed point to the next. The abrupt drops of loss are
separated by plateaus, during which the model lingers near

3A fixed point in function space corresponds to a set of fixed
points in weight space that implement the same input-output map.
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an unstable fixed point. Because the time required for a head
to learn the eigenvector em from small initialization scales
with λ−2

m (see Appendix E.6), eigenvectors associated with
larger eigenvalues are learned faster. This explains why the
model learns to fit the eigenvectors sequentially in descend-
ing order of the eigenvalues, as well as why we empirically
see the later plateaus last longer in Figure 3a.

When the model is at a fixed point in Mm, we compute the
loss in Appendix E.4 and obtain

L(Mm) = tr(Λ)−
m∑

d=1

λd

(
1 +

1 + tr(Λ)/λd

N

)−1

.

(19)

Equation (19) is highly interpretable in the limit of a large
sequence length N . The loss, L(Mm), is the sum of the
eigenvalues associated with the remaining unlearned eigen-
vectors

lim
N→∞

L(Mm) = tr(Λ)−
m∑

d=1

λd =

D∑
d=m+1

λd.

Thus, the loss decreases by approximately λm during the
m-th abrupt loss drop. We plot Equation (19) as dashed
gray lines in Figure 3a and find they match the plateaus of
simulated loss trajectories well.

When the model reaches Mm from small initialization, its
weights take on a highly structured form, which is a spe-
cific instance of the general definition in Equation (16). As
shown in Figure 3c, the key and query weights in a head
grow in scale and align with a new eigenvector of the input
token covariance Λ during each abrupt loss drop. Based on
simulations in Figure 3 and derivations in Appendices E.5
and E.6, we propose an ansatz that during the (m + 1)-th
plateau (0 ≤ m < D) and the subsequent abrupt drop of
loss, the weights are approximately given by4

ki = qi = viei, vi = λ
− 1

3
i

(
1 +

1 + tr(Λ)/λi

N

)− 1
3

,

1 ≤ i ≤ m, (20a)
ki = qi = vi(t)em+1, i = m+ 1, (20b)
ki = qi = 0, vi = 0, m+ 2 ≤ i ≤ H, (20c)

where vm+1(t) is small during the (m+ 1)-th loss plateau
and grows during the (m + 1)-th abrupt loss drop. Equa-
tion (20) implies that the ℓ2 norms of vi,ki, qi in a head are
equal, which is a consequence of small initialization and
the conservation law in Appendix E.8. With this ansatz, the
high-dimensional training dynamics during the (m+ 1)-th

4We permute the heads so that the head aligned with the d-th
eigenvector have index d. The signs of any two among vi,ki, qi

can be flipped with trivial effect on the analysis.

plateau and the subsequent abrupt drop of loss reduces to
an ordinary differential equation about vi(t), i = m+ 1:

τ v̇i = λ2
m+1v

2
i − λ3

m+1

(
1 +

1 + tr(Λ)/λm+1

N

)
v5i .

(21)

Equation (21) is a separable differential equation but does
not admit a general analytical solution of vm+1(t) in terms
of t (see Equation (71)). Nonetheless, it greatly simplifies
the high-dimensional dynamics in Equation (14) and pro-
vides a good approximation of the true dynamics: during
each plateau and the subsequent abrupt loss drop, weights
in one of the heads grow in scale with the key and query
weights aligning with the next eigenvector, while the rest of
the heads remain approximately unchanged. In Figure 3b,
we compare the numerical solution of Equation (21) with
the value weights trajectories in the simulation and find
excellent agreement.

In summary, the loss trajectory of linear attention with sepa-
rate rank-one key and query trained from small initialization
exhibits D abrupt drops, each followed by a plateau. The
amount of the m-th abrupt loss drop (1 ≤ m ≤ D) is ap-
proximately the eigenvalue λm, during which the key and
query weights in an attention head grow in scale and align
with the eigenvector em.

4.4. ICL Algorithm: Principal Component Regression

When the linear attention model is at a fixed point in Mm,
based on Equation (18), the model implements

ATTNS(X)D+1,N+1

=β⊤
m∑

d=1

λ−1
d

(
1 +

1 + tr(Λ)/λd

N

)−1

ede
⊤
d xq. (22)

In the limit of a large sequence length N , Equation (22)
simplifies and can be interpreted as principal component
regression in context with m principal components

lim
N→∞

ATTNS(X)D+1,N+1 = w⊤
m∑

d=1

ede
⊤
d xq.

Here w is the task vector for the sequence X , and∑m
d=1 ede

⊤
d xq is query input xq projected onto the first

m principal components. Hence, if training stops during
the (m+ 1)-th plateau, the linear attention approximately
implements the principal component regression algorithm
in context with m principal components.

After the model has undergone D plateaus, it converges to
the global minimum fixed point, MD, and approximately
implements principal component regression in context with
all D components, which is least square regression. Thus,
the linear attention model with either merged or separate
key and query undergoes different training dynamics but
converges to the same global minimum solution.

7
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Figure 4. Multi-head linear attention with separate low-rank key and query exhibits saddle-to-saddle dynamics, with the duration of
plateaus depending on the rank R. Solid black curves are loss trajectories from six random initializations. Dashed gray lines mark the loss
values predicted by Equation (19) at nine fixed points, which are L(M0),L(M1), · · · ,L(M8) from top to bottom. The four panels
differ only in the rank of the key and query weights. Here D = 8, N = 31, H = 9, Λ has trace 1 and eigenvalues λd ∝ d−1.

5. Linear Attention with Separate Low-Rank
Key and Query

The linear attention model with separate rank-R key and
query shares many behaviors with its rank-one counterpart.
For loss landscape, linear attention with rank-R key and
query has the same 2D fixed points in the function space as
its rank-one counterpart, corresponding to the model imple-
menting in-context principal component regression with a
subset of all D principal components (see Appendix F.3).

For training dynamics, the loss trajectories differ slightly,
depending on the rank R. We plot the loss trajectories
with input token dimension D = 8 and different ranks
R = 1, 2, 4, 8 in Figure 4 (see Figure 12 for R = 3, 5, 6, 7).
For R = 1, the loss exhibits plateaus at eight values
L(Mm) (m = 0, 1, · · · , 7). For R = 2, the loss exhibits
plateaus at four values L(Mm) (m = 0, 2, 4, 6), and ei-
ther brief plateaus or no plateau at the other four values.
For R = 4, the loss exhibits conspicuous plateaus at only
two values L(Mm) (m = 0, 4). To summarize, with rank-
R key and query, the loss trajectory exhibits conspicuous
plateaus at value L(Mm) for m that divides R.

The difference in the loss trajectories arises from the struc-
ture of the model defined in Equation (S). Each atten-
tion head has a single value weight vi that is associated
with all R pairs of key and query weights in that head,
ki,r, qi,r (r = 1, · · · , R). During a conspicuous plateau, a
new value weight escapes from the unstable zero fixed point
and grows in scale. Once the value weight has grown, it
leads to larger gradient updates for all the key and query
weights in that head, speeding up their escape from the
zero fixed point. Hence, in the rank-R case, a conspicuous
plateau occurs when m divides R, corresponding to learning
a new head from small initialization. Brief or no plateau
occurs when m does not divide R, corresponding to learn-
ing a new pair of key and query weights in a head whose
value weight has already grown, as shown in Figure 11. See
Appendix F.4 for further details.

6. Related Work
Recent theoretical research on linear attention has investi-
gated its expressivity (Vladymyrov et al., 2024; Gatmiry
et al., 2024), learnability (Yau et al., 2024), loss landscape
(Mahankali et al., 2024; Li et al., 2024), convergence (Zhang
et al., 2024a;b; Ren et al., 2024; Fu et al., 2024), and general-
ization (Wu et al., 2024; Mahankali et al., 2024; Duraisamy,
2024; Lu et al., 2024; Abedsoltan et al., 2024; Frei & Vardi,
2025). The seminal work by Zhang et al. (2024a) analyzed
the gradient flow training dynamics of linear attention to
prove convergence guarantees, showing what the model con-
verges to at the end of training. Our work also analyzes the
gradient flow training dynamics but goes beyond existing
convergence results to describe the entire training dynamics.
Moreover, we study multi-head attention with merged or
separate key and query weights, while Zhang et al. (2024a)
focused on single-head attention with merged key and query.

Another line of recent research on the training dynamics
of softmax attention models has shown stage-wise dynam-
ics. Due to the intractability of softmax attention training
dynamics in general, many of these studies made strong
assumptions to enable theoretical analyses, including a sim-
plified layer-wise training algorithm in place of standard
gradient descent (Tian et al., 2023; Nichani et al., 2024;
Chen et al., 2024c; Wang et al., 2024a), restricted weights
(Boix-Adsera et al., 2023; Chen et al., 2024b; Rende et al.,
2024; Edelman et al., 2024), and specifically chosen datasets
(Huang et al., 2024b). In comparison, our work leverages
the linear attention model without the softmax operation,
enabling us to study in fine detail the dynamics of standard
gradient descent training without restrictions on weights.
Namely, we derive an analytical time-course solution and
reduce the high-dimensional dynamics to one-dimensional
ordinary differential equations for the two models we study,
respectively. Furthermore, we characterize how parametriza-
tion (i.e., merged or separate key and query, and rank of the
separate key and query weights) affects the loss landscape
and training dynamics, an aspect not previously examined.
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7. Discussion
We studied the gradient flow training dynamics of multi-
head linear attention and demonstrated how it acquires ICL
abilities in training. We begin with a simple setting of linear
attention with merged key and query trained for in-context
linear regression, following the setting in seminal works
(Von Oswald et al., 2023; Ahn et al., 2023; Zhang et al.,
2024a). We show an abrupt loss drop in training and give
an analytical time-course solution in the case of a white
input token covariance and small initialization. However,
a single abrupt loss drop does not fully capture the evolu-
tion of ICL in training practical transformers, where the
abilities continue to develop throughout training (Xia et al.,
2023; Park et al., 2025). We thus extend our analysis to a
parametrization closer to the attention in practical transform-
ers: attention with separate key and query. In the separate
case, we find that the loss exhibits saddle-to-saddle dynam-
ics with multiple abrupt drops. The ICL ability evolves
progressively, manifesting as implementing principal com-
ponent regression in context, with the number of principal
components increasing over training time. We thus charac-
terize how the linear attention model develops increasingly
sophisticated ICL abilities in gradient descent training.

Softmax Attention. We empirically find that the different
training dynamics of linear ATTNM and linear ATTNS also
occur in their softmax counterparts. Figure 5 follows the
same setup as Figures 1 and 3 for linear attention, with the
only difference being adding the softmax activation func-
tion for the attention calculation. We observe that softmax
attention with merged key and query exhibits a single abrupt
loss drop, whereas softmax attention with separate rank-one
key and query undergoes multiple loss drops, separated by
phases of conspicuously slower training. This suggests that
our findings and theoretical intuition are not unique to linear
attention but may also extend to softmax attention.

Effect of Initialization. Having analyzed the small initial-
ization case, we now examine how the initialization scale
affects training dynamics. For linear ATTNM, Figure 6a
shows increasing initialization shortens the plateau before
the single abrupt loss drop. For linear ATTNS, Figure 6b
shows increasing initialization shortens all plateaus between
successive abrupt loss drops. At the largest initialization,
both models exhibit an exponential-shaped loss decay – a
hallmark of lazy learning (Chizat et al., 2019). In con-
trast, rich learning typically exhibits abrupt sigmoid-shaped
loss curves as seen in our main result. Theory typically
focuses on either the lazy or rich regime, while practical
initializations often fall in between. In Figure 6, dynamics
from the intermediate initialization seems like a mix of the
exponential-shaped and sigmoid-shaped curves, which are
often seen in practice, e.g. in induction head emergence in
natural language settings (Olsson et al., 2022, Argument 1).
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Figure 5. Loss trajectories of softmax attention with merged or sep-
arate key and query. Six runs from different random initialization
are plotted. Similar to the linear attention case, softmax ATTNM

exhibits one abrupt loss drop, while softmax ATTNS exhibits mul-
tiple loss drops. The dataset and model setup are the same as
Figures 1 and 3 except adding the softmax activation function.

Dynamics of In-Context and In-Weight Learning. Our
work studies the training dynamics of in-context learning.
Other than in-context learning, attention models can also
learn in weight; that is, solving the task by memorizing the
map between the query input and the target output without
using the information in context. The arbitration between in-
context and in-weight learning may depend on properties of
training data (Chan et al., 2022). To focus on the dynamics
of ICL, we used a purely ICL task, which is in-context
linear regression with the task vector sampled from a zero-
mean standard normal distribution, w ∼ N (0, I). Since
memorizing any particular task vector does not effectively
decrease the loss, linear attention develops only in-context
learning ability during training, as shown in Figure 14a. If
the task vector w follows a different distribution, the training
dynamics involves the development of both in-context and
in-weight learning abilities, as shown in Figure 14. We
provide more details in Appendix G.

Implications for Future Theory. In our analysis, we draw
connections between linear attention and multi-layer lin-
ear networks, enabling us to employ the rich theoretical
machinery built for linear networks to understand linear
attention training dynamics. Beyond training dynamics,
many other theoretical results for linear networks can apply
to linear attention through the equivalence we draw. For
example, the convergence guarantee for multi-head linear
attention trained on in-context linear regression tasks can
be obtained from the convergence proofs for deep linear
networks (Arora et al., 2019; Shamir, 2019). In contrast,
without the equivalence, Zhang et al. (2024a) previously ob-
tained a convergence guarantee for single-head linear atten-
tion, which required highly non-trivial derivations. Hence,
we believe the connections we draw are useful in enabling
the applications of theory from one architecture to the other.

Additionally, we have shown that parametrization signif-
icantly affects the loss landscape and training dynamics,
motivating future research to examine how their results may
or may not be influenced by the parametrization choice.
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Kohn, K., Montúfar, G., Shahverdi, V., and Trager, M. Func-
tion space and critical points of linear convolutional net-
works. SIAM Journal on Applied Algebra and Geometry,
8(2):333–362, 2024. doi: 10.1137/23M1565504. URL
https://doi.org/10.1137/23M1565504.

Lee, I., Jiang, N., and Berg-Kirkpatrick, T. Is attention re-
quired for ICL? exploring the relationship between model
architecture and in-context learning ability. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum
?id=Qwq4cpLtoX.

Li, Y., Rawat, A., and Oymak, S. Fine-grained analysis of in-
context linear estimation: Data, architecture, and beyond.
In Globerson, A., Mackey, L., Belgrave, D., Fan, A.,
Paquet, U., Tomczak, J., and Zhang, C. (eds.), Advances
in Neural Information Processing Systems, volume 37,
pp. 138324–138364. Curran Associates, Inc., 2024. URL
https://proceedings.neurips.cc/paper
_files/paper/2024/file/f9dc462382fef
56d58279e75de2438f3-Paper-Conference.
pdf.

Lu, Y. M., Letey, M. I., Zavatone-Veth, J. A., Maiti, A., and
Pehlevan, C. Asymptotic theory of in-context learning by
linear attention, 2024. URL https://arxiv.org/
abs/2405.11751.

Mahankali, A. V., Hashimoto, T., and Ma, T. One step of
gradient descent is provably the optimal in-context learner
with one layer of linear self-attention. In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum
?id=8p3fu56lKc.

Makkuva, A. V., Bondaschi, M., Girish, A., Nagle, A., Kim,
H., Gastpar, M., and Ekbote, C. Local to global: Learning
dynamics and effect of initialization for transformers. In
Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet,
U., Tomczak, J., and Zhang, C. (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 86243–
86308. Curran Associates, Inc., 2024. URL https:
//proceedings.neurips.cc/paper_files
/paper/2024/file/9cdb4f8c4dfa13284d2
d5a6e7853e5a2-Paper-Conference.pdf.

Nanda, N., Chan, L., Lieberum, T., Smith, J., and Stein-
hardt, J. Progress measures for grokking via mechanistic
interpretability. In The Eleventh International Confer-
ence on Learning Representations, 2023. URL https:
//openreview.net/forum?id=9XFSbDPmdW.

Nguyen, A. and Reddy, G. Differential learning kinetics gov-
ern the transition from memorization to generalization
during in-context learning. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025.

13

https://proceedings.mlr.press/v235/jang24d.html
https://proceedings.mlr.press/v235/jang24d.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/f69707de866eb0805683d3521756b73f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f69707de866eb0805683d3521756b73f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f69707de866eb0805683d3521756b73f-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/f69707de866eb0805683d3521756b73f-Paper-Conference.pdf
https://openreview.net/forum?id=HJflg30qKX
https://openreview.net/forum?id=HJflg30qKX
https://proceedings.neurips.cc/paper_files/paper/2024/file/f49287371916715b9209fa41a275851e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f49287371916715b9209fa41a275851e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f49287371916715b9209fa41a275851e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f49287371916715b9209fa41a275851e-Paper-Conference.pdf
https://arxiv.org/abs/2410.14581
https://arxiv.org/abs/2410.14581
https://proceedings.mlr.press/v235/kim24af.html
https://proceedings.mlr.press/v235/kim24af.html
https://doi.org/10.1137/21M1441183
https://doi.org/10.1137/21M1441183
https://doi.org/10.1137/23M1565504
https://openreview.net/forum?id=Qwq4cpLtoX
https://openreview.net/forum?id=Qwq4cpLtoX
https://proceedings.neurips.cc/paper_files/paper/2024/file/f9dc462382fef56d58279e75de2438f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f9dc462382fef56d58279e75de2438f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f9dc462382fef56d58279e75de2438f3-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/f9dc462382fef56d58279e75de2438f3-Paper-Conference.pdf
https://arxiv.org/abs/2405.11751
https://arxiv.org/abs/2405.11751
https://openreview.net/forum?id=8p3fu56lKc
https://openreview.net/forum?id=8p3fu56lKc
https://proceedings.neurips.cc/paper_files/paper/2024/file/9cdb4f8c4dfa13284d2d5a6e7853e5a2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9cdb4f8c4dfa13284d2d5a6e7853e5a2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9cdb4f8c4dfa13284d2d5a6e7853e5a2-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/9cdb4f8c4dfa13284d2d5a6e7853e5a2-Paper-Conference.pdf
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW


Training Dynamics of In-Context Learning in Linear Attention

URL https://openreview.net/forum?id=
INyi7qUdjZ.

Nichani, E., Damian, A., and Lee, J. D. How transformers
learn causal structure with gradient descent. In Salakhut-
dinov, R., Kolter, Z., Heller, K., Weller, A., Oliver, N.,
Scarlett, J., and Berkenkamp, F. (eds.), Proceedings of
the 41st International Conference on Machine Learning,
volume 235 of Proceedings of Machine Learning Re-
search, pp. 38018–38070. PMLR, 21–27 Jul 2024. URL
https://proceedings.mlr.press/v235/n
ichani24a.html.

Olsson, C., Elhage, N., Nanda, N., Joseph, N., DasSarma,
N., Henighan, T., Mann, B., Askell, A., Bai, Y., Chen,
A., Conerly, T., Drain, D., Ganguli, D., Hatfield-Dodds,
Z., Hernandez, D., Johnston, S., Jones, A., Kernion, J.,
Lovitt, L., Ndousse, K., Amodei, D., Brown, T., Clark,
J., Kaplan, J., McCandlish, S., and Olah, C. In-context
learning and induction heads, 2022. URL https://tr
ansformer-circuits.pub/2022/in-conte
xt-learning-and-induction-heads/index
.html.

Otto, F. and Reznikoff, M. G. Slow motion of gradient flows.
Journal of Differential Equations, 237(2):372–420, 2007.
ISSN 0022-0396. doi: https://doi.org/10.1016/j.jde.20
07.03.007. URL https://www.sciencedirect.
com/science/article/pii/S00220396070
00824.

Park, C. F., Lubana, E. S., and Tanaka, H. Algorithmic
phases of in-context learning. In The Thirteenth Inter-
national Conference on Learning Representations, 2025.
URL https://openreview.net/forum?id=
XgH1wfHSX8.

Reddy, G. The mechanistic basis of data dependence and
abrupt learning in an in-context classification task. In The
Twelfth International Conference on Learning Represen-
tations, 2024. URL https://openreview.net/f
orum?id=aN4Jf6Cx69.

Ren, Y., Wang, Z., and Lee, J. D. Learning and transferring
sparse contextual bigrams with linear transformers. In
Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet,
U., Tomczak, J., and Zhang, C. (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 20304–
20357. Curran Associates, Inc., 2024. URL https:
//proceedings.neurips.cc/paper_files
/paper/2024/file/2428ff361a08bc6864f
b240bc83fba42-Paper-Conference.pdf.

Rende, R., Gerace, F., Laio, A., and Goldt, S. A distribu-
tional simplicity bias in the learning dynamics of trans-
formers. In Globerson, A., Mackey, L., Belgrave, D.,
Fan, A., Paquet, U., Tomczak, J., and Zhang, C. (eds.),

Advances in Neural Information Processing Systems, vol-
ume 37, pp. 96207–96228. Curran Associates, Inc., 2024.
URL https://proceedings.neurips.cc/p
aper_files/paper/2024/file/ae6c81a39
079ddeb88b034b6ef18c7fe-Paper-Confere
nce.pdf.

Saxe, A. M., McClelland, J. L., and Ganguli, S. Exact solu-
tions to the nonlinear dynamics of learning in deep linear
neural networks. In The Second International Conference
on Learning Representations, 2014. URL https://op
enreview.net/forum?id=_wzZwKpTDF_9C.

Saxe, A. M., McClelland, J. L., and Ganguli, S. A mathe-
matical theory of semantic development in deep neural
networks. Proceedings of the National Academy of Sci-
ences, 116(23):11537–11546, 2019. doi: 10.1073/pnas
.1820226116. URL https://www.pnas.org/doi
/abs/10.1073/pnas.1820226116.

Schlag, I., Irie, K., and Schmidhuber, J. Linear transformers
are secretly fast weight programmers. In Meila, M. and
Zhang, T. (eds.), Proceedings of the 38th International
Conference on Machine Learning, volume 139 of Pro-
ceedings of Machine Learning Research, pp. 9355–9366.
PMLR, 18–24 Jul 2021. URL https://proceedi
ngs.mlr.press/v139/schlag21a.html.

Shamir, O. Exponential convergence time of gradient de-
scent for one-dimensional deep linear neural networks.
In Beygelzimer, A. and Hsu, D. (eds.), Proceedings
of the Thirty-Second Conference on Learning Theory,
volume 99 of Proceedings of Machine Learning Re-
search, pp. 2691–2713. PMLR, 25–28 Jun 2019. URL
https://proceedings.mlr.press/v99/sh
amir19a.html.

Sheen, H., Chen, S., Wang, T., and Zhou, H. H. Implicit
regularization of gradient flow on one-layer softmax at-
tention, 2024. URL https://arxiv.org/abs/24
03.08699.

Singh, A. K., Chan, S., Moskovitz, T., Grant, E., Saxe, A.,
and Hill, F. The transient nature of emergent in-context
learning in transformers. In Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 36, pp. 27801–27819. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/p
aper_files/paper/2023/file/58692a170
1314e09cbd7a5f5f3871cc9-Paper-Confere
nce.pdf.

Singh, A. K., Moskovitz, T., Hill, F., Chan, S. C., and Saxe,
A. M. What needs to go right for an induction head? A
mechanistic study of in-context learning circuits and their
formation. In Salakhutdinov, R., Kolter, Z., Heller, K.,

14

https://openreview.net/forum?id=INyi7qUdjZ
https://openreview.net/forum?id=INyi7qUdjZ
https://proceedings.mlr.press/v235/nichani24a.html
https://proceedings.mlr.press/v235/nichani24a.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html
https://www.sciencedirect.com/science/article/pii/S0022039607000824
https://www.sciencedirect.com/science/article/pii/S0022039607000824
https://www.sciencedirect.com/science/article/pii/S0022039607000824
https://openreview.net/forum?id=XgH1wfHSX8
https://openreview.net/forum?id=XgH1wfHSX8
https://openreview.net/forum?id=aN4Jf6Cx69
https://openreview.net/forum?id=aN4Jf6Cx69
https://proceedings.neurips.cc/paper_files/paper/2024/file/2428ff361a08bc6864fb240bc83fba42-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2428ff361a08bc6864fb240bc83fba42-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2428ff361a08bc6864fb240bc83fba42-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/2428ff361a08bc6864fb240bc83fba42-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ae6c81a39079ddeb88b034b6ef18c7fe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ae6c81a39079ddeb88b034b6ef18c7fe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ae6c81a39079ddeb88b034b6ef18c7fe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/ae6c81a39079ddeb88b034b6ef18c7fe-Paper-Conference.pdf
https://openreview.net/forum?id=_wzZwKpTDF_9C
https://openreview.net/forum?id=_wzZwKpTDF_9C
https://www.pnas.org/doi/abs/10.1073/pnas.1820226116
https://www.pnas.org/doi/abs/10.1073/pnas.1820226116
https://proceedings.mlr.press/v139/schlag21a.html
https://proceedings.mlr.press/v139/schlag21a.html
https://proceedings.mlr.press/v99/shamir19a.html
https://proceedings.mlr.press/v99/shamir19a.html
https://arxiv.org/abs/2403.08699
https://arxiv.org/abs/2403.08699
https://proceedings.neurips.cc/paper_files/paper/2023/file/58692a1701314e09cbd7a5f5f3871cc9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/58692a1701314e09cbd7a5f5f3871cc9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/58692a1701314e09cbd7a5f5f3871cc9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/58692a1701314e09cbd7a5f5f3871cc9-Paper-Conference.pdf


Training Dynamics of In-Context Learning in Linear Attention

Weller, A., Oliver, N., Scarlett, J., and Berkenkamp, F.
(eds.), Proceedings of the 41st International Conference
on Machine Learning, volume 235 of Proceedings of
Machine Learning Research, pp. 45637–45662. PMLR,
21–27 Jul 2024. URL https://proceedings.ml
r.press/v235/singh24c.html.

Singh, A. K., Moskovitz, T., Dragutinovic, S., Hill, F., Chan,
S. C. Y., and Saxe, A. M. Strategy coopetition explains
the emergence and transience of in-context learning, 2025.
URL https://arxiv.org/abs/2503.05631.

Song, B., Han, B., Zhang, S., Ding, J., and Hong, M. Unrav-
eling the gradient descent dynamics of transformers. In
Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet,
U., Tomczak, J., and Zhang, C. (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 92317–
92351. Curran Associates, Inc., 2024. URL https:
//proceedings.neurips.cc/paper_files
/paper/2024/file/a7d36e5cb41a1f21c46
db25cb1aafab9-Paper-Conference.pdf.

Tarzanagh, D. A., Li, Y., Thrampoulidis, C., and Oymak,
S. Transformers as support vector machines, 2024. URL
https://arxiv.org/abs/2308.16898.

Tian, Y., Wang, Y., Chen, B., and Du, S. S. Scan and snap:
Understanding training dynamics and token composition
in 1-layer transformer. In Oh, A., Naumann, T., Glober-
son, A., Saenko, K., Hardt, M., and Levine, S. (eds.),
Advances in Neural Information Processing Systems, vol-
ume 36, pp. 71911–71947. Curran Associates, Inc., 2023.
URL https://proceedings.neurips.cc/p
aper_files/paper/2023/file/e359ebe56
ba306b674e8952349c6049e-Paper-Confere
nce.pdf.

Tong, W. L. and Pehlevan, C. MLPs learn in-context on
regression and classification tasks. In The Thirteenth
International Conference on Learning Representations,
2025. URL https://openreview.net/forum
?id=MbX0t1rUlp.

Vasudeva, B., Deora, P., and Thrampoulidis, C. Implicit bias
and fast convergence rates for self-attention. Transactions
on Machine Learning Research, 2025. ISSN 2835-8856.
URL https://openreview.net/forum?id=
pKilnjQsb0.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L. u., and Polosukhin, I. Atten-
tion is all you need. In Guyon, I., Luxburg, U. V., Bengio,
S., Wallach, H., Fergus, R., Vishwanathan, S., and Gar-
nett, R. (eds.), Advances in Neural Information Process-
ing Systems, volume 30. Curran Associates, Inc., 2017.
URL https://proceedings.neurips.cc/p

aper_files/paper/2017/file/3f5ee2435
47dee91fbd053c1c4a845aa-Paper.pdf.

Vladymyrov, M., von Oswald, J., Sandler, M., and Ge, R.
Linear transformers are versatile in-context learners. In
Globerson, A., Mackey, L., Belgrave, D., Fan, A., Paquet,
U., Tomczak, J., and Zhang, C. (eds.), Advances in Neural
Information Processing Systems, volume 37, pp. 48784–
48809. Curran Associates, Inc., 2024. URL https:
//proceedings.neurips.cc/paper_files
/paper/2024/file/57a3c602f0a1c8980cc
5ed07e49d9490-Paper-Conference.pdf.

Von Oswald, J., Niklasson, E., Randazzo, E., Sacramento,
J., Mordvintsev, A., Zhmoginov, A., and Vladymyrov,
M. Transformers learn in-context by gradient descent.
In Krause, A., Brunskill, E., Cho, K., Engelhardt, B.,
Sabato, S., and Scarlett, J. (eds.), Proceedings of the 40th
International Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp.
35151–35174. PMLR, 23–29 Jul 2023. URL https:
//proceedings.mlr.press/v202/von-osw
ald23a.html.

Wang, M., Yu, R., E, W., and Wu, L. How transformers
implement induction heads: Approximation and optimiza-
tion analysis, 2024a. URL https://arxiv.org/
abs/2410.11474.

Wang, Z., Wei, S., Hsu, D., and Lee, J. D. Transform-
ers provably learn sparse token selection while fully-
connected nets cannot. In Salakhutdinov, R., Kolter,
Z., Heller, K., Weller, A., Oliver, N., Scarlett, J., and
Berkenkamp, F. (eds.), Proceedings of the 41st Interna-
tional Conference on Machine Learning, volume 235 of
Proceedings of Machine Learning Research, pp. 51854–
51912. PMLR, 21–27 Jul 2024b. URL https://proc
eedings.mlr.press/v235/wang24ca.html.

Woodworth, B., Gunasekar, S., Lee, J. D., Moroshko, E.,
Savarese, P., Golan, I., Soudry, D., and Srebro, N. Kernel
and rich regimes in overparametrized models. In Aber-
nethy, J. and Agarwal, S. (eds.), Proceedings of Thirty
Third Conference on Learning Theory, volume 125 of Pro-
ceedings of Machine Learning Research, pp. 3635–3673.
PMLR, 09–12 Jul 2020. URL https://proceedi
ngs.mlr.press/v125/woodworth20a.html.

Wu, J., Zou, D., Chen, Z., Braverman, V., Gu, Q., and
Bartlett, P. How many pretraining tasks are needed for
in-context learning of linear regression? In The Twelfth
International Conference on Learning Representations,
2024. URL https://openreview.net/forum
?id=vSh5ePa0ph.

Xia, M., Artetxe, M., Zhou, C., Lin, X. V., Pasunuru, R.,
Chen, D., Zettlemoyer, L., and Stoyanov, V. Training

15

https://proceedings.mlr.press/v235/singh24c.html
https://proceedings.mlr.press/v235/singh24c.html
https://arxiv.org/abs/2503.05631
https://proceedings.neurips.cc/paper_files/paper/2024/file/a7d36e5cb41a1f21c46db25cb1aafab9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a7d36e5cb41a1f21c46db25cb1aafab9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a7d36e5cb41a1f21c46db25cb1aafab9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/a7d36e5cb41a1f21c46db25cb1aafab9-Paper-Conference.pdf
https://arxiv.org/abs/2308.16898
https://proceedings.neurips.cc/paper_files/paper/2023/file/e359ebe56ba306b674e8952349c6049e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e359ebe56ba306b674e8952349c6049e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e359ebe56ba306b674e8952349c6049e-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/e359ebe56ba306b674e8952349c6049e-Paper-Conference.pdf
https://openreview.net/forum?id=MbX0t1rUlp
https://openreview.net/forum?id=MbX0t1rUlp
https://openreview.net/forum?id=pKilnjQsb0
https://openreview.net/forum?id=pKilnjQsb0
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/57a3c602f0a1c8980cc5ed07e49d9490-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/57a3c602f0a1c8980cc5ed07e49d9490-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/57a3c602f0a1c8980cc5ed07e49d9490-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/57a3c602f0a1c8980cc5ed07e49d9490-Paper-Conference.pdf
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://proceedings.mlr.press/v202/von-oswald23a.html
https://arxiv.org/abs/2410.11474
https://arxiv.org/abs/2410.11474
https://proceedings.mlr.press/v235/wang24ca.html
https://proceedings.mlr.press/v235/wang24ca.html
https://proceedings.mlr.press/v125/woodworth20a.html
https://proceedings.mlr.press/v125/woodworth20a.html
https://openreview.net/forum?id=vSh5ePa0ph
https://openreview.net/forum?id=vSh5ePa0ph


Training Dynamics of In-Context Learning in Linear Attention

trajectories of language models across scales. In Rogers,
A., Boyd-Graber, J., and Okazaki, N. (eds.), Proceed-
ings of the 61st Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pp.
13711–13738, Toronto, Canada, July 2023. Association
for Computational Linguistics. doi: 10.18653/v1/2023
.acl-long.767. URL https://aclanthology.org
/2023.acl-long.767.
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Figure 6. Loss trajectories of linear ATTNM and ATTNS with varying initialization scales. The colors indicate the initialization scale.
Increasing the initialization scale shortens the plateaus. With small initialization, the models are in the rich feature learning regime,
exhibiting abrupt sigmoid-shaped dynamics. With large initialization, they are in the lazy learning regime, exhibiting exponential-shaped
loss decay. The loss curve from intermediate initialization seems like a mix of the exponential-shaped and sigmoid-shaped curves. Such
mixed curves are often seen in practice, such as in induction head emergence in natural language settings (Olsson et al., 2022, Argument
1). The dataset and model setup are the same as Figures 1 and 3, except that we vary the initialization scale.
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Figure 7. Loss trajectories of linear ATTNM and ATTNS with high-dimensional data. Here the sequence length is N = 127, Λ has trace
1 and eigenvalues λd ∝ d−1. Other hyperparameters are labeled at the top of each panel.
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Figure 8. Loss trajectories of linear ATTNM and ATTNS trained with the next token prediction loss defined in Equation (23) with
Nmax = 31. In this case, the models are trained on sequences of varying lengths, which they can handle due to the 1/N scaling factor
in Equations (4), (M) and (S). The dataset and model setup are the same as Figures 1 and 3, except that we switch to the next token
prediction loss.
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A. Additional Figures
A.1. Effect of Initialization Scale

We vary the initialization scale of the linear attention models and plot their loss trajectories in Figure 6.

A.2. Higher Dimensions

We train ATTNM and ATTNS on a dataset with larger N,D. The loss trajectories are qualitatively similar to those in
lower-dimensional cases, despite being noisier. This suggests that our findings do not break in high-dimensional settings.

A.3. Varying Context Lengths

In our main results, we consider a fixed context length N , because our training sequences have the same length and the loss
is computed only for the last query token, L = E(yq − ŷq)

2. In practice, however, the training sequences may have varying
lengths, and the loss can be computed for every token in the sequence, that is

Lntp = E

[
1

Nmax

Nmax+1∑
n=2

(yn − ŷn)
2

]
, (23)

where yN+1 = yq , and ŷn is the attention model’s prediction for yn when given only the first n columns of X as input. We
demonstrate how our results apply to the case of varying context lengths. Specifically, the distribution of the context lengths
only influences our results through a statistic, E(1/N).

For ATTNM, derivations in Appendix D.4 show that the converged model implements

ATTNM(X)D+1,N+1 =

H∑
i=1

viβ
⊤Uixq = β⊤

[
E
(

1

N
xnx

⊤
n

)2
]−1

Λxq. (24)

Substituting Equation (30) into Equation (24), we obtain

ATTNM(X)D+1,N+1 = β⊤
[
Λ+ E

(
1

N

)
(Λ+ tr(Λ)I)

]−1

xq. (25)

The distribution of context lengths only influences Equation (25) through the expectation E(1/N). For a fixed context
length, E(1/N) = 1/N , which recovers Equation (11) in the main text. For the next token prediction loss, the distribution
of context lengths, p(N), follows a uniform distribution over {1, 2, · · · , Nmax}. The expectation E(1/N) is the harmonic
number divided by Nmax, which doesn’t have a closed-form expression but can be easily computed for a specific finite
Nmax.

Similarly, for ATTNS trained with varying context lengths, the fixed point condition (C1) takes the form

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λ−1
d

[
1 + E

(
1

N

)
(1 + tr(Λ)/λd)

]−1

ede
⊤
d ,

where the expectation E(1/N) reduces to 1/N in the fixed context length case as in Equation (18). Consequently, when the
model is at a fixed point in Mm, the loss value is

L(Mm) = tr(Λ)−
m∑

d=1

λd

[
1 + E

(
1

N

)
(1 + tr(Λ)/λd)

]−1

, (26)

which reduces to Equation (19) when E(1/N) = 1/N .

We train ATTNM and ATTNS with the next token prediction loss as in Equation (23) and plot the loss trajectories in Figure 8.
The loss trajectories are qualitatively similar to those in Figures 1 and 3a, modulo the different loss values during the
plateaus. We plot the loss values computed from Equation (26) as dashed gray lines and find they match the plateaus of the
simulated loss trajectories well.
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B. Additional Related Work
A concurrent work by Geshkovski et al. (2024) studies saddle-to-saddle-like dynamics in softmax attention models following
a mathematical framework for slow motion of gradient flows (Otto & Reznikoff, 2007). A subsequent work by He et al.
(2025) examines the training dynamics of softmax attention trained on the in-context linear regression task; that is, the case
we briefly touch on in Figure 5.

A broader body of theoretical literature have explored the transformers training dynamics but addressed different problem
from ours, such as the effect of initialization (Makkuva et al., 2024), convergence results (Song et al., 2024; Huang et al.,
2024a), sample complexity guarantees (Ildiz et al., 2024), scaling limits (Bordelon et al., 2024), and implicit regularization
(Ataee Tarzanagh et al., 2023; Tarzanagh et al., 2024; Julistiono et al., 2024; Vasudeva et al., 2025; Sheen et al., 2024). Other
studies considered special training regimes, such as the neural tangent kernel regime (Jang et al., 2024) and the mean-field
regime (Kim & Suzuki, 2024). A few works focused on vision transformers (Jelassi et al., 2022; Jiang et al., 2024; Huang
et al., 2025b). In contrast, our work focuses on the training dynamics and the development of ICL abilities over time.

It is recognized that transformers can perform ICL, whereas it is an open question whether fully-connected networks
can perform ICL (Lee et al., 2024; Boix-Adserà et al., 2024; Tong & Pehlevan, 2025). In Section 3.1, we revealed an
equivalence between linear attention and a fully-connected linear network with cubic feature input, which is an instance of a
fully-connected network performing ICL. Furthermore, we demonstrate that fully-connected networks may perform ICL
more comparably to attention models when provided with polynomial features instead of the original sequence. This may
explain why Boix-Adserà et al. (2024, Figure 25) observed that fully-connected networks fail to learn ICL with the original
sequence as input, but succeed when the input is augmented with XX⊤.

C. Additional Preliminaries
C.1. Data Statistics

Recall that we use β to denote the in-context correlation between xn and yn in a sequence X , as defined in Equation (4).
We additionally denote the in-context covariance of xn in a sequence as Λ̂

Λ̂ ≡ 1

N

N∑
n=1

xnx
⊤
n . (27)

We can thus write XX⊤/N as a block matrix

1

N
XX⊤ =

[
1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤ 1
N

∑
n y

2
n

]
=

[
1
Nxqx

⊤
q + Λ̂ β

β⊤ w⊤Λ̂w

]
. (28)

Due to the definition of the in-context linear regression task, we have that

β = Λ̂w. (29)

We will need a statistic, E
(
Λ̂2
)

. Let p(N) denote the distribution of context lengths, and recall that xn ∼ N (0,Λ). We
obtain:

E
(
Λ̂2
)
≡ E

(
1

N

N∑
n=1

xnx
⊤
n

)2

= E

N2 −N

N2

∑
n ̸=n′

xnx
⊤
nxn′x⊤

n′ +
N

N2

N∑
n=1

xnx
⊤
nxnx

⊤
n


= EN

(
N − 1

N

)
Ex

(
xnx

⊤
n

)
Ex

(
xn′x⊤

n′

)
+ EN

(
1

N

)
Ex

(
xnx

⊤
nxnx

⊤
n

)
=

(
1− E

(
1

N

))
Λ2 + E

(
1

N

)(
2Λ2 + tr(Λ)Λ

)
= Λ2 + E

(
1

N

)
(Λ+ tr(Λ)I)Λ. (30)
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For our main results, we use a fixed context length, that is p(N) is a point mass distribution and E(1/N) = 1/N . In this
case, Equation (30) simplifies to

E
(
Λ̂2
)
= Λ2 +

Λ+ tr(Λ)I

N
Λ. (31)

We note that the eigenvectors of E
(
Λ̂2
)

are the same as those of Λ, which are e1, · · · , eD,

E
(
Λ̂2
)
ed =

(
1 +

1

N

)
Λ2ed +

tr(Λ)

N
Λed =

[(
1 +

1

N

)
λ2
d +

tr(Λ)

N
λd

]
ed.

We denote the eigenvalues of E(Λ̂2) corresponding to eigenvectors e1, · · · , eD as a1, · · · , aD. These eigenvalues are given
by

ad =

[(
1 +

1

N

)
λ2
d +

tr(Λ)

N
λd

]
= λ2

d

(
1 +

1 + tr(Λ)/λd

N

)
. (32)

The matrix E(Λ̂2) can be expressed through its eigen-decomposition, which will be useful in later derivations:

E
(
Λ̂2
)
=

D∑
d=1

adede
⊤
d . (33)

C.2. Initialization

For linear attention with merged key and query, we initialize the entries of the value and the merged key-query weights as

vi ∼ N (0, w2
init/H), Ud,d′

i ∼ N (0, w2
init/HD2). (34)

At initialization, the following ℓ2 norms are√√√√ H∑
i=1

v2i ,

√√√√ H∑
i=1

∥Ui∥2 ∼ O(winit). (35)

For linear attention with separate rank-R key and query, we initialize the entries of the value, key, and query weights as

vi ∼ N (0, w2
init/H), kdi,r ∼ N (0, w2

init/HRD), qdi,r ∼ N (0, w2
init/HRD). (36)

At initialization, the following ℓ2 norms are√√√√ H∑
i=1

v2i ,

√√√√ H∑
i=1

R∑
r=1

∥ki,r∥2,

√√√√ H∑
i=1

R∑
r=1

∥qi,r∥2 ∼ O(winit). (37)

C.3. Kronecker Product

The Kronecker product, denoted as ⊗, is defined for two matrices of arbitrary sizes. The Kronecker product of the matrix
A ∈ Rp×q and the matrix B ∈ Rr×s is a block matrix of shape pr × qs

A⊗B =

a11 · · · a1q
...

. . .
...

ap1 · · · apq

⊗B =

a11B · · · a1qB
...

. . .
...

ap1B · · · apqB

 .

Based on the definition, it holds for any pair of column vectors a and b

a⊗ b = vec(ba⊤). (38)
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We quote some properties of the Kronecker product to be used in our derivations:

(cA)⊗B = A⊗ (cB) = c(A⊗B) for any scalar c, (39a)

(A⊗B)⊤ = A⊤ ⊗B⊤ for any matrices A,B, (39b)

(A⊗B)−1 = A−1 ⊗B−1 for invertible matrices A,B, (39c)
(A⊗B)(C ⊗D) = (AC)⊗ (BD) for compatible matrices A,B,C,D, (39d)

(B⊤ ⊗A)vec(M) = vec(AMB) for compatible matrices A,B,M . (39e)

D. Linear Attention with Merged Key and Query
D.1. Justification for Zero Blocks Assumption

We prove our claim in Section 2.3 that vi and ui remain zero throughout training if their initialization is zero.

Proof. The bottom right entry of ATTNM(X) is given by

ŷq ≡ ATTNM(X)D+1,N+1 =
H∑
i=1

[
v⊤
i vi

] [ 1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤
n

1
N

∑
n y

2
n

] [
Ui

u⊤
i

] [
xq

0

]

=

H∑
i=1

(
v⊤
i

(
Λ̂+

1

N
xqx

⊤
q

)
Ui + viβ

⊤Ui + v⊤
i βu

⊤
i + viw

⊤Λ̂wu⊤
i

)
xq.

If we initialize vi,ui = 0, ŷq is

ŷq =

H∑
i=1

viβ
⊤Uixq = w⊤Λ̂

H∑
i=1

viUixq.

We now calculate the gradient updates of vi,ui and prove their gradients are zero if their initialization is zero. The gradient
update of vi contains E(w), which is zero. Specifically, we have, from Equation (5),

τ v̇i = E
[
(yq − ŷq)

((
Λ̂+

1

N
xqx

⊤
q

)
Ui + βu⊤

i

)
xq

]
= E

[(
w⊤xq −w⊤Λ̂

H∑
i=1

viUixq

)(
Λ̂+

1

N
xqx

⊤
q

)
Uixq

]

= Ew(w)⊤E

[(
xq − Λ̂

H∑
i=1

viUixq

)(
Λ̂+

1

N
xqx

⊤
q

)
Uixq

]
= 0. (40)

Note that we separated the expectation of w because of the independence between w and all x tokens.

The gradient update of vi contains Ew

(
w⊤Λ̂ww⊤

)
, whose entries are linear combinations of third moments of the

zero-mean normal random variable w, and are thus zero. Specifically, we have

τ u̇i = E
[(

v⊤
i β + viw

⊤Λ̂w
)
(yq − ŷq)xq

]
= E

[
viw

⊤Λ̂w

(
w⊤xq −w⊤Λ̂

H∑
i=1

viUixq

)
xq

]

= Ew

(
w⊤Λ̂ww⊤

)
E

[
vi

(
xq − Λ̂

H∑
i=1

viUixq

)
xq

]
= 0. (41)

■
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D.2. Gradient Flow Equations

We here derive the gradient flow dynamics for linear attention with merged key and query given in Equation (8).

For linear attention with merged key and query, the prediction for the query output can be written as ŷq = w⊤
2 W1z due to

Equation (6). Based on the gradient flow training rule in Equation (5), the gradient flow dynamics is

τẆ1 = E
[
w2

(
yq −w⊤

2 W1z
)
z⊤] = w2

(
E
(
yqz

⊤)−w⊤
2 W1E

(
zz⊤)) ,

τẇ2 = E
[
W1

(
yq −w⊤

2 W1z
)
z
]
= W1

(
E
(
yqz

⊤)−w⊤
2 W1E

(
zz⊤))⊤ ,

which was introduced in Equation (8) in the main text.

D.3. Fixed Points

To find the fixed points, we set the gradients in Equation (8) to zero

τẆ1 = w2

(
E
(
yqz

⊤)−w⊤
2 W1E

(
zz⊤)) set

= 0,

τẇ2 = W1

(
E
(
yqz

⊤)−w⊤
2 W1E

(
zz⊤))⊤ set

= 0,

which yield the two manifolds of fixed points introduced in Equation (9) in the main text:

w2 = 0, W1 = 0 ⇒ M0 = {w2 = 0,W1 = 0},

E
(
yqz

⊤)−w⊤
2 W1E

(
zz⊤) = 0 ⇒ M∗ =

{
w2,W1

∣∣w⊤
2 W1 = E

(
yqz

⊤)E (zz⊤)−1
}
.

D.4. Duality of the Global Minimum Solution

We here prove the second equality in Equation (11), that is

E
(
yqz

⊤)E (zz⊤)−1
z = β⊤

(
Λ+

Λ+ tr(Λ)I

N

)−1

xq.

This equality implies the intriguing duality that the linear regression solution in the cubic feature space of z is the in-context
linear regression solution in the original space of the xn, yn token pairs for each sequence X .

Proof. We first calculate the input and input-output correlations in the cubic feature space. We denote Λq ≡ E
(
xqx

⊤
q

)
.

While Λq = Λ, this equality is not needed in this proof.

Due to the property in Equation (38), the cubic feature z can be written as

z = vec
(
βx⊤

q

)
= xq ⊗ β. (42)

We substitute in yq = x⊤
q w, z = xq ⊗ β and use the properties of the Kronecker product in Equation (39) to obtain

E
(
yqz

⊤) = E
[
x⊤
q w(x⊤

q ⊗ β⊤)
]

= E
(
x⊤
q ⊗ x⊤

q ww⊤Λ̂
)

= E
(
x⊤
q ⊗ x⊤

q Λ̂
)

= Evec
(
Λ̂xqx

⊤
q

)⊤
= vec(ΛΛq)

⊤. (43)

Similarly, we have

E
(
zz⊤) = E

[
(xq ⊗ β)(x⊤

q ⊗ β⊤)
]

= E
[
(xqx

⊤
q )⊗ (ββ⊤)

]
= E(xqx

⊤
q )⊗ E(Λ̂ww⊤Λ̂)

= Λq ⊗ E
(
Λ̂2
)
. (44)
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Using Equation (39c), the inverse of E
(
zz⊤) is

E
(
zz⊤)−1

= Λ−1
q ⊗ E

(
Λ̂2
)−1

. (45)

Multiplying Equations (43) and (45) with z = xq ⊗ β, and using Equation (39e) twice, we obtain

E
(
yqz

⊤)E (zz⊤)−1
z = vec(ΛΛq)

⊤Λ−1
q ⊗ E

(
Λ̂2
)−1

(xq ⊗ β)

= vec

[
E
(
Λ̂2
)−1

ΛΛqΛ
−1
q

]⊤
(xq ⊗ β)

= β⊤E
(
Λ̂2
)−1

Λxq. (46)

Substituting in E
(
Λ̂2
)

obtained from Equation (31) finishes the proof

E
(
yqz

⊤)E (zz⊤)−1
z = β⊤

(
Λ2 +

Λ+ tr(Λ)I

N
Λ

)−1

Λxq = β⊤
(
Λ+

Λ+ tr(Λ)I

N

)−1

xq.

■

D.5. Analytical Time-Course Solution for White Covariance

We include a derivation of the time-course solution of two-layer fully-connected linear network with white input covariance
and vanishing initialization following (Saxe et al., 2014), and then apply it to linear attention. With vanishing initialization,
the conserved quantity given in Equation (55) is exactly zero throughout learning,

w2w
⊤
2 −W1W

⊤
1 = 0.

Hence, there exists a unit norm vector m such that W1 = w2m
⊤. With the assumption of white covariance, E

(
zz⊤) =

αID2 , (Saxe et al., 2014; Atanasov et al., 2022) have shown that the unit norm vector m is parallel with the correlation
between yq and z throughout training, that is

W1 = w2m
⊤, where m =

E(yqz)
∥E(yqz)∥

. (47)

We substitute Equation (47) and the white covariance assumption, E
(
zz⊤) = αID2 , into the gradient flow dynamics given

in Equation (8) and obtain

τẇ2 = w2m
⊤ (E(yqz)− αw⊤

2 w2m
)
= w2

(
γ − αw⊤

2 w2

)
, where γ ≡ ∥E(yqz)∥.

Notice that the square of the ℓ2 norm of w2 follows a solvable ordinary differential equation. Let s = w⊤
2 w2. The dynamics

of s(t) is

τ ṡ = 2w⊤
2 τẇ2 = 2w⊤

2 w2

(
γ − αw⊤

2 w2

)
= 2s(γ − αs). (48)

We can solve this differential equation by separating variables and integrating both sides,∫ s(t)

s(0)

1

s(γ − αs)
ds =

∫ t

0

2

τ
dt ⇒ 1

γ
ln

s(t)(γ − αs(0))

s(0)(γ − αs(t))
=

2

τ
t.

The solution of s(t) is given by

s(t) =
γe2γ

t
τ

α
(
e2γ

t
τ − 1

)
+ γ

s(0)

.
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The time-course of the total weights is given by

w⊤
2 W1 = s(t)m⊤ = s(t)

E(yqz)⊤

∥E(yqz)⊤∥
. (49)

We now apply this solution to linear attention. If the input token covariance is identity, Λ = ID, we calculate the input and
input-output correlations in the cubic feature space according to Equations (43) and (44) and get

E
(
yqz

⊤) = vec(ID)⊤,

E
(
zz⊤) = ID ⊗

(
1 +

1 +D

N

)
ID =

(
1 +

1 +D

N

)
ID2 .

The parameters in the dynamics of the equivalent two-layer fully-connected linear network are

α = 1 +
1 +D

N
, γ = ∥vec(ID)∥ =

√
D. (50)

Substituting Equation (50) into Equation (49), we obtain

w⊤W1(t) = s(t)
vec(ID)⊤√

D
, where s(t) =

√
De2

√
D t

τ(
1 + 1+D

N

) (
e2

√
D t

τ − 1
)
+

√
D

s(0)

.

Due to the equivalence between linear attention and the two-layer fully-connected linear network given in Equation (6), we
obtain

ATTNM(X; t)D+1,N+1 = w⊤
2 W1z = s(t)

vec(ID)⊤√
D

xq ⊗ β =
1√
D
s(t)β⊤IDxq =

1√
D
s(t)β⊤xq.

which is Equation (10) in the main text where we have rewritten σ(t) = s(t)/
√
D.

The time-course of loss can also be expressed in terms of σ(t) as

L(t) =
(
1− 2σ(t) +

(
1 +

1 +D

N

)
σ(t)2

)
D. (51)

D.6. Training Dynamics for General Covariance

D.6.1. EARLY DYNAMICS PREDICTS DURATION OF PLATEAU

For a general input covariance matrix, the full time-course solution to two-layer fully-connected linear networks is currently
unavailable. Nonetheless, the training dynamics is well understood and we can analyze the early phase dynamics to estimate
the duration of the loss plateau.

In the early phase of training when the loss plateaus, the weights have not moved much away from their small initialization.
The training dynamics of W1 is mainly driven by the first term in Equation (8a), and similarly for w2 in Equation (8b)

τẆ1 = w2

(
E
(
yqz

⊤)−w⊤
2 W1E

(
zz⊤)) = w2E

(
yqz

⊤)+O(w3
init),

τẇ2 = W1

(
E
(
yqz

⊤)−w⊤
2 W1E

(
zz⊤))⊤ = W1E (yqz) +O(w3

init).

Thus, the early training dynamics is well approximated by the linear dynamical system

τẆ1 = w2E
(
yqz

⊤) , τẇ2 = W1E (yqz) .

In the case of nonwhite covariance, the change of variable in Equation (47) is valid in the early phase of training but no
longer valid when the loss starts to decrease appreciably (Atanasov et al., 2022). For the early training dynamics, we apply
the change of variable in Equation (47) and obtain

τẇ2 = w2m
⊤E (yqz) = γw2.
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Epoch 6000

converged 

(in one head)

Epoch 6000

converged 

(multi-head)

Epoch 500

during plateau 

(multi-head)

Statistics of Training Data

vec

vec

vec

vec

reshape

vec

reshape

Figure 9. The dynamics of weights in multi-head linear attention with merged key and query can be predicted with statistics of the
training dataset. We plot the weights at different times in training, corresponding to the loss trajectories in Figure 1 (right). The
weights in linear attention (first column) stay close to the weights in the fully-connected linear network (second column) throughout
training. During the initial plateau, the vectorized key-query weights in attention vec(U1), · · · ,vec(Ui) and the first-layer weight in
the fully-connected network W1 are rank-one and align with the correlation between the output and the cubic feature input E

(
yqz

⊤) (top
row). At convergence, vec(U1), · · · ,vec(Ui) in attention and W1 in the fully-connected linear network are rank-one and align with
the linear regression solution in the cubic feature space E

(
yqz

⊤)E (
zz⊤)−1

(middle row), which is also the in-context linear regression
solution in the original token space Λ−1 (bottom row) as described by Equation (11). The approximate equality in the third column is
exact when the sequence length N → ∞.

Recall that s = w⊤
2 w2. The early phase dynamics of s(t) is approximately

τ ṡ = 2γs.

We solve the differential equation and obtain

t =
τ

2γ
(ln s(t)− ln s(0)).

Due to small initialization, ln s(t) at the end of the plateau is much smaller compared to − ln s(0). Hence, the duration of
the initial plateau of loss, tplateau, is

tplateau ≈ τ

2γ
ln

1

s(0)
. (52)

Here, the scalar γ is

γ ≡ ∥E(yqz)∥ =
∥∥E (w⊤xqvec(βx

⊤
q )
)∥∥ =

∥∥E (w⊤xqβx
⊤
q

)∥∥
F

=
∥∥∥E(Λ̂ww⊤xqx

⊤
q

)∥∥∥
F

=
∥∥∥E(Λ̂)Ew

(
ww⊤)Exq

(
xqx

⊤
q

)∥∥∥
F

=
∥∥Λ2

∥∥
F (53)

Substituting Equation (53) into Equation (52), we obtain the approximate duration of the loss plateau

tplateau ≈ τ

2 ∥Λ2∥F
ln

1

s(0)
≈ τ

∥Λ2∥F
ln

1

winit
, (54)

where we used the definition s(0) = ∥w2(0)∥2 = w2
init.
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D.6.2. WEIGHTS DYNAMICS

For a white input covariance, the training dynamics reduces to a scalar ordinary differential equation about s(t) given in
Equation (48). For a general input covariance, the vector m in the change of variable defined in Equation (47) rotates
during training. As shown in the top row of Figure 9, during the initial loss plateau, the rows of the first-layer weight
align with the input-output correlation E

(
yqz

⊤) but do not change appreciably in scale (Atanasov et al., 2022). Later,
when the loss decreases rapidly, the first-layer weight grows in scale and rotates to align with the global minimum solution,
E
(
yqz

⊤)E (zz⊤)−1
. The alignment and rotation behaviors apply to the rows of the first-layer weight in the fully-connected

network, corresponding to the merged key-query weights in the different heads in linear attention, as shown in Figure 9.

D.7. Conservation Law: All Heads Are Parallel

The weights in a fully-connected linear network are known to obey a conservation law during training (Fukumizu, 1998;
Saxe et al., 2014; Du et al., 2018; Ji & Telgarsky, 2019)

d

dt

(
w2w

⊤
2 −W1W

⊤
1

)
= 0, (55)

which follows directly from the gradient flow dynamics in Equation (8). Under small initialization, the quantity w2w
⊤
2 −

W1W
⊤
1 ≈ 0 is small at initialization and remains small throughout training. Since the vector w2 is rank-one, the

conservation law forces W1 to also be approximately rank-one, which means that the rows of W1 are approximately parallel.
Since each row of W1 is the vectorized merged key-query matrix of a head, vec(Ui), a rank-one W1 implies that the
key-query weight matrices of all heads are parallel, differing only in scale. As shown in Figure 9, simulations indeed show
that the key-query weights in different heads are parallel.

E. Linear Attention with Separate Rank-One Key and Query
E.1. Justification for Zero Blocks Assumption

This is a special case of linear attention with separate rank-R key and query. The proof for the more general rank-R case
can be found in Appendix F.1.

E.2. Gradient Flow Equations

We here derive the gradient flow dynamics for linear attention with separate rank-one key and query introduced in
Equation (14).

Based on the gradient flow training rule in Equation (5), the gradient flow dynamics for the value, key, and query weights in
the i-th head are

τ v̇i = k⊤
i E
(
β(yq − ŷq)x

⊤
q

)
qi, (56a)

τ k̇i = viE
(
β(yq − ŷq)x

⊤
q

)
qi, (56b)

τ q̇i = viE
(
xq(yq − ŷq)β

⊤)ki. (56c)

We calculate the common term in Equation (56), that is

E
(
β(yq − ŷq)x

⊤
q

)
= E

[
β

(
w⊤xq −

H∑
i=1

viβ
⊤kiq

⊤
i xq

)
x⊤
q

]

= E

[
Λ̂ww⊤

(
I −

H∑
i=1

viΛ̂kiq
⊤
i

)
xqx

⊤
q

]

= E
(
Λ̂
)
Ew

(
ww⊤)Exq

(
xqx

⊤
q

)
− E

(
Λ̂ww⊤Λ̂

) H∑
i=1

vikiq
⊤
i Exq

(
xqx

⊤
q

)
= Λ2 − E

(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ (57)
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Substituting Equation (57) into Equation (56), we arrive at the same equations as Equation (14) in the main text

τ v̇i = k⊤
i

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi,

τ k̇i = vi

(
Λ2 − E

(
Λ̂2
) H∑

i′=1

vi′ki′q
⊤
i′ Λ

)
qi,

τ q̇i = vi

(
Λ2 −Λ

H∑
i′=1

vi′ki′q
⊤
i′ E
(
Λ̂2
))

ki.

where the data statistics E
(
Λ̂2
)

is calculated in Equation (31).

E.3. Fixed Points

We prove that the fixed points given in Equation (16) are valid.

Proof. When the model is at a fixed point in set M(Sm), it satisfies Equation (18). Equation (18) can be rewritten using ad
(defined in Equation (32)) as

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λd

ad
ede

⊤
d . (59)

Using Equations (33) and (59), we can simplify a common term in the gradient descent dynamics in Equation (14) to

Λ2 − E
(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ =

D∑
d=1

λ2
dede

⊤
d −

D∑
d′=1

ad′ed′e⊤d′

∑
d∈Sm

λd

ad
ede

⊤
d Λ

=

D∑
d=1

λ2
dede

⊤
d −

∑
d∈Sm

λdede
⊤
d Λ

=
∑
d/∈Sm

λ2
dede

⊤
d . (60)

Substituting Equation (60) into Equation (14), we obtain the dynamics when the model is at a fixed point in M(Sm)

τ v̇i = k⊤
i

∑
d/∈Sm

λ2
dede

⊤
d

 qi, (61a)

τ k̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

 qi, (61b)

τ q̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

ki. (61c)

(i) For the heads with a nonzero value weight, vi ̸= 0, the key and query weights at a fixed point satisfy condition (C2) for
Equation (16), that is the key and query weights lie in the span of {ed}d∈Sm and thus can be written as

ki =
∑
d∈Sm

bded, bd ∈ R, (62a)

qi =
∑
d∈Sm

cded, cd ∈ R. (62b)
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Substituting Equation (62) into the gradient flow dynamics given in Equation (61), we obtain

τ v̇i = k⊤
i

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

cd′ed′ = 0,

τ k̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

cd′ed′ = 0,

τ q̇i = vi

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

bd′ed′ = 0,

where we have used the fact that e⊤d ed′ = 0 if d ̸= d′, because eigenvectors of the covariance matrix Λ are orthogonal.

(ii) For the heads with a zero value weight, vi = 0, the gradients of the key and query weights in Equations (61b) and (61c)
contain vi and are thus zero, k̇i = 0, q̇i = 0. Further, the key and query weights of a head with a zero value weight
satisfy condition (C3) for Equation (16). Without loss of generality, suppose that qi lies in the span of {ed}d∈Sm

, that
is qi satisfies Equation (62b). Substituting Equation (62b) into the gradient of vi given in Equation (61a), we obtain

v̇i = k⊤
i

∑
d/∈Sm

λ2
dede

⊤
d

 ∑
d′∈Sm

cd′ed′ = 0,

where we have again used the fact that eigenvectors of Λ are orthogonal.

Hence, when the model has weights specified in Equation (16), the gradients of the weights are zero, meaning that the fixed
points are valid. ■

E.4. Loss Value at A Fixed Point

We derive the loss when the model is at a fixed point in set M(Sm), where the loss is given by

L(M(Sm)) = tr(Λ)−
∑
d∈Sm

λd

(
1 +

1 + tr(Λ)/λd

N

)−1

. (63)

Equation (19) in the main text follows directly from Equation (63) when taking Sm = {1, 2, · · · ,m}.

Proof. We substitute Equations (33) and (59) into the mean square loss and obtain

L(M(Sm)) = E(yq − ŷq)
2

= E

(
w⊤xq −

∑
d∈Sm

λd

ad
w⊤Λ̂ede

⊤
d xq

)2

= E

[
x⊤
q

(
I −

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

)
Ew(ww⊤)

(
I −

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

)
xq

]

= E

[
x⊤
q

(
I −

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

)(
I −

∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

)
xq

]

= E

x⊤
q

I − 2
∑
d∈Sm

λd

ad
Λ̂ede

⊤
d +

(∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

)2
xq

 . (64)
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Since Λ̂ is independent of xq , we can calculate the expectation of the purple and teal terms first,

E

(∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

)
=
∑
d∈Sm

λd

ad
Λede

⊤
d =

∑
d∈Sm

λ2
d

ad
ede

⊤
d ,

E

( ∑
d∈Sm

λd

ad
Λ̂ede

⊤
d

)2
 = E

 ∑
d∈Sm

λ2
d

a2d
ede

⊤
d Λ̂Λ̂ede

⊤
d +

∑
d,d′∈Sm,d ̸=d′

λdλd′

adad′
Λ̂ede

⊤
d ed′e⊤d′Λ̂


=
∑
d∈Sm

λ2
d

a2d
ede

⊤
d E
(
Λ̂Λ̂

)
ede

⊤
d + 0

=
∑
d∈Sm

λ2
d

a2d
ede

⊤
d

D∑
d′=1

ad′ed′e⊤d′ede
⊤
d

=
∑
d∈Sm

λ2
d

ad
ede

⊤
d .

Substituting them back into Equation (64), we get

L(M(Sm)) = E

[
x⊤
q

(
I − 2

∑
d∈Sm

λ2
d

ad
ede

⊤
d +

∑
d∈Sm

λ2
d

ad
ede

⊤
d

)
xq

]

= E

[
x⊤
q

(
I −

∑
d∈Sm

λ2
d

ad
ede

⊤
d

)
xq

]

= E
(
x⊤
q xq

)
−
∑
d∈Sm

λ2
d

ad
E
(
x⊤
q ede

⊤
d xq

)
= tr(Λ)−

∑
d∈Sm

λ2
d

ad
e⊤d Λed

= tr(Λ)−
∑
d∈Sm

λ3
d

ad

We plug in the definition of ad in Equation (32) and arrive at the desired result:

L(M(Sm)) = tr(Λ)−
∑
d∈Sm

λ3
d

1

λ2
d

(
1 +

1 + tr(Λ)/λd

N

)−1

= tr(Λ)−
∑
d∈Sm

λd

(
1 +

1 + tr(Λ)/λd

N

)−1

.

■

E.5. Saddle-to-Saddle Dynamics: From M0 to M1

We denote the time at which the loss has just undergone the d-th abrupt drop as td (d = 1, . . . , D), as illustrated in Figure 10.

E.5.1. ALIGNMENT DURING THE PLATEAU.

In the initial loss plateau, the weights have not moved much away from their small initialization and thus the training
dynamics are mainly driven by the first terms in Equation (14), which are

τ v̇i = k⊤
i Λ

2qi +O(w5
init), (65a)

τ k̇i = viΛ
2qi +O(w5

init), (65b)

τ q̇i = viΛ
2ki +O(w5

init). (65c)
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Figure 10. Illustration of t1, · · · , tD . The loss trajectory plotted is one of the trajectories of linear attention with separate rank-one key
and query in Figure 3a. The time td (d = 1, . . . , D) denotes the time when the loss has just undergone the d-th abrupt drop.

With a small initialization scale winit, the key and query weights in a head evolve approximately as

τ
d

dt

[
ki

qi

]
= vi

[
0 Λ2

Λ2 0

] [
ki

qi

]
. (66)

The matrix
[
0 Λ2

Λ2 0

]
∈ R2D×2D has eigenvalues

{
λ2
d,−λ2

d

}D
d=1

, corresponding to eigenvectors

[
0 Λ2

Λ2 0

] [
ed
ed

]
= λ2

d

[
ed
ed

]
,

[
0 Λ2

Λ2 0

] [
ed
−ed

]
= −λ2

d

[
ed
−ed

]
, d = 1, · · · , D.

where recall that λd, ed(d = 1, · · · , D) are eigenvalues and eigenvectors of Λ. Hence, the solution to Equation (66) takes
the following form [

ki(t)
qi(t)

]
=

1

2

D∑
d=1

e⊤d (ki(0) + qi(0)) exp

(
λ2
d

τ

∫ t

0

vi(t
′)dt′

)[
ed
ed

]

+
1

2

D∑
d=1

e⊤d (ki(0)− qi(0)) exp

(
−λ2

d

τ

∫ t

0

vi(t
′)dt′

)[
ed
−ed

]
.

(67)

If vi > 0, the first summation term in Equation (67) grows and the second summation term decays. The key and query
weights ki, qi both grow in size along the directions of the eigenvectors ed. If vi < 0, the first summation term in
Equation (67) decays and the second summation term grows. The key and query weights ki, qi grow in opposite directions,
ed and −ed respectively. In either case, the multiplication vikiq

⊤
i grows along ede

⊤
d .

E.5.2. REDUCTION TO SCALAR DYNAMICS WITH AN ALIGNMENT ANSATZ.

The dominating term in Equation (67) is the term with the largest positive eigenvalue. In other words, the key and query
weights grow the fastest along the first eigenvector e1 and thus are approximately aligned with e1. Motivated by this insight,
we make an ansatz that the key and query weights in a head are exactly aligned with e1 and the rest of the heads are zero5:

k1 = q1 = v1e1, (68a)
ki = qi = 0, vi = 0, i = 2, · · · , H. (68b)

Note that Equation (68) also assumes that the ℓ2 norms of k1, q1, v1 are equal, which is true under vanishing initialization
due to the conservation law in Equation (83). This ansatz can greatly simplify the training dynamics and provide a good
approximation of the true dynamics, where weights in one of the heads grow in scale with the key and query weights
aligning with e1, while the rest of the heads remain near zero from time 0 to t1.

We substitute the ansatz into the training dynamics in Equation (14) to reduce the high-dimensional dynamics to a one-
dimensional ordinary differential equation. To do that, we first calculate the common expectation term in the training

5We let the head aligned with e1 to have index 1.
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dynamics with the ansatz,

Λ2 − E
(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ = Λ2 −

D∑
d=1

adede
⊤
d v

3
1e1e

⊤
1 Λ = Λ2 − λ1a1e1e

⊤
1 v

3
1 (69)

where a1 is the first eigenvalue of E(Λ̂2) defined in Equation (32). Substituting Equations (68) and (69) into Equation (14),
we find that the training dynamics of the first head simplify and the dynamics of the rest of the heads are zero

τ v̇1 = v21e
⊤
1

(
Λ2 − λ1a1e1e

⊤
1 v

3
1

)
e1 = λ2

1v
2
1 − λ1a1v

5
1 ,

τ k̇1 = v21
(
Λ2 − λ1a1e1e

⊤
1 v

3
1

)
e1 = λ2

1v
2
1e1 − λ1a1v

5
1e1,

τ q̇1 = v21
(
Λ2 − λ1a1e1e

⊤
1 v

3
1

)
e1 = λ2

1v
2
1e1 − λ1a1v

5
1e1,

v̇i = 0, k̇i = 0, q̇i = 0, i = 2, · · · , H.

We further substitute in k̇1 = v̇1e1, q̇1 = v̇1e1 and find that the high-dimensional training dynamics reduce to one-
dimensional dynamics about v1(t)

τ v̇1 = λ2
1v

2
1 − λ1a1v

5
1

τ v̇1e1 = λ2
1v

2
1e1 − λ1a1v

5
1e1

τ v̇1e1 = λ2
1v

2
1e1 − λ1a1v

5
1e1

⇒ τ v̇1 = λ2
1v

2
1 − λ1a1v

5
1 (70)

Equation (70) is a separable ordinary differential equation. By separating variables and integrating both sides, we can solve
t in terms of v1

λ2
1

τ
t =

∫
1

v21 − a1

λ1
v21

dv1

=

3

√
a1

λ1

6

ln
 3

√
a2
1

λ2
1
v21 + 3

√
a1

λ1
v1 + 1

3

√
a2
1

λ2
1
v21 − 2 3

√
a1

λ1
v1 + 1

− 2
√
3 tan−1

2 3

√
a1

λ1
v1 + 1

√
3


− 1

v1
. (71)

Since Equation (71) does not have a straight-forward inverse, we cannot obtain a general analytical solution of v1(t) in
terms of t. Nonetheless, we can readily generate numerical solutions and obtain approximate analytical solutions when v1 is
near its small initialization to estimate the duration of the first loss plateau.

When v1 is small, the dominating term in Equation (70) is λ2
1v

2
1 and thus the dynamics can be approximated by

τ v̇i = λ2
1v

2
i ⇒ t =

τ

λ2
1

(
1

vi(0)
− 1

vi(t)

)
.

At the end of the plateau, v1(t) has grown to be much larger than v1(0). Hence, the duration of the first loss plateau, t1, is

t1 ≈ τ

λ2
1v1(0)

. (72)

E.6. Saddle-to-Saddle Dynamics: From Mm to Mm+1

In Appendix E.5, we have analyzed the training dynamics from time 0 to t1, during which the model moves from saddle
M0 to saddle M1. We now analyze the general saddle-to-saddle dynamics from time tm to tm+1 (m = 0, · · · , D − 1),
during which the model moves from Mm to Mm+1.

E.6.1. ALIGNMENT DURING THE PLATEAU.

Based on our dynamics analysis from time 0 to t1 and by induction, the weights during the m-th plateau are approximately
described by Equation (20). Namely, there are m heads whose key and query weights have grown and become aligned with
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the first m eigenvectors while weights in the rest of the heads have not moved much from their small initialization. Thus,
similarly to Equation (61), the heads that are near small initialization have the following training dynamics

τ v̇i = k⊤
i

(
D∑

d=m+1

λ2
dede

⊤
d

)
qi +O(w5

init),

τ k̇i = vi

(
D∑

d=m+1

λ2
dede

⊤
d

)
qi +O(w5

init),

τ q̇i = vi

(
D∑

d=m+1

λ2
dede

⊤
d

)
ki +O(w5

init).

With a small initialization scale winit, the key and query weights in this head evolve approximately as

τ
d

dt

[
ki

qi

]
= vi

[
0 Ω
Ω 0

] [
ki

qi

]
, where Ω =

D∑
d=m+1

λ2
dede

⊤
d . (73)

The matrix
[
0 Ω
Ω 0

]
∈ R2D×2D has 2m zero eigenvalues and (2D−2m) nonzero eigenvalues, which are

{
λ2
d,−λ2

d

}D
d=m+1

.

The nonzero eigenvalues correspond to eigenvectors[
0 Ω
Ω 0

] [
ed
ed

]
= λ2

d

[
ed
ed

]
,

[
0 Ω
Ω 0

] [
ed
−ed

]
= −λ2

d

[
ed
−ed

]
, d = m+ 1, · · · , D.

Hence, the solution to Equation (73) takes the following the form[
ki(t)
qi(t)

]
=

1

2

D∑
d=m+1

e⊤d (ki(tm) + qi(tm)) exp

(
λ2
d

τ

∫ t

tm

vi(t
′)dt′

)[
ed
ed

]

+
1

2

D∑
d=m+1

e⊤d (ki(tm)− qi(tm)) exp

(
−λ2

d

τ

∫ t

tm

vi(t
′)dt′

)[
ed
−ed

]

+

m∑
d=1

e⊤d (ki(tm) + qi(tm))

[
ed
ed

]
.

(74)

For vi > 0, the first term grows and the second term decays with time. The third term does not change with respect to time.

E.6.2. REDUCTION TO SCALAR DYNAMICS WITH AN ALIGNMENT ANSATZ.

The dominating term in Equation (74) is the term with the largest positive eigenvalue. In other words, during the (m+ 1)-th
plateau, the key and query weights that are still near small initialization grow the fastest along the (m+ 1)-th eigenvector
em+1. Based on this insight, we make the ansatz in Equation (20). This ansatz can reduce the high-dimensional training
dynamics to a one-dimensional ordinary differential equation and provides a good approximation of the true dynamics,
where weights in one of the heads grow in scale with the key and query weights aligning with em+1, while the rest of the
heads do not change much from time tm to tm+1.

To calculate the training dynamics in Equation (14) with the ansatz, we first calculate a common term with the ansatz

Λ2 − E
(
Λ̂2
) H∑

i=1

vikiq
⊤
i Λ = Λ2 −

D∑
d=1

adede
⊤
d

(
m∑
i=1

λd

ad
eie

⊤
i + v3m+1em+1e

⊤
m+1

)
Λ

= Λ2 −
m∑

d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
m+1 (75)

By substituting Equations (20) and (75) into Equation (14), we find that the dynamics for the heads with index i ̸= m+ 1
are zero

v̇i = 0, k̇i = 0, q̇i = 0, i ̸= m+ 1.
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For the head with index i = m+ 1, the dynamics reduce to one-dimensional dynamics about vi(t)

τ v̇i = v2i e
⊤
m+1

(
Λ2 −

m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
i

)
em+1

= λ2
m+1v

2
i − λm+1am+1v

5
i

τ k̇i = τ v̇iem+1 = v2i

(
Λ2 −

m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
i

)
em+1

= λ2
m+1v

2
i em+1 − λm+1am+1v

5
i em+1

τ q̇i = τ v̇iem+1 = v2i

(
Λ2 −

m∑
d=1

λ2
dede

⊤
d − λm+1am+1em+1e

⊤
m+1v

3
i

)
em+1

= λ2
m+1v

2
i em+1 − λm+1am+1v

5
i em+1

⇒ τ v̇i = λ2
m+1v

2
i − λm+1am+1v

5
i (76)

Equation (76) is the same ordinary differential equation as Equation (70) modulo the constant coefficients. Therefore, with
the same analysis, we can estimate the duration of the (m+ 1)-th loss plateau.

When vm+1 is small, the dominating term in Equation (76) is λ2
m+1v

2
i and thus the dynamics is well approximated by

τ v̇m+1 = λ2
m+1v

2
m+1 ⇒ t− tm =

τ

λ2
m+1

(
1

vm+1(tm)
− 1

vm+1(t)

)
.

At the end of the plateau, vm+1(tm+1) has grown to be much larger than vm+1(tm). Hence, the duration of the (m+ 1)-th
loss plateau is

tm+1 − tm ≈ τ

λ2
m+1vm+1(tm)

. (77)

We note that the Equation (77) involves vm+1(tm), which depends on the random initialization and the dynamics from time
0 to tm. This explains why we observe the variance of tm increases with a larger m, that is the timing of a later abrupt loss
drop varies more across random seeds as shown in Figure 3a.

E.7. Weight Configuration with Minimal L2 Norm

We prove that Equation (20) with vm+1 = 0 is the weight configuration with minimal ℓ2 norm that satisfies Equation (18).
To do this, we find the weight configuration with minimal ℓ2 norm satisfying a general equality constrain and apply the
solution to Equation (18).

Consider the equality constrained optimization problem

minimize
H∑
i=1

v2i + ∥ki∥2 + ∥qi∥2

subject to
H∑
i=1

vikiq
⊤
i = A

where A is a positive semi-definite matrix.

Proof. We use Lagrange multiplier to solve this equality constrained optimization problem. First, we construct the
Lagrangian function L(M) where the Lagrange multiplier M ∈ RD×D is a symmetric matrix

L(M) =
1

2

H∑
i=1

(
v2i + ∥ki∥2 + ∥qi∥2

)
+ vec(M)⊤vec

(
A−

H∑
i=1

vikiq
⊤
i

)

=
1

2

H∑
i=1

(
v2i + ∥ki∥2 + ∥qi∥2

)
+ tr

[
M

(
A−

H∑
i=1

vikiq
⊤
i

)]
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Differentiating the Lagrangian with respect to all the variables and setting them to zero, we get

∂L

∂vi
= vi − k⊤

i Mqi = 0 (78a)

∂L

∂ki
= ki − viMqi = 0 (78b)

∂L

∂qi
= qi − viMki = 0 (78c)

∂L

∂M
= A−

H∑
i=1

vikiq
⊤
i = 0 (78d)

Equation (78) suggests that, for each head, the value, key, and query weights are either all zero or satisfy a constraint; i.e.,
for each i, either vi = ki = qi = 0 or

ki = viMqi = v2iM
2ki. (79)

We got Equation (79) by substituting Equation (78c) into Equation (78b). Equation (79) implies that ki is an eigenvector of
M2. Let us denote the normalized eigenvector of M2 as ξi. Substituting Equation (79) into Equation (78a) and rearranging,
we get

ki = qi = viξi. (80)

With Equations (78d) and (80), we obtain

A =
∑
i

v3i ξiξ
⊤
i ⇒ vi = λ

1/3
i , ξi = ei, (81)

where λi, ei are the eigenvalue and eigenvector of A.

For the optimization problem, the solution is that there are rank(A) heads with nonzero weights and (H − rank(A))
heads with zero weights. The nonzero heads have weights

ki = qi = viei, vi = λ
1/3
i , i = 1, · · · ,rank(A). (82)

The indices of heads can be trivially permuted. The signs of any two among vi,ki, qi can be flipped without affecting the
optimization problem. ■

We apply the solution in Equation (82) to find a weight configuration with the minimal ℓ2 norm that satisfies Equation (18).
Equation (18) can be rewritten as Equation (59), namely

H∑
i=1

vikiq
⊤
i =

∑
d∈Sm

λd

ad
ede

⊤
d .

The matrix on the right hand side has rank m and eigenvectors ed with eigenvalues λd/ad (d ∈ Sm). Hence, the weight
configuration with minimal ℓ2 norm has (H −m) heads with zero weights and m heads with nonzero weights. The nonzero
heads have weights

ki = qi = viei, vi =

(
λd

ad

) 1
3

= λ
− 1

3
i

(
1 +

1 + tr(Λ)/λi

N

)− 1
3

, i = 1, · · · ,m.

This is the same weight configuration as Equation (20) with vm+1 = 0.
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E.8. Conservation Law

The gradient flow dynamics of linear attention with separate rank-one key and query in Equation (14) implies a conservation
law. The value, key, and query weights in a head obey

d

dt

(
k⊤
i ki − q⊤

i qi
)
= 0,

d

dt

(
k⊤
i ki − v2i

)
= 0, (83)

Under small initialization, the quantities k⊤
i ki − q⊤

i qi ≈ 0 and k⊤
i ki − v2i ≈ 0 are small at initialization and remain small

throughout training. Thus, the conservation law enforces the ℓ2 norms of the value, key, and query to be approximately the
same throughout training, ∥ki∥2 ≈ ∥qi∥2 ≈ v2i .

We here prove that Equation (83) holds regardless of the choice of the loss function.

Proof. We can use the generic gradient flow equation in Equation (5) to calculate the gradients of k⊤
i ki, q

⊤
i qi, and v2i ,

dk⊤
i ki

dt
= 2k⊤

i

dki

dt
= 2E

(
−k⊤

i

dL
dŷq

dŷq
dki

)
= 2E

(
− dL
dŷq

vik
⊤
i βq

⊤
i xq

)
dq⊤

i qi
dt

= 2q⊤
i

dqi
dt

= 2E
(
−q⊤

i

dL
dŷq

dŷq
dqi

)
= 2E

(
− dL
dŷq

viq
⊤
i xqk

⊤
i β

)
dv2i
dt

= 2vi
dvi
dt

= 2E
(
−vi

dL
dŷq

dŷq
dvi

)
= 2E

(
− dL
dŷq

viβ
⊤kiq

⊤
i xq

)
We see that the gradients of k⊤

i ki, q
⊤
i qi, and v2i are equal, regardless of the specific choice of the loss function L. Hence,

the following conservation law holds for any loss function:

d

dt

(
k⊤
i ki − q⊤

i qi
)
= 0,

d

dt

(
k⊤
i ki − v2i

)
= 0.

■

F. Linear Attention with Separate Low-Rank Key and Query
F.1. Justification for Zero Blocks Assumption

We initialize vi = 0, ki,r = 0 (i = 1, · · · , H, r = 1, · · · , R), and prove that they will stay zero throughout training.

Proof. The bottom right entry of the output of linear attention with separate rank-R key and query is

ŷq ≡ ATTNS(X)D+1,N+1

=

H∑
i=1

[
v⊤
i vi

] [ 1
N

(
xqx

⊤
q +

∑
n xnx

⊤
n

)
1
N

∑
n xnyn

1
N

∑
n ynx

⊤ 1
N

∑
n y

2
n

] [
ki,1 · · · ki,R

ki,1 · · · ki,R

]q
⊤
i,1
...

q⊤
i,R

xq

=

H∑
i=1

(
v⊤
i

(
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,r + viβ

⊤
R∑

r=1

ki,rq
⊤
i,r + v⊤

i β

R∑
r=1

ki,rq
⊤
i,r + viw

⊤Λ̂w

R∑
r=1

ki,rq
⊤
i,r

)
xq

If we initialize vi = 0, ki,r = 0, ŷq is

ŷq =

H∑
i=1

R∑
r=1

viβ
⊤ki,rq

⊤
i,rxq = w⊤Λ̂

H∑
i=1

R∑
r=1

viki,rq
⊤
i,rxq.

We now calculate the gradient updates of vi = 0, ki,r = 0 and prove their gradients are zero if their initialization is zero.
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The gradient update of vi contains E(w), which is zero. Similarly to Equation (40), we have

τ v̇i = E

[
(yq − ŷq)

((
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,r + β

R∑
r=1

ki,rq
⊤
i,r

)
xq

]

= E

[(
w⊤xq −w⊤Λ̂

H∑
i=1

R∑
r=1

viki,rq
⊤
i,rxq

)(
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,rxq

]

= Ew(w)⊤E

[(
xq − Λ̂

H∑
i=1

R∑
r=1

viki,rq
⊤
i,rxq

)(
Λ̂+

1

N
xqx

⊤
q

) R∑
r=1

ki,rq
⊤
i,rxq

]
= 0.

The gradient update of ki,r contains Ew

(
w⊤Λ̂ww⊤

)
, whose entries are linear combinations of third moments the

zero-mean normal random variable w, and are thus zero. Similarly to Equation (41), we have

τ k̇i,r = E
[(

v⊤
i β + viw

⊤Λ̂w
)
(yq − ŷq)q

⊤
i,rxq

]
= E

[
viw

⊤Λ̂w

(
w⊤xq −w⊤Λ̂

H∑
i=1

R∑
r′=1

viki,r′q
⊤
i,r′xq

)
q⊤
i,rxq

]

= Ew

(
w⊤Λ̂ww⊤

)
E

[
vi

(
xq − Λ̂

H∑
i=1

R∑
r′=1

viki,r′q
⊤
i,r′xq

)
q⊤
i,rxq

]
= 0.

■

F.2. Gradient Flow Equations

Based on the gradient flow training rule in Equation (5), the gradient flow dynamics of linear attention with separate rank-R
key and query is

τ v̇i =

R∑
r=1

k⊤
i,rE

(
β(yq − ŷq)x

⊤
q

)
qi,r =

R∑
r=1

k⊤
i,r

(
Λ2 − E

(
Λ̂2
) H∑

i=1

R∑
r′=1

viki,r′q
⊤
i,r′Λ

)
qi,r, (84a)

τ k̇i,r = viE
(
β(yq − ŷq)x

⊤
q

)
qi,r = vi

(
Λ2 − E

(
Λ̂2
) H∑

i=1

R∑
r′=1

viki,r′q
⊤
i,r′Λ

)
qi,r, (84b)

τ q̇i,r = vik
⊤
i,rE (β(yq − ŷq)xq) = vi

(
Λ2 −Λ

H∑
i=1

R∑
r′=1

viqi,r′k
⊤
i,r′E

(
Λ̂2
))

ki,r. (84c)

where i = 1, · · · , H, r = 1, · · · , R , and the data statistics E
(
Λ̂2
)

is calculated in Equation (31).

F.3. Fixed Points

We use M(Sm) to denote a set of fixed points that correspond to learning m (m = 0, 1, · · · , D) out of the D eigenvectors,

M(Sm) =

{
v1:H ,WK

1:H ,WQ
1:H

∣∣∣∣conditions (C1)-(C3) are met
}
, (85)

where the set Sm specifies the indices of the learned eigenvectors,

Sm ⊆ {1, 2, · · · , D}, |Sm| = m. (86)

The three conditions for Equation (85) are:

37



Training Dynamics of In-Context Learning in Linear Attention

(C1) The heads sum up to fit the eigenvectors with indices Sm

H∑
i=1

R∑
r=1

viki,rq
⊤
i,r =

∑
d∈Sm

λ−1
d

(
1 +

1 + tr(Λ)/λd

N

)−1

ede
⊤
d . (87)

(C2) For heads with a nonzero value weight, vi ̸= 0, ki,r, qi,r (r = 1, · · · , R) all lie in the span of {ed}d∈Sm
.

(C3) For heads with a zero value weight, vi = 0,

R∑
r=1

∑
d/∈Sm

λ2
dk

⊤
i,rede

⊤
d qi,r = 0. (88)

With the same reasoning as Appendix E.3, one can show the weights satisfying these three conditions have zero gradients
and thus are fixed points. Though conditions (C1,C3) do not explicitly specify the weights, they are feasible conditions. One
possible weight configuration that satisfies all three conditions is to let ki,r, qi,r (r ̸= 1) be zero and let vi,ki,1, qi,1 be the
same as the fixed point for linear attention with rank-one key query, where the low-rank case falls back into the rank-one
case. Therefore, the fixed points described in Equation (85) are valid and feasible. Linear attention with separate rank-R key
and query has the same 2D fixed points in the function space as its rank-one counterpart.

F.4. Saddle-to-Saddle Dynamics

For linear attention with rank-R key and query, the gradient updates of the key and query weights in Equation (84), k̇i,r, q̇i,r,
include the factor vi, which is the shared across ranks r = 1, · · · , R but unique to each head. In linear attention with
rank-one key and query initialized with small weights, the weights in a head, vi,ki, qi, escape from the unstable zero fixed
point to drive the first abrupt drop of loss. Similarly, in the rank-R model, the value weight vi and a pair of key and query
weights ki,r, qi,r in a head escape from the zero fixed point to drive the first abrupt drop of loss.

However, the subsequent dynamics differ between the the rank-one and rank-R models. In the rank-one model, the loss will
undergo a conspicuous plateau until weights in a new head, vi′ ,ki′ , qi′ (i

′ ̸= i), escape from the zero fixed point to grow.
By contrast, in the rank-R model (R > 1), the loss will plateau briefly or not plateau because a new pair of key and query
weights in the same i-th head, ki,r′ , qi,r′ (r

′ ̸= r), can quickly grow to drive the loss drop. A new pair of key and query
weights in the i-th head grows faster than the key and query weights in a new head, because the value weight in the i-th
head, vi, has already grown during the first abrupt loss drop. Since the gradient updates of all key and query weights in
the i-th head include the factor vi, a larger value weight leads to larger gradient updates for the associated key and query
weights. We plot the value weights with D = 4 and ranks R = 1, 2, 3, 4 in Figures 3b and 11 to show: the loss drop after a
conspicuous plateau corresponds to a new value weight escaping from zero, while the loss drop after a brief plateau does not.

We plot the loss trajectories with D = 8 and different ranks in Figure 12 to complement Figure 4 in the main text.
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(c) R = 4

Figure 11. Loss and value weights trajectories. The setting is the same as Figure 3b except different ranks R = 2, 3, 4. In the rank-one case
in Figure 3b, value weights in four heads grow, each corresponding to an abrupt loss drop from L(Mm) to L(Mm+1) (m = 0, 1, 2, 3).
In the rank-R case, a new value weight grows big from small initialization when the loss decreases from L(Mm) to L(Mm+1) for m
that divides R. Here D = 4, N = 31, H = 5, and Λ has eigenvalues 0.4, 0.3, 0.2, 0.1.
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Figure 12. Same as Figure 4 but with ranks R = 3, 5, 6, 7. Here D = 8, N = 31, H = 9, Λ has trace 1 and eigenvalues λd ∝ d−1.

F.5. Dynamics with Repeated Eigenvalues

We have demonstrated that linear attention with separate key and query exhibits loss plateaus during training when the
eigenvalues of the input token covariance matrix, Λ, are distinct. When Λ has repeated eigenvalues, linear attention with
separate key and query can also exhibit loss plateaus due to the different random initial weights in each head. In the case
with distinct eigenvalues (Figure 3a), the plateau duration is determined by both the size of the eigenvalues and the random
initialization. In the case with repeated eigenvalues (Figure 13, leftmost panel), the plateau duration is determined solely by
the random initialization.

Figure 13. Loss trajectories of multi-head linear attention with separate key and query. The setup is the same as in Figure 3a except that Λ
has eigenvalues 0.35, 0.35, 0.15, 0.15. The four panels differ only in the rank of the key and query weights. Although some eigenvalues
are equal, the loss trajectory of ATTNS with R = 1 can still exhibit plateaus when learning them, due to the different random initial
weights in each head. The plateaus may also be skipped for certain random seeds.

F.6. Conservation Law

The gradient flow dynamics of linear attention with separate key and query in Equation (84) implies a conservation law. The
value, key, and query weights in a head obey

d

dt

(
k⊤
i,rki,r − q⊤

i,rqi,r
)
= 0,

d

dt

(
R∑

r=1

k⊤
i,rki,r − v2i

)
= 0. (89)

We here prove that Equation (89) holds regardless of the choice of the loss function.

Proof. We can use the generic gradient flow equation in Equation (5) to calculate the relevant gradients

dk⊤
i,rki,r

dt
= 2k⊤

i,r

dki,r

dt
= 2E

(
−k⊤

i

dL
dŷq

dŷq
dki,r

)
= 2E

(
− dL
dŷq

vik
⊤
i,rβq

⊤
i,rxq

)
(90a)

dq⊤
i,rqi,r

dt
= 2q⊤

i,r

dqi,r
dt

= 2E
(
−q⊤

i

dL
dŷq

dŷq
dqi,r

)
= 2E

(
− dL
dŷq

viq
⊤
i,rxqk

⊤
i,rβ

)
(90b)
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dv2i
dt

= 2vi
dvi
dt

= 2E
(
−vi

dL
dŷq

dŷq
dvi

)
= 2

R∑
r=1

E
(
− dL
dŷq

viβ
⊤ki,rq

⊤
i,rxq

)
(90c)

Comparing Equations (90a) and (90b), we see that the following holds regardless of the specific choice of the loss function
L

dk⊤
i,rki,r

dt
=

dq⊤
i,rqi,r

dt
.

Similarly, comparing Equations (90a) and (90b) with Equation (90c), we obtain

R∑
r=1

dk⊤
i,rki,r

dt
=

dv2i
dt

.

■

G. Training Dynamics of In-Context and In-Weight Learning
In this work, we focused on the training dynamics of ICL abilities. Other than ICL, attention models can also learn in weight,
that is solving the task by memorizing the map between the query input and the target output without using the information
in context. The arbitration between in-context and in-weight learning may depend on the properties of the training data
(Chan et al., 2022). To focus on the dynamics of ICL, we considered a purely ICL task, which is in-context linear regression
with the task vector sampled from a zero-mean standard normal distribution, w ∼ N (0, I). Since memorizing any particular
task vector does not effectively decrease the loss, linear attention develops only ICL ability during training, as shown in
Figure 14a.

If the task vector w follows a different distribution, the training dynamics involves the development of both in-context and
in-weight learning abilities. In Figure 14, we let the task vector for some of the training sequences be fixed and sample the
rest from a standard normal distribution to elicit in-weight learning ability. We plot the training loss, in-context learning test
loss, and in-weight learning test loss for varying portions of fixed task vectors in Figure 14. The larger the portion of fixed
task vectors, the lower the loss the model can achieve by memorizing the fixed task vector in weight. We indeed observe the
training loss and in-weight learning test loss are lower right after the first abrupt loss drop when the portion is larger.

The technical consequence of fixing some of the task vectors is that Equations (40) and (41) break. In other words, we
cannot assume the certain blocks of the value and the merged key-query matrices are zero as in Appendix D.1. Without the
zero block assumption, the linear attention model implements

ŷq =

H∑
i=1

(
v⊤
i

(
Λ̂+

1

N
xqx

⊤
q

)
Ui + viβ

⊤Ui + v⊤
i βu

⊤
i + vi

1

N

N∑
n=1

y2nu
⊤
i

)
xq. (91)

Equation (91) include not only a linear map of the cubic feature z = vec(βx⊤
q ) but also linear maps of additional features,(

Λ̂+ 1
Nxqx

⊤
q

)
⊗ xq,

1
N

∑N
n=1 y

2
nxq. Future work could analyze the gradient descent dynamics of the model described

by Equation (91), building on our results on the dynamics of in-context learning to explore its interactions with in-weight
learning.

Reproducibility
Code reproducing our main results is available at GitHub: https://github.com/yedizhang/linattn-icl
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Figure 14. Dynamics of in-context and in-weight learning in linear attention with merged key and query. The training set is the same
as the in-context linear regression task described in Section 2.1 except that a portion of the task vectors w are fixed. The portion of
fixed task vectors indicates how much training samples can be fitted with the in-weight learning solution, that is memorizing the fixed
task vector. The in-context learning test loss is evaluated on test sequences whose task vectors are all sampled from N (0, I). The
in-weight learning test loss is evaluated on test sequences whose task vector is the same fixed task vector from the training set. Here
D = 4, N = 31, H = 8,Λ = I/D.

41


	Introduction
	Preliminaries
	In-Context Linear Regression Task 
	Multi-Head Self-Attention
	Linear Attention with Merged Key and Query 
	Linear Attention with Separate Key and Query 
	Gradient Flow Training Dynamics

	Linear Attention with Merged Key and Query 
	Connection to A Fully-Connected Linear Network 
	Loss Landscape: Two Fixed Points 
	Training Dynamics: An Abrupt Drop in the Loss 
	ICL Algorithm: Least Squares Regression

	Linear Attention with Separate Rank-One Key and Query 
	Connection to Convolutional Linear Networks
	Loss Landscape: Exponentially Many Fixed Points 
	Training Dynamics: Saddle-to-Saddle Dynamics 
	ICL Algorithm: Principal Component Regression

	Linear Attention with Separate Low-Rank Key and Query 
	Related Work
	Discussion
	Additional Figures 
	Effect of Initialization Scale
	Higher Dimensions
	Varying Context Lengths 

	Additional Related Work
	Additional Preliminaries
	Data Statistics
	Initialization
	Kronecker Product 

	Linear Attention with Merged Key and Query
	Justification for Zero Blocks Assumption 
	Gradient Flow Equations
	Fixed Points
	Duality of the Global Minimum Solution 
	Analytical Time-Course Solution for White Covariance 
	Training Dynamics for General Covariance
	Conservation Law: All Heads Are Parallel

	Linear Attention with Separate Rank-One Key and Query
	Justification for Zero Blocks Assumption 
	Gradient Flow Equations 
	Fixed Points 
	Loss Value at A Fixed Point 
	Saddle-to-Saddle Dynamics: From M0 to M1 
	Saddle-to-Saddle Dynamics: From Mm to Mm+1 
	Weight Configuration with Minimal L2 Norm
	Conservation Law 

	Linear Attention with Separate Low-Rank Key and Query
	Justification for Zero Blocks Assumption 
	Gradient Flow Equations
	Fixed Points 
	Saddle-to-Saddle Dynamics 
	Dynamics with Repeated Eigenvalues
	Conservation Law

	Training Dynamics of In-Context and In-Weight Learning 

