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Abstract

Community detection is an essential tool for unsupervised data exploration and
revealing the organisational structure of networked systems. With a long history
in network science, community detection typically relies on objective functions,
optimised with custom-tailored search algorithms, but often without leveraging
recent advances in deep learning. Recently, first works have started incorporating
such objectives into loss functions for deep graph clustering and pooling. We
consider the map equation, a popular information-theoretic objective function
for unsupervised community detection, and express it in differentiable tensor
form for optimisation through gradient descent. Our formulation turns the map
equation compatible with any neural network architecture, enables end-to-end
learning, incorporates node features, and chooses the optimal number of clusters
automatically, all without requiring explicit regularisation. Applied to unsupervised
graph clustering tasks, we achieve competitive performance against state-of-the-art
deep graph clustering baselines in synthetic and real-world datasets.

1 Introduction

Many real-world networked systems are organised in communities: groups of nodes that are more
similar to each other than to the rest. Communities provide insights into network structure at
the mesoscale, revealing sub-systems by analysing link patterns. Motivated by different research
questions, several characterisations of what constitutes “good” communities have been proposed [1,
2], however, neither of them is fundamentally more correct than any other. Moreover, no single
community-detection method outperforms all others on any given network [3], motivating the ongoing
efforts of research on community detection. Typically, community-detection approaches formulate
an objective function that calculates a quality score for a given partition of the network’s nodes into
communities. Finding the best partition is an NP-hard search problem and often involves custom
heuristic algorithms that attempt to minimise their objective function [4, 5, 6].
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Graph neural networks (GNNs) have enabled applying deep learning to graph-structured data by
utilising the input graph as the neural network’s computational graph [7, 8, 9]. Typical tasks for
GNNs include node labelling, graph labelling, and link prediction, all of which involve learning
meaningful representations jointly from the graph’s topology, the nodes’ features, and, possibly, the
edges’ features. Graph labelling relies on coarse-graining the graph through identifying groups of
“similar” nodes and aggregating their links and features, also referred to as pooling [10, 11, 12], which
is related to graph clustering [13], however, these two tasks have different goals.

While GNNs excel at incorporating node and edge features with graph topology, including this
information is also possible but more challenging with traditional network science approaches,
typically requiring modelling or adjusting objective functions and their optimisation algorithms. On
the other hand, objective functions for community detection provide precise interpretations as to why
one partition is considered better than another while deep-learning-based approaches are black boxes.
Model selection in deep learning is often done through regularisation techniques or cross-validation;
in contrast, objective functions that are based on the minimum description length (MDL) principle
naturally implement Occam’s razor, preventing overfitting and enabling principled model selection
without requiring extra regularisation or cross-validation [14, 15].

Here, we combine the benefits of traditional community-detection approaches and deep learning and
consider the map equation, an information-theoretic objective function for community detection [16].
By adapting the map equation for soft cluster assignments and implementing it in differentiable
tensor form, we enable end-to-end optimisation of the map equation as a loss function with gradient
descent and GNNs. In analogy to the map equation’s stochastic optimisation algorithm Infomap [6],
we call our approach Neuromap and evaluate it against Infomap and several recent GNN-based
graph clustering methods. Applied to synthetic and real-world networks, Neuromap demonstrates
competitive performance against recent deep graph clustering baselines.

Our key contributions can be summarised as follows:

1. We adapt the map equation as a differentiable loss function for end-to-end deep graph
clustering and propose Neuromap, a deep-learning-based alternative to the popular Infomap
algorithm for unsupervised community detection with the map equation. Neuromap is
compatible with any neural network architecture, detects overlapping communities, leverages
node features for improved performance on real-world networks, and, by following the
minimum description length principle, does not require explicit regularisation.

2. We extensively evaluate Neuromap on hundreds of synthetic and ten real datasets against
recent baselines paired with various neural network architectures. Neuromap outperforms
the baseline on the synthetic networks in most settings and is amongst the best performers
in seven out of ten real datasets.

3. By choosing a higher maximum number of clusters than previous works, we show empiri-
cally that recent baselines tend to overfit and report considerably more than the ground-truth
number of communities. Moreover, we find that choosing a small maximum number of
communities is often detrimental to graph clustering performance.

2 Related work

Community detection. Communities, also called clusters or modules, are groups of nodes that
are more “similar” to each other than to the rest, often understood as having more links inside than
between groups [1, 2]. However, this rather general characterisation leaves precise details of what
constitutes a community open. Modularity compares the observed link densities inside communities
against a randomised version of the network [17]. The stochastic block model and its variants assume
a latent block structure where the probability that two nodes are connected depends only on their
block memberships [18, 19]. The map equation identifies communities as regions where a random
walker tends to stay for a relatively long time [16, 20]. Traditional clustering approaches, such as
k-means, group nodes based on their proximity in space, however, here we consider identifying
communities from the link patterns in networked systems. For a detailed overview of community
detection in complex networks, we refer to [1, 2].

Minimum description length principle. The minimum description length principle (MDL) is
a model-selection approach that formalises Occam’s razor and frames learning as a compression
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problem [14, 15]. MDL states that the best model for data D is the one that compresses the data the
most. In traditional MDL, the data’s two-part description length L (D) = minM L (M)+L (D |M)
is the smallest achievable length over all models M , where L (M) is the model’s description length,
and L (D |M) is the data’s description length, given the model. MDL has been adopted for a wide
range of applications, including regularising neural networks’ weights [21], investigating deep neural
networks’ data-compression capabilities [22], analysing the characteristics of datasets [23], and
community detection [16, 24].

Deep graph clustering and pooling. Graph clustering has long been a research focus in machine
learning [13, 25]. Spectral approaches cluster, for example, the eigenspace of a graph’s Laplacian
matrix or identify communities through graph cuts [26, 27]. Methods based on neural embeddings
involve learning node representations with, for example, DeepWalk [28] or node2vec [29], followed by
applying standard clustering approaches such as k-means, assuming that similar nodes are embedded
at similar locations [30, 31]. Other approaches include graph autoencoders [32, 33], contrastive
learning [34], and self-expressiveness [35]. Recently, minimum cuts [11, 12], modularity [36, 37],
and the Bernoulli-Poisson model [38] have been integrated with GNNs as loss functions for graph
pooling and clustering. Such GNN-based approaches can incorporate graph structure as well as
node and edge features in end-to-end optimisation of the clustering objective. Inspired by pooling in
convolutional neural networks, graph pooling coarse-grains links, node features, and edge features
to summarise graphs, enabling GNNs with improved performance on node and graph classification
tasks [10, 12]. Consequently, graph pooling has become a research focus for GNNs, emphasising the
importance of graph clustering as a primary objective [10, 12, 36]. For recent surveys of deep graph
clustering, we refer to [39, 40].

3 Background: the map equation

The map equation [16, 20] is an information-theoretic objective function for unsupervised community
detection that follows the MDL principle [14], and has demonstrated high performance in synthetic
and real networks from across domains [41, 42, 43]. The map equation formulates community
detection as a compression problem and uses random walks as a proxy to model dynamic processes
on networks, also called flow. The goal is to describe the random walk as efficiently as possible by
minimising its expected per-step description length – also called codelength – by partitioning the
network into groups of nodes, called modules, where the random walker tends to stay for a relatively
long time. In practice, however, the map equation does not simulate random walks; instead, the
codelength is calculated analytically.
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Figure 1: Coding principles behind the map equation. Colours indicate modules, codewords are
shown next to nodes, and the black trace shows a sequence of random-walker steps. Left: All nodes
belong to the same module and all codewords are unique. Encoding the random walk sequence
requires 60 bits, or 3.72 bits per step in the limit. Right: Partitioning the network enables reusing
codewords across modules, reducing the codelength. However, for a unique encoding, we need to
introduce codewords for entering and exiting modules, shown next to the arrows pointing into and
out of the modules. With this modular coding scheme, we can compress the description to 48 bits, or
3.01 bits per step in the limit. Middle: The two encodings of the random walker’s steps.
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Let G = (V,E) be a graph with nodes V , links E, and let wuv ∈ R+
0 denote the non-negative link

weight on the link from node u to v. When all nodes are assigned to the same module, the codelength
is defined by the Shannon entropy H over the nodes’ visit rates [44], H (P ) = −

∑
u∈V pu log2 pu,

where pu is node u’s visit rate and P = {pu |u ∈ V } is the set of node visit rates. In undirected
graphs, we compute visit rates directly as pu = su/

∑
v∈V sv, where su =

∑
v∈V wuv is node u’s

strength. In directed graphs, we compute the visit rates numerically with smart teleportation [45] and
a power iteration. When we partition the nodes into modules, the codelength becomes a weighted
average of the modules’ entropies and the entropy at the so-called index level for switching between
modules. Figure 1 illustrates the coding principle behind the map equation using Huffman codes [46];
note, however, that these codewords are only for illustration and we only care about their expected
length in the limit to evaluate the map equation.

Minimising the map equation means balancing between small modules to achieve low module-level
entropies and large modules for low index-level entropy. This trade-off between module- and index-
level entropies prevents trivial solutions where all nodes are assigned to the same module or each node
is assigned to a singleton module [14]. The map equation calculates the codelength for a partition M,

L (M) = qH(Q) +
∑
m∈M

pmH(Pm) . (1)

Here, q =
∑

m qm is the random walker’s module entry rate, qm =
∑

u/∈m

∑
v∈m putuv is module

m’s entry rate, and Q = {qm/q | m ∈ M} is the set of normalised module entry rates; pm =
mexit +

∑
u∈m pu is the rate at which the random walker moves in module m, including the module

exit rate mexit =
∑

u∈m

∑
v/∈m putuv, and Pm = {mexit/pm} ∪ {pu/pm | u ∈ m} is the set of

normalised node visit and exit rates for module m. The random walker’s transition probability from
node u to v is tuv = wuv/

∑
v∈V wuv . We can rewrite the map equation as (see Appendix A)

L (M) = q log2 q −
∑
m∈M

qm log2 qm −
∑
m∈M

mexit log2 mexit −
∑
u∈V

pu log2 pu +
∑
m∈M

pm log2 pm. (2)

The map equation framework has been extended for overlapping communities through state-space
expansions with higher-order network models [47, 48], avoiding over-partitioning in sparse networks
using a Bayesian regularisation approach [49], and to deal with sparse constrained structures [50].
Moreover, the map equation framework can incorporate node features through an extension [51]
or by preprocessing data [52]. Detecting communities relies on Infomap [6], a greedy stochastic
search algorithm that optimises the map equation. However, each of the above extensions requires
preprocessing the input data, adjusting the loss function, or adapting the search algorithm. In contrast,
adapting the map equation as a loss function for optimisation with gradient descent does not require
any custom algorithm, thus enabling flexible experimentation with variations, scalability to GPU
clusters, and incorporating it into other loss functions.

4 The map equation goes neural

We set out to detect communities by optimising the map equation with GNNs through gradient descent,
which essentially means learning coarse-graining node representations in the form of communities
(Figure 2). While the standard map equation considers hard clusters where each node is assigned to
exactly one module, we introduce a soft cluster assignment matrix Sn×s to make the map equation
differentiable and enable overlapping clusters. We optimise S = softmax (GNNθ (A,X)) indirectly
by optimising the GNN’s parameters θ, that is, its weights, with respect to the codelength L. Here,
An×n is the graph’s adjacency matrix, Xn×d is the node features matrix, n = |V | is the number of
nodes, s is the maximum allowed number of clusters, and d is the node feature dimension.

Without loss of generality, we assume directed networks. We denote the graph’s total weight as
wtot =

∑
i∈V

∑
j∈V wij . Let Tn×n be the random walker’s transition matrix and din be the vector

of weighted node in-degrees with

Tij =


wij∑

j∈V wij
if
∑

j∈V wij > 0,

0 otherwise,
din
j =

∑
i∈V

wij .

To compute the vector p of node visit rates, we use smart teleportation [45] and the power iteration
method: With probability α, the random walker teleports to a random node, chosen proportionally to
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Figure 2: Illustration of the setup for GNN-based community detection with the map equation. We
learn soft cluster assignments S from the graphs adjacency matrix A and the node features X. Here,
we allow up to four clusters. When no node features are available, we set X = A.

the nodes’ in-degrees, or follows a link with probability 1− α. This approach leads to the iterative
update rule p(t+1) ← α

wtot
din +(1− α)p(t)T, and we set p(0) = din. The graph’s flow matrix Fn×n

encodes the flow between each pair of nodes, where F = α
wtot

A+ (1− α) diag (p)T. We obtain the
flow Cs×s between clusters from S and F as C = S⊤FS. Following Equation (2), we define

q = 1− tr (C) qm = C1s − diag (C) mexit = (1⊤
s C)⊤− diag (C) pm = qm + 1⊤

s C

and assemble the map equation

L (A,S) = q log2 q−(qm log2 qm)1s−(mexit log2 mexit)1s−(p log2 p)1n+(pm log2 pm)1s (3)

where 1k is the k-dimensional vector of ones, and logarithms are applied component-wise. The third
term is constant since it only depends on the node visit rates and can be omitted during optimisation.

The map equation naturally incorporates Occam’s razor by following the MDL principle for bal-
ancing between model complexity and fit [14, 15], choosing the optimal number of communities
automatically, but at most s. In contrast, recent GNN-based clustering approaches require explicit
regularisation to avoid over-partitioning [10, 36, 37, 38], and our results show that they often return
the maximum allowed number of communities instead of determining the number of communities
in a data-driven fashion (see Section 5). In principle, any neural network architecture, such as a
multi-layer perceptron (MLP) or GNN, can be used to learn the soft cluster assignment matrix S.
Since the map equation involves logarithms, we add a small constant ϵ to each value in the output
S before the backpropagation step to ensure differentiability. We refer to the combination of using
map equation loss (Equation (3)) together with a (graph) neural network to learn (overlapping)
communities as Neuromap.

Complexity and limitations. The most expensive calculation is the pooling operation C = S⊤FS
which depends on the network’s density. When s≪ n and the number of edges is m = O (n), the
complexity of Neuromap is linear in n. When the network is dense, m = O

(
n2
)
, or the maximum

number of clusters approaches the number of nodes s ≈ n, we approach quadratic complexity.
Therefore, we recommend keeping s≪ n for scalability.

We assume connected networks, otherwise, clustering should be run on the individual components.
The node features X aid the GNN in learning patterns, however, they do not contribute to the loss.
When no node features are available, Neuromap can use, for example, the adjacency matrix as node
features; designing expressive low-dimensional node features remains an active research area [53].

5 Experimental evaluation

We evaluate Neuromap on synthetic and real-world networks with different neural network architec-
tures: a 2-layer graph convolutional network (GCN) [9], a 2-layer graph isomorphism network (GIN)
[54], and a 2-layer SAGE network [55]. To investigate whether GNNs are required for clustering, we
also include a fully connected linear layer and a 2-layer MLP. We include a learnable temperature
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parameter for the softmax operation, which we found speeds up convergence. In all cases, we
use the models provided by PyTorch Geometric with SELU activation [56]. Because the specifics
between architectures differ, such as message-passing details and aggregation functions, they may
be interpreted as using different search algorithms which return different communities. We use the
Adam optimiser [57], apply batch normalisation, and for comparability between different methods,
set the learning rate for the linear layer to 10−1, for MLP to 10−2, and for GCN, GIN, and SAGE
to 10−3. We train all models for up to 10,000 epochs with a patience of 100 epochs and dropout
probability 0.5. Because the datasets contain hard clusters, we convert the resulting communities to
hard clusters, assigning each node to that cluster where it has its strongest membership. As baselines,
we use Infomap [6] and five recent approaches for unsupervised graph clustering with GNNs: DMoN
[36], NOCD [38], DiffPool [10], MinCut [11], and Ortho [36]. We base our implementation3 on
PyTorch [58] and PyTorch Geometric [59] and ran our experiments on a workstation with an Intel
i9-11900K @ 3.50GHz CPU, 32 GB of RAM, and a GeForce RTX 3090 with 24 GB of memory.

5.1 Synthetic networks with planted communties

We generate directed and undirected Lancichinetti-Fortunato-Radicchi (LFR) benchmark networks
with planted ground-truth communities [60] with n = 1000 nodes, average node degree k ∈
{lnn, 2 lnn}, maximum node degree kmax = 2

√
n, both rounded to the nearest integer, and mixing

parameter µ between 0.1 and 0.8 with a step size of 0.1. We set the power-law exponents for the
node degree distribution to τ1 = 2, and for the community size distribution to τ2 = 1. For each
combination of parameters, we generate 10 LFR networks using the implementation provided by the
authors,4 resulting in a total of 320 networks. For each parameter combination, there are 10 LFR
networks; for each of these LFR networks, we run each model 10 times, measuring its performance
as the average adjusted mutual information (AMI) [61] against the ground truth, and plot the average
of those AMI values over the 10 networks per parameter combination. To verify that the number of
communities is inferred from the data, we set the maximum number of communities to s = n. Since
LFR networks do not have node features, we use the adjacency matrix as node features.
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Figure 3: Performance for Neuromap using a dense linear layer, MLP, GCN, GIN, and SAGE
architectures with two layers and Infomap on directed and undirected LFR networks with planted
communities. The results show averages of partition quality measured with AMI, number of detected
communities |M|, and codelength L. The shaded areas show one standard deviation from the mean.

3https://github.com/chrisbloecker/neuromap
4https://sites.google.com/site/andrealancichinetti/benchmarks
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We find that the detected communities’ quality depends on the choice of neural network architecture
(Figure 3). Neuromap achieves the best AMI scores with SAGE. GCN, MLP, and Infomap perform
slightly worse, however, with some variation depending on the networks’ properties. The dense
linear layer and GIN show weaker performance but still identify relevant communities. In the sparser
directed networks, Infomap performs slightly better than SAGE when the mixing µ is low. However,
the AMI values do not tell the whole story: Infomap and MLP tend to report considerably more
communities than are present in the ground truth whereas the dense linear layer and GIN tend to
report much fewer communities than the ground truth, especially for higher mixing values. GCN
reports more communities than are present in the ground truth in the sparser undirected networks but
fewer in the directed networks. SAGE detects close to the true number of communities in all cases.
Infomap achieves the lowest codelength across all networks. GCN, MLP, and SAGE achieve close to
Infomap’s codelength, whereas the dense linear layer and GIN have slightly higher codelength.
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Figure 4: SAGE-based results for deep learning community-detection methods on synthetic LFR
networks with planted communities. We show averages of partition quality measured by AMI and
number of detected communities |M|. The shaded areas show one standard deviation from the mean.

We compare Neuromap against recent deep-learning-based community detection methods on the
same networks by swapping out the loss function while keeping everything else the same, with the
exception of using weight decay for NOCD as per the original paper [38]. For DiffPool, Mincut,
Ortho, and DMoN, we use the implementation from PyTorch Geometric, for NOCD, we use the
implementation provided by the authors.5 Figure 4 shows the results for SAGE; in Appendix B, we
also include results for the remaining architectures. Neuromap outperforms the baselines across all
architectures, except for NOCD which performs better than Neuromap with GIN and with GCN
on directed networks. Different from previous works, we have not limited the maximum number
of communities, which allows us to analyse the methods’ overfitting behaviour: While Neuromap
reports close to the ground-truth number of communities, the remaining methods often overfit the
networks’ structure and report considerably more communities (note the logarithmic scale). MinCut
fails to identify meaningful communities on directed networks for mixing values µ > 0.3. NOCD
performs best with the GCN architecture, which was also used in the original paper [38]. Neuromap
performs best with SAGE in our experiments.

5.2 Real-world networks with node features

We benchmark Neuromap on ten real-world datasets (Table 1) from PyTorch Geometric [59], PyTorch
Geometric Signed Directed [62], and Open Graph Benchmark [63], and compare it against the same
baselines as before. In contrast to previous works that choose a fixed number of hidden dimensions
and set the maximum number of communities to a constant [36] or the “ground-truth” number
of communities [38], we reflect the networks’ sizes in our choices: We set the number of hidden
dimensions to 4

√
n and the maximum number of communities to s =

√
n. Our choices are based

on empirical observations showing that the number of communities typically scales as O (
√
n) [64].

5https://github.com/shchur/overlapping-community-detection
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Table 1: Properties of the real-world datasets obtained from PyTorch Geometric (PyG) [59], PyTorch
Geometric Signed Directed (PyG-SD) [62], and Open Graph Benchmark (OGB) [63]. |V | is the
number of nodes, |E| the number of edges, |X| the node feature dimension, |Y | the number of
communities, and µ the mixing for the given communities.

Dataset Source Type |V | |E| |X| |Y | µ

Cora PyG Undirected 2,708 5,278 1,433 7 0.19
CiteSeer PyG Undirected 3,327 4,614 3,703 6 0.26
Pubmed PyG Undirected 19,717 44,325 500 3 0.20
Amazon Computer (PC) PyG Undirected 13,752 143,604 767 10 0.22
Amazon Photo PyG Undirected 7,650 71,831 745 8 0.17
Coauthor CS PyG Undirected 18,333 81,894 6,805 15 0.19
Coauthor Physics PyG Undirected 34,493 247,962 8,415 5 0.07
Cora ML PyG-SD Directed 2,995 8,416 2,879 7 0.21
Wiki CS PyG-SD Directed 11,701 297,110 300 10 0.31
ogb-arxiv OGB Directed 169,343 583,121 128 40 0.35

However, a few words of caution are in order: while nodes’ true communities determine the link
patterns in synthetic networks, it is generally infeasible to obtain ground truth communities for real
networks. Often, metadata labels are used as a drop-in, and the inferred communities’ quality depends
on how well the metadata, which is potentially noisy, aligns with the unknown ground truth [3].
Moreover, determining the number of communities in a network is hard and setting s =

√
n should

be seen as a simplification rather than an attempt to guess the exact number.

For each method and architecture, we run 25 trials and show the average achieved AMI in Figure 5;
we include a similar plot for the number of detected communities as well as the average AMI and the
detected number of communities, both with standard deviations, in tabulated form in Appendix C.
When several of the best-performing methods achieve similar AMI, we use an independent two-
sample t-test to determine whether one of them can be considered to perform better than the other
(see Appendix C). In cases where their performances do not differ significantly, we mark both as best.

Neuromap and NOCD are amongst the best performers in seven cases and DiffPool in two. The GCN
architecture performs best in seven cases, MLP and SAGE in four cases, and GIN in two cases. A
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Figure 5: Average achieved AMI on real-world networks (higher is better) with s =
√
n. Colours

indicate methods while shapes indicate neural network architectures. DiffPool ran out of memory on
the ogb-arxiv dataset. Detailed tabulated results with standard deviations are included in Appendix C.
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possible explanation for why the simpler linear layer and MLP architectures perform well in several
cases could be that the map equation loss function captures global information in the random walker’s
flow patterns, making GNNs superfluous in some cases. All methods tend to detect more communities
than are present in the “ground truth”, however, this tendency is most pronounced in DMoN, Ortho,
and MinCut, which may have gone unnoticed in previous evaluations where the maximum number
of communities was set to a much lower, constant value [36], thus artificially preventing overfitting.
Infomap is the only baseline that does not utilise node features; instead, it relies solely on topological
information, which may explain the large number of detected communities. Comparing Neuromap’s
performance against Infomap’s performance suggests that incorporating node features substantially
improves the detected communities’ quality in most cases (see Appendix C for significance tests)
while drastically reducing the number of detected communities.

We repeat the same experiments with 512 hidden features and s = |Y |, that is, the “true” number of
communities, following [38] (results in Appendix D). Limiting the number of allowed communities
often leads to better performance for DMoN, MinCut, and Ortho, however, with a few exceptions,
it diminishes the performance of Neuromap, NOCD, and DiffPool across all datasets and neural
network architectures. Appendix E tabulates the differences in average AMI score between setting
the hidden features to 4

√
n and s =

√
n versus using 512 hidden features and s = |Y |. In the case of

Neuromap, imposing a lower bound on the number of communities interferes with the MDL principle,
limiting what models for the data may be explored.

5.3 Synthetic networks with overlapping communities

We apply Neuromap and the baselines to a small synthetic network with overlapping communities [65].
We set the maximum number of communities to s ∈ {2, 3}, run each combination of loss function
and neural network architecture for 10 trials, and keep the solutions with the lowest loss. Figure 6
shows the results obtained with GCN, Appendix F shows results for the remaining architectures.

True

s = 2

s = 3

Neuromap DMoN NOCD DiffPool MinCut Ortho

Figure 6: Synthetic network with overlapping communities where the leftmost network shows the
true community structure. Nodes are drawn as pie charts to visualise their community assignments.
The top and bottom rows show results for a maximum of s = 2 and s = 3 communities, respectively.

We find that Neuromap, DMoN, NOCD, and MinCut identify the correct communities for s = 2.
DiffPool does not detect overlapping communities and Ortho assigns each node to two communities.
For s = 3, only Neuromap identifies the correct communities. DiffPool returns the same communities
as for s = 2. All remaining methods return three communities. These results provide further evidence
that the baselines suffer from overfitting when they are not provided with the correct number of
communities, which, in general, is unknown. Neuromap identifies meaningful communities while
inferring the number of communities in a data-driven fashion by following the MDL principle.
However, we leave a more rigorous study of overlapping communities for future work.
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6 Conclusion

Network science and deep learning on graphs tackle community detection from different perspectives.
Community detection in network science typically relies on custom heuristic optimisation algorithms
to optimise objective functions but often does not leverage recent deep learning advances. Recently,
deep graph learning methods have started to incorporate methods from network science for deep graph
clustering. We contribute to this young field by adapting the map equation, a popular unsupervised
information-theoretic community-detection approach, as a differentiable loss function for end-to-end
optimisation with (graph) neural networks through gradient descent, and use PyTorch to implement
our approach, which we call Neuromap.

We evaluated Neuromap on various synthetic and real-world datasets, using different neural net-
work architectures to detect communities. Our results show that Neuromap achieves competitive
performance and detects close to the ground-truth number of communities across datasets while the
baselines tend to overfit and report considerably more communities. Across all tested methods, the
achieved performance depends on the used neural network architecture. However, on several real-
world benchmarks, Neuromap outperforms several of the the baselines even with simpler, non-GNN,
neural network architectures. We hypothesise that this may be because the map equation builds on
capturing flow patterns, which contain global information.

While we have considered first-order networks with two-level community structures, complex real-
world networks often involve higher-order dependencies and can have multi-level communities
[47, 66], prompting a generalisation of our approach. Furthermore, incorporating our method for
graph pooling as well as uncovering the precise connection between the utilised neural network
architecture and the achieved community-detection performance requires further empirical and
theoretical studies.
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A Map equation details

Let G = (V,E) be a graph with nodes V , links E, and let wuv ∈ R+
0 denote the non-negative weight

on the link from node u to v. Further, let pu be node u’s ergodic visit rate, which can be calculated
in closed form as pu = su/

∑
v∈V sv in undirected graphs, where su =

∑
v∈V wuv is node u’s

strength. In directed graphs, pu can be calculated numerically with smart teleportation and a power
iteration by solving the recursive set of equations pv = α

sout
v∑

u∈V sout
u

+ (1− α)
∑

u∈V putuv, where
sout
u =

∑
v∈V wuv is node u’s out-strength, tuv = wuv/

∑
v∈V wuv is the random walker’s transition

probability from node u to node v, and α is a teleportation parameter, typically set to α = 0.15 [45].
Smart teleportation is similar to PageRank [67] but, instead of uniformly teleporting to nodes, the
random walker teleports to links proportional to their weight.

For a given partition M of the nodes into modules, the map equation [16] calculates the average
per-step description length – also called codelength – for describing the position of a random walker
on the graph:

L (M) = qH(Q) +
∑
m∈M

pmH(Pm) , (4)

Here, q =
∑

m qm is the random walker’s module entry rate, qm =
∑

u/∈m

∑
v∈m putuv is module

m’s entry rate, and Q = {qm/q | m ∈ M} is the set of normalised module entry rates; pm =
mexit +

∑
u∈m pu is the rate at which the random walker moves in module m, including the exit

rate mexit =
∑

u∈m

∑
v/∈m putuv , and Pm = {mexit/pm} ∪ {pu/pm | u ∈ m} is the set of normalised

node visit rates and exit rates for module m.

A.1 Rewriting the map equation

The map equation can be rewritten by expanding the entropy terms and cancelling common factors

L (M) = qH(Q) +
∑
m∈M

pmH(Pm) (5)

= −�q
∑
m∈M

qm

�q
log2

qm
q
−
∑
m∈M

��pm

(
mexit

��pm
log2

mexit

pm
+
∑
u∈m

pu

��pm
log2

pu
pm

)
. (6)

Applying logarithm rules gives

= −
∑
m∈M

qm log2 qm +
∑
m∈M

qm log2 q (7)

−
∑
m∈M

mexit log2 mexit +
∑
m∈M

mexit log2 pm −
∑
m∈M

∑
u∈m

pu log2 pu +
∑
m∈M

∑
u∈m

pu log2 pm, (8)

and further simplification yields

= q log2 q −
∑
m∈M

qm log2 qm +
∑
m∈M

pm log2 pm −
∑
m∈M

mexit log2 mexit −
∑
u∈V

pu log2 pu. (9)

In undirected networks where qm = mexit, this can be further simplified [20] to

= q log2 q − 2
∑
m∈M

qm log2 qm +
∑
m∈M

pm log2 pm −
∑
u∈V

pu log2 pu. (10)

The last term in Equation (10), that is, the nodes’ contribution to the codelength, is constant because
it does not depend on the module structure, and can be omitted during optimisation.

A.2 Node flow with soft cluster assignments

While the nodes’ codelength contribution is constant with hard clusters (Equation (10)), expressing
the map equation with soft cluster assignments allows modelling the flow of nodes that are assigned
to more than one module in at least two different ways which we illustrate in Figure 7.

The first option is to reflect the nodes’ partial cluster assignment for assigning codewords. Consider
node u with visit rate pu and partial assignments of 1

2 to clusters m1 whose usage rate is pm1
and 1

2
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Figure 7: Modelling node flow with soft cluster assignments. The labels show each node’s
contribution to the overall codelength based on their visit rates. (a) The one-level partition where
all nodes belong to the same community. (b) With hard communities, the middle node must be
assigned to either the blue or orange community. Here, this leads to a higher codelength than for
the one-level partition. (c) Reflecting nodes’ partial assignments in the codelength contributions
means splitting them into several smaller pieces whose visit rates sum to the original node’s visit rate.
Important objects are split into several less important objects, requiring longer codewords because
of their lower visit rates. Overall, this tends to increase the codelength and can prevent identifying
overlapping modules. (d) Treating nodes’ contribution to the codelength as constant keeps the nodes
intact and allows important nodes to retain their higher visit rates, leading to shorter codewords. As
the codelength highlights, only this approach would identify communities in this example.

to cluster m2 whose usage rate is pm2
. Then, half of u’s flow, that is pu

2 , falls into each of the two
clusters and u’s contribution to the overall codelength is −pu

2 log2
pu

2pm1
− pu

2 log2
pu

p2m2
. In general,

let node u’s assignment to cluster mi be sui ∈ [0, 1] with
∑

i sui = 1, and let mi’s usage rate be
pmi . Then, node u’s contribution to the overall codelength is −

∑
i suipu log2

suipu

pmi
. Essentially, this

approach splits each node with assignments to more than one cluster into its corresponding parts,
resulting in potentially many small pieces with low visit rates.

The second option is to treat the nodes as indivisible when computing their codeword lengths but
reflecting their soft assignments in the contribution to the overall codelength. Using the same example
as above, node u’s contribution to the overall codelength is −pu

2 log2
pu

pm1
− pu

2 log2
pu

pm2
, which

is lower because the values inside the logarithms are bigger. In general, u’s contribution to the
codelength is −

∑
i suipu log2

pu

pmi
, where the difference to the previous option is that sui does not

appear inside the logarithm.
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B Results on synthetic networks with different (G)NN architectures

Here, we report further results on the synthetic LFR networks with planted communities for Neuromap,
DMoN, NOCD, DiffPool, MinCut, and Ortho using the following architectures: a dense linear layer,
a 2-layer MLP, a 2-layer GCN, and a 2-layer GIN. The setup is as described in the main text.

B.1 Linear-layer-based results
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Figure 8: Linear-layer-based results for deep-learning community-detection methods on synthetic
LFR networks with planted communities. The results show averages of partition quality measured by
AMI and number of detected communities |M|. The shaded areas show one standard deviation from
the mean.

B.2 MLP-based results
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Figure 9: MLP-based results for deep-learning community-detection methods on synthetic LFR
networks with planted communities. The results show averages of partition quality measured by AMI
and number of detected communities |M|. The shaded areas show one standard deviation from the
mean.
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B.3 GCN-based results
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Figure 10: GCN-based results for deep-learning community-detection methods on synthetic LFR
networks with planted communities. The results show averages of partition quality measured by AMI
and number of detected communities |M|. The shaded areas show one standard deviation from the
mean.

B.4 GIN-based results
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Figure 11: GIN-based results for deep-learning community-detection methods on synthetic LFR
networks with planted communities. The results show averages of partition quality measured by AMI
and number of detected communities |M|. The shaded areas show one standard deviation from the
mean.
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C Results on Real-World Networks

Here, we report further results on real-world networks for setting the number of hidden dimensions to
4
√
n and the maximum number of communities to s =

√
n. Specifically, we visualise the average

detected number of communities per loss function and neural network architecture for each dataset.
We tabulate the average AMI and average number of detected communities, including standard
deviations. Two-sample t-tests show when Neuromap or a baseline performs significantly better than
the other.

C.1 Number of detected communities on real-world networks
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Figure 12: Average detected number of communities on real-world networks. Colours indicate
methods while shapes indicate (G)NN architectures. The dashed horizontal lines show the correct
number of communities for each dataset while the solid horizontal lines show the chosen maximum
allowed number of communities, here s =

√
n. DiffPool ran out of memory on the ogb-arxiv dataset.

We omit Infomap in the plot due to the large number of detected communities.
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C.2 Tabulated AMI results on real-world networks

Here, we report the detailed AMI performance for Neuromap, DMoN, NOCD, DiffPool, MinCut,
Ortho, and Infomap on real-world networks for setting the number of hidden dimensions to 4

√
n and

the maximum number of communities to s =
√
n. When several of the best-performing methods

achieve similar AMI, we use an independent two-sample t-test to determine whether one of them
can be considered to perform better than the other. In cases where their performances do not differ
significantly, we mark both as best.

Table 2: Average AMI in % (higher is better) and their standard deviations on real-world networks.
For each dataset, we highlight the best scores in bold and underline the second-best score. We tested
each method with 2-layer MLP, GCN, GIN, and SAGE architectures, except for Infomap, which is
not based on deep learning. OOM stands for “out of memory”.

Method Arch. Cora CiteSeer PubMed PC Photo CS Physics Cora ML Wiki CS ogb-arxiv

Neuromap LIN 31.9± 7.9 19.5± 1.6 17.2± 12.2 0.0± 0.0 0.0± 0.0 76.7± 1.4 56.5± 1.2 24.4± 11.9 41.9± 2.3 4.7± 7.7
MLP 36.6± 2.4 15.8± 1.1 23.2± 1.8 22.4± 8.6 39.8± 11.2 78.1± 2.0 55.9± 2.2 34.5± 1.6 43.9± 2.4 32.9± 1.3
GCN 38.5± 2.0 16.2± 1.3 20.8± 1.2 52.1± 2.3 65.0± 3.8 70.4± 1.6 50.3± 1.4 36.4± 1.2 41.1± 3.2 42.3± 1.7
GIN 46.1± 2.0 23.1± 1.2 24.6± 1.7 43.2± 2.4 58.2± 6.0 69.1± 2.8 52.7± 2.7 37.5± 1.9 34.9± 4.5 28.0± 2.8
SAGE 41.6± 1.9 18.3± 1.2 20.4± 1.0 43.6± 4.8 48.1± 5.8 70.9± 2.4 51.9± 2.2 39.1± 2.1 44.8± 2.2 43.6± 1.0

DMoN LIN 1.2± 1.6 3.2± 1.6 0.7± 1.0 3.4± 2.9 3.7± 4.0 25.2± 10.8 5.7± 7.3 0.4± 0.8 4.8± 3.9 4.0± 3.6
MLP 36.6± 1.2 22.5± 0.9 6.7± 4.1 15.4± 11.6 43.5± 8.9 40.2± 6.5 34.7± 3.5 36.2± 1.2 31.5± 8.0 12.8± 1.7
GCN 38.6± 0.9 20.4± 0.9 18.3± 0.2 43.8± 0.3 50.5± 0.3 53.1± 0.2 33.4± 0.2 37.7± 0.9 36.7± 0.4 38.4± 0.2
GIN 37.2± 1.1 19.5± 0.9 17.0± 0.3 35.4± 2.3 45.6± 0.8 49.9± 0.4 29.8± 0.4 34.7± 1.5 29.7± 0.8 26.2± 3.2
SAGE 39.1± 1.0 21.3± 1.3 17.7± 0.2 37.4± 11.9 50.8± 0.3 53.1± 0.3 33.6± 0.2 40.5± 1.0 36.4± 0.4 38.1± 0.3

NOCD LIN 5.1± 1.9 2.4± 1.3 3.7± 1.7 1.2± 2.7 0.1± 0.3 40.2± 9.8 19.3± 7.0 3.3± 1.1 10.8± 3.1 4.2± 2.5
MLP 46.1± 1.1 34.8± 0.9 20.5± 2.4 45.5± 2.5 60.5± 3.4 73.9± 1.7 50.2± 1.0 46.5± 1.4 40.9± 1.2 9.7± 2.3
GCN 41.1± 0.9 20.2± 0.8 21.2± 0.6 51.9± 1.9 63.2± 0.9 63.3± 1.0 42.0± 0.7 39.1± 1.0 44.2± 0.6 43.8± 0.4
GIN 43.4± 1.1 26.4± 1.2 21.3± 0.6 34.2± 1.9 55.3± 1.9 63.7± 0.9 48.3± 1.5 43.3± 1.2 37.6± 1.1 28.7± 1.2
SAGE 40.7± 0.9 19.8± 0.8 19.6± 0.4 51.1± 1.6 63.7± 1.6 63.7± 0.8 42.4± 0.7 40.6± 1.1 42.4± 0.4 43.1± 0.3

DiffPool LIN 0.4± 1.1 1.1± 1.9 0.0± 0.0 0.0± 0.0 0.0± 0.0 22.2± 14.3 18.9± 15.9 0.0± 0.1 2.4± 2.1 OOM
MLP 9.0± 1.2 6.7± 1.0 18.9± 1.4 1.6± 0.4 3.1± 0.9 64.5± 4.8 49.1± 4.4 9.5± 1.2 25.8± 2.6 OOM
GCN 39.8± 2.0 18.2± 1.3 23.7± 1.5 37.0± 8.0 53.8± 7.5 73.3± 2.0 62.4± 3.6 33.5± 1.2 35.7± 3.8 OOM
GIN 30.9± 3.6 21.3± 2.3 16.3± 3.9 14.5± 3.2 32.8± 4.6 50.3± 3.9 41.0± 3.9 31.6± 2.8 11.3± 3.1 OOM
SAGE 38.3± 2.4 16.4± 1.4 21.9± 1.5 3.1± 0.3 16.7± 6.1 71.4± 3.4 59.2± 3.3 29.6± 2.2 38.1± 2.8 OOM

MinCut LIN 26.1± 2.5 16.5± 1.3 2.2± 1.0 0.0± 0.0 0.0± 0.0 57.5± 0.6 36.8± 0.9 30.4± 1.2 16.0± 1.4 3.8± 3.5
MLP 34.7± 6.6 20.5± 0.9 5.1± 2.4 0.0± 0.0 5.2± 9.9 53.9± 6.4 29.4± 9.9 39.6± 1.3 28.1± 4.2 8.0± 2.7
GCN 26.2± 1.5 12.0± 0.7 11.0± 2.8 15.9± 21.2 45.2± 13.6 44.7± 3.3 32.2± 6.8 26.2± 0.7 32.1± 0.5 33.9± 4.7
GIN 39.3± 3.8 18.9± 0.7 19.8± 4.3 6.8± 6.8 35.5± 19.3 32.7± 19.5 51.7± 5.4 6.9± 4.5 1.3± 6.2 10.3± 7.3
SAGE 31.5± 1.5 16.2± 0.8 15.5± 0.3 41.6± 0.6 46.9± 0.5 47.1± 0.5 30.5± 2.4 35.9± 0.7 32.3± 0.5 33.0± 1.5

Ortho LIN 7.0± 0.7 5.6± 0.7 16.5± 0.4 18.8± 9.0 24.7± 11.4 45.4± 2.0 26.7± 1.5 15.6± 1.1 29.6± 0.9 19.1± 0.5
MLP 5.3± 0.5 3.8± 0.4 10.6± 0.4 19.8± 5.5 30.6± 4.0 56.3± 1.7 32.0± 1.1 5.3± 0.5 28.8± 0.9 18.5± 0.4
GCN 22.9± 0.9 10.9± 0.7 13.8± 0.5 40.7± 0.9 46.0± 1.4 51.6± 1.0 32.4± 1.0 19.2± 1.1 32.1± 0.5 34.3± 0.7
GIN 30.7± 1.3 17.8± 0.9 13.6± 0.5 34.0± 0.9 42.3± 0.7 44.1± 0.6 25.0± 0.7 28.7± 1.1 29.4± 0.6 24.1± 0.8
SAGE 18.0± 0.9 8.4± 0.8 9.9± 0.4 35.4± 3.9 46.3± 1.6 52.8± 1.2 34.4± 1.1 16.3± 1.1 31.7± 0.5 24.9± 0.3

Infomap 35.2± 0.2 23.6± 0.1 16.0± 0.1 49.5± 0.5 57.3± 1.1 40.6± 0.2 26.7± 0.1 35.7± 0.3 37.9± 0.2 35.9± 0.1

C.3 Significance of best Neuromap results vs. best baseline

Table 3: Independent two-sample t-test between 25 samples of AMI values for Neuromap vs. the
best baseline for 4

√
n hidden features and s =

√
n. The p-values indicate for which datasets the null

hypothesis “the samples have the same mean” can be rejected. Blue p-values highlight cases where
Neuromap performs significantly better than the best baseline; red p-values highlight cases where the
best baseline performs significantly better than Neuromap.

Dataset Best Neuromap Best Baseline p

Cora GIN 46.1± 2.0 NOCD MLP 46.1± 1.1 0.92
CiteSeer GIN 23.1± 1.2 NOCD MLP 34.8± 0.9 3.3e−35

PubMed GIN 24.6± 1.7 DiffPool GCN 23.7± 1.5 0.05
PC GCN 52.1± 2.3 NOCD GCN 51.9± 1.9 0.69
Photo GCN 65.0± 3.8 NOCD SAGE 63.7± 1.6 0.14
CS MLP 78.1± 2.0 NOCD MLP 73.9± 1.7 4.4e−10

Physics LIN 56.5± 1.2 DiffPool GCN 62.4± 3.6 1.5e−08

Cora ML SAGE 39.1± 2.1 NOCD MLP 46.5± 1.4 5.7e−18

Wiki CS SAGE 44.8± 2.2 NOCD GCN 44.2± 0.6 0.23
ogb-arxiv SAGE 43.6± 1.0 NOCD GCN 43.8± 0.4 0.38
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C.4 Significance of Neuromap results vs. Infomap

Table 4: Independent two-sample t-test between 25 samples of AMI values for Neuromap with
different (G)NN architectures vs. Infomap for 4

√
n hidden features and s =

√
n. The p-values

indicate when the null hypothesis “the samples have the same mean” can be rejected. Blue p-values
highlight cases where Neuromap performs significantly better than Infomap; red p-values highlight
cases where Infomap performs significantly better than Neuromap.

Dataset LIN MLP GCN GIN SAGE

Cora 0.05 6.8e−3 2.4e−8 8.1e−20 9.4e−15

CiteSeer 7.5e−12 4.2e−22 2.8e−20 0.06 2.1e−17

PubMed 0.65 2.1e−16 4.2e−16 2.5e−18 2.2e−17

PC 1.8e−48 4.7e−14 6.0e−6 2.4e−14 3.9e−6

Photo 1.8e−42 6.6e−8 2.3e−10 0.48 5.2e−8

CS 7.6e−36 1.1e−32 2.9e−32 7.5e−26 5.1e−28

Physics 2.7e−35 1.2e−28 5.8e−31 3.2e−25 2.7e−27

Cora ML 9.6e−5 1.4e−3 0.01 7.0e−5 1.7e−8

Wiki CS 7.0e−9 8.3e−12 4.5e−5 3.9e−3 3.4e−14

ogb-arxiv 1.8e−16 1.3e−11 5.4e−16 4.6e−13 8.9e−23

C.5 Tabulated number of detected communities on real-world networks

Here, we report the average number of detected communities for Neuromap, DMoN, NOCD, DiffPool,
MinCut, Ortho, and Infomap on real-world networks for setting the number of hidden dimensions to
4
√
n and the maximum number of communities to s =

√
n.

Table 5: Average number of detected communities and their standard deviations on real-world
networks. We tested each method with 2-layer MLP, GCN, GIN, and SAGE architectures, except for
Infomap, which is not based on deep learning. OOM stands for “out of memory”.

Method Arch. Cora CiteSeer PubMed PC Photo CS Physics Cora ML Wiki CS ogb-arxiv

Neuromap LIN 14.4± 3.7 38.0± 3.9 12.4± 8.1 1.0± 0.0 1.0± 0.0 50.1± 5.2 34.5± 4.5 11.4± 2.5 17.0± 1.7 2.4± 1.6
MLP 44.4± 2.5 57.3± 0.9 30.8± 3.8 3.0± 0.8 4.0± 1.2 22.2± 2.4 35.8± 3.3 48.3± 1.9 12.3± 1.3 29.5± 4.4
GCN 50.7± 0.9 58.0± 0.0 51.6± 4.4 21.2± 3.4 19.6± 2.1 34.6± 4.5 73.0± 8.0 54.3± 0.7 17.5± 2.4 34.4± 7.0
GIN 20.8± 2.2 32.0± 2.7 12.7± 1.3 6.4± 1.3 6.8± 0.8 14.2± 2.6 14.9± 1.8 22.6± 2.7 6.8± 1.7 5.5± 1.3
SAGE 43.9± 2.4 57.6± 0.6 34.4± 2.5 7.2± 1.9 8.1± 1.3 22.0± 2.8 41.3± 6.1 45.4± 2.8 17.1± 2.0 39.5± 4.4

DMoN LIN 13.6± 13.3 25.1± 10.8 2.5± 1.7 2.4± 1.0 2.6± 1.4 10.0± 6.3 7.7± 6.7 4.5± 6.2 10.9± 5.6 7.6± 6.4
MLP 52.0± 0.2 57.9± 0.3 24.8± 33.0 51.4± 36.3 81.2± 15.0 63.1± 17.1 76.3± 6.7 55.0± 0.2 92.9± 27.1 118.9± 13.2
GCN 51.9± 0.3 58.0± 0.0 140.0± 0.0 117.0± 0.0 87.0± 0.0 135.0± 0.0 186.0± 0.0 54.8± 0.4 108.0± 0.0 412.0± 0.0
GIN 51.6± 0.6 57.0± 1.0 140.0± 0.0 110.6± 6.1 84.5± 1.7 134.9± 0.3 185.9± 0.3 54.5± 0.6 97.2± 4.0 301.8± 77.3
SAGE 51.8± 0.4 58.0± 0.0 140.0± 0.2 116.8± 0.7 86.8± 0.4 135.0± 0.0 186.0± 0.0 54.8± 0.4 108.0± 0.0 412.0± 0.0

NOCD LIN 20.5± 10.2 17.5± 21.5 12.1± 3.1 1.7± 1.0 1.0± 0.2 34.7± 8.5 21.6± 2.4 24.8± 3.9 11.2± 0.9 12.9± 2.8
MLP 29.3± 2.7 23.6± 4.1 29.8± 2.7 13.9± 3.9 11.0± 2.5 20.4± 3.7 22.8± 2.7 27.6± 1.7 28.3± 2.0 145.4± 41.7
GCN 51.7± 0.6 58.0± 0.0 35.1± 2.9 72.3± 19.2 51.1± 11.0 68.4± 8.6 73.9± 7.3 54.0± 0.8 33.8± 3.9 69.0± 6.5
GIN 24.2± 1.7 28.8± 2.6 35.9± 6.2 33.1± 5.8 25.1± 4.0 27.0± 4.1 29.9± 4.3 24.9± 2.6 45.7± 5.1 78.5± 15.6
SAGE 47.8± 1.6 56.6± 1.3 60.6± 3.3 32.0± 3.0 25.1± 3.0 45.3± 3.6 55.7± 2.9 51.1± 1.7 46.6± 2.7 68.0± 6.6

DiffPool LIN 2.6± 1.1 4.6± 3.3 1.0± 0.0 1.2± 0.5 1.0± 0.0 6.7± 6.1 8.1± 5.5 1.0± 0.2 4.4± 1.0 OOM
MLP 51.8± 0.4 58.0± 0.2 43.6± 4.7 2.2± 0.5 2.2± 0.4 16.5± 2.6 39.8± 6.1 55.0± 0.0 10.0± 1.4 OOM
GCN 48.2± 1.6 57.9± 0.4 15.6± 2.1 5.7± 1.1 5.7± 0.8 12.8± 2.3 19.0± 3.3 54.1± 0.9 7.7± 1.4 OOM
GIN 11.5± 2.2 17.4± 3.1 7.3± 1.6 3.5± 0.6 5.2± 0.8 7.0± 1.1 6.6± 1.1 15.5± 2.5 4.7± 1.0 OOM
SAGE 49.7± 1.3 58.0± 0.2 26.0± 3.0 3.2± 0.4 3.9± 0.7 10.7± 1.6 15.8± 2.1 54.2± 0.7 10.1± 1.2 OOM

MinCut LIN 51.3± 0.9 54.8± 1.9 40.0± 6.1 1.0± 0.2 1.1± 0.3 91.0± 3.9 89.6± 6.2 55.0± 0.0 48.5± 4.9 81.6± 93.0
MLP 51.5± 1.6 58.0± 0.0 25.7± 7.4 1.0± 0.0 1.2± 0.4 21.2± 41.8 118.6± 24.6 38.1± 5.8 101.4± 19.2 155.0± 49.5
GCN 52.0± 0.0 58.0± 0.0 134.9± 4.1 69.5± 25.2 62.8± 20.3 133.2± 2.9 157.0± 40.2 55.0± 0.0 108.0± 0.0 97.4± 20.9
GIN 21.5± 20.0 55.7± 8.5 15.0± 37.5 11.0± 4.2 10.1± 5.5 73.9± 63.8 6.1± 6.7 40.6± 6.0 4.0± 14.5 10.5± 4.2
SAGE 52.0± 0.0 58.0± 0.0 140.0± 0.0 115.9± 2.8 86.9± 0.3 135.0± 0.0 176.5± 24.6 55.0± 0.0 108.0± 0.0 379.5± 33.7

Ortho LIN 48.7± 1.3 53.4± 1.7 68.1± 5.7 9.5± 4.1 9.4± 5.1 97.4± 6.6 149.5± 5.4 34.5± 3.3 33.2± 2.6 32.8± 3.4
MLP 52.0± 0.0 58.0± 0.0 126.9± 4.7 8.8± 2.3 11.2± 2.0 48.1± 9.1 101.7± 11.2 55.0± 0.0 41.0± 6.2 187.7± 18.9
GCN 52.0± 0.0 58.0± 0.0 140.0± 0.0 114.9± 1.6 85.0± 3.3 115.6± 11.9 166.2± 15.9 55.0± 0.0 108.0± 0.0 253.8± 68.3
GIN 52.0± 0.0 58.0± 0.0 140.0± 0.0 95.8± 4.4 78.8± 2.8 135.0± 0.0 185.8± 1.0 55.0± 0.0 107.5± 0.8 170.2± 22.4
SAGE 52.0± 0.0 58.0± 0.0 140.0± 0.0 52.5± 30.2 52.4± 21.7 84.9± 17.5 109.5± 18.1 55.0± 0.0 105.1± 1.6 379.8± 4.6

Infomap 282.2± 4.1 628.9± 2.7 924.9± 9.1 455.1± 5.1 223.5± 4.4 834.4± 9.4 1160.8± 11.4 287.4± 3.8 747.0± 8.4 4840.0± 22.4
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D Results on real-world networks with fixed number of hidden channels

We provide further results on real-world networks with a different configuration of the neural networks:
we set the number of hidden channels to 512 and set the maximum number of communities to the
“ground-truth” number of communities, that is s = |Y |.

D.1 Average Achieved AMI
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Figure 13: Average achieved AMI on real-world networks (higher is better) for s = |Y |, that is,
the “ground-truth” number of communities. Colours indicate methods while shapes indicate neural
network architectures. DiffPool ran out of memory on obg-arxiv.

D.2 Average Number of Detected Communities

Cora CiteSeer Pubmed PC Photo
0.0

2.5

5.0

7.5

10.0

|M
|

Neuromap DMoN NOCD DiffPool MinCut Ortho

CS Physics Cora ML Wiki CS ogb-arxiv
0

10

20

30

40

|M
|

Linear MLP GCN GIN SAGE

Figure 14: Average detected number of communities on real-world networks. Colours indicate
methods while shapes indicate neural network architectures. The dashed horizontal lines show the
correct number of communities for each dataset, which is also the maximum allowed number of
communities. We omit Infomap in the plot due to the large number of detected communities.
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D.3 Tabulated AMI results on real-world networks

Here, we report the detailed AMI performance for Neuromap, DMoN, NOCD, DiffPool, MinCut,
Ortho, and Infomap on real-world networks for setting the number of hidden dimensions to 512 and
the maximum number of communities to s = |Y |. When several of the best-performing methods
achieve similar AMI, we use an independent two-sample t-test to determine whether one of them
can be considered to perform better than the other. In cases where their performances do not differ
significantly, we mark both as best.

Table 6: Average AMI in % (higher is better) and their standard deviations on real-world networks.
For each dataset, we highlight the best scores in bold and underline the second-best score. We tested
each method with 2-layer MLP, GCN, GIN, and SAGE architectures, except for Infomap, which is
not based on deep learning. OOM stands for “out of memory”.

Method Arch. Cora CiteSeer PubMed PC Photo CS Physics Cora ML Wiki CS ogb-arxiv

Neuromap LIN 19.9± 10.3 12.8± 6.9 0.9± 3.7 0.0± 0.0 0.0± 0.0 71.9± 3.7 59.5± 8.2 5.3± 9.1 11.7± 11.0 0.0± 0.0
MLP 32.7± 4.6 13.6± 2.6 22.9± 4.6 33.6± 13.3 51.3± 11.1 74.8± 2.4 58.2± 6.0 24.6± 2.9 38.7± 4.8 30.3± 1.8
GCN 31.7± 3.0 12.8± 2.9 19.2± 5.8 49.9± 3.6 61.4± 4.2 68.4± 2.4 54.0± 6.4 26.5± 2.8 36.9± 4.2 40.2± 1.6
GIN 35.8± 4.1 16.1± 3.2 16.1± 5.8 40.5± 3.9 50.3± 7.0 65.2± 3.4 45.0± 6.8 25.0± 3.5 29.7± 8.1 22.2± 2.5
SAGE 32.5± 5.0 12.9± 2.7 19.8± 4.6 45.5± 5.4 49.2± 6.1 69.0± 2.8 49.6± 6.0 26.2± 2.8 41.0± 2.5 39.9± 1.6

DMoN LIN 15.3± 11.7 9.2± 6.9 9.1± 4.5 1.0± 0.8 2.0± 2.1 55.1± 12.9 31.9± 19.4 18.7± 12.0 9.1± 12.9 0.8± 1.1
MLP 36.1± 5.2 20.2± 3.6 19.0± 6.5 45.0± 2.2 56.7± 3.1 72.1± 1.1 51.5± 3.9 34.2± 3.5 38.6± 3.0 29.7± 0.4
GCN 37.2± 4.2 18.4± 2.6 19.3± 4.0 46.4± 1.9 57.7± 2.8 66.6± 1.9 48.2± 6.1 33.8± 3.5 38.2± 2.2 40.6± 0.4
GIN 27.4± 3.3 11.5± 3.1 10.3± 7.1 35.3± 2.3 42.6± 4.9 53.1± 3.7 39.5± 6.4 27.4± 2.4 22.2± 3.5 27.1± 1.6
SAGE 37.0± 4.0 18.0± 3.4 17.5± 3.7 46.4± 1.6 58.0± 3.2 66.3± 1.6 47.2± 4.8 35.6± 3.8 38.6± 2.1 40.2± 0.4

NOCD LIN 2.9± 1.3 3.0± 1.6 0.2± 0.5 1.9± 2.5 2.1± 3.0 24.5± 7.7 7.2± 4.5 3.6± 1.2 9.4± 2.5 4.0± 1.4
MLP 33.1± 14.7 29.6± 10.8 16.8± 8.1 47.9± 2.1 55.1± 15.4 74.0± 1.4 56.8± 3.9 39.3± 5.3 38.1± 2.5 28.9± 0.5
GCN 32.6± 4.6 11.7± 1.7 19.3± 7.3 49.6± 2.2 64.4± 4.1 68.0± 2.3 46.5± 7.3 24.6± 11.2 42.3± 2.2 43.6± 0.5
GIN 35.1± 4.8 19.2± 3.4 17.0± 6.3 32.6± 3.7 43.3± 4.1 60.0± 3.8 42.4± 4.9 34.5± 3.9 27.9± 3.2 23.7± 1.2
SAGE 32.5± 3.7 11.6± 2.8 22.6± 4.9 47.7± 2.4 63.3± 3.5 69.7± 1.9 54.5± 4.7 36.7± 2.8 41.7± 2.3 42.9± 0.4

DiffPool LIN 0.8± 1.9 1.2± 0.5 0.0± 0.0 0.0± 0.0 0.0± 0.0 20.0± 14.2 17.2± 18.2 0.0± 0.0 0.0± 0.0 OOM
MLP 4.9± 1.3 4.1± 1.4 10.3± 3.6 1.6± 0.4 3.5± 1.4 50.6± 6.7 30.4± 7.9 5.1± 1.0 19.3± 3.4 OOM
GCN 28.5± 4.1 12.4± 2.5 18.8± 5.5 30.4± 9.1 46.4± 6.5 69.0± 3.9 50.6± 6.7 22.5± 3.1 29.3± 4.8 OOM
GIN 14.0± 4.8 8.2± 3.1 2.1± 1.7 5.3± 5.6 5.7± 6.8 28.4± 9.1 28.2± 12.2 12.5± 3.8 5.1± 3.0 OOM
SAGE 24.4± 3.0 11.6± 2.5 18.9± 5.0 3.1± 0.6 12.8± 6.1 65.6± 4.5 53.6± 9.0 17.1± 2.9 33.5± 3.2 OOM

MinCut LIN 30.6± 4.3 16.7± 2.6 21.0± 1.9 3.1± 8.5 1.9± 6.4 68.9± 3.0 49.1± 3.4 33.7± 3.4 19.4± 10.4 3.8± 2.0
MLP 30.4± 4.5 15.5± 3.5 19.7± 6.3 38.8± 13.3 56.4± 2.7 66.5± 1.2 44.3± 4.8 33.2± 4.7 37.4± 2.3 21.6± 8.1
GCN 31.9± 3.7 13.1± 2.8 18.5± 4.2 46.3± 2.0 56.1± 2.9 62.1± 1.4 46.7± 5.3 28.2± 3.2 37.5± 1.9 37.7± 1.4
GIN 35.7± 2.9 18.9± 3.0 20.2± 4.1 32.4± 7.8 49.2± 4.9 60.7± 1.4 46.1± 4.3 22.0± 2.4 24.8± 11.9 14.2± 4.6
SAGE 33.6± 2.9 13.9± 3.5 17.1± 3.7 43.7± 2.5 54.0± 2.8 62.3± 1.2 46.2± 6.8 29.4± 3.7 37.1± 1.9 37.3± 0.5

Ortho LIN 8.2± 1.2 8.0± 2.3 15.7± 4.6 12.4± 6.5 13.6± 8.6 57.4± 2.6 42.6± 5.1 12.7± 3.7 18.7± 5.0 17.1± 1.1
MLP 4.4± 1.0 3.5± 1.0 8.5± 3.6 22.4± 5.7 27.1± 2.9 55.8± 2.7 29.7± 7.4 4.3± 1.1 25.1± 1.8 17.9± 0.5
GCN 22.0± 3.0 10.2± 2.1 16.4± 4.8 45.1± 1.9 54.4± 3.6 62.2± 2.0 42.0± 5.9 19.1± 3.2 35.7± 1.9 34.6± 0.8
GIN 19.2± 3.6 9.4± 2.9 6.3± 3.0 37.4± 3.8 45.9± 3.0 51.8± 2.7 31.7± 5.4 17.6± 2.6 23.2± 2.6 25.5± 1.2
SAGE 21.5± 4.1 7.6± 2.5 15.9± 3.8 29.4± 2.3 36.6± 3.2 60.9± 2.1 40.1± 6.3 15.9± 3.2 34.2± 2.2 29.5± 0.6

Infomap 35.2± 0.2 23.6± 0.1 16.0± 0.1 49.5± 0.5 57.3± 1.1 40.6± 0.2 26.7± 0.1 35.7± 0.3 37.9± 0.2 35.9± 0.1

D.4 Significance of best Neuromap results vs. best baseline

Table 7: Independent two-sample t-test between 25 samples of AMI values for Neuromap vs. the
best baseline for 512 hidden features and s = |Y |. The p-values indicate for which datasets the null
hypothesis “the samples have the same mean” can be rejected. Red p-values highlight cases where
the best baseline performs significantly better than Neuromap.

Dataset Best Neuromap Best Baseline p

Cora GIN 35.8± 4.1 DMoN GCN 37.2± 4.2 0.25
CiteSeer GIN 16.1± 3.2 NOCD MLP 29.6± 10.8 2.4e−06

PubMed MLP 22.9± 4.6 NOCD SAGE 22.6± 4.9 0.83
PC GCN 49.9± 3.6 NOCD GCN 49.6± 2.2 0.73
Photo GCN 61.4± 4.2 NOCD GCN 64.4± 4.1 0.02
CS MLP 74.8± 2.4 NOCD MLP 74.0± 1.4 0.15
Physics LIN 59.5± 8.2 NOCD MLP 56.8± 3.9 0.17
Cora ML GCN 26.5± 2.8 NOCD MLP 39.3± 5.3 1.6e−12

Wiki CS SAGE 41.0± 2.5 NOCD GCN 42.3± 2.2 0.05
ogb-arxiv GCN 40.2± 1.6 NOCD GCN 43.6± 0.5 4.8e−11
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D.5 Significance of Neuromap results vs. Infomap

Table 8: Independent two-sample t-test between 25 samples of AMI values for Neuromap with
different (G)NN architectures vs. Infomap for 512 hidden features and s = |Y |. The p-values indicate
when the null hypothesis “the samples have the same mean” can be rejected. Blue p-values highlight
cases where Neuromap performs significantly better than Infomap; red p-values highlight cases where
Infomap performs significantly better than Neuromap.

Dataset LIN MLP GCN GIN SAGE

Cora 1.6e−7 0.01 9.2e−6 0.47 0.02
CiteSeer 6.4e−8 1.0e−15 1.1e−15 2.7e−11 5.1e−16

PubMed 1.2e−16 1.5e−7 0.01 0.95 4.9e−4

PC 1.8e−48 5.1e−6 0.55 4.4e−11 1.6e−3

Photo 1.8e−42 0.02 6.3e−5 5.7e−5 1.1e−6

CS 6.2e−24 1.8e−29 3.0e−27 2.5e−22 8.8e−26

Physics 3.1e−16 6.5e−19 7.3e−17 1.6e−12 7.2e−16

Cora ML 1.7e−14 5.3e−16 2.5e−14 9.9e−14 6.5e−15

Wiki CS 2.4e−11 0.42 0.29 5.3e−5 3.4e−6

ogb-arxiv 3.7e−62 4.5e−14 2.0e−12 1.3e−19 5.4e−12

D.6 Tabulated number of detected communities on real-world networks

Here, we report the average number of detected communities for Neuromap, DMoN, NOCD, DiffPool,
MinCut, Ortho, and Infomap on real-world networks for setting the number of hidden dimensions to
512 and the maximum number of communities to s = |Y |.

Table 9: Average number of detected communities and their standard deviations on real-world
networks. We tested each method with 2-layer MLP, GCN, GIN, and SAGE architectures, except for
Infomap, which is not based on deep learning. OOM stands for “out of memory”.

Method Arch. Cora CiteSeer PubMed PC Photo CS Physics Cora ML Wiki CS ogb-arxiv

Neuromap LIN 4.0± 1.2 4.5± 0.9 1.1± 0.3 1.0± 0.2 1.0± 0.0 10.6± 1.4 4.1± 0.7 2.6± 0.8 3.0± 0.9 1.2± 0.4
MLP 7.0± 0.0 6.0± 0.0 3.0± 0.0 3.7± 0.9 4.1± 1.1 12.2± 1.2 5.0± 0.0 7.0± 0.0 7.6± 1.1 12.0± 2.4
GCN 7.0± 0.0 6.0± 0.0 3.0± 0.0 9.7± 0.5 8.0± 0.2 13.8± 1.0 5.0± 0.0 7.0± 0.0 8.7± 0.9 16.2± 2.3
GIN 5.5± 0.8 5.1± 0.6 2.8± 0.4 3.6± 0.5 4.8± 0.9 7.9± 0.8 3.9± 0.7 5.6± 0.8 4.9± 1.2 4.8± 1.5
SAGE 7.0± 0.0 6.0± 0.0 3.0± 0.0 6.5± 0.9 6.1± 0.5 12.7± 1.2 5.0± 0.0 7.0± 0.0 9.4± 0.6 13.0± 1.1

DMoN LIN 5.9± 1.8 5.2± 1.5 3.0± 0.0 2.2± 0.9 2.3± 1.0 14.1± 2.5 4.5± 0.9 6.0± 1.8 5.1± 3.1 3.5± 3.2
MLP 6.9± 0.3 6.0± 0.0 3.0± 0.0 10.0± 0.0 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.2 10.0± 0.0 40.0± 0.0
GCN 7.0± 0.0 6.0± 0.0 3.0± 0.0 10.0± 0.0 8.0± 0.0 15.0± 0.0 5.0± 0.2 7.0± 0.2 10.0± 0.0 40.0± 0.0
GIN 7.0± 0.0 5.9± 0.3 3.0± 0.0 9.9± 0.3 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.2 39.5± 1.0
SAGE 7.0± 0.2 5.9± 0.3 3.0± 0.0 10.0± 0.0 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 40.0± 0.0

NOCD LIN 7.0± 0.0 5.8± 0.4 1.7± 0.5 3.2± 1.1 2.8± 1.2 10.8± 2.5 5.0± 0.0 7.0± 0.0 9.5± 0.7 10.1± 1.3
MLP 7.0± 0.0 6.0± 0.0 3.0± 0.0 9.4± 0.9 7.4± 0.6 13.5± 1.1 5.0± 0.0 7.0± 0.2 9.8± 0.6 23.9± 3.6
GCN 7.0± 0.0 6.0± 0.0 3.0± 0.0 10.0± 0.0 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 36.2± 1.4
GIN 6.2± 0.6 5.5± 0.6 2.9± 0.3 8.5± 0.6 6.8± 1.0 12.7± 1.4 4.8± 0.4 6.4± 0.6 9.4± 0.6 20.5± 3.2
SAGE 7.0± 0.0 6.0± 0.0 3.0± 0.0 10.0± 0.2 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 31.8± 1.8

DiffPool LIN 2.2± 0.7 3.2± 0.6 1.0± 0.0 1.0± 0.0 1.0± 0.0 6.9± 2.5 3.5± 1.0 1.0± 0.0 2.5± 0.6 OOM
MLP 7.0± 0.0 6.0± 0.0 3.0± 0.0 2.2± 0.4 2.6± 0.7 11.6± 1.9 5.0± 0.0 7.0± 0.0 6.2± 0.9 OOM
GCN 7.0± 0.0 6.0± 0.0 3.0± 0.0 5.3± 1.4 5.0± 0.7 10.0± 1.2 5.0± 0.0 7.0± 0.0 5.5± 1.0 OOM
GIN 3.7± 0.6 3.0± 0.7 2.2± 0.4 4.6± 1.2 4.3± 1.1 6.2± 3.1 4.2± 0.9 3.3± 0.9 3.9± 1.3 OOM
SAGE 7.0± 0.0 6.0± 0.0 3.0± 0.0 3.2± 0.4 3.3± 0.5 8.4± 1.3 5.0± 0.0 7.0± 0.0 7.0± 0.8 OOM

MinCut LIN 7.0± 0.0 6.0± 0.0 3.0± 0.0 1.3± 0.7 1.1± 0.3 13.8± 1.1 5.0± 0.0 7.0± 0.0 6.0± 2.4 10.8± 9.1
MLP 7.0± 0.0 6.0± 0.0 3.0± 0.0 7.7± 3.4 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 36.2± 4.6
GCN 7.0± 0.0 6.0± 0.0 3.0± 0.0 10.0± 0.0 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 37.1± 5.4
GIN 7.0± 0.0 6.0± 0.0 3.0± 0.0 6.1± 1.8 7.9± 0.3 15.0± 0.0 5.0± 0.0 7.0± 0.0 8.4± 3.4 8.9± 3.8
SAGE 7.0± 0.0 6.0± 0.0 3.0± 0.0 10.0± 0.0 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 40.0± 0.0

Ortho LIN 7.0± 0.2 5.6± 0.5 2.7± 0.4 4.5± 1.5 3.8± 1.4 13.3± 0.6 5.0± 0.0 6.1± 1.4 7.8± 1.7 15.0± 1.7
MLP 7.0± 0.0 6.0± 0.0 3.0± 0.0 8.3± 1.5 7.4± 0.7 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 35.6± 1.8
GCN 7.0± 0.0 6.0± 0.0 3.0± 0.0 10.0± 0.0 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 40.0± 0.0
GIN 7.0± 0.0 6.0± 0.0 3.0± 0.0 10.0± 0.0 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 40.0± 0.0
SAGE 7.0± 0.0 6.0± 0.0 3.0± 0.0 10.0± 0.0 8.0± 0.0 15.0± 0.0 5.0± 0.0 7.0± 0.0 10.0± 0.0 39.9± 0.3

Infomap 282.2± 4.1 628.9± 2.7 924.9± 9.1 455.1± 5.1 223.5± 4.4 834.4± 9.4 1160.8± 11.4 287.4± 3.8 747.0± 8.4 4840.0± 22.4
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E Performance impact of hidden layers and max. number of communities

Here, we report the performance difference in terms of achieved average AMI score between using
(i) 4
√
n hidden layers and a maximum of s =

√
n communities, and (ii) 512 hidden layers and a

maximum of s = |Y | communities, that is, the “ground-truth” number of communities. The tabulated
values show much better or worse the methods perform when using setup (ii) as compared to setup (i).
That is, a positive value, shown in green, means that setup (ii) gives a better result while a negative
value, shown in red, means that setup (i) gives a better result.

We find that, for Neuromap, NOCD, and DiffPool, setup (i) generally works better. In contrast,
DMoN, MinCut, and Ortho often perform better with setup (ii), indicating that they require knowing
the correct number of communities to perform well.

Table 10: Performance difference in terms of achieved average AMI score between (i) 4
√
n hidden

layers and a maximum of s =
√
n communities, and (ii) 512 hidden layers and a maximum of

s = |Y | communities, that is, the “ground-truth” number of communities. OOM stands for “out of
memory”.

Method Arch. Cora CiteSeer PubMed PC Photo CS Physics Cora ML Wiki CS ogb-arxiv

Neuromap LIN −12.00 −6.70 −16.30 0.00 0.00 −4.80 +3.00 −19.10 −30.20 −4.70
MLP −3.90 −2.20 −0.30 +11.20 +11.50 −3.30 +2.30 −9.90 −5.20 −2.60
GCN −6.80 −3.40 −1.60 −2.20 −3.60 −2.00 +3.70 −9.90 −4.20 −2.10
GIN −10.30 −7.00 −8.50 −2.70 −7.90 −3.90 −7.70 −12.50 −5.20 −5.80
SAGE −9.10 −5.40 −0.60 +1.90 +1.10 −1.90 −2.30 −12.90 −3.80 −3.70

DMoN LIN +14.10 +6.00 +8.40 −2.40 −1.70 +29.90 +26.20 +18.30 +4.30 −3.20
MLP −0.50 −2.30 +12.30 +29.60 +13.20 +31.90 +16.80 −2.00 +7.10 +16.90
GCN −1.40 −2.00 +1.00 +2.60 +7.20 +13.50 +14.80 −3.90 +1.50 +2.20
GIN −9.80 −8.00 −6.70 −0.10 −3.00 +3.20 +9.70 −7.30 −7.50 +0.90
SAGE −2.10 −3.30 −0.20 +9.00 +7.20 +13.20 +13.60 −4.90 +2.20 +2.10

NOCD LIN −2.20 +0.60 −3.50 +0.70 +2.00 −15.70 −12.10 +0.30 −1.40 −0.20
MLP −13.00 −5.20 −3.70 +2.40 −5.40 +0.10 +6.60 −7.20 −2.80 +19.20
GCN −8.50 −8.50 −1.90 −2.30 +1.20 +4.70 +4.50 −14.50 −1.90 −0.20
GIN −8.30 −7.20 −4.30 −1.60 −12.00 −3.70 −5.90 −8.80 −9.70 −5.00
SAGE −8.20 −8.20 +3.00 −3.40 −0.40 +6.00 +12.10 −3.90 −0.70 −0.20

DiffPool LIN +0.40 +0.10 0.00 0.00 0.00 −2.20 −1.70 0.00 −2.40 OOM
MLP −4.10 −2.60 −8.60 0.00 +0.40 −13.90 −18.70 −4.40 −6.50 OOM
GCN −11.30 −5.80 −4.90 −6.60 −7.40 −4.30 −11.80 −11.00 −6.40 OOM
GIN −16.90 −13.10 −14.20 −9.20 −27.10 −21.90 −12.80 −19.10 −6.20 OOM
SAGE −13.90 −4.80 −3.00 0.00 −3.90 −5.80 −5.60 −12.50 −4.60 OOM

MinCut LIN +4.50 +0.20 +18.80 +3.10 +1.90 +11.40 +12.30 +3.30 +3.40 0.00
MLP −4.30 −5.00 +14.60 +38.80 +51.20 +12.60 +14.90 −6.40 +9.30 +13.60
GCN +5.70 +1.10 +7.50 +30.40 +10.90 +17.40 +14.50 +2.00 +5.40 +3.80
GIN −3.60 0.00 +0.40 +25.60 +13.70 +28.00 −5.60 +15.10 +23.50 +3.90
SAGE +2.10 −2.30 +1.60 +2.10 +7.10 +15.20 +15.70 −6.50 +4.80 +4.30

Ortho LIN +1.20 +2.40 −0.80 −6.40 −11.10 +12.00 +15.90 −2.90 −10.90 −2.00
MLP −0.90 −0.30 −2.10 +2.60 −3.50 −0.50 −2.30 −1.00 −3.70 −0.60
GCN −0.90 −0.70 +2.60 +4.40 +8.40 +10.60 +9.60 −0.10 +3.60 +0.30
GIN −11.50 −8.40 −7.30 +3.40 +3.60 +7.70 +6.70 −11.10 −6.20 +1.40
SAGE +3.50 −0.80 +6.00 −6.00 −9.70 +8.10 +5.70 −0.40 +2.50 +4.60

Infomap 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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F Further results on a synthetic network with overlapping communities

Here we show the detected communities on a synthetic network with overlapping communities with
a dense linear layer, a 2-layer MLP, a 2-layer GIN, and a 2-layer SAGE architecture. We use |V |
hidden channels and set the maximum number of communities to s ∈ {2, 3}.

F.1 Linear-layer-based results

True

s = 2

s = 3

Neuromap DMoN NOCD DiffPool MinCut Ortho

Figure 15: Linear-layer-based results on a synthetic network with overlapping communities where
the leftmost network shows the true community structure. Nodes are drawn as pie charts to visualise
their community assignments. The top and bottom rows show results for a maximum of s = 2 and
s = 3 communities, respectively.

F.2 MLP-based results

True

s = 2

s = 3

Neuromap DMoN NOCD DiffPool MinCut Ortho

Figure 16: MLP-based results on a synthetic network with overlapping communities where the
leftmost network shows the true community structure. Nodes are drawn as pie charts to visualise
their community assignments. The top and bottom rows show results for a maximum of s = 2 and
s = 3 communities, respectively.
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F.3 GIN-based results

True

s = 2

s = 3

Neuromap DMoN NOCD DiffPool MinCut Ortho

Figure 17: GIN-based results on a synthetic network with overlapping communities where the
leftmost network shows the true community structure. Nodes are drawn as pie charts to visualise
their community assignments. The top and bottom rows show results for a maximum of s = 2 and
s = 3 communities, respectively.

F.4 SAGE-based results

True

s = 2

s = 3

Neuromap DMoN NOCD DiffPool MinCut Ortho

Figure 18: SAGE-based results on a synthetic network with overlapping communities where the
leftmost network shows the true community structure. Nodes are drawn as pie charts to visualise
their community assignments. The top and bottom rows show results for a maximum of s = 2 and
s = 3 communities, respectively.
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Answer: [Yes]
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parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We detail our experimental settings, including hyperparameters, in section 5.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report the average achieved performance with standard deviations.

8. Experiments Compute Resources
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Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We describe the utilised computational hardware in section 5.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the code of ethics and find that we conform with it.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [No]
Justification: We consider the task of detecting communities in complex networks. While
any algorithm can potentially be abused for malicious purposes, we believe that, in our case,
this would be a rather contrived scenario.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [No]
Justification: We find it not applicable to provide safeguards in the context of detecting
communities in complex networks to understand their organisational structure.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We cite the original works of the models we use as baselines as well as the
sources of the datasets we use.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not introduce new assets.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our work involves neither crowdsourcing nor research with human subjects.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work involves neither crowdsourcing nor research with human subjects.
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