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ABSTRACT

With the continuous advancement of neural network methodologies, time series
prediction has attracted substantial interest over the past decades. Nonetheless,
the interpretability of neural networks is insufficient and the utilization of deep
learning techniques for prediction necessitates significant computational expendi-
tures, rendering its application arduous in numerous scenarios. In order to tackle
this challenge, an interpretable sparse system identification method which does
not require a time-consuming training through back-propagation is proposed in
this study. This method integrates advantages from both knowledge-based and
data-driven approaches, and constructs dictionary functions by leveraging Fourier
basis and taking into account both the long-term trends and the short-term fluc-
tuations behind data. By using the l1 norm for sparse optimization, prediction
results can be gained with an explicit sparse expression function and an extremely
high accuracy. The performance evaluation of the proposed method is conducted
on comprehensive benchmark datasets, including ETT, Exchange, and ILI. Re-
sults reveal that our proposed method attains a significant overall improvement of
more than 20% in accordance with the most recent state-of-the-art deep learning
methodologies. Additionally, our method demonstrates the efficient training ca-
pability on only CPUs. Therefore, this study may shed some light onto the realm
of time series reconstruction and prediction.

1 INTRODUCTION

Long-term prediction with less input data plays a crucial role in the contemporary era of big data.
Numerous domains, including electricity, exchange-rate, and disease (Wu et al. (2021); Zhou et al.
(2022); Zhang & Yan (2022); Zeng et al. (2023); Bi et al. (2023)), necessitate accurate predictions
over long time horizons. Recently, the advancement of deep learning has led to the prominence of
neural network methods, particularly Transformer-based approaches (Vaswani et al. (2017)) such as
Crossformer (Zhang & Yan (2022)) and FEDformer (Zhou et al. (2022)). Nevertheless, the heavy
reliance on GPU resources in deep learning has turned time series prediction into a competition
of computational capabilities, rendering its challenge for ordinary laboratory setups or personal
computers to cope with the demands (Wu et al. (2021)). Is it truly inconceivable to achieve long-
term forecasting without the utilization of neural networks? This study endeavors to explore an
innovative approach rooted in system identification, which ensures compatibility with CPU-based
execution while maintaining a high level of accuracy comparable to that of deep learning methods.

Traditional time series prediction methods like ARIMA (Shumway et al. (2017)), SVM
(Sapankevych & Sankar (2009)) and Temporal Regularized Matrix Factorization(TRMF, Yu et al.
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(2016)) are some commonly used classical statistical algorithms. However, these methods are typ-
ically limited to make short-term predictions and encounter challenges when applied to long-term
prediction tasks due to the accumulation of errors over time. The introduction of deep learning
methods can be traced back to the emergence of RNNs models, which leverage their hidden states
to summarize and retain past information. Prominent examples of RNN-based architectures include
LSTM (Hochreiter & Schmidhuber (1997)), GRU (Chung et al. (2014)), and LSTNet (Lai et al.
(2018)). Additionally, there are deep learning approaches that build upon classical algorithms, such
as DeepGLO (Sen et al. (2019)) and Temporal Latent Auto-Encoder (TLAE, Nguyen & Quanz
(2021)) , which integrate deep learning techniques into the TRMF framework for enhanced predic-
tion performance. Furthermore, there exist many research endeavors that build upon the concept
of Temporal Convolutional Networks (TCN, Aksan & Hilliges (2019); Yan et al. (2020); Lea et al.
(2017)). These approaches employ a stacked arrangement of one-dimensional convolutional layers
and residual connections to effectively capture both the local and global characteristics inherent in
time series data. Despite demonstrating advancements over traditional methods in short-term pre-
diction, these algorithms still face limitations when it comes to accurate long-term prediction tasks.

In recent years, the advent of the Transformer (Vaswani et al. (2017)) has given rise to a series of
Transformer-based models that tackle the challenges associated with long-term prediction, continu-
ally pushing the boundaries of state-of-the-art performance in this domain. These examples include
Crossformer (Zhang & Yan (2022)), FEDformer (Zhou et al. (2022)), Autoformer (Wu et al. (2021)),
Informer (Zhou et al. (2021)), Pyraformer (Liu et al. (2021)), LogTrans (Li et al. (2019)), and so on.
Despite efforts to optimize algorithmic complexity, it remains evident that current long-term predic-
tion methods necessitate significant computational resources. Moreover, as the prediction horizon
increases, the training time becomes intolerable for small-scale laboratories. Accordingly, our ob-
jective is to embrace a lightweight approach wherein the computational requirements are reduced
while upholding a high prediction accuracy. Successful instances of this approach are exemplified
by DLinear (Zeng et al. (2023)) and TiDE (Das et al. (2023)), which deviate from the conventional
Transformer framework and achieve remarkable performance solely by employing simple linear
models, thereby mitigating training time. Building upon this foundation, we attempt to abandon
deep learning frameworks and explore a machine learning-based approach that enables long-term
time series prediction on CPUs. Our goal is to develop a method that guarantees precision while
remaining insensitive to the increase in prediction horizon, meaning that the training time of the
model does not significantly increase as the prediction horizon grows.

Thus, we here propose the Global-Local Identification and Prediction (GLIP) model, which com-
bines the framework of identification models (Brunton et al. (2016); Yuan et al. (2019); Gao & Yan
(2022)) with insights from deep learning training methods. Specifically, The prediction model uti-
lizes system identification methods and involves two main stages of identification and prediction. In
the first stage of identification, three types of basis functions are constructed using Discrete Fourier
Transform (Lu et al. (2021)) for prediction. These include global basis obtained from the training
set, stored basis, and local basis from the test set. Note that prediction with explicit model instead
of an entire black-box neural network approach, can also be referred to N-BEATS (Oreshkin et al.
(2019)). In the second stage of identification, we further explore the relationships between variables
through identification to improve prediction performance. In the entire procedure, it is apparent
that GLIP abstains from employing any back-propagation mechanisms, opting instead for exclusive
reliance on elementary machine learning techniques. Occam’s Razor (Blumer et al. (1987)) told
us Entities should not be multiplied without necessity. For the same prediction task, our model is
obviously more concise and efficient. The primary contributions can be summarized as follows:

1). A novel identification model for long-term prediction is introduced, which operates efficiently
on CPUs instead of relying on GPUs. Additionally, the training time of the GLIP model remains
largely unchanged as the prediction horizon increases. This significantly expands the applicability
of the model, enabling long-term prediction even on personal computers. By offering a fresh direc-
tion amidst the prevalence of Transformer-based models in the realm of long-term prediction, this
research opens new avenues for exploration.

2). The utilization of Fourier transform-based basis functions in global identification and local pre-
diction allows for precise capture of both the knowledge of long-term trends and short-term fluctua-
tions in time series data. This approach integrating both knowledge and data driven ways effectively
addresses the limitation of neural networks in a global perspective for prediction tasks.
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3). In the context of local basis function prediction, the incorporation of Fourier transforms as part
of the basis for each local segment data enables accurate extraction of potential future trends even
when the input-output ratio is very small. This capability surpasses the limitations of traditional
sparse identification methods.
4). Remarkable prediction performance was achieved on the four benchmark datasets, surpassing
the current state-of-the-art results. The proposed model exhibited a notable 23.64% improvement in
Mean Squared Error (MSE) compared to neural network approaches. This breakthrough highlights
the efficacy of non-neural network models in long-term prediction tasks.

2 NOTATIONS

When performing time-series prediction, the predicted multivariate time series can be represented
as X. Here, X is a two-dimensional vector, where the number of rows corresponds to the count of
variables, and the number of columns represents the length of the time series. The i-th row of X is
denoted as X[i, :], while the i-th column of X is denoted as X[:, i]. Furthermore, the subset of rows
(columns) from the i-th to j-th positions in X can be denoted as X[i : j, :] (X[:, i : j]). Matrices
with the same number of rows or columns can be concatenated either horizontally or vertically. The
horizontal concatenation is denoted as [X,Y], while the vertical concatenation is denoted as [X;Y].
For instance, time series X comprising m variables can be represented as [x1;x2; · · · ;xm], where
xi denotes a specific time series. The linspace function is used to create a vector with equally spaced
elements. linspace(x1, x2, n) generates a row vector containing n elements that are evenly spaced
between x1 and x2. The symbol ◦ represents the Hadamard product, which denotes the element-
wise multiplication of corresponding elements in vectors or matrices. A scalar can be added to or
subtracted from a vector. When a scalar is added to or subtracted from a vector, the scalar will
undergo the corresponding operation with each element of the vector. In addition, if we want to
explore higher-order relationships among variables in a multivariate matrix X, such as a quadratic
relationship, we denote it as X2, which signifies:

[X[1, :]
2
;X[1, :]X[2, :]; · · ·X[1, :]X[m, :];X[2, :]

2
;X[2, :]X[3, :]; · · ·X[m, :]

2
].

In addition, this paper also distinguishes between global prediction and local prediction, the signifi-
cance of which can be further explored in Appendix. A.

3 METHODOLOGY

In this section, a thorough exposition of the proposed Global-Local Identification and Predic-
tion (GLIP) model will be presented. Analogous to deep learning methodologies, the time series
will be partitioned into distinct sets, which are training set, validation set, and testing set, with a par-
titioning ratio of 7:1:2. In the stage of the entire prediction framework, we first construct global basis
and storage basis in the training set for global prediction. Secondly, we evaluate the performance
of global prediction in the validation set to determine its suitability for local rolling prediction. Fi-
nally, in the test set, the amalgamation of all preceding information will be leveraged to execute
local rolling prediction. The detailed procedures of global prediction and local rolling prediction are
illustrated in Figure 1.

3.1 GLOBAL IDENTIFICATION

The propose of global identification is to investigate the macroscopic variations exhibited in the
given time series. We will employ Fourier transformation and sparse identification techniques on the
training set. This approach facilitates the extraction and design of the global basis and storage basis,
which serve as preparatory components for subsequent local rolling identification. Furthermore,
the utilization of the global basis enables a preliminary estimation of global trend, thereby enabling
long-term predictions surpassing 1000 data points.

3.1.1 GLOBAL BASIS AND GLOBAL PREDICTION

Global identification involves initially applying Fourier transformation to seek potential frequencies
or periods behind the training data. Subsequently, a global basis is constructed by utilizing these
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inferred periods exhibited in the frequency domain to form a basis of trigonometric functions. Sparse
identification is then performed using this global basis, followed by global prediction. Specifically,
based on the Discrete Fourier Transformation (DFT), denoted as: A, f = DFT(X), where A, f are
amplitude and frequency of DFT, respectively. For further global prediction, frequency with high
amplitude are selected (see Appendix. C). By utilizing the frequency-period formula f = 1/T , these
frequencies are converted into corresponding periods, unveiling the underlying potential periodicity
T∗ = [T1, T2, ...]. These potential periods are employed to construct the global basis function

Θg = [sin(C1t), cos(C1t),1], (1)
where C1 = 2π/T∗ and t is a column vector represent the time of train length. The following
sparse identification process can be performed using the global basis.

argmin
Ξg

∫ T

0

(
∥X−ΘgΞg∥2

)
dt+ λ ∥Ξg∥ . (2)

There exist several well-established algorithms for solving the aforementioned optimization prob-
lem (equation 2), such as OMP (Schnass (2018)), LASSO (Ranstam & Cook (2018)), SBM (Jacobs
et al. (2018)), and others. In this context, we employ the l1 norm for sparsity regularization and
utilize the typical coordinate descent method similar to LASSO for optimization. After obtaining
Θg , one can set t = Ltrain + 1, Ltrain + 2, ...(Ltrain is the length of training set) to predict the data in
the validation and test sets, recording the predicted result as Xgp. Furthermore, to capture the global
inter-dependency among variables, we can concatenate the results obtained from the univariate pre-
dictions with the training set, denoting as Xg = [X[:, : train],Xgp]. Thus constructing a new basis
function library Θ∗

g for further network relationship identification, i.e.,

Θ∗
g = [Xg,X

2
g,X

3
g, ..., sin(Xg), cos(Xg), ...]. (3)

By substituting Θ∗
g into equation 2 and optimizing it, we can obtain the updated variable predictions

X∗
gp with network coupling relationships. This represents the outcome of global identification and

prediction. Appendix. B describes the introduction to system identification.

The schematic diagram of the process for establishing the global basis can be seen in the upper part
of the ”Global Prediction” section in Figure 1. The global identification and prediction presents two
notable advantages. Firstly, sparse identification acts as a robust mechanism to mitigate the risk of
overfitting, facilitating the discernment of authentic underlying patterns or latent cycles. Notably,
the direct utilization of the extracted high-frequency feature by DFT for reconstruction restricts
the identification efficacy to the training set, with limited the generalizability to the validation and
prediction sets. Secondly, this module, by exclusively employing t for prediction during the initial
identification phase, circumvents the common issue of error accumulation in long-term prediction
encountered by traditional identification methods.

3.1.2 STORAGE BASIS

The storage basis serves as a preparatory foundation for local rolling prediction. Given that this
model does not employ backpropagation for parameter updates, when conducting local rolling pre-
diction on the test set, it is challenging to fully leverage the data feature from the training set, except
for the solely obtained results of global identification and prediction. Considering our primary focus
on prediction from an identification perspective, it is crucial to construct a set of basis, known as the
storage basis, that is simultaneously relevant to both the training set and local rolling prediction.

If the length of a batch is denoted as Lbatch (i.e., the length of input and output sequences), we
continuously slide a window of length Lbatch over the test set with an interval of Linterval. During
each sliding window, we perform the DFT on each variable of the small window’s time series and
record the high-frequency components in the frequency domain. We utilize a set to store these high-
frequency components to ensure there is no duplication. Ultimately, this process yields a set of
periods T∗

s . Leveraging these periods, similar to the global basis, we can construct the following
storage basis:

Θs = [sin(C2t), cos(C2t)], (4)
where, C2 = 2π/T∗

s . The illustration of the storage basis is located below the ”Global Prediction”
section in Figure 1. The storage basis functions will have a significant impact on local rolling
prediction, addressing the challenge faced by traditional methods in effectively using information
from the training set during local rolling prediction.
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Figure 1: The GLIP model architecture

3.2 VALIDATION IDENTIFICATION

The objective of validation identification is to evaluate the efficacy of conducting local rolling pre-
diction on the validation set, utilizing two global identification mentioned in the previous sections
as a reference. This assessment serves as a preparatory step for subsequent local rolling prediction.

For the sake of simplicity and clarity, we denote X̃ as a generic representation of a batch, where X̃
refers to X[:, i : i + Lbatch]. Meanwhile, we assume that the output derived from the local rolling
prediction model is denoted as X̃pred. Its significance is similar to that of X̃, representing a generic
representation of a batch.

3.2.1 GLOBAL IDENTIFICATION VALIDATION

Validating global identification is to compare whether utilizing local features for prediction yields
superior performance compared to global prediction. Assume that the predicted values of global
prediction for a specific batch are denoted as X̃global. To evaluate the quality of global prediction, it
is necessary to observe whether there is a significant improvement in prediction accuracy for each
variable i when utilizing local features. i.e.,

1

Nb

∑
Nb

∣∣∣∣∣X̃global[i, Linput :]− X̃[i, Linput :]

X̃pred − X̃[i, Linput :]

∣∣∣∣∣ ≤ k1, (5)

where Nb is the number of validation batches. k1 is a hyperparameter, and it can be adjusted based
on the desired level of improvement. In the subsequent local rolling prediction, we will determine
whether it is necessary to further incorporate local basis prediction by observing whether the vari-
ables satisfy equation 5.

3.2.2 VARIABLES RELATIONSHIP VALIDATION

The validation of variable relationships aims to verify whether, after conducting local rolling pre-
dictions, the coupling relationships between different variables can further enhance the prediction
effectiveness. To accomplish this, assuming that the output of coupling relationships after local
rolling prediction is X̃∗. Meanwhile, we introduce a new hyperparameter, k2. By substituting X̃∗

for X̃global, replacing k1 with k2 and swapping the numerator and denominator in the summation
symbol in equation 5, we can use the modified equation 5 to determine whether further coupling of
variables is needed in the test set to improve prediction performance.

5



Published as a conference paper at ICLR 2024

3.3 LOCAL IDENTIFICATION

This section will primarily focus on local identification and utilize the results obtained from global
identification and validation identification to enhance the shortcomings of traditional methods in
prediction. We aim to achieve local rolling prediction through local identification.

3.3.1 LOCAL IDENTIFICATION CURVE

In the context of local rolling prediction, both conventional approaches and prevalent neural network
methods commonly employ the raw values of the input for prediction. Nonetheless, it is important
to acknowledge that the input values may exhibit outliers or abrupt changes, thereby exerting a
substantial influence on the prediction accuracy. Consequently, prior to the local prediction, this
section necessitates the implementation of a straightforward preprocessing procedure for the input
data, which will draw upon the insights gained from global identification and prediction.

We aim to construct a new input curve that is a weighted sum of both the global prediction and the
real time series. This approach allows us to capture both the global trend and local fluctuations in
the data. Assuming that the input data is denoted as x, and the corresponding results obtained from
global identification are denoted as y. Now, we construct a new input x∗ as follows:

x∗ = w ◦ x+ (1− w) ◦ y, (6)

where w =
(
linspace(α1/γ , β1/γ , Lbatch)

)γ
. In general, 0 ≤ α < β ≤ 1. Typically, α and β are

determined based on the quality of global prediction. If the global prediction is good, smaller values
are assigned to α and β, indicating a higher weight for global prediction and resulting in a prediction
that leans more towards the global trend. Conversely, larger values are assigned to α and β, allowing
more emphasis on local information. γ reveals the pace of weight changes and is usually set to 1.
By adjusting the parameters to appropriate values, we can construct the local identification curve. In
ablation experiments, we have demonstrated that utilizing x∗ for prediction yields superior results
compared to directly using x.

3.3.2 LOCAL PREDICTION

The local prediction consists of three steps. The first step is to determine if local identification is
necessary. If a variable demonstrates good performance in the validation identification, satisfying
equation 5, we do not need to proceed with further prediction and can directly use the results of
global prediction for local prediction. Otherwise, we proceed to the second step.

The second step involves selecting the local basis. If certain variables fail to meet the criterion spec-
ified by equation 5, it suggests that the performance of global identification is inadequate and needs
further enhancements. Leveraging the locally derived identification curve obtained from equation 6,
we adopt a methodology akin to global identification and conduct DFT. Subsequently, we identify
the high-frequency components and transform them into potential periods denoted as T ∗

p .

Θl = [sin(C3t), cos(C3t)], (7)
where, C3 = 2π/T∗

p. The ”Local Prediction” section in Figure.1 illustrates the process of selecting
the local basis. However, relying solely on this basis is insufficient for local rolling prediction. This
is because the input for local rolling prediction is limited in terms of available data, and the absence
of global information can potentially lead to significant prediction biases.

Therefore, the third step involves integrating the basis and performing local prediction. We combine
the previously constructed basis with the local basis functions to obtain a comprehensive represen-
tation of global information. This incorporates three types of basis: the global basis obtained from
global identification (equation 1), the storage basis constructed from additional computations on the
test set (equation 4), and the local basis (equation 7) derived from the local identification curve. By
merging these three types of basis, we obtain the final basis functions for local identification and
prediction, i.e.,

Θpred = [Θg,Θs,Θl]. (8)
By utilizing this integrating basis to replace Ξ in equation 2 and performing sparse identification, we
can obtain Ξpred. Letting t = Linput+1, Linput+2, ..., enables us to make local rolling predictions and
obtain X̃pred. It is worth mentioning that X̃pred is obtained in a similar manner during the validation
identification phase.
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Models IMP. GLIP DLinear FEDformer Autoformer Informer Reformer Pyraformer LogTrans

Metric MSE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
h

96 24.91% 0.217 0.332 0.289 0.353 0.346 0.388 0.358 0.397 3.755 1.525 0.845 0.693 0.645 0.597 2.116 1.197
192 34.46% 0.251 0.364 0.383 0.418 0.429 0.439 0.456 0.452 5.602 1.931 0.958 0.741 0.788 0.683 4.315 1.635
336 38.39% 0.276 0.383 0.448 0.465 0.496 0.487 0.482 0.486 4.721 1.835 1.044 0.787 0.907 0.747 1.124 1.604
720 32.18% 0.314 0.408 0.605 0.551 0.463 0.474 0.515 0.511 3.647 1.625 1.458 0.987 0.963 0.783 3.188 1.540

E
T

T
m

96 11.38% 0.148 0.260 0.167 0.260 0.203 0.287 0.255 0.339 0.365 0.453 0.658 0.619 0.435 0.507 0.768 0.642
192 17.86% 0.184 0.302 0.224 0.303 0.269 0.328 0.281 0.340 0.533 0.563 1.078 0.827 0.730 0.673 0.989 0.757
336 21.35% 0.221 0.331 0.281 0.342 0.325 0.366 0.339 0.372 1.363 0.887 1.549 0.972 1.201 0.845 1.334 0.872
720 34.00% 0.262 0.360 0.397 0.421 0.421 0.415 0.433 0.432 3.379 1.338 2.631 1.242 3.625 1.451 3.048 1.328

E
xc

ha
ng

e 96 11.11% 0.072 0.202 0.081 0.203 0.148 0.278 0.197 0.323 0.847 0.752 1.065 0.829 0.376 1.105 0.968 0.812
192 20.38% 0.125 0.275 0.157 0.293 0.271 0.380 0.300 0.369 1.204 0.895 1.188 0.906 1.748 1.151 1.040 0.851
336 31.48% 0.209 0.348 0.305 0.414 0.460 0.500 0.509 0.524 1.672 1.036 1.357 0.976 1.874 1.172 1.659 1.081
720 31.10% 0.443 0.516 0.643 0.601 1.195 0.841 1.447 0.941 2.478 1.310 1.510 1.016 1.943 1.206 1.941 1.127

IL
I

24 18.65% 1.802 0.908 2.215 1.081 3.228 1.260 3.483 1.287 5.764 1.677 4.366 1.382 1.420 2.012 4.480 1.444
36 9.52% 1.766 0.943 1.963 0.963 2.679 1.080 3.103 1.148 4.755 1.467 4.446 1.389 7.394 2.031 4.799 1.467
48 18.73% 1.731 0.952 2.130 1.024 2.622 1.078 2.669 1.085 4.763 1.469 4.572 1.436 7.551 2.057 4.800 1.468
60 22.80% 1.828 0.992 2.368 1.096 2.857 1.157 2.770 1.125 5.264 1.564 4.743 1.487 7.662 2.100 5.278 1.560

Table 1: Local rolling prediction errors in terms of MSE and MAE. The results from other models
are sourced from (Zeng et al. (2023); Wu et al. (2021); Kitaev et al. (2020)). For ILI, the input length
for local rolling prediction is 24, with output lengths 24, 36, 48, 60. For other datasets, the input
length is 96, with output lengths 96, 192, 336, 720. The best results are indicated by bold numbers
in the table, while the second-best results are marked with horizontal lines.

3.3.3 LOCAL VARIABLES RELATIONSHIP

Lastly, we consider the relationships among different variables in local prediction. During the val-
idation identification phase, we assess which variables are suitable for representation using other
variables as basis. We extract these variables and construct basis similar to equation 2. Similar to
the global identification process, we perform a second identification using these basis. By utilizing
the identification results, we can derive further prediction results for each variable. This predicted
outcome, denoted as X̃∗

pred, represents the final prediction result for local rolling prediction. In
Appendix. E, we provide pseudo-code for the entire algorithmic process.

4 EXPERIMENTS

We will show the results of global prediction and local rolling prediction. Furthermore, we will
highlight the advantages of GLIP in terms of computational efficiency and long-term prediction
compared to neural networks. The experimental settings can be found in Appendix. D.

4.1 PERFORMANCE COMPARISON

4.1.1 LOCAL ROLLING PREDICTION

As shown in Table. 1, GLIP achieved excellent results in local rolling prediction across the four
benchmark datasets. Specifically, it achieved a 32.49% MSE improvement on the ETTh dataset, a
21.14% MSE improvement on the ETTm dataset, a 23.52% MSE improvement on the Exchange
dataset, and a 17.42% MSE improvement on the ILI dataset. Overall, compared to neural network
methods, GLIP achieved a total improvement of 23.64%. We observed that the improvement tends
to be greater when the O/I is larger. For instance, when the O/I is 7.5, the MSE improvement is
consistently above 30%. This indicates that GLIP has the ability to predict long-term data based
on short-term data in local rolling prediction, addressing the challenge of long-term prediction that
traditional methods cannot handle. Figure 2 (d)-(f) showcase the visualization results of the three
datasets when performing local rolling prediction with the longest output.

It is noteworthy that in the context of local rolling prediction, GLIP attains remarkable performance
by exclusively employing a composite of Fourier basis, subsequently coupled with sparse identifi-
cation. While sharing some conceptual resemblance with FEDformer-f (Zhou et al. (2022)), GLIP
distinctively circumvents the reliance on a neural network architecture and instead directly conducts
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(a) ETTh2 Global Prediction (b) Exchange Global Prediction (c) ILI Global Prediction

(d) ETTh2 Local Prediction (f) ILI Local Prediction(e) Exchange Local Prediction

Figure 2: The visualization results depict the prediction of a specific variable in the ETT, Exchange,
and ILI datasets. Figures (a), (b), and (c) represent global predictions, while Figures (d), (e), and
(f) illustrate a slice of local rolling predictions. The labels in the figure hold the following implica-
tions: ”Ground Truth” signifies the veritable time series data; ”Global Prediction” denotes the visual
representation of global prediction, aligning with the output outcomes from the global identification
module; ”Local Identification” represents the result of local identification after the weighted com-
bination of global predictions and local input data; ”Local Prediction” encompasses the outcomes
of local rolling prediction; and the red vertical line demarcates the division between the training set
and test set.

the prediction, thereby yielding superior outcomes. This observation underscores the viability of
non-neural network methodologies for time series prediction in certain scenarios.

4.1.2 GLOBAL PREDICTION

Global prediction is a distinctive advantage of GLIP, which sets it apart from neural network-based
methods that necessitate an ample number of training samples and are therefore incapable of ac-
complishing global prediction. This implies that neural networks may not consistently capture the
genuine trends of time series from a macroscopic perspective. In certain scenarios, GLIP can pro-
vide a reference for global prediction, as depicted in Figure 2 (a)-(c). However, it is important to note
that global predictions may not always be accurate and further local predictions may be required.

An example of accurate global prediction is the oil temperature variable (OT) in ETTh and ETTm,
as illustrated in Figure 2 (a). Through identification, we have observed that global identification
and prediction yield better results compared to local rolling prediction. Therefore, in local rolling
prediction, we directly utilize the results of global prediction as depicted in Figure 2 (d).

4.1.3 ENVIRONMENT AND EFFICIENCY

Considering that GLIP only uses a few machine learning techniques for implementation, it does
not require a GPU environment for experiment. Each of the aforementioned experiments can be
completed in a matter of seconds to minutes on a personal computer running on a CPU environment.
This greatly reduces our computational requirements. According to the principle of Occam’s razor,
GLIP undoubtedly stands as a superior prediction model.

Furthermore, considering the structure of GLIP, its efficiency in learning the local rolling prediction
model is essentially independent of the prediction length. Once the model structure is determined, it
can directly perform predictions without being affected by the increase in prediction length. Specifi-
cally, the time required for predictions with a length of 720 is comparable to that of predictions with
a length of 96 (see Supplementary Material).

4.1.4 INTERPRETABILITY AND PARAMETER ADJUSTMENT

The interpretability of GLIP lies in the following three aspects. Firstly, GLIP employs DFT to
explicitly identify potential periods within the time series for both global and local identification,
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incorporating them into the basis functions. This can be utilized to interpret the main components
extracted from the frequency domain of the time series. Secondly, in comparison with neural net-
works, GLIP has an explicit mathematical function expression for time series prediction tasks. The
function expression provides insights into the predicted trends with an explicit white-box form.
Thirdly, the hyperparameters, namely k1, k2, α, β, λ, and parameters Ξ have practical significance,
e.g., Ξ indicates the cycles and magnitudes between variables, which can be used directly to interpret
the model. Comparatively, parameters such as the number of hidden layers and neurons in neural
networks or the number of multi-heads in Transformer may not have straightforward interpretability.
Furthermore, owing to the interpretability of the parameters and the expeditious computational effi-
ciency of the model, the process of parameter adjustment is markedly simpler in contrast to neural
networks (see Appendix. D).

4.2 ABLATION EXPERIMENT

Loutput Metric GLIP Case 1 Case 2 Case 3

96 MSE 0.072 1.912 0.087 0.091
MAE 0.202 1.151 0.212 0.220

192 MSE 0.125 1.186 0.206 0.232
MAE 0.275 1.135 0.328 0.318

336 MSE 0.209 1.182 0.485 0.792
MAE 0.348 1.122 0.496 0.453

720 MSE 0.443 1.759 0.602 2.450
MAE 0.516 1.014 0.599 0.757

Table 2: Results for ablation experiments on the
Exchange dataset. Case 1 omits sparse identifica-
tion, Case 2 lacks local identification curves, and
Case 3 excludes storage basis.

While GLIP consists of several components in-
tegrated together for prediction, it is crucial
to emphasize that each component has been
meticulously constructed and holds irreplace-
able significance. Removing or altering any of
these components may potentially render the
identification process ineffective. To demon-
strate the significance of these components, we
excluded different components and performed
ablation experiment. The validation results on
the Exchange dataset are presented in Table 2.

Effect of Sparse Identification: If high-
frequency Fourier bases are directly used for
prediction without undergoing sparse identifi-
cation, it is possible that the resulting predic-
tions on the training set will closely resemble the original dataset. However, this approach may
lead to overfitting. We refer to the absence of the sparse identification component as Case 1. From
Table 2, it is evident that Case 1 has no predictive capability.

Effect of Local Identification Curve: During the process of local rolling identification, if the input
values are directly utilized for prediction, it may overlook the global trend information. Additionally,
it is highly probable to encounter overfitting issues when dealing with input points that exhibit
an abrupt or anomalous behavior, consequently leading to prediction errors. The absence of local
identification curves is denoted as Case 2. From Table 2, it can be noted that Case 2 exhibits weaker
predictive capabilities compared to GLIP.

Effect of Storage Basis: Storage bases are crucial components in prediction tasks as they maximize
the utilization of information provided by the training set. Without storage bases, our training is
confined to a local context, limiting the ability to leverage historical information from a global per-
spective. Case 3 is designated to represent the scenario where trend storage bases are absent. From
Table 2, it can be seen that Case 3 demonstrates close proximity to GLIP in short-term predictions,
but loses its predictive capability in long-term prediction.

5 CONCLUSION AND FUTURE WORK

In this study, we have provided a detailed account of the GLIP model to global prediction and
local rolling prediction. By ingeniously constructing basis functions extracting knowledge from the
frequency domain as much as possible and employing sparse identification techniques, we are able to
accomplish long-term prediction tasks within a CPU environment. This breakthrough overcomes the
limitations of traditional methods with a heavy computational burden and opens up a new direction
for long-term prediction.

In future work, we plan to enhance both the scale of the data and the scope of the predictions.
Additionally, we aim to integrate the identification methods with neural network approaches, striving
to achieve superior prediction performance within shorter time frames.
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A GLOBAL AND LOCAL PREDICTION OF TIME SERIES

Time series prediction can be broadly classified into global prediction and local rolling prediction.
Global prediction involves predicting the entire time series by partitioning the temporal data into
distinct sets, namely the training set, validation set, and testing set. Global Prediction (GP) model
utilizes the training and validation sets to directly predict the remaining whole data points within the
time series. However, GP models (especially neural network models) usually failed when confronted
with lengthy time series due to limited availability of training samples. Conversely, local rolling pre-
diction has emerged as a prevalent methodology in contemporary deep learning practices. This way
entails segmenting the training, validation, and testing sets into multiple batches, typically repre-
senting localized segments within the time series, with each batch comprising input (training) and
output (prediction) segments. The output-input ratio is denoted as O/I. In the context of local pre-
diction, an O/I ratio larger than 1 is generally deemed indicative of long-term prediction. Presently,
several models (Wu et al. (2021); Liu et al. (2021); Zeng et al. (2023)) employed for long-term pre-
diction within local rolling settings have achieved notable O/I ratios of 7.5. However, despite such
advancements, the achievable prediction length often remains limited to less than 1000 due to inher-
ent constraints associated with local predictions. In contrast, global prediction scenarios frequently
permit prediction lengths surpassing 1000 or even larger for extended time series. Currently, almost
no methods exist to effectively address the challenges presented by these scenarios.

B INTRODUCTION TO SPARSE SYSTEM IDENTIFICATION

Sparse system identification (Wilms et al. (2023); Fasel et al. (2022); Brunton et al. (2016)) is a
data-driven methodology employed for the inference of dynamic equations or algebraic equations
governing a system based on observed data. The core idea behind sparse identification is to first
establish a basis function library, typically polynomial series, trigonometric sequence etc. By mini-
mizing the sparsity penalty term within the equation, the objective is to identify equations from the
basis function library that possess the fewest non-zero terms. This process facilitates the elimination
of extraneous terms, thereby engendering a more succinct and comprehensible dynamic model. The
fundamental formulation of sparse identification is represented as

Ẋ = Θ(t,X)Ξ+N , (9)

where, Θ represents the basis function library, t is the prediction time, Ẋ represents the 1, 2, ...,
l-step data of all systems before the prediction data in the l-order dynamic equation, and N ∼
N

(
0, σ2I

)
. In some instances, sparse identification successfully discerns the latent system dynamics

concealed within the data, yielding outcomes of remarkable precision (Gao & Yan (2022); Yuan
et al. (2019)). Nonetheless, direct utilization of this method with no strategies on designing the basis
functions to capture the knowledge behind data may engender cumulative errors, thereby rendering
it unsuitable for long-term prediction. Consequently, it becomes imperative to develop innovative
identification models capable of addressing the challenges associated with long-term identification
and prediction.

C INTRODUCTION TO DISCRETE FOURIER TRANSFORM (DFT)

Discrete Fourier Transformation (DFT) can be denoted as:

A, f = DFT(X).

The amplitude A and frequency f obtained through DFT are typically utilized for analyzing the
frequency domain characteristics of time series. A and f are vectors of equal length, maintaining a
one-to-one correspondence. Generally speaking, the larger the amplitude, the greater the impact of
the corresponding frequency on the time series.

In this instance, Our objective is to select, based on the amplitude magnitude, the frequencies most
likely to construct the main components of the time series. Subsequently, these selected frequencies
are transformed into basis functions for consideration, which will be further screened through sparse
identification. Therefore, our candidate periodical terms T∗ are determined by the selection process
involving A and f .
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D EXPERIMENTAL SETTINGS

D.1 DATASETS

We selected four benchmark datasets, namely ETTh, ETTm, Exchange, and ILI (Zeng et al. (2023)),
for validation and testing purposes. These datasets are wildely used and consist of multivariate time
series data that cover various real-world domains such as temperature, exchange, and disease. One
can refer to (Wu et al. (2021); Zeng et al. (2023)) for detailed descriptions of these data.

D.2 BASELINES

Considering the limitations of traditional methods in long-term predictions, our comparative analysis
primarily focuses on neural network-based methods. Specifically, we concentrate on local rolling
prediction and compare it with several prominent models, including DLinear (Zeng et al. (2023)),
FEDformer (Zhou et al. (2022)), Autoformer (Wu et al. (2021)), Informer (Zhou et al. (2021)),
Reformer (Kitaev et al. (2020)), Pyraformer (Liu et al. (2021)), and LogTrans (Li et al. (2019)). In
instances where multiple models are available for a specific method (e.g., DLinear and FEDformer),
we select the model with higher accuracy for the comparative evaluation. We will provide a concise
overview of these models:

1) DLinear (Zeng et al. (2023)) is a simple neural network prediction model that combines time
series decomposition and linear layers. It is a typical network model that operates independently of
the Transformer framework. It is worth noting that recent models such as Crossformer (Zhang &
Yan (2022)) shares similar levels of accuracy with DLinear. To maintain brevity in the discussion, a
detailed experimental comparison will not be presented in this paper. The source code is available
at https://github.com/cure-lab/LTSFLinear.
2) FEDformer (Zhou et al. (2022)) is a Transformer-based model that addresses long-term forecast-
ing tasks by utilizing Fourier and wavelet bases. FEDformer is characterized by a time complexity
of O(L), where L represents the sequence length, and its implementation code can be found at
https://github.com/MAZiqing/FEDformer.
3) Autoformer (Wu et al. (2021)) is a Transformer-based model that incorporates autocorrelation
mechanisms to capture the inherent autocorrelation structure within a sequence. By introducing
autocorrelation mechanisms, the model can effectively leverage the periodic information within the
time series, thereby enhancing prediction accuracy. The source code is available at https://
github.com/thuml/Autoformer.
4) Informer (Zhou et al. (2021)) is a Transformer-based model with ProbSparse self-attention. The
time complexity of Informer is O(L logL). The source code is available at https://github.
com/zhouhaoyi/Informer2020.
5) Pyraformer (Liu et al. (2021)) is a Transformer-based model that introduces pyramid attention
mechanisms for information propagation. This model has a time complexity of O(L). The source
code of Pyraformer can be found at https://github.com/alipay/Pyraformer.
6) Reformer (Liu et al. (2021)) is a Transformer-based model that incorporates Locality Sensitive
Hashing (LSH) attention mechanism and RevNet to reduce computational complexity. This model
has a time complexity of O(L logL), where L represents the sequence length. The source code of
Reformer can be found at https://github.com/google/trax/tree/master/trax/
models/reformer.
7) LogTrans (Li et al. (2019)) is a modification of the Transformer model that incorporates Log-
sparse attention and Restart attention mechanisms to reduce computational complexity. By utiliz-
ing these mechanisms, LogTrans achieves a time complexity of O(L(logL)2), where L represents
the sequence length. The source code for LogTrans is avaliable at https://github.com/
mlpotter/Transformer_Time_Series.

D.3 EVALUATION METRICS

To ensure consistency with the aforementioned approach, we still employ the Mean Absolute Error
(MAE) and Mean Square Error (MSE) evaluation metrics to determine the predictive accuracy of
the time series. Furthermore, we ensure complete alignment with the aforementioned approaches
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regarding the proportions of the training, validation, and test sets, as well as the input and output
lengths. In Table 1, we present the improvement in MSE. Here, we briefly provide the average MAE
improvement for the four datasets: ETTh: 15.6%, ETTm: 4.51%, Exchange: 9.18%, ILI: 8.65%.

D.4 HYPERPARAMETERS ADJUSTMENT

GLIP provides default tuning methods and manual tuning methods regarding hyperparameter tun-
ing. default tuning methods include three hyperparameters tuning modes. The first mode involves
keeping the hyperparameters unchanged. Most hyperparameters can be directly determined be-
fore model training and do not require tuning. For instance, the order of Θg is generally set to 2,
and k1 = k2 = 0.8, γ = 1. The second mode is the conditional tuning method. It adjusts pa-
rameters based on the difference between the input data and global predictions, i.e., α, β. When
the mean difference between global predictions and input exceeds half of the current input data’s
semi-range, indicating a significant global prediction error that may affect local predictions, we set
α = 0.8, β = 0.9. Otherwise, we set α = 0.1, β = 0.9. The third mode is the adaptive tuning
method. It is γ in l1 regularization. Considering that γ being too large or too small will not yield
good predictive results, we define a feasible range for γ, such as [1e− 7, 1e− 1]. We employ binary
search on the validation set to find a potentially optimal γ value. Moreover, GLIP provides manual
tuning methods so that you can also choose to adjust the parameters according to your needs.

E PSEUDO-CODE OF GLIP

Algorithm 1: Global Local Identification and Prediction (GLIP)
Input: Time-series X, Iutput length I , Output length O, hyperparameter α, β, γ, etc.
Output: Global predicction X∗

gp, Local prediction X̃∗
pred

1 /* Global Basis and Global Prediction */
2 Do DFT on the entire training set and get A, f , then get T∗.
3 Create global basis Θg and compute equation 2, then get global predict Xgp.
4 Create Θ∗

g with Xgp and compute equation 2 again, and get X∗
gp as output.

5 /* Storage Basis */
6 Create a set T∗

s .
7 for Each batch in training set do
8 Conduct DFT on each batch and obtain A2, f2, then gain T∗

2.
9 T∗

s ← T∗
s

⋃
T∗

2.

10 Create storage basis Θs with T∗
s .

11 /* Validation Process */
12 Validate the effectiveness of global predictions and the relationships between variables on the

validation set and determine their suitability for further application in local predictions.
13 /* Local Basis and Local Prediction */
14 if Global prediction is validated then
15 Use global prediction as local prediction and get X̃pred.
16 else
17 for Each batch in the test set do
18 Weight input data with equation 6.
19 Conduct DFT on the weighted input data and obtain local basis Θl.
20 Create basis Θpred with equation 8 for local prediction and obtain X̃pred.

21 if The relationships between variables are validated then
22 Use the relationships between variables to form a basis for identification and once again,

resulting in local prediction outputs X̃∗
pred.

23 else
24 Output the local prediction results X̃pred.
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