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Abstract

In this paper, we focus on simple bilevel optimization problems, where we minimize
a convex smooth objective function over the optimal solution set of another convex
smooth constrained optimization problem. We present a novel bilevel optimization
method that locally approximates the solution set of the lower-level problem using
a cutting plane approach and employs an accelerated gradient-based update to
reduce the upper-level objective function over the approximated solution set. We
measure the performance of our method in terms of suboptimality and infeasibility
errors and provide non-asymptotic convergence guarantees for both error criteria.
Specifically, when the feasible set is compact, we show that our method requires
at most O(max{1/√ϵf , 1/ϵg}) iterations to find a solution that is ϵf -suboptimal
and ϵg-infeasible. Moreover, under the additional assumption that the lower-level
objective satisfies the r-th Hölderian error bound, we show that our method achieves

an iteration complexity of Õ(max{ϵ−
2r−1
2r

f , ϵ
− 2r−1

2r
g }), which matches the optimal

complexity of single-level convex constrained optimization when r = 1.

1 Introduction

In this paper, we investigate a class of bilevel optimization problems known as simple bilevel optimiza-
tion, aiming to minimize an upper-level objective function over the solution set of a corresponding
lower-level problem. This class has recently gained attention due to its broad applications in contin-
ual learning [1], hyper-parameter optimization [2, 3], meta-learning [4, 5], and over-parameterized
machine learning [6–8]. Specifically, we focus on the following bilevel optimization problem:

min
x∈Rn

f(x) s.t. x ∈ argmin
z∈Z

g(z), (1)

where, Z is a convex set, and f, g : Rn → R are convex, continuously differentiable functions
on an open set containing Z . We assume that the lower-level objective function g is convex but
not strongly convex, so the lower-level problem may have multiple optimal solutions. Throughout
the paper, we use x∗ to denote an optimal solution of problem (1). We define f∗ ≜ f(x∗) and
g∗ ≜ g(x∗), representing the optimal value of problem (1) and the optimal value of the lower-level
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Table 1: Non-asymptotic results on simple bilevel optimization. ( 1⃝: with a first-order Hölderian
error bound assumption on g; r⃝: with an rth-order (r ≥ 1) Hölderian error bound assumption on g;
A⃝: additional assumption implying that the projection onto the sublevel set of f is easy to compute.)

References Upper level Lower level Convergence

Objective f Objective g Feasible set Z Upper level Lower level

a-IRG [12] Convex, Lipschitz Convex, Lipschitz Closed O(1/ϵ4f ) O(1/ϵ4g)

Bi-SG [13] Convex, Nonsmooth Convex, Composite Closed O(1/ϵ
1

1−α

f ) O(1/ϵ
1
α
g ), α ∈ (0.5, 1)

SEA [14] Convex Convex, Smooth Compact O(1/ϵ2f ) O(1/ϵ2g)

CG-BiO [6] Convex, Smooth Convex, Smooth Compact O(1/ϵf ) O(1/ϵg)

R-APM [8] Convex, Smooth Convex, Composite Closed O(1/ϵf ) O(1/ϵg)

AGM-BiO (Ours) Convex, Smooth Convex, Smooth Compact O(1/ϵ0.5f ) O(1/ϵg)

R-APM 1⃝ [8] Convex, Smooth Convex, Composite Closed O(1/ϵ0.5f ) O(1/ϵ0.5g )

Bisec-BiO A⃝ [15] Convex, Composite Convex, Composite Closed Õ(max{1/ϵ0.5f , 1/ϵ0.5g })

AGM-BiO 1⃝ (Ours) Convex, Smooth Convex, Smooth Closed O(1/ϵ0.5f ) Õ(1/ϵ0.5g )

PB-APG r⃝ [16] Convex, Composite Convex, Composite Compact O(1/ϵ0.5rf ) +O(1/ϵ0.5g )

AGM-BiO r⃝ (Ours) Convex, Smooth Convex, Smooth Closed Õ(1/ϵ
2r−1
2r

f ) Õ(1/ϵ
2r−1
2r

g )

objective g, respectively. This class of problems is referred to as the “simple bilevel problem” [9–11]
to distinguish it from more general settings with parameterized lower-level problems.

The main challenge in solving problem (1) is that the feasible set, i.e., the optimal solution set of the
lower-level problem, lacks a simple characterization and is not explicitly provided. This makes direct
application of projection-based or projection-free methods infeasible, as projecting onto or solving a
linear minimization problem over such an implicitly defined feasible set is intractable. Instead, our
approach constructs an approximation set with specific properties, serving as a surrogate for the true
feasible set. In Section 3, we detail how this set is constructed. Using this technique and building
on the projected accelerated gradient method, we establish the best-known complexity bounds for
solving problem (1).

To provide context, the best-known complexity bound for achieving an ϵ-accurate solution in single-
level convex constrained optimization is O(ϵ−0.5), as demonstrated in [17]. This optimal bound was
achieved using the accelerated proximal method or FISTA (Fast Iterative Shrinkage-Thresholding
Algorithm), which also influenced the development of our algorithm. While the literature on bilevel
optimization is not as extensive as that for single-level optimization, there have been recent non-
asymptotic results for solving this class of problems, which we summarize in Table 1.

Specifically, these results aim to establish convergence rates on the infeasibility gap g(xk) − g∗

and the suboptimality gap f(xk) − f∗ after k iterations. In [12], an iterative regularization-based
method demonstrated a convergence rate of O(1/k0.5−b) in terms of suboptimality and a rate of
O(1/kb) in terms of infeasibility, where b ∈ (0, 0.5) is a user-defined parameter. Setting b = 0.25
to balance these rates requires an iteration complexity of O(max{1/ϵ4f , 1/ϵ4g}) to find a solution
that is ϵf -optimal and ϵg-infeasible. Later, the Bi-Sub-Gradient (Bi-SG) algorithm was proposed
in [13] to address convex simple bilevel optimization problems with nonsmooth upper-level objective
functions. It showed convergence rates of O(1/k1−α) and O(1/kα) in terms of suboptimality and
infeasibility, respectively, where α ∈ (0.5, 1) serves as a hyper-parameter. Balancing the rates by
setting α = 0.5 results in an iteration complexity of O(max{1/ϵ2f , 1/ϵ2g}). Additionally, a structure-
exploiting method introduced in [14] achieved an iteration complexity of O(max{1/ϵ2f , 1/ϵ2g}) when
the upper-level objective is convex and the lower-level objective is convex and smooth. Imposing
additional assumptions on the upper-level function, such as smoothness or strong convexity, does not
result in faster rates for this method.

Recently, [6] presented a projection-free conditional gradient method (CG-BiO) that uses a cut-
ting plane to approximate the solution set of the lower-level problem. Assuming both upper-
and lower-level objective functions are convex and smooth, CG-BiO achieves a complexity of
O(max{1/ϵf , 1/ϵg}). Since the suboptimality gap f(x̂) − f∗ may be negative for an infeasible
point x̂, a more desirable metric is the absolute suboptimality gap |f(x̂)− f∗|. To ensure this, [6]
introduced the Hölderian error bound condition on g. Specifically, under the r-th order Hölderian
error bound condition, CG-BiO finds a solution x̂ with |f(x̂) − f∗| ≤ ϵf and g(x̂) − g∗ ≤ ϵg
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after O(max{1/ϵrf , 1/ϵg}) iterations. More recently, [8] introduced the regularized proximal ac-
celerated method (R-APM), which runs the proximal accelerated gradient method on a weighted
sum of the upper- and lower-level objective functions. Assuming both functions are convex and
smooth, they established a complexity bound of O(max{1/ϵf , 1/ϵg}) to find an (ϵf , ϵg) solution.
This bound is worse than the O(max{1/√ϵf , 1/ϵg}) complexity achieved by our proposed AGM-
BiO method, assuming the feasible set Z is compact. Additionally, [8] showed that when the
lower-level objective function g satisfies the weak sharpness property (equivalent to the Hölderian
error bound condition with r = 1), R-APM finds an (ϵf , ϵg)-absolute optimal solution after at
most O(max{1/√ϵf , 1/

√
ϵg}) iterations. This result is comparable to our convergence result for

AGM-BiO, which considers a more general Hölderian error bound condition.

Contributions. In this paper, we present a novel accelerated gradient-based bilevel optimization
method, AGM-BiO, which offers state-of-the-art non-asymptotic guarantees for both suboptimality
and infeasibility. At each iteration, AGM-BiO uses a cutting plane to linearly approximate the
solution set of the lower-level problem, followed by a variant of the projected accelerated gradient
update on the upper-level objective function. Below, we summarize our theoretical guarantees:

• When the feasible set Z is compact, we show that AGM-BiO finds x̂ that satisfies f(x̂)−f∗ ≤ ϵf
and g(x̂)− g∗ ≤ ϵg within O(max{1/√ϵf , 1/ϵg}) iterations, where f∗ is the optimal value of
problem (1) and g∗ is the optimal value of the lower-level problem.

• With an additional r-th-order (r ≥ 1) Hölderian error bound assumption on the lower-
level problem, AGM-BiO finds x̂ satisfying f(x̂) − f∗ ≤ ϵf and g(x̂) − g∗ ≤ ϵg within

Õ(max{ϵ−
2r−1
2r

f , ϵ
− 2r−1

2r
g }) iterations. Moreover, it achieves the stronger guarantee that

|f(x̂)− f∗| ≤ ϵf and g(x̂)− g∗ ≤ ϵg within Õ(max{ϵ−
2r−1

2

f , ϵ
− 2r−1

2r
g }) iterations.

These bounds all achieve the best-known complexity bounds in terms of both suboptimality and
infeasibility guarantees for the considered settings. All the non-asymptotic results are summarized
and compared in Table 1.

Discussions on two concurrent works. The authors in [15] proposed a bisection algorithm with a
total operation complexity of Õ(max{ϵ−0.5

f , ϵ−0.5
g }) to find an (ϵf , ϵg)-optimal solution, assuming

the upper-level objective f meets specific criteria. Specifically, Assumption 1(iv) in [15] implies
the ability to compute the projection onto the sublevel set of the upper-level function f . However,
this assumption may not hold for general functions, such as the mean squared loss function in our
over-parameterized regression example in Section 5. In [16], the authors introduced the penalty-based
accelerated proximal gradient method (PB-APG) for solving simple bilevel optimization problems
with the r-th order Hölderian error bound assumption on the lower-level objective g. Their algorithm,
similar to [8], runs the accelerated proximal gradient method on a weighted sum of the upper and
lower-level objective functions. PB-APG achieves a complexity of O(ϵ−0.5r

f ) + O(ϵ−0.5
g ) to find

an (ϵf , ϵg)-optimal solution. The term O(1/ϵ0.5rf ) can become significantly large as the order of the
Hölderian error bound r increases. In contrast, our algorithm, AGM-BiO, avoids this issue, requiring

at most Õ(max{ϵ−
2r−1
2r

f , ϵ
− 2r−1

2r
g }) iterations to achieve an (ϵf , ϵg)-optimal solution. Therefore,

regardless of how large r is, the worst-case complexity for AGM-BiO is Õ(max{ϵ−1
f , ϵ−1

g }). Thus,
our method achieves a better rate than PB-APG when r > 1.

2 Preliminaries

In this section, we state the assumptions and introduce the notions of optimality used in the paper.

2.1 Assumptions and Definitions

We focus on the case where both the upper and lower-level functions f and g are convex and smooth.
Formally, we make the following assumptions.
Assumption 2.1. Let ∥ · ∥ be an arbitrary norm on Rn and ∥ · ∥∗ be its dual norm. We assume these
conditions hold:

(i) Z ⊂ Rn is convex and compact with diameter D, i.e., ∥x− y∥ ≤ D for all x,y ∈ Z .
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(ii) g is convex and continuously differentiable on an open set containing Z , and its gradient is
Lg-Lipschitz, i.e., ∥∇g(x)−∇g(y)∥∗ ≤ Lg∥x− y∥ for all x,y ∈ Z .

(iii) f is convex and continuously differentiable and its gradient is Lipschitz with constant Lf .

In this paper, we denote the optimal value and the optimal solution set of the lower-level problem
as g∗ ≜ minz∈Z g(z) and X ∗

g ≜ argminz∈Z g(z), respectively. By Assumption 2.1, the set X ∗
g is

nonempty, compact, and convex, but in general, not a singleton since g could have multiple optimal
solutions on Z , as g is only convex but not strongly convex. Moreover, we use f∗ to denote the
optimal value and x∗ to denote an optimal solution of problem (1).

In the simple bilevel problem, the suboptimality of a solution x̂ is measured by f(x̂)− f∗. Similarly,
its infeasibility is indicated by g(x̂) − g∗. To ensure minimal suboptimality and infeasibility, we
formally define an (ϵf , ϵg)-optimal solution as follows.
Definition 2.1. ((ϵf , ϵg) -optimal solution). A point x̂ ∈ Z is (ϵf , ϵg)-optimal for problem (1) if
f(x̂)− f∗ ≤ ϵf and g(x̂)− g∗ ≤ ϵg .

This definition is commonly used in bilevel optimization literature [6–8, 13]. Due to the unique
structure of bilevel optimization, it is not guaranteed that f(x̂) − f∗ will always be positive. To
address this, we propose using |f(x̂)− f∗| as the absolute optimal criterion.
Definition 2.2. ((ϵf , ϵg) -absolute optimal solution). A point x̂ ∈ Z is (ϵf , ϵg)-absolute optimal for
problem (1) if |f(x̂)− f∗| ≤ ϵf and |g(x̂)− g∗| ≤ ϵg .

3 Algorithm

Before presenting our method, we first introduce a conceptual accelerated gradient method for solving
the simple bilevel problem in (1). The first step is to recast it as a constrained optimization problem:

min
x∈Rn

f(x) s.t. x ∈ X ∗
g , (2)

where X ∗
g ≜ argminz∈Z g(z) is the solution set of the lower-level objective. Conceptually, we

apply Nesterov’s accelerated gradient method (AGM) to achieve a rate of O(1/k2) on the upper-level
objective f . Several variants of AGM have been proposed; see, e.g., [18]. Here, we consider a variant
proposed in [19]. It involves three intertwined sequences of iterates {xk}k≥0, {yk}k≥0, {zk}k≥0

and the scalar variables {ak}k≥0 and {Ak}k≥0. In the first step, we compute the auxiliary iterate yk

by yk = Ak

Ak+ak
xk + ak

Ak+ak
zk. Then in the second step, we update zk+1 by

zk+1 = ΠX∗
g
(zk − ak∇f(yk)), (3)

where ΠX∗
g
(·) denotes the Euclidean projection onto the set X ∗

g . Finally, in the third step, we compute
xk+1 = Ak

Ak+ak
xk + ak

Ak+ak
zk+1 and Ak+1 = Ak + ak. It can be shown that if the stepsize is

selected as ak = k+1
4Lf

, then the suboptimality gap f(xk) − f(x∗) of the iterates generated by the
method above converges to zero at the optimal rate of O(1/k2). In this case, indeed all the iterates
are feasible as it is possible to project onto the set X ∗

g . However, the conceptual method above is not
directly implementable for the simple bilevel problem considered in this paper, as the constraint set
X ∗

g is not explicitly given. As a result projection onto the set X ∗
g is not computationally tractable.

To address this issue, we replace the implicit set X ∗
g in (3) with Xk, which can be explicitly char-

acterized, making the Euclidean projection onto Xk feasible. Additionally, Xk must encompass
the optimal solution set X ∗

g . Inspired by the cutting plane approach in [6], we define Xk as the
intersection of Z and a halfspace:

Xk ≜ {z ∈ Z : g(yk) + ⟨∇g(yk), z− yk⟩ ≤ gk}. (4)

Here, the auxiliary sequence {gk}k≥0 should be selected such that gk ≥ g∗ and gk → g∗. One
straightforward way to generate this sequence is by applying an accelerated projected gradient method
to the lower-level objective g separately. The loss function of the iterates generated by this algorithm
can be considered as {gk} for the above halfspace. Note that in this case, it is known that

0 ≤ gk − g∗ ≤ 2Lg∥x0 − x∗∥2

(k + 1)2
, ∀k ≥ 0. (5)
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Algorithm 1 Accelerated Gradient Method for Bilevel Optimization (AGM-BiO)

1: Input: A sequence {gk}Kk=0, a scalar γ ∈ (0, 1]
2: Initialization: A0 = 0, x0 = z0 ∈ Z
3: for k = 0, . . . ,K do
4: Set ak = γ k+1

4Lf

5: Compute yk = Ak

Ak+ak
xk + ak

Ak+ak
zk

6: Compute zk+1 = ΠXk
(zk − ak∇f(yk)), where

Xk ≜ {z ∈ Z : g(yk) + ⟨∇g(yk), z− yk⟩ ≤ gk}
7: Compute xk+1 = Ak

Ak+ak
xk + ak

Ak+ak
zk+1

8: Update Ak+1 = Ak + ak
9: end for

10: Return: xK

Hence, the above requirements on the sequence {gk} are satisfied. Two remarks on the set Xk are in
order. First, the set Xk in (4) has an explicit form, making the Euclidean projection onto Xk tractable.
It can also be verified that Xk always contains the lower-level problem solution set X ∗

g . To prove this,
let x̂∗ be any point in X ∗

g . By using the convexity of g, we obtain g(yk) + ⟨∇g(yk), x̂
∗ − yk⟩ ≤

g(x̂∗) = g∗ ≤ gk. Thus, x̂∗ satisfies both constraints in (4), so x̂∗ ∈ Xk.

Now that we have identified an appropriate replacement for the set X ∗
g , we can easily implement a

variant of the projected accelerated gradient method for the bilevel problem using the surrogate set Xk.
We refer to our method as the Accelerated Gradient Method for Bilevel Optimization (AGM-BiO)
and its steps are outlined in Algorithm 1. It is important to note that the iterates, when projected
onto the set Xk, may not belong to the set X ∗

g , as Xk is an approximation of the true solution set.
Consequently, the iterates might be infeasible. However, the design of Xk allows us to control the
infeasibility of the iterates, as we will demonstrate in the convergence analysis section.

Remark 3.1. The design of the halfspace as specified in (4) should be recognized as a nuanced task.
Various alternative formulations of halfspaces could fulfill the same primary conditions, such as
{z ∈ Z : g(xk)+⟨∇g(xk), z−xk⟩ ≤ gk} and {z ∈ Z : g(zk)+⟨∇g(zk), z−zk⟩ ≤ gk}. However,
the selection of the gradient at yk for constructing the halfspace is not arbitrary but essential as we
characterize in the convergence analysis of our method.
Remark 3.2. How to project onto the set Xk? In some cases, such as our over-parameterized regression
problem, Xk is the intersection of an L2 ball and a half-space, for which a closed-form solution
exists to find the projected iterates. In other cases, such as our linear inverse problem, we may not be
able to find Xk directly. Instead, we can solve the projection subproblem using Dykstra’s projection
algorithm [20]. In this case, an additional loop is needed to solve the subproblem.

3.1 Algorithm for the Composite Setting

While our paper focuses on the smooth setting, our proposed method can be also extended to the
composite setting. Let us consider the composite counterpart of Problem (1):

min
x∈Rn

f(x) := f1(x) + f2(x) s.t. x ∈ argmin
z∈Rn

g(z) := g1(z) + g2(z), (6)

where f1, g1 : Rn → R are smooth convex functions and f2, g2 : Rn → R are nonsmooth convex
functions, respectively. To analyze and implement the proximal gradient-based methods, we need the
following definition concerning the property of the proximal mapping.
Definition 3.1. Given h : Rn → (−∞,+∞] and η > 0, the proximal map of h is defined as

Proxηh(x) ≜ argmin
u∈Rn

{ 1

2η
∥u− x∥2 + h(u)}. (7)

To handle the upper-level nonsmooth part f2, we change the projection step in Step 6 of Algorithm 1
to a proximal update, which is similar to the accelerated proximal gradient method for single-level
problems in [17].
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Algorithm 2 Proximal Accelerated Gradient Method for Bilevel Optimization (P-AGM-BiO)

1: Input: A sequence {gk}Kk=0, a scalar γ ∈ (0, 1]
2: Initialization: A0 = 0, x0 = z0 ∈ Rn

3: for k = 0, . . . ,K do

4: Set ak = γ
k + 1

4Lf

5: Compute yk =
Ak

Ak + ak
xk +

ak
Ak + ak

zk

6: Compute zk+1 = Proxak(f2+δXk
)(zk − ak∇f1(yk)), where

Xk ≜ {z ∈ Rn : g1(yk) + ⟨∇g1(yk), z− yk⟩+ g2(z) ≤ gk}

7: Compute xk+1 =
Ak

Ak + ak
xk +

ak
Ak + ak

zk+1

8: Update Ak+1 = Ak + ak
9: end for

10: Return: xK

On the other hand, to deal with the lower-level nonsmooth part g2, it is necessary to modify the
approximated lower-level solution set Xk. Specifically, we keep the linear approximation of the
smooth part of the lower-level objective function g1 while adding the nonsmooth part g2 as a lower
bound of gk to construct Xk. Note that the constructed set Xk is no longer a halfspace in this setting
due to the possibly non-linear nature of g2. We refer to our method as the Proximal Accelerated
Gradient Method for Bilevel Optimization (P-AGM-BiO) and its steps are outlined in Algorithm 2.

Different proximal-friendly assumptions are commonly used in the literature of composite single-
level/bilevel optimization [8, 15–17]. The following proximal-friendly assumption is necessary for
our method in the composite setting.
Assumption 3.1. The function f2 + δXk

in the Step 6 of Algorithm 2 is proximal-friendly, i.e. the
proximal mapping in Definition 3.1 is easy to compute, where δXk

(·) is the indicator function.

This assumption implies that f2 is proximal-friendly and that projecting onto the constructed set Xk

can be done efficiently. Moreover, the function f2 + δXk
is the sum of two convex functions, and the

study of proximal mappings for such sums is well-documented in the literature [21–24]. Under this
assumption, all analysis for the smooth case can be extended to the composite setting. The details are
provided in Section B of the Appendix.

4 Convergence Analysis

In this section, we analyze the convergence rate and iteration complexity of our proposed AGM-BiO
method for convex simple bilevel optimization problems. We choose the stepsize ak = k+1

4Lf
, which

is inspired from our theoretical analysis. The main theorem is as follows,
Theorem 4.1. Suppose Assumption 2.1 holds. Let {xk}k≥0 be the sequence of iterates generated by
Algorithm 1 with stepsize ak = k+1

4Lf
for k ≥ 0 and suppose the sequence gk used for generating the

cutting plane satisfies (5). Then, for any k ≥ 0 we have,

(i) The function suboptimality is bounded above by f(xk)− f(x∗) ≤ 4Lf∥x0−x∗∥2

k(k+1) .

(ii) The infeasibility term is bounded above by g(xk)− g(x∗) ≤ 4Lg∥x0−x∗∥2 ln(k+1)
k(k+1) +

2LgD
2

k+1 .

(iii) Furthermore, if the condition f(xk) ≥ f(x∗) holds, then the infeasibility term is bounded above
by g(xk)− g(x∗) ≤ 8Lg∥x0−x∗∥2 ln(k+1)

k(k+1) .

Theorem 4.1 shows the upper-level objective function gap is upper bounded by O(1/k2), which
matches the convergence rate of the accelerated gradient method for single-level optimization prob-
lems. On the other hand, the suboptimality of the lower-level objective which measures infeasibility
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for the bilevel problem in the worst case is bounded above by O(1/k). In the case where f(xk) ≥ f∗,
this upper bound improves to O(1/k2). As a corollary of the worst-case bounds, Algorithm 1 will
return an (ϵf , ϵg)-optimal solution after at most the following number of iterations O(max{ 1√

ϵf
, 1
ϵg
}).

We should emphasize that, under the assumptions being considered, this complexity bound represents
the best-known bound among all previous works summarized in Table 1.

Remark 4.1 (The necessity of compactness of Z). For the lower-level objective, we show that
Ak(g(xk)− g(x∗)) ≤

∑k−1
i=0 ai(gi − g∗) +

Lg

4Lf

∑k−1
i=0 ∥zi+1 − zi∥2 ((24) in Section A). The main

challenge in obtaining an accelerated rate of O(1/k2) for g is controlling
∑k−1

i=0 ∥zi+1 − zi∥2.
Without a lower bound on f , this term cannot be bounded by the upper-level suboptimality alone. If
f(xk) ≥ f(x∗), we can achieve the rate of O(1/k2) for g. Otherwise, we use the compactness of Z
to achieve O(1/k) for g. Please refer to Section A for more details.

Remark 4.2 (Removable log terms). The log terms in all the complexity results can be removed by
choosing the auxiliary sequence gk = gK for all 0 ≤ k ≤ K, which satisfies the condition (5). This
eliminates the log term in (24) and all subsequent results. However, this choice of {gk}k≥0 requires
predetermining the total number of iterations K.

Since the algorithm’s output x̂ may fall outside the feasible set X ∗
g , the expression f(x̂)− f∗ may

not necessarily be non-negative. On the other hand, under the considered assumptions, proving
convergence in terms of |f(x̂)− f∗| is known to be impossible due to a negative result presented by
[25]. Specifically, for any first-order method and a given number of iterations k, they demonstrated
the existence of an instance of Problem (1) where |f(xk)− f∗| ≥ 1 for all k ≥ 0. Thus, to provide
any form of guarantee in terms of the absolute value of the suboptimality, i.e., |f(x̂)− f∗|, we need
an additional assumption to obtain a lower bound on suboptimality and to provide a convergence
bound for |f(x̂)− f∗|. We will address this point in the following section.

4.1 Convergence under Hölderian Error Bound

In this section, we introduce an additional regularity condition on g to establish a lower bound for
f(x̂)− f∗. Specifically, we assume that the lower-level objective function g satisfies the Hölderian
Error Bound condition, which governs how g(x) grows as x moves away from the optimal solution
set X ∗

g . Intuitively, since our method’s output x̂ is ϵg-optimal for the lower-level problem, it should
be close to X ∗

g under this regularity condition. We can then use this proximity and the smoothness
property of f to establish a lower bound for f(x̂)− f∗.
Assumption 4.1. The function g satisfies the Hölderian error bound for some α > 0 and r ≥ 1, i.e,

α

r
dist

(
x,X ∗

g

)r ≤ g(x)− g∗, ∀x ∈ Z, (8)

where dist
(
x,X ∗

g

)
≜ infx′∈X∗

g
∥x− x′∥.

We note that the Hölderian error bound condition in (8) is well-studied in the optimization literature
[26–28] and is known to hold in general when function g is analytic and the set Z is bounded [29].
There are two important special cases of the Hölderian error bound condition: 1) g satisfies (8) with
r = 1 known as the weak sharpness condition [30, 31]; 2) g satisfies (8) with r = 2 known as
the quadratic functional growth condition [32]. By using the Hölderian error bound condition, [6]
established a stronger relation between suboptimality and infeasibility, as shown next.
Proposition 4.2 ([6, Proposition 1]). Assume that f is convex and g satisfies Assumption 4.1, and
define M = maxx∈X∗

g
∥∇f(x)∥∗. Then f(x̂)− f∗ ≥ −M( r(g(x̂)−g∗)

α )
1
r for any x̂ ∈ Z .

Hence, under Assumption 4.1, Proposition 4.2 shows that the suboptimality f(x̂)− f∗ can also be
bounded from below when x̂ is an approximate solution of the lower-level problem. As a result,
we can establish a convergence bound on |f(xk) − f∗| by combining Proposition 4.2 with the
upper bounds in Theorem 4.1. Moreover, it also allows us to improve the convergence rate for the
lower-level problem. To prove this claim, we first introduce the following lemma which establishes
an upper bound on the weighted sum of upper and lower-level objectives.
Lemma 4.3. Suppose conditions (ii) and (iii) in Assumption 2.1 hold. Let {xk} be the sequence of
iterates generated by Algorithm 1 with stepsize ak = γ k+1

4Lf
, where 0 < γ ≤ 1. If the sequence gk
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used for generating the cutting plane satisfies (5), then for any λ ≥ Lg

(2/γ−1)Lf
and k ≥ 0 we have

λ(f(xk)− f(x∗)) + g(xk)− g(x∗) ≤ 4Lg∥x0 − x∗∥2 ln(k + 1)

k(k + 1)
+

4λLf∥x0 − x∗∥2

γk(k + 1)
. (9)

This result characterizes and upper bound of Õ(1/k2) on the expression λ(f(xk)−f(x∗))+g(xk)−
g(x∗). That said, the first term in this expression, a.k.a., λ(f(xk)− f(x∗)) may not be non-negative
for a bilevel problem as discussed earlier. Hence, we cannot simply eliminate λ(f(xk)− f(x∗)) to
show an upper bound of O(1/k2) on infeasibility, a.k.a., g(xk)− g(x∗). Instead, we leverage the
Hölderian error bound on g and apply Proposition 4.2 to the first term. As a result, we can eliminate
the dependence on f in (9). In this case, we can establish an upper bound on infeasibility.
Theorem 4.4. Suppose conditions (ii) and (iii) in Assumption 2.1 hold and the lower-level function g
satisfies the Hölderian error bound with r>1. Let {xk} be the iterates generated by Algorithm 1 with
stepsize ak = γ k+1

4Lf
, where γ = 1/(

2Lg

Lf
K

2r−2
2r−1 +2) and K is the total number of iterations. Moreover,

suppose the sequence gk used for generating the cutting plane satisfies (5). If we define the constants
Cf ≜ 8Lf∥x0 − x∗∥2, Cg ≜ 12Lg∥x0 − x∗∥2 and C ≜ M( r

α )
1
r , where M ≜ maxx∈X∗

g
∥∇f(x)∥,

α and r are the parameters in Assumption 4.1, then the following results hold:

(i) The function suboptimality is bounded above by

f(xK)− f(x∗) ≤ Cg(lnK + 1)

K
2r

2r−1

+
Cf

K2
.

(ii) The function suboptimality is bounded below by

f(xK)− f(x∗) ≥ −Cmax

{
(2Cg(lnK + 1))

1
r

K
2

2r−1

+
(2Cf )

1
r

K
2
r

,
(2C)

1
r−1

K
2

2r−1

}
(iii) The infeasibility term is bounded above by

g(xK)− g(x∗) ≤ max

{
2Cg(lnK + 1)

K
2r

2r−1

+
2Cf

K2
,
(2C)

r
r−1

K
2r

2r−1

}
Before unfolding this result, we would like to highlight that unlike the result in Theorem 4.1, the
above bounds in Theorem 4.4 do not require the feasible set to be compact. Since r > 1, the first
result shows f(xK)− f(x∗) has an upper bound of Õ(( 1

K )
2r

2r−1 ) and the second result guarantees a
lower bound of −Õ(( 1

K )
2

2r−1 ). These two bounds together lead to an upper bound of Õ(( 1
K )

2
2r−1 )

for the absolute error |f(xK)−f(x∗)|. Moreover, the third result implies that the lower-level problem
suboptimality which measures infeasibility is bounded above by Õ(( 1

K )
2r

2r−1 ).

The previous result presented in Theorem 4.4 is applicable when r > 1. However, for the case that
1st-order Hölderian error bound condition on g holds (i.e., weak sharpness condition), we require a
distinct analysis and a different choice of γ to achieve the tightest bounds. In the subsequent theorem,
we present our findings for this specific scenario.
Theorem 4.5. Suppose conditions (ii) and (iii) in Assumption 2.1 are met and that the lower-level
objective function g satisfies the Hölderian error bound with r = 1. Let {xk} be the sequence of
iterates generated by Algorithm 1 with stepsize ak = γ k+1

4Lf
, where 0 < γ ≤ min{ 2αLf

2MLg+αLf
, 1}.

Moreover, suppose the sequence gk used for generating the cutting plane satisfies (5), and recall
M ≜ maxx∈X∗

g
∥∇f(x)∥ and α in Assumption 4.1. If we define the constants Cf ≜ 4Lf∥x0−x∗∥2

and Cg ≜ 8Lg∥x0 − x∗∥2, then for any k ≥ 0:
(i) The function suboptimality is bounded above by f(xk)− f(x∗) ≤ Cf

γk(k+1) .

(ii) The function suboptimality is bounded below by f(xk)− f(x∗) ≥ −CgM(ln k+1)
αk(k+1) − Cf

γk(k+1) .

(iii) The infeasibility term is bounded above by g(xk)− g(x∗) ≤ Cg(ln k+1)
k(k+1) +

αCf

γMk(k+1) .

Theorem 4.5 shows that under the Hölderian error bound with r = 1, also known as weak sharpness
condition, the absolute value of the function suboptimality |f(xk)− f(x∗)| approaches zero at a rate
of O(1/k2) – ignoring the log term. The lower-level error g(xk)− g(x∗), capturing the infeasibility
of the iterates, also approaches zero at a rate of O(1/k2). As a corollary, Algorithm 1 returns an
(ϵf , ϵg)-absolute optimal solution after Õ(max{ 1√

ϵf
, 1√

ϵg
}) iterations.
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Figure 1: Comparison of a-IRG, CG-BiO, Bi-SG, SEA, R-APM, PB-APG, and AGM-BiO for solving
the over-parameterized regression problem.

5 Numerical Experiments

In this section, we evaluate our AGM-BiO method on two different bilevel problems using real and
synthetic datasets. We compare its runtime and iteration count with other methods, including a-IRG
[12], CG-BiO [6], Bi-SG [13], SEA [14], R-APM [8], PB-APG [16], and Bisec-BiO [15].

Over-parameterized regression. We examine problem (1) where the lower-level problem corre-
sponds to training loss, and the upper-level pertains to validation loss. The objective is to minimize the
validation loss by selecting an optimal training loss solution. This method is also referred to as lexico-
graphic optimization [33]. A common example of that is the constrained regression problem, where
we aim to find an optimal parameter vector β ∈ Rd for the validation loss that minimizes the loss
ℓtr(β) over the training dataset Dtr. To represent some prior knowledge, we constrain β to be in some
subset Z ⊆ Rd, e.g., Z = {β | β1 ≤ · · · ≤ βd} in isotonic regression and Z = {β | ∥β∥p ≤ λ} in
Lp constrained regression. Without explicit regularization, an over-parameterized regression over
the training dataset has multiple global minima, but not all these optimal regression coefficients
perform equally on validation or testing datasets. Thus, the upper-level objective serves as a secondary
criterion to ensure a smaller error on the validation dataset Dval. The problem can be cast as

min
β∈Rd

f(β) ≜ ℓval(β) s.t. β ∈ argmin
z∈Z

g(z) ≜ ℓtr(z)

In this case, both upper-level and lower-level objectives are convex and smooth if the loss ℓ is smooth
and convex. Since projections onto the sublevel set of f are difficult to compute, Bisec-BiO is
excluded from this experiment.

We apply the Wikipedia Math Essential dataset [34] which is composed of a data matrix A ∈ Rn×d

with n = 1068 samples and d = 730 features and an output vector b ∈ Rn. We use 75% of the
dataset as the training set (Atr,btr) and 25% as the validation set (Aval,bval). For both upper-
and lower-level loss functions, we use the least squared loss. Then the lower-level objective is
g(β) = 1

2∥Atrβ−btr∥22, the upper-level objective is f(β) = 1
2∥Avalβ−bval∥22, and the constraint

set is chosen as the unit L2-ball Z = {β | ∥β∥2 ≤ 1}. Note that this regression problem is over-
parameterized since the number of features d is larger than the number of data points in both the
training set and validation set.

In Figures 1(a) and 1(c), we observe that the three accelerated gradient-based methods (R-APM,
PB-APG, and AGM-BiO) converge faster in reducing infeasibility, both in terms of runtime and
number of iterations. In terms of absolute suboptimality, shown in Figures 1(b) and 1(d), AGM-BiO
achieves the smallest absolute suboptimality gap among all algorithms. Unlike the infeasibility plots,
R-APM and PB-APG underperform compared to AGM-BiO. Note that the lower-level objective
in this problem does not satisfy the weak sharpness condition, so the regularization parameter η in
R-APM is set as 1/(K + 1). Consequently, the suboptimality for R-APM converges slower than
AGM-BiO, as suggested by the theoretical results in Table 1.

Linear inverse problems. In the next experiment, we concentrate on a problem that fulfills the
Hölderian Error Bound condition for some r > 1. We aim to evaluate the performance of our
method in this specific context and verify the validity of our theoretical results for this scenario.
Specifically, we focus on the so-called linear inverse problems, commonly used to evaluate convex
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Figure 2: Comparison of a-IRG, Bi-SG, SEA, R-APM, PB-APG, Bisec-BiO, and AGM-BiO for
solving the linear inverse problem.

bilevel optimization algorithms, which originate from [35]. The goal of linear inverse problems is to
obtain a solution x ∈ Rn to the system of linear equation Ax = b. Note that if A is rank-deficient,
there can be multiple solutions, or there might be no exact solution due to noise. To address this issue,
we chase a solution that has the smallest weighted norm with respect to some positive definite matrix
Q, i.e., ∥x∥Q :=

√
x⊤Qx. This problem can be also cast as the following simple bilevel problem:

min
x∈Rn

f(x) ≜
1

2
∥x∥2Q s.t. x ∈ argmin

z∈Z
g(z) ≜

1

2
∥Az− b∥22

For this class of problem, if Q, A, and b are generated randomly or by the “regularization tools”
like [14, 35], we are not able to obtain the exact optimal value f∗. To the best of our knowledge,
no existing solver could obtain the exact optimal value f∗ for this bilevel problem. Specifically, the
existing solvers either fail to solve this bilevel problem or return an inaccurate solution by solving a
relaxed version of the problem. Hence, in [14, 35] they only reported the upper-level function value.
However, in this paper, we intend to obtain the complexity bounds for finding (ϵf , ϵg)-optimal and
(ϵf , ϵg)-absolute optimal solutions. Without knowing f∗, we can not characterize the behavior of
|f(xk)− f∗|. Therefore, we choose an example where we can obtain the exact solution. Specifically,
we set Q = In, A = 1⊤

n , b = 1, and the constraint set Z = Rn
+. In this case, the optimal solution

x∗ = 1
n1n and optimal value f∗ = 1

2n . This specific example essentially involves seeking the
minimum norm for an under-determined system. Note that the lower-level objective in this problem
satisfies the Hölderian Error Bound condition with order r = 2 [36]. Hence, we do not need the
constraint set Z to be compact as shown in Theorem 4.4. Due to the unbounded nature of the
constraint set, Frank-Wolfe-type methods are not viable options. Consequently, we have opted not to
incorporate CG-BiO in this experiment.

We explored examples with two distinct dimensions: n = 3 and n = 100, evaluating a total of 2000
gradients. In Figures 2(a) and 2(c), AGM-BiO shows superior performance in terms of infeasibility.
In Figures 2(b) and 2(d), we compare methods in terms of absolute error of suboptimality. The gap
between R-APM and AGM-BiO is smaller for n = 3, but for n = 100, AGM-BiO significantly
outperforms all other methods, including R-APM. Since the regularization and penalty parameters in
R-APM and PB-APG are fixed, they might get stuck at a certain accuracy level, as seen in Figures
2(a) and 2(c). In contrast, AGM-BiO uses a dynamic framework for minimizing the upper and
lower-level functions, consistently reducing both suboptimality and infeasibility. Although Bisec-BiO
theoretically has the best complexity results due to the ease of projecting onto the sublevel set of f ,
its performance in the last iteration is inconsistent, as shown in Figure 2.

6 Conclusion

In this paper, we introduced an accelerated gradient-based algorithm for solving a specific class of
bilevel optimization problems with convex objective functions in both the upper and lower levels.
Our proposed algorithm achieves a computational complexity of O(max{ϵ−0.5

f , ϵ−1
g }). When an

additional weak sharpness condition is applied to the lower-level function g, the iteration complexity
improves to Õ(max{ϵ−0.5

f , ϵ−0.5
g }), matching the well-known fastest convergence rate for single-

level convex optimization problems. We further extended this result to an iteration complexity of

Õ(max{ϵ−
2r−1
2r

f , ϵ
− 2r−1

2r
g }) when the lower-level loss satisfies the Hölderian error bound assumption.
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Appendix / supplemental material

A Proof of the Main Results

A.1 Proof of Theorem 4.1

To prove Theorem 4.1, we start with the following general lemma that holds for any choice of the
step sizes {ak}.
Lemma A.1. Let {xk} be the sequence of iterates generated by Algorithm 1 with stepsize ak > 0
for k ≥ 0. Then we have

Ak+1(f(xk+1)− f(x∗)) +
1

2
∥zk+1 − x∗∥2−

(
Ak(f(xk)− f(x∗)) +

1

2
∥zk − x∗∥2

)
≤
(

Lfa
2
k

2Ak+1
− 1

2

)
∥zk+1 − zk∥2,

(10)

Ak+1(g(xk+1)− g(x∗))−Ak(g(xk)− g(x∗)) ≤ ak(gk − g(x∗)) +
Lga

2
k

2Ak+1
∥zk+1 − zk∥2. (11)

Proof of Lemma A.1. Let x∗ be any optimal solution of (1). We first consider the upper-level objective
f . Since f is convex, we have

f(yk)− f(x∗) ≤ ⟨∇f(yk),yk − x∗⟩ , f(yk)− f(xk) ≤ ⟨∇f(yk),yk − xk⟩ . (12)
Now given the update rule Ak+1 = Ak + ak, we can write
Ak+1(f(yk)− f(x∗))−Ak(f(xk)− f(x∗)) = ak(f(yk)− f(x∗)) +Ak(f(yk)− f(xk)) (13)

Combining (12) and (13), we have
Ak+1(f(yk)− f(x∗))−Ak(f(xk)− f(x∗))

≤ ak(⟨∇f(yk),yk − x∗⟩) +Ak(⟨∇f(yk),yk − xk⟩)
= ⟨∇f(yk), akyk +Ak(yk − xk)− akx

∗⟩
= ak ⟨∇f(yk), zk − x∗⟩ ,

(14)

where the last equality follows from the definition of yk. Furthermore, since f is Lf -smooth, we
have

f(xk+1) ≤ f(yk) + ⟨∇f(yk),xk+1 − yk⟩+
Lf

2
∥xk+1 − yk∥2. (15)

If we multiply both sides of (15) by Ak+1 and combine the resulting inequality with (14), we obtain

Ak+1(f(xk+1)− f(x∗))−Ak(f(xk)− f(x∗))

≤ ak ⟨∇f(yk), zk − x∗⟩+Ak+1 ⟨∇f(yk),xk+1 − yk⟩+
LfAk+1

2
∥xk+1 − yk∥2

= ak ⟨∇f(yk), zk − x∗⟩+ ak ⟨∇f(yk), zk+1 − zk⟩+
Lfa

2
k

2Ak+1
∥zk+1 − zk∥2

= ak ⟨∇f(yk), zk+1 − x∗⟩+ Lfa
2
k

2Ak+1
∥zk+1 − zk∥2,

(16)

where we used the fact that ak(zk+1− zk) = Ak+1(xk+1−yk) in the first equality. Moreover, since
x∗ ∈ Xk, we obtain from the update rule in (3) that

⟨zk+1 − zk + ak∇f(yk),x
∗ − zk+1⟩ ≥ 0

⇔ ak ⟨∇f(yk), zk+1 − x∗⟩ ≤ ⟨zk+1 − zk,x
∗ − zk+1⟩

⇔ ak ⟨∇f(yk), zk+1 − x∗⟩ ≤ 1

2
∥zk − x∗∥2 − 1

2
∥zk+1 − x∗∥2 − 1

2
∥zk+1 − zk∥2.

(17)

Combining (16) and (17) leads to

Ak+1(f(xk+1)− f(x∗)) +
1

2
∥zk+1 − x∗∥2−

(
Ak(f(xk)− f(x∗)) +

1

2
∥zk − x∗∥2

)
≤ 1

2

(
Lfa

2
k

Ak+1
− 1

)
∥zk+1 − zk∥2,

14



which proves the claim in (10).

Next, we proceed to prove the claim in (11). To do so, we first leverage the convexity of g which
leads to

g(yk)− g(xk) ≤ ⟨∇g(yk),yk − xk⟩ . (18)
Also, since g is Lg-smooth, we have

g(xk+1) ≤ g(yk) + ⟨∇g(yk),xk+1 − yk⟩+
Lg

2
∥xk+1 − yk∥2. (19)

By multiplying both sides of (18) and (19) by Ak and Ak+1, respectively, and adding the resulted
inequalities we obtain

Ak+1(g(xk+1)− g(yk)) +Ak(g(yk)− g(xk))

≤ Ak+1 ⟨∇g(yk),xk+1 − yk⟩+Ak ⟨∇g(yk),yk − xk⟩+
LgAk+1

2
∥xk+1 − yk∥2

= ak ⟨∇g(yk), zk+1 − zk⟩+Ak ⟨∇g(yk),yk − xk⟩+
Lga

2
k

2Ak+1
∥zk+1 − zk∥2

= ak ⟨∇g(yk), zk+1 − yk⟩+
Lga

2
k

2Ak+1
∥zk+1 − zk∥2,

where the first equality holds since ak(zk+1 − zk) = Ak+1(xk+1 − yk), and the second equality
holds since ak(zk − yk) = Ak(yk − xk). Lastly, by the definition of the constructed cutting plane,
we know that g(yk) + ⟨∇g(yk), z− yk⟩ ≤ gk for any z ∈ Xk. Hence, ⟨∇g(yk), zk+1 − yk⟩ is
upper bounded by gk − g(yk). Applying this substitution into to the above expression would lead to
the claim in (11).

Now we are ready to prove Theorem 4.1.

Proof of Theorem 4.1. To begin with, note that by our choice of ak, we have

ak =
k + 1

4Lf
and Ak+1 =

(k + 1)(k + 2)

8Lf
. (20)

Thus, it can be verified that Lfa
2
k ≤ 1

2Ak+1. Then it follows from Lemma A.1 that

Ak+1(f(xk+1)− f(x∗)) +
1

2
∥zk+1 − x∗∥2−

(
Ak(f(xk)− f(x∗)) +

1

2
∥zk − x∗∥2

)
≤
(

Lfa
2
k

2Ak+1
− 1

2

)
∥zk+1 − zk∥2,

(21)

Ak+1(g(xk+1)− g(x∗))−Ak(g(xk)− g(x∗)) ≤ ak(gk − g(x∗)) +
Lga

2
k

2Ak+1
∥zk+1 − zk∥2. (22)

We first prove the convergence guarantee for the upper-level objective. By using induction on (21),
we obtain that for any k ≥ 0

Ak(f(xk)− f(x∗))+
1

2
∥zk −x∗∥2 ≤ A0(f(x0)− f(x∗))+

1

2
∥z0 −x∗∥2 =

1

2
∥z0 −x∗∥2, (23)

which implies

f(xk)− f(x∗) ≤ ∥z0 − x∗∥2

2Ak
=

4Lf∥z0 − x∗∥2

k(k + 1)
.

We proceed to establish an upper bound on g(xk)− g(x∗). By summing the inequality in (22) from
0 to k − 1 we obtain

Ak(g(xk)− g(x∗)) ≤
k−1∑
i=0

ai(gi − g∗) +
Lg

4Lf

k−1∑
i=0

∥zi+1 − zi∥2

≤
k−1∑
i=0

i+ 1

4Lf

2Lg∥x0 − x∗∥2

(i+ 1)2
+

Lg

4Lf

k−1∑
i=0

D2

≤ Lg

2Lf
∥x0 − x∗∥2(ln k + 1) +

Lg

4Lf
D2k.

(24)

15



Note that the second inequality holds due to the condition in (5). Thus, we obtain

g(xk)− g(x∗) ≤ 4Lg∥x0 − x∗∥2(ln k + 1)

k(k + 1)
+

2LgD
2

k + 1
.

The above upper bound on g(xk) − g(x∗) without any additional condition, but next we show
that if f(xk) ≥ f(x∗) the above upper bound can be further improved as we can upper bound∑k−1

i=0 ∥zi+1− zi∥2 by a constant independent of k instead of kD2. To prove this claim, by summing
the inequality in (10) from 0 to k − 1 we obtain

1

4

k−1∑
i=0

∥zi+1 − zi∥2 ≤ 1

2
∥z0 − x∗∥2 −

(
Ak(f(xk)− f(x∗)) +

1

2
∥zk − x∗∥2

)
. (25)

Hence, if f(xk) ≥ f(x∗), then it holds

k−1∑
i=0

∥zi+1 − zi∥2 ≤ 2∥z0 − x∗∥2. (26)

Thus if replace
∑k−1

i=0 ∥zi+1 − zi∥2 in (24) by 2∥z0 − x∗∥2, we would obtain the following improve
bound:

g(xk)− g(x∗) ≤ 4Lg∥x0 − x∗∥2(ln k + 1)

k(k + 1)
+

4Lg∥z0 − x∗∥2

k(k + 1)
.

Recall Remark 4.1. The main difficulty in obtaining an accelerated rate of O(1/K2) for g is that it is
unclear how to control

∑K−1
k=0 ∥zk+1 − zk∥2. This, in turn, is because we don’t know how to prove a

lower bound on f . Instead, we used the compactness of Z to achieve the O(1/K) for g.

A.2 Proof of Lemma 4.3

Proof of Lemma 4.3. Note that by multiplying both sides of (10) by λ > 0 we have

Ak+1(λ(f(xk+1)− f(x∗))) +
λ

2
∥zk+1 − x∗∥2−

(
Ak(λ(f(xk)− f(x∗))) +

λ

2
∥zk − x∗∥2

)
≤ λ

2

(
Lfa

2
k

Ak+1
− 1

)
∥zk+1 − zk∥2

(27)
Further note that in this case we have ak = γ(k+1)

4Lf
and Ak+1 = γ (k+1)(k+2)

8Lf
. Hence, a2k/Ak+1 is

bounded above by γ
2Lf

. Therefore, we can replace a2k/Ak+1 in the above expression by γ
2Lf

to obtain

Ak+1(λ(f(xk+1)− f(x∗))) +
λ

2
∥zk+1 − x∗∥2−

(
Ak(λ(f(xk)− f(x∗))) +

λ

2
∥zk − x∗∥2

)
≤ λ

2

(γ
2
− 1
)
∥zk+1 − zk∥2

(28)
Similarly, we can replace a2k/Ak+1 in (11) by γ

2Lf
to obtain

Ak+1(g(xk+1)− g(x∗))−Ak(g(xk)− g(x∗)) ≤ ak(gk − g(x∗)) +
γLg

4Lf
∥zk+1 − zk∥2 (29)

Note if we sum up the two inequalities above, we obtain

Ak+1(λ(f(xk+1)− f(x∗)) + g(xk+1)− g(x∗)) +
λ

2
∥zk+1 − x∗∥2

−
(
Ak(λ(f(xk)− f(x∗)) + g(xk)− g(x∗)) +

λ

2
∥zk − x∗∥2

)
≤ (λ(

γ

4
− 1

2
) +

γ

4

Lg

Lf
)∥zk+1 − zk∥2 + ak(gk − g(x∗)) ≤ ak(gk − g(x∗))

(30)
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Note that the last inequality holds since the first term is negative due to the choice of λ. By summing
the inequalities from 0 to k − 1 we obtain

Ak(λ(f(xk)−f(x∗))+g(xk)−g(x∗))+
1

2
λ∥zk−x∗∥2 ≤

k−1∑
i=0

ai(gi−g(x∗))+
1

2
λ∥z0−x∗∥2 (31)

Now using the condition on gi in (5) and the definition of ai we have

k−1∑
i=0

ai(gi − g(x∗)) ≤
k−1∑
i=0

γ(i+ 1)

4Lf

2Lg∥x0 − x∗∥2

(i+ 1)2
≤ γLg

2Lf
∥x0 − x∗∥2(ln k + 1) (32)

By applying this upper bound into (31) we obtain

Ak(λ(f(xk)−f(x∗))+g(xk)−g(x∗))+
1

2
λ∥zk−x∗∥2 ≤ γLg

2Lf
∥x0−x∗∥2(ln k+1)+

1

2
λ∥z0−x∗∥2

(33)
If we drop the 1

2λ∥zk − x∗∥2 in the left-hand side and divide both sides of the resulted inequality by
Ak which is equal to Ak = γ k(k+1)

8Lf
we obtain

λ(f(xk)− f(x∗)) + g(xk)− g(x∗) ≤ 4Lg∥x0 − x∗∥2(ln k + 1)

k(k + 1)
+

4λLf∥z0 − x∗∥2

γk(k + 1)
, (34)

and the proof is complete.

A.3 Proof of Theorem 4.4

Proof of Theorem 4.4. Recall the result of Lemma 4.3 that if ak = γ(k+1)/(4Lf ), where 0 < γ ≤ 1

and λ ≥ Lg

(2/γ−1)Lf
then after K iterations we have

λ(f(xK)− f(x∗)) + g(xK)− g(x∗) ≤ 4Lg∥x0 − x∗∥2(lnK + 1)

K(K + 1)
+

4λLf∥z0 − x∗∥2

γK(K + 1)
. (35)

Now if we replace γ by 1/(
2Lg

Lf
K

2r−2
2r−1 + 2) as suggested in the statement of the theorem, we would

obtain
λ(f(xK)− f(x∗)) + g(xK)− g(x∗)

≤ 4Lg∥x0 − x∗∥2(lnK + 1)

K(K + 1)
+

8(
Lg

Lf
K

2r−2
2r−1 + 1)λLf∥z0 − x∗∥2

K(K + 1)
.

(36)

Now we proceed to prove the first claim which is an upper bound on f(xK)− f(x∗). Note that given
the fact that g(xK)− g(x∗) > 0 and λ > 0 we can show that

f(xK)− f(x∗) ≤ 4Lg∥x0 − x∗∥2(lnK + 1)

λK(K + 1)
+

8((
Lg

Lf
K

2r−2
2r−1 + 1))Lf∥z0 − x∗∥2

K(K + 1)
. (37)

If we select λ which is a free parameter as λ = K− 2r−2
2r−1 ≥ Lg

(2/γ−1)Lf
then we obtain

f(xK)− f(x∗) ≤ 4Lg∥x0 − x∗∥2(lnK + 1)

K
1

2r−1 (T + 1)
+

8Lg∥z0 − x∗∥2

K
1

2r−1 (T + 1)
+

8Lf∥z0 − x∗∥2

K(K + 1)
. (38)

Given the fact that x0 = z0 we can simplify the upper bound to

f(xK)− f(x∗) ≤ 12Lg∥x0 − x∗∥2(lnK + 1)

K
2r

2r−1

+
8Lf∥z0 − x∗∥2

K2
. (39)

Next, we proceed to establish an upper bound on g(xK)−g(x∗). We will use the following inequality
that holds due to the HEB condition and formally stated in Proposition 4.2:

f(xK)− f∗ ≥ −M

(
r(g(xK)− g(x∗)))

α

) 1
r

(40)

17



Now if we replace this lower bound into (36) we would obtain

− λM(
r

α
)

1
r (g(xK)− g(x∗))

1
r + g(xK)− g(x∗)

≤ 4Lg∥x0 − x∗∥2(lnK + 1)

K(K + 1)
+

8((
Lg

Lf
K

2r−2
2r−1 + 1))λLf∥z0 − x∗∥2

K(K + 1)
.

(41)

Next we consider two different cases: In the first case we assume λM( r
α )

1
r (g(xK) − g(x∗))

1
r ≤

1
2 (g(xK)− g(x∗)) holds and in the second case we assume the opposite of this inequality holds.

If we are in the first case and λM( r
α )

1
r (g(xK)− g(x∗))

1
r ≤ 1

2 (g(xK)− g(x∗)), then the inequality
in (41) leads to

1

2
(g(xK)− g(x∗)) ≤ 4Lg∥x0 − x∗∥2(lnK + 1)

K(K + 1)
+

8((
Lg

Lf
K

2r−2
2r−1 + 1))λLf∥z0 − x∗∥2

K(K + 1)
. (42)

Since λ = K− 2r−2
2r−1 , it further leads to the following upper bound

g(xK)− g(x∗) ≤ 8Lg∥x0 − x∗∥2(lnK + 1)

K(K + 1)
+

16Lg∥z0 − x∗∥2

K(K + 1)
+

16Lf∥z0 − x∗∥2

K
1

2r−1 (K + 1)
. (43)

Now given the fact that x0 = z0, we obtain

g(xK)− g(x∗) ≤ 24Lg∥x0 − x∗∥2(lnK + 1)

K2
+

16Lf∥x0 − x∗∥2

K
2r

2r−1

. (44)

If we are in the second case and λM( r
α )

1
r (g(xK)−g(x∗))

1
r > 1

2 (g(xK)−g(x∗)) then this inequality
is equivalent to

(g(xK)− g(x∗))1−1/r ≤ 2λM(
r

α
)

1
r , (45)

leading to

g(xK)− g(x∗) ≤
(
2K− 2r−2

2r−1M(
r

α
)

1
r

) r
r−1

=
(2M)

r
r−1 ( r

α )
1

r−1

K
2r

2r−1

(46)

By combining the bounds in (44) and (46) we realize that

g(xK)− g(x∗) ≤ max{24Lg∥x0 − x∗∥2(lnK + 1)

K2
+

16Lf∥x0 − x∗∥2

K
2r

2r−1

,
(2M)

r
r−1 ( r

α )
1

r−1

K
2r

2r−1

}
(47)

Finally by using the above bound in (47) and the result of Proposition 4.2 we can prove the the second
claim and establish a lower bound on f(xK)− f∗ which is

f(xK)− f∗ ≥

−M
( r
α

) 1
r

(
max{24Lg∥x0 − x∗∥2(lnK + 1)

K2
+

16Lf∥x0 − x∗∥2

K
2r

2r−1

,
(2M)

r
r−1 ( r

α )
1

r−1

K
2r

2r−1

}

)1/r

(48)
leading to

f(xK)− f∗ ≥ −M
( r
α

) 1
r(

max{ (24Lg∥x0 − x∗∥2(lnK + 1))1/r

K2/r
+

(16Lf∥x0 − x∗∥2)1/r

K
2

2r−1

,
((2M)

r
r−1 ( r

α )
1

r−1 )1/r

K
2

2r−1

}

)
(49)
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A.4 Proof of Theorem 4.5

Proof of Theorem 4.5. To upper bound f(xk)−f(x∗), we follow a similar analysis as in Theorem 4.1.
Specifically, first note that by our choice of ak, we have ak = γ k+1

4Lf
and Ak+1 = γ (k+1)(k+2)

8Lf
, where

γ ∈ (0, 1). Hence, we can obtain that Lfa
2
k ≤ γ

2Ak+1. By using Lemma A.1 and the fact that
γ ∈ (0, 1), we have

Ak+1(f(xk+1)− f(x∗)) +
1

2
∥zk+1 − x∗∥2−

(
Ak(f(xk)− f(x∗)) +

1

2
∥zk − x∗∥2

)
≤
(
γ

4
− 1

2

)
∥zk+1 − zk∥2 ≤ 0.

By using induction, we obtain that for any k ≥ 0

Ak(f(xk)− f(x∗))+
1

2
∥zk −x∗∥2 ≤ A0(f(x0)− f(x∗))+

1

2
∥z0 −x∗∥2 =

1

2
∥z0 −x∗∥2, (50)

Since Ak = γ k(k+1)
8Lf

and z0 = x0, this further implies that

f(xk)− f(x∗) ≤ ∥z0 − x∗∥2

2Ak
=

4Lf∥x0 − x∗∥2

γk(k + 1)
.

Next, we will prove the upper bound on g(xk)− g(x∗). By Lemma 4.3, we have for any k ≥ 0

λ(f(xk)− f(x∗)) + g(xk)− g(x∗) ≤ 4Lg∥x0 − x∗∥2

k(k + 1)
(ln k + 1) +

4λLf∥x0 − x∗∥2

γk(k + 1)
(51)

Moreover, since g satisfies the weak sharpness condition, we can use Proposition 4.2 with r = 1 to
write

f(xk)− f∗ ≥ −M

α
(g(xk)− g∗). (52)

Combining (51) and (52) leads to

−λ
M

α
(g(xk)− g(x∗)) + g(xk)− g(x∗) ≤ 4Lg∥x0 − x∗∥2

k(k + 1)
(ln k + 1) +

4λLf∥x0 − x∗∥2

γk(k + 1)
(53)

Note that we can choose λ to be any number satisfying λ ≥ Lg

(2/γ−1)Lf
(cf. Lemma 4.3). Specifically,

since γ ≤ 2αLf

2MLg+αLf
, we can set λ = α/(2M) and accordingly (53) can be simplified to

g(xk)− g(x∗) ≤ 8Lg∥x0 − x∗∥2

k(k + 1)
(ln k + 1) +

4αLf∥x0 − x∗∥2

γMk(k + 1)
.

Finally, we use (52) again together with the above upper bound on g(xk)− g(x∗) to obtain

f(xk)−f(x∗) ≥ −M

α
(g(xk)−g(x∗)) ≥ −

(
8MLg∥x0 − x∗∥2

αk(k + 1)
(ln k + 1) +

4Lf∥x0 − x∗∥2

γk(k + 1)

)
.

B Extension to the Non-smooth/Composite Setting

In this section, we would like to mention the possible extension to the non-smooth/composite setting.
In the general non-smooth settings, we believe it is not possible to extend our results and achieve
the purpose of the acceleration. This is because, even in the single-level setting, the best achievable
rate in the general non-smooth setting is O(1/

√
K) achieved by sub-gradient method. That said, it

should be possible to extend our accelerated bilevel framework to a special non-smooth setting where
the upper- and lower-level objective functions have a composite structure, i.e., they can be written as
the sum of a convex smooth function and a convex non-smooth function that is easy to compute its
proximal operator.

Note that the properties of smoothness of f and g have only been used in the proof of Lemma A.1
in Section A. None of the other results will break if (10) and (11) in Lemma A.1 still hold in the
composite setting. Now, we present and prove the counterpart of Lemma A.1 in the composite setting.
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Lemma B.1. Suppose f1, f2, g1, g2 are convex and f1, g1 are Lf -smooth and Lg-smooth, respectively.
Let {xk} be the sequence of iterates generated by Algorithm 2 with stepsize ak > 0 for k ≥ 0.
Moreover, suppose Assumption 3.1 holds. Then we have

Ak+1(f(xk+1)− f(x∗)) +
1

2
∥zk+1 − x∗∥2−

(
Ak(f(xk)− f(x∗)) +

1

2
∥zk − x∗∥2

)
≤
(

Lfa
2
k

2Ak+1
− 1

2

)
∥zk+1 − zk∥2,

(54)

Ak+1(g(xk+1)− g(x∗))−Ak(g(xk)− g(x∗)) ≤ ak(gk − g(x∗)) +
Lga

2
k

2Ak+1
∥zk+1 − zk∥2. (55)

Proof of Lemma B.1. Let x∗ be any optimal solution of (6).

We first consider the upper-level objective f . Since f1 is convex, we have

f1(yk)− f1(x
∗) ≤ ⟨∇f1(yk),yk − x∗⟩ , f1(yk)− f1(xk) ≤ ⟨∇f1(yk),yk − xk⟩ . (56)

Now given the update rule Ak+1 = Ak + ak, we can write

Ak+1(f1(yk)− f1(x
∗))−Ak(f1(xk)− f1(x

∗)) = ak(f1(yk)− f1(x
∗)) +Ak(f1(yk)− f1(xk))

(57)
Combining (56) and (57), we have

Ak+1(f1(yk)− f1(x
∗))−Ak(f1(xk)− f1(x

∗))

≤ ak(⟨∇f1(yk),yk − x∗⟩) +Ak(⟨∇f1(yk),yk − xk⟩)
= ⟨∇f1(yk), akyk +Ak(yk − xk)− akx

∗⟩
= ak ⟨∇f1(yk), zk − x∗⟩ ,

(58)

where the last equality follows from the definition of yk. Furthermore, since f1 is Lf -smooth, we
have

f1(xk+1) ≤ f1(yk) + ⟨∇f1(yk),xk+1 − yk⟩+
Lf

2
∥xk+1 − yk∥2. (59)

If we multiply both sides of (59) by Ak+1 and combine the resulting inequality with (58), we obtain

Ak+1(f1(xk+1)− f1(x
∗))−Ak(f1(xk)− f1(x

∗))

≤ ak ⟨∇f1(yk), zk − x∗⟩+Ak+1 ⟨∇f1(yk),xk+1 − yk⟩+
LfAk+1

2
∥xk+1 − yk∥2

= ak ⟨∇f1(yk), zk − x∗⟩+ ak ⟨∇f1(yk), zk+1 − zk⟩+
Lfa

2
k

2Ak+1
∥zk+1 − zk∥2

= ak ⟨∇f1(yk), zk+1 − x∗⟩+ Lfa
2
k

2Ak+1
∥zk+1 − zk∥2,

(60)

where we used the fact that ak(zk+1 − zk) = Ak+1(xk+1 −yk) in the first equality. Moreover, from
the step 6 in Algorithm 2, we have zk − ak∇f1(yk)− zk+1 ∈ ak∂(f2(zk+1) + δXk

(zk+1)). Using
this, from the definition of subgradients for f2 + δXk

, we have

⟨x∗ − zk+1, zk − ak∇f1(yk)− zk+1⟩ ≤ ak(f2(x
∗) + δXk

(x∗)− f2(zk+1)− δXk
(zk+1))

⇔ ⟨zk+1 − zk + ak∇f(yk),x
∗ − zk+1⟩ ≥ akf2(zk+1)− akf2(x

∗)

⇔ ak ⟨∇f(yk), zk+1 − x∗⟩ ≤ ⟨zk+1 − zk,x
∗ − zk+1⟩ − akf2(zk+1) + akf2(x

∗)

⇔ ak ⟨∇f(yk), zk+1 − x∗⟩ ≤ 1

2
∥zk − x∗∥2 − 1

2
∥zk+1 − x∗∥2 − 1

2
∥zk+1 − zk∥2

− akf2(zk+1) + akf2(x
∗).

(61)
The first step holds since x∗, zk+1 ∈ Xk, i.e. δXk

(x∗) = δXk
(zk+1) = 0. Combining (60) and (61)

leads to

Ak+1(f1(xk+1)− f1(x
∗)) +

1

2
∥zk+1 − x∗∥2 −

(
Ak(f1(xk)− f1(x

∗)) +
1

2
∥zk − x∗∥2

)
≤ 1

2

(
Lfa

2
k

Ak+1
− 1

)
∥zk+1 − zk∥2 − akf2(zk+1) + akf2(x

∗),

(62)

20



Then we add (Ak+1f2(xk+1)− akf2(x
∗)−Akf2(xk)) on both sides to obtain,

Ak+1(f(xk+1)− f(x∗)) +
1

2
∥zk+1 − x∗∥2 −

(
Ak(f(xk)− f(x∗)) +

1

2
∥zk − x∗∥2

)
≤ 1

2

(
Lfa

2
k

Ak+1
− 1

)
∥zk+1 − zk∥2 − akf2(zk+1) +Ak+1f2(xk+1)−Akf2(xk),

(63)

Finally, by the convexity of f2, Ak+1 = Ak + ak, and xk+1 = Ak

Ak+ak
xk + ak

Ak+ak
zk+1, i.e.

−akf2(zk+1) +Ak+1f2(xk+1)−Akf2(xk) ≤ 0, the first inequality of this Lemma can be obtained.

Next, we proceed to prove the claim for the lower-level objective g. To do so, we first leverage the
convexity of the smooth part g1 which leads to

g1(yk)− g1(xk) ≤ ⟨∇g1(yk),yk − xk⟩ . (64)

Also, since g1 is Lg-smooth, we have

g1(xk+1) ≤ g1(yk) + ⟨∇g1(yk),xk+1 − yk⟩+
Lg

2
∥xk+1 − yk∥2. (65)

By multiplying both sides of (64) and (65) by Ak and Ak+1, respectively, and adding the resulted
inequalities we obtain

Ak+1(g1(xk+1)− g1(yk)) +Ak(g1(yk)− g1(xk))

≤ Ak+1 ⟨∇g1(yk),xk+1 − yk⟩+Ak ⟨∇g1(yk),yk − xk⟩+
LgAk+1

2
∥xk+1 − yk∥2

= ak ⟨∇g1(yk), zk+1 − zk⟩+Ak ⟨∇g1(yk),yk − xk⟩+
Lga

2
k

2Ak+1
∥zk+1 − zk∥2

= ak ⟨∇g1(yk), zk+1 − yk⟩+
Lga

2
k

2Ak+1
∥zk+1 − zk∥2,

where the first equality holds since ak(zk+1 − zk) = Ak+1(xk+1 − yk), and the second equality
holds since ak(zk − yk) = Ak(yk − xk). Lastly, by the definition of the constructed approxi-
mated set Xk, we know that g1(yk) + ⟨∇g1(yk), z− yk⟩ + g2(z) ≤ gk for any z ∈ Xk. Hence,
⟨∇g1(yk), zk+1 − yk⟩ is upper bounded by gk − g1(yk)− g2(zk+1). Applying this substitution into
to the above expression to obtain,

Ak+1(g1(xk+1)− g1(yk)) +Ak(g1(yk)− g1(xk))

≤ akgk − akg1(yk)− akg2(zk+1) +
Lga

2
k

2Ak+1
∥zk+1 − zk∥2

(66)

By adding akg1(yk)− akg1(x
∗) on both sides, we have,

Ak+1(g1(xk+1)− g1(x
∗)) +Ak(g1(x

∗)− g1(xk))

≤ akgk − akg1(x
∗)− akg2(zk+1) +

Lga
2
k

2Ak+1
∥zk+1 − zk∥2

(67)

Lastly, we add (Ak+1g2(xk+1)− akg2(x
∗)−Akg2(xk)) on both sides to obtain,

Ak+1(g(xk+1)− g(x∗)) +Ak(g(x
∗)− g(xk))

≤ akgk − akg(x
∗) +Ak+1g2(xk+1)−Akg2(xk)− akg2(zk+1) +

Lga
2
k

2Ak+1
∥zk+1 − zk∥2

(68)

By the convexity of g2, Ak+1 = Ak + ak, and xk+1 = Ak

Ak+ak
xk + ak

Ak+ak
zk+1 (outlined in

Algorithm 2), i.e. Ak+1g2(xk+1) − Akg2(xk) − akg2(zk+1) ≤ 0, the second inequality of this
Lemma can be achieved.

Hence, with the additional Assumption 3.1, by replicating the analysis outlined in Section A, we can
derive identical complexity results for Algorithm 2 in either the compact domain setting or with the
Hölderian error bounds on g.
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C Additional related work

Previous work has explored “asymptotic" results for simple bilevel problems, dating back to Tikhonov-
type regularization introduced in [37]. In this approach, the objectives of both levels are combined
into a single-level problem using a regularization parameter σ > 0 and as σ → 0 the solutions of
the regularized single-level problem approaches a solution to the bilevel problem in (1). Further,
the authors in [38] proposed the explicit descent method that solves problem (1) when upper and
lower-level functions are smooth and convex. This result was further extended to a non-smooth setting
in [39]. The results in both [38] and [39] only indicated that both upper and lower-level objective
functions converge asymptotically. Moreover, the authors in [40] proposed the ϵ-subgradient method
to solve simple bilevel problems and showed its asymptotic convergence. Specifically, they assumed
the upper-level objective function to be convex and utilized two different algorithms, namely, the Fast
Iterative Bilevel Algorithm (FIBA) and Incremental Iterative Bilevel Algorithm (IIBA), that consider
smooth and non-smooth lower-level objective functions, respectively.

Some studies have only established non-asymptotic convergence rates for the lower-level problem.
One of the pioneering methods in this category is the minimal norm gradient (MNG) method,
introduced in [41]. This method assumes that the upper-level objective function is smooth and
strongly convex, while the lower-level objective function is smooth and convex. The authors showed
that the lower-level objective function reaches an iteration complexity of O(1/ϵ2). Subsequently, the
Bilevel Gradient SAM (BiS-SAM) method was introduced in [35], and it was proven to achieve a
complexity of O(1/ϵ) for the lower-level problem. A similar rate of convergence was also attained in
[42].

D Connection with the Polyak Step Size

In this section, we would like to highlight the connection between our algorithm’s projection step
(outlined in Step 6 of Algorithm 1) and the Polyak step size. To make this connection, we first without
loss of generality, replace gk with g∗. It is a reasonable argument, as gk values are close to g∗, a point
highlighted in (5). In addition, we further assume that the set Z = Rn to simplify the expressions.
Given these substitutions, the projection step in our AGM-BiO method is equivalent to solving the
following problem:

min ∥x− xk∥2

s.t. g(xk) + ⟨∇g(xk),x− xk⟩ ≤ g∗

In other words,xk+1 is the unique solution of the above quadratic program with a linear constraint. By
writing the optimality conditions for the above problem and considering λ as the Lagrange multipliers
associated with the linear constraint, we obtain that

xk+1 = xk − λ∇g(xk)

λ(g(xk) + ⟨∇g(xk),xk+1 − xk⟩ − g∗) = 0

λ ≥ 0

Given the fact that xk+1 ̸= xk, we can conclude that λ ̸= 0, and hence we have
xk+1 = xk − λ∇g(xk)

g(xk) + ⟨∇g(xk),xk+1 − xk⟩ − g∗ = 0

λ > 0

By replacing xk+1 in the second expression with its expression in the first equation we obtain that

λ =
g(xk)− g∗

∥∇g(xk)∥2
.

which is exactly the Polyak step size in the literature [43]. To solve a bilevel optimization problem,
we intend to do gradient descent for both upper- and lower-level functions. Tuning the ratio of upper-
and lower-level step size is generally hard. However, by connecting the projection step with the
Polyak step size, we observe that the stepsize for the lower-level objective is auto-selected as the
Polyak stepsize in our method. In other words, it is one of the advantages of our algorithm that we do
not need to choose the lower-level stepsize or ratio of the upper- and lower-level stepsize theoretically
or empirically.
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E Experiment Details

In this section, we include more details of the numerical experiments in Section 5. All simulations
are implemented using MATLAB R2022a on a PC running macOS Sonoma with an Apple M1 Pro
chip and 16GB Memory.

E.1 Over-parametrized Regression

Dataset generation. The original Wikipedia Math Essential dataset [34] composes of a data matrix
of size 1068 × 731. We randomly select one of the columns as the outcome vector b ∈ R1068 and the
rest to be a new matrix A ∈ R1068×730. We set the constraint parameter λ = 1 in this experiment,
i.e., the constraint set is given by Z = {β | ∥β∥2 ≤ 1}.

Implementation details. To be fair, all the algorithms start from the origin as the initial point. For
our AGM-BiO method, we set the target tolerances for the absolute suboptimality and infeasibility
to ϵf = 10−4 and ϵg = 10−4, respectively. We choose the stepsizes as ak = 10−2(k + 1)/(4Lf ).
In each iteration, we need to do a projection onto an intersection of a L2-ball and a halfspace,
which has a closed-form solution. For a-IRG, we set η0 = 10−3 and γ0 = 10−3. For CG-BiO,
we obtain an initial point with FW gap of the lower-level problem less than ϵg/2 = 5× 10−5 and
choose stepsize γk = 10−2/(k + 2). For Bi-SG, we set ηk = 10−2/(k + 1)0.75 and tk = 1/Lg =
1/λmax(A

⊤
trAtr) = 1.5 × 10−4. For SEA, we set both the lower- and upper-level stepsizes to be

10−4. For R-APM, since the lower-level problem does not satisfy the weak sharpness condition, we
set η = 1/(K+1) = 1.25× 10−5 and γ = 10−4 ≤ 1/(Lg + ηLf ). For PB-APG, we set the penalty
parameter γ = 104. Note that the lower-level problem in this experiment does not satisfy Höderian
error bound assumption, so there is no theoretical guarantee for PB-APG.

E.2 Linear inverse problems

Dataset generation. We set Q = In, A = 1⊤
n , and b = 1. The constraint set is selected as Z = Rn

+.
We choose a low dimensional (n = 3) and a high dimensional (n = 100) example and run K = 103

number of iterations to compare the numerical performance of these algorithms, respectively.

Implementation details. To be fair, all the algorithms start from the same initial point randomly
chosen from Rn

+. For our AGM-BiO method, we set the stepsizes as ak = γ(k + 1)/(4Lf ), where
γ = 1/(

2Lg

Lf
K2/3 + 2) as suggested in Theorem 4.4. In each iteration, we need to project onto an

intersection of a halfspace and Rn
+. Since halfspaces and Rn

+ are both convex and closed set, the
projection subproblem can be solved by Dykstra’s projection algorithm in [20]. For a-IRG, we set
η0 = 10−2 and γ0 = 10−2. For Bi-SG, we set ηk = 1/(k + 1)0.75 and tk = 1/Lg. For SEA, we
set the lower-level stepsize to be 10−2 and the upper-level stepsize to be 10−2. For R-APM, since
the lower-level problem does not satisfy the weak sharpness condition, we set η = 1/(K + 1) and
γ = 1/(Lg + ηLf ). For PB-APG, we set the penalty parameter γ = 104. For Bisec-BiO, we choose
the target tolerances to ϵf = ϵg = 10−4. For comparison purposes, we limit the maximum number of
gradient evaluations for each APG call to 102. In this experiment, Lf = 1 and Lg = n, where n is
the number of dimensions.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: We clearly stated our contributions in the introduction aligned with the main claims
in the abstract.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The main limitation is that our algorithm requires the compact domain as we stated
in Section 3 and 4. We also explained why such an assumption is necessary in Remark 4.1.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
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Answer: [Yes]
Justification: Our paper provides the full set of assumptions in Section 2.1 and a complete proof
in Section A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The experimental results are stated in Section 5. The implementation details are
included in Section E. The code and data are attached in the supplementary material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?
Answer: [Yes]
Justification: The code and data are attached in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: We explained how we performed the experiments in Section 5. Moreover, the
implementation details are included in Section E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Our algorithm is designed for deterministic simple bilevel optimization, which
does not include any randomness.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably

report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: The compute resources we used are stated in Section E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper conforms, in every respect, with the NeurIPS Code of Ethics

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: There is no societal impact of the work performed in this paper.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: The data used in the paper are properly credited and cited in Section 5.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing or research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
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