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Abstract
Large Language Models (LLMs) demonstrate001
remarkable translation capabilities in high-002
resource language tasks, yet their performance003
in low-resource languages is hindered by insuf-004
ficient multilingual data during pre-training. To005
mitigate this, we continued pre-train LLaMA2-006
7B to support translation across more than 100007
languages. Following a thorough analysis of008
training strategies, including vocabulary expan-009
sion and data augmentation, we apply exten-010
sive multilingual continued pre-training to the011
LLaMA series model, resulting in XLLaMA2.012
Without loss of the generality ability, the trans-013
lation performance of XLLaMA2 significantly014
surpassed existing LLMs and is on par with that015
of a specialized translation model (M2M-100-016
12B) on the Flores-101 benchmark. Specifi-017
cally, XLLaMA2 achieves an average spBLEU018
score improvement of over 10 points compared019
to the original LLaMA2 model. Further testing020
XLLaMA2 on Flores-200, XLLaMA2 exhib-021
ited notable performance gains even for lan-022
guages not included in the training set. We will023
make the code and model publicly available.024

1 Introduction025

Large Language Models (LLMs; OpenAI, 2023;026

Zhang et al., 2022; Brown et al., 2020; Chowdhery027

et al., 2022; Touvron et al., 2023a,b) exhibit ex-028

cellent in translation tasks involving high-resource029

languages (Vilar et al., 2023; Zhu et al., 2023), yet030

their effectiveness in low-resource translation is031

suboptimal (Hendy et al., 2023; Zhu et al., 2023;032

Bang et al., 2023). As illustrated in Figure 1, which033

presents the number of translation directions with034

performance exceeding 10 spBLEU (Goyal et al.,035

2022) scores on Flores-101 (Goyal et al., 2022),036

it is evident the majority of models are clustered037

around the origin for ar-centric translations, demon-038

strating a significant disparity when compared to039

their en-centric performance.040

This discrepancy is primarily due to the lack of041

pre-training data for these languages (Wei et al.,042
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Figure 1: We evaluate both X→LG and LG→X trans-
lations on various models using Flores-101 test. The
results are visualized in a figure where different markers
represent various models, a red marker signifies LG=ar,
and a blue marker denotes LG=en. We count the number
of translation directions that achieve a spBLEU score
higher than 10. The findings indicate that modest LLMs
demonstrate strong support for en-centric translation,
but underperform in ar-centric translation.

2023; Alves et al., 2024; Yuan et al., 2023b). Many 043

researchers are actively working to address this is- 044

sue. Guo et al. (2024) enhance the LLMs’ ability 045

by translating low-resource languages after learn- 046

ing textbooks. Zhu et al. (2023) find cross-lingual 047

examples that can provide better task guidance for 048

low-resource translation. In addition to the efforts 049

focus on the fine-tuning stage, some studies (Wei 050

et al., 2023) have attempted to train a multilingual 051

LLM from scratch, or to train a language-specific 052

LLM (Faysse et al., 2024; Alves et al., 2024). How- 053

ever, the languages covered by these works are not 054

extensive (Wei et al., 2023; Alves et al., 2024; Luo 055

et al., 2023), and in some cases, the translation 056

performance is still insufficient (Wei et al., 2023; 057

Alves et al., 2024; Luo et al., 2023). Moreover, 058

these efforts represent promising strides toward 059

improving the translation performance of LLMs, 060

especially in low-resource languages. 061

Meanwhile, for LLMs, translation is a critical 062

capability (Zhu et al., 2024a, 2023), representing 063
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a complex multilingual challenge. Effective trans-064

lation necessitates a profound comprehension of065

both the source and target languages, encompass-066

ing their syntax, semantics, and pragmatics. This067

process extends beyond word-to-word mapping, re-068

quiring the capture of subtle nuances, idiomatic069

expressions, and cultural references inherent in dif-070

ferent languages.071

In the quest to enhance the translation perfor-072

mance of LLMs, we have comprehensively cov-073

ered the 102 languages supported by Flores-101,074

utilizing a continued pre-training strategy on par-075

allel and monolingual data. Firstly, we delve into076

critical technical issues in the training. This techni-077

cal framework lays the groundwork for the training078

procedure, influencing its efficacy and, ultimately,079

the performance of the LLMs. It involves the vo-080

cabulary extension and the data augmentation.081

Deciding which vocabulary to use is the fore-082

most crucial issue for expanding language support.083

We conducted a quantitative analysis of the impact084

of adding various language-specific new tokens,085

evaluating from the perspectives of tokenization086

granularity, embedding quality, and the influence087

of the model’s inner distribution. Interestingly,088

we find that adhering to the original vocabulary089

of LLMs is the most cost-effective approach for090

expanding the LLMs to 102 languages. The in-091

troduction of a small number of new tokens can092

significantly impact the performance of the existing093

LLMs, while a large number of tokens increase the094

difficulty of training and also require more data.095

Another well-recognized challenge for low-096

resource languages is data scarcity. Firstly, engage097

in a comprehensive discourse on varied dictionary-098

based data augmentation strategies applicable to099

both monolingual and parallel datasets, investigat-100

ing their optimal implementation on monolingual101

data, parallel data, or a combination thereof. Our102

findings indicate that for LLMs, dictionary-based103

data augmentation is more effective when applied104

to parallel data. Furthermore, we also delve into105

the usage of different dictionaries and find that the106

performance of augmentation is correlated with the107

number of entities covered.108

By incorporating these techniques, we execute109

large-scale, multilingual continued pre-training on110

LLaMA2-7B, significantly enhancing its transla-111

tion capabilities. XLLaMA2 demonstrated compa-112

rable translation performance to M2M-100-12B on113

Flores-101, showing an average improvement of114

over 10 spBLEU compared to LLaMA2 model on 115

low-resource languages. We extended our testing to 116

Flores-200 and observed substantial performance 117

improvements even for languages not included in 118

the training set. Importantly, these enhancements 119

did not compromise the performance of general 120

tasks. The multilingual model derived from XL- 121

LaMA2 outperformed the zero-shot capabilities of 122

the original LLaMA2. Furthermore, by applying 123

supervised fine-tuning to this multilingual model, 124

we achieved a performance increase of more than 125

4 points on multilingual tasks compared to the pre- 126

vious LLaMA2 model. Our main contributions: 127

• An open-sourced XLLaMA2 extends LLaMA2 128

to support more than 100 languages. 129

• Comprehensive analysis of the key techniques, 130

including vocabulary sharing and data augmenta- 131

tion, in continued per-training to LLMs. 132

• Extensive experiments on key technique design, 133

translation benchmark, and general tasks, prove 134

the superiority of XLLaMA2. 135

2 Related Work 136

Multilingual Large Language Models. Large 137

Language Model (LLMs; OpenAI, 2023; Zhang 138

et al., 2022; Brown et al., 2020; Chowdhery et al., 139

2022; Touvron et al., 2023a,b) trained with English- 140

centric data can also solve various non-English 141

tasks (?Srivastava et al., 2022; Kwiatkowski et al., 142

2019; Hendrycks et al., 2021c), but the perfor- 143

mance between non-English and English is sig- 144

nificantly large (Yuan et al., 2023b). Efforts to 145

develop more multilingual LLMs in two different 146

ways: retraining LLMs with diverse multilingual 147

data from scratch (Wei et al., 2023); or continu- 148

ous training of pre-trained models using language- 149

specific data with the option to expand the vocab- 150

ulary(Zhao et al., 2024a; Cui et al., 2024; Faysse 151

et al., 2024; Alves et al., 2024). Instead of training 152

from scratch, continued pre-training aims at updat- 153

ing pre-trained models with new data, making the 154

process more efficient and cost-effective (Gupta 155

et al., 2023; Alves et al., 2024; Xie et al., 2023). 156

Multilinguality in LLMs. Recent research has 157

shed light on the multilingual capabilities of LLMs. 158

A comprehensive survey by Huang et al. (2024a) 159

discusses various aspects of multilingualism in 160

LLMs, including training and inference methods, 161

model security, multi-domain with languages cul- 162

ture, and emphasizes the need for language-fai 163

technology. Yuan et al. (2023b) analysis multilin- 164
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Algorithm 1: Illustration of the Training Data Construction Process During a Single Training Epoch

Input: A: all language list. DA
mono: monolingual data for all languages. DEn: an English monolingual data. DA

para: a
parallel data for all translation directions. Notably, DA

mono

⋂
DEn = ∅. x: a single data point. g(x;φ): A

translation model with parameter φ. f(x;θ): a large language model with parameter θ.
Output: Dtrain: a training dataset for current training epoch.
Dtrain = {}
for s ∈ A do
Ds

mono ⊂ DA
mono // Extract a s-specific monolingual subset

for t ∈ A do
Dpara ← Ds→t

para ∪ Dt→s
para

Ds
para ⊂ Dpara // Extract the s-centric parallel subset

if |Ds
para| < 25, 000 then
// The quantity of 25,000 determined by the machine’s memory capacity
Ds

En ⊂ DEn, s.t. |Ds
En| = 25, 000− |Ds

para| // Extract an English subset for s language
Ds→t

En ← g(x;φ) or Dt→s
En ← g(x;φ), where x ∈ Ds

En

Ds→t
aug ,Dt→s

aug // using dictionary to augment
Ds

aug ← Ds→t
aug ∪ Dt→s

aug

end
Dtrain ← Dtrain ∪ Ds

mono ∪ Ds
para ∪ Ds

aug

end

gualism of LLMs from the vocabulary sharing as-165

pect. Zhao et al. (2024b) delve into the architecture166

of LLMs to find how LLMs handle multilingual-167

ism. Li et al. (2024) quantify the multilingual168

performance of LLMs. These studies provide valu-169

able insights into the multilingual capabilities of170

LLMs, and the key technical design of continued171

pre-training for XLLaMA2.172

3 Training Data Construction173

To build a powerful translation model based on174

LLMs that supports translation across a hundred175

languages, it is crucial to collect and construct a176

sufficient amount of data.177

3.1 Components of Training Data178

During the continued pertaining stage, the col-179

lected training data covering 102 languages (re-180

fer to A, which are all languages supported by181

Flores-101), mainly consists of two parts: mono-182

lingual (DA
mono) and parallel (DA

para) data. For lan-183

guages with limited data availability, we generated184

a pseudo-parallel dataset (Daug) with multilingual185

dictionaries: MUSE (Lample et al., 2018) and Pan-186

Lex (Wang et al., 2022). Details regarding the187

supported languages, dataset description, and data188

statistics can be found in Appendix B.189

Monolingual Data (DA
mono). Our monolingual190

training data includes 94 languages supported by191

Flores-101 from MC4 (Xue et al., 2021) and MAD-192

LAD (Kudugunta et al., 2024), totaling 40,000,000193

sentences. To ensure efficient handling and process-194

ing of the data, we take a strategy where each piece195

[src]: Hello, today is a good day. 
[trg]: 你好，今天是个好日子。

[src]: Hallo, heute is a gut tag. 
[trg]: 你好，今天是个好日子。

Parallel Data

Hello, today is a good day. [src]:你好，aujourd'hui is a 好的 day.
[trg]: Hello, today is a good day.

Monolingual Data

Figure 2: A case illustrating the detailed process of
constructing pseudo-parallel data using multilingual dic-
tionary from monolingual or parallel data sources.

of monolingual data is split into multiple entries, 196

with a block size of 512. 197

Parallel Data (DA
para). Our parallel data from 198

Lego-MT (Yuan et al., 2023a) encompasses 102 199

languages, forming a total 4737 language pairs and 200

9474 translation directions. For each translation 201

direction, denoted as source language (s) to target 202

language (t), we concatenate each translation set, 203

merely using a space as a delimiter, to form a single 204

entry for training data. For each language pair, 205

the probability of occurrence for each translation 206

direction, for example, s → t and t → s is set 207

as 50%. During the training stage, the gradient 208

is computed for the entire data entry, rather than 209

solely for the target sentence. For language pairs 210

that have fewer than 25,000 (bound by machine 211

resources) sentence pairs, we replicate the original 212

data thrice (Muennighoff et al., 2023). 213

Data Generated Through Augmentation (Daug). 214

The way to obtain code-switch data consists of two 215

steps: 1) build multilingual lexicons; 2) construct 216
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# New
Token

ro bn
fertility cosine R@1 shift distance # shift token spBLEU fertility cosine R@1 shift distance # shift token spBLEU

0 2.25 0.39 0.37 0.4708 112 32.50 8.62 0.17 0.01 0.4689 112 20.12

100 2.19 0.36 0.34 0.4720 112 28.75 4.96 0.14 0.02 0.4680 113 14.02
800 2.02 0.35 0.36 0.4682 113 27.78 3.21 0.13 0.02 0.4706 113 10.18

1600 1.93 0.34 0.34 0.4690 113 26.40 2.78 0.13 0.02 0.4695 113 1.82
6,400 1.74 0.31 0.31 0.4694 113 22.66 2.15 0.12 0.02 0.4712 113 1.96

12,800 1.63 0.29 0.29 0.0205 1 21.95 1.95 0.12 0.02 - 0 1.84
25,600 1.53 0.27 0.28 - 0 19.72 1.80 0.12 0.02 - 0 2.58
51,200 1.45 0.26 0.25 0.0203 1 17.79 1.70 0.12 0.03 - 0 1.14

Table 1: Building upon LLaMA2, we add varying numbers of languages-specific new tokens, fully fine-tune
LLaMA2, and test the translation performance of en→ro (bn) using Flores-101 test. Furthermore, we assess the
effect of new tokens using several metrics: fertility, the cosine similarity with English sentence embeddings, the
performance in the English language retrieval translation task (R@1), and the distribution shift of the original
embedding vector. Our experiments demonstrate that the inclusion of new words significantly complicates the
learning process, underscoring that the integration of new words is a complex task.

pseudo-parallel data. We show the data augmenta-217

tion process in Figure 2.218

Step 1: Building multilingual lexicons. The ex-219

isting multilingual dictionaries, MUSE and PanLex,220

encompass multiple bilingual dictionaries, such as221

en-fr, en-de, en-zh bilingual dictionaries. A dic-222

tionary comprises numerous entries, each being223

a word or a term defined, usage, and provided224

with other relevant information. We iterate through225

each entry in the bilingual dictionary, reformat all226

entries, and create entries in the format of {en-227

tity}_{language}. For instance, the English word228

“hello” as translation in three bilingual dictionar-229

ies (en-fr, en-de, en-zh), leading us to construct230

a multilingual lexicons entry as “hello_en, Bon-231

jour_fr, Hallo_de,你好_zh”.232

Step 2: Constructing pseudo-parallel data.233

The foundational data for construction can be based234

on either parallel or monolingual data, as shown235

in Figure 2. For each sentence, we convert it to236

lowercase and subsequently divide it into multi-237

ple words using spaces (for Chinese sentences, the238

Jieba tokenizer is utilized). In parallel data pro-239

cessing, words in a source sentence are randomly240

replaced with synonyms from a different language241

using the multilingual dictionary created in Step242

1. During the training, the loss is computed solely243

on the target sentence. In monolingual data pro-244

cessing, each word is individually replaced with a245

randomly chosen word from the multilingual dic-246

tionary. If no suitable replacement word in another247

language is found, the original word remains un-248

changed. Consequently, the modified sentence and249

the original sentence can form pseudo-parallel data.250

During the training, the loss is computed solely on251

both the source and the target sentence.252

We further conduct an experimental analysis in 253

Section 4, and find the augmentation based on par- 254

allel data outperforms that on monolingual data. 255

Therefore, the data augmentation is merely based 256

on parallel data during continued pretraining. 257

3.2 Training Algorithm. 258

Given an LLM f(x;θ) on a collected training 259

data {x(i)}ni=1, where θ is the pre-trained param- 260

eters, our objective is to obtain an LLM through 261

continue pre-training, denoted as f(x;θ′). Here, 262

θ′ signifies the updated parameters. The target of 263

f(x;θ′) is to preserve the model’s general capa- 264

bilities on high-resource languages, while simul- 265

taneously enhancing the translation performance 266

across all translation directions among 102 lan- 267

guages. The process of constructing training data 268

is outlined in Algorithm 1. We gather monolingual 269

data for each of the languages and parallel data 270

for every translation direction. Notably, there is 271

no augmentation for translations involving high- 272

resource languages. Instead, we solely augment 273

the translation data that is insufficient by utilizing 274

a trained translation model, Lego-MT (Yuan et al., 275

2023a). Then we train the f(x;θ), the loss func- 276

tion is calculated as: 277

argmax
θ

n∑
i=1

Ti∑
t=1

log f
[x

(i)
t ]

(x(i)

<t;θ) (1) 278

where T is the total decoding time step. 279

4 Key Technique Design 280

In this section, we primarily analyze two key 281

challenges related to extending language support: 282

which vocabulary to use (in Section 4.1) and how 283

to perform data augmentation (in Section 4.2). For 284

more detailed analysis results, for discussions on 285
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Setting spBLEU # entity similarity
MUSE PanLex ∆ MUSE PanLex ∆ ratio MUSE PanLex ∆

en→ta 3.74 3.45 -0.29 139,134 91,652 -47,482 0.66 0.08 0.04 -0.04
en→th 5.45 6.14 0.69 21,567 297,573 276,006 13.80 0.20 0.06 -0.14
en→fr 44.03 43.85 -0.18 139,134 568,428 429,294 4.09 0.31 0.35 0.04
en→zh 14.65 16.64 1.99 139134 1,333,762 1,194,628 9.59 0.14 0.09 -0.05
en→es 26.98 27.36 0.38 142,780 433,468 290,688 3.04 0.28 0.32 0.04

Table 2: Evaluate a specific data augmentation technique with different dictionaries. We measure translation
performance (spBLEU), the number of target language entities in the dictionary (# entity), and average cosine
similarity of entities (similarity), revealing a strong correlation between performance and “# entity”.

the selection of multi-hop translation in the lexi-286

con (in Appendix F) and the format of parallel data287

during the continued pre-training (in Appendix G).288

4.1 Preserving the Original Vocabulary.289

Setting We conduct a series of analytical exper-290

iments on the LLaMA2 vocabulary. Our initial291

focus is on examining the correlation between fer-292

tility and the quality of token representation. Here,293

fertility refers to the ratio of the length of the to-294

ken sequence produced by the LLaMA2 tokenizer295

to the length of the input sentence when split by296

spaces. Furthermore, we carry out experiments us-297

ing 10,000 en→ro and en→bn bilingual sentence298

pairs from Lego-MT. In each experiment, we intro-299

duce a varying number of language-specific new300

tokens and evaluate each model on the Flores-101.301

Setting Aug en-centric ta-centric th-centric zh-centric
en→X X→en ta→X X→ta th→X X→th zh→X X→zh

LLaMA2 ✗ 18.31 23.61 0.99 0.49 4.83 1.15 10.02 7.35

DP1 ✗ 19.06 25.98 3.20 0.91 7.66 3.13 11.32 7.83
DP1+DP2 ✗ 19.46 26.40 4.17 1.76 7.28 3.02 11.65 8.82
DP1+DM ✗ 19.22 25.91 3.51 1.34 7.64 2.83 11.56 7.99
DP1+DP2+DM ✗ 19.36 26.47 4.35 1.82 7.78 3.49 11.44 9.14

DP1+D′
P2

✓ 19.47 26.65 4.54 1.83 7.66 3.13 11.89 9.17
DP1+D′

M ✓ 18.59 25.98 3.61 1.36 6.72 2.35 10.81 6.45
DP1+D′

P2
+DM ✓ 19.70 26.71 4.68 1.82 8.21 3.65 12.05 9.28

DP1+DP2+D′
M ✓ 19.17 26.58 4.57 1.95 7.12 3.12 11.52 7.73

DP1+D′
P2

+D′
M ✓ 18.80 26.56 4.78 1.79 7.31 3.18 11.35 7.28

Table 3: A comprehensive analysis of data augmenta-
tion sources reveals that using a dictionary to augment
parallel data alone improves performance. “Aug” refers
to whether or not a dictionary is used for augmentation.

High fertility lowers the representation qual-302

ity. We assess the quality of LLaMA’s multilin-303

gual representation by en→x translation task. This304

task identifies the translated result that best aligns305

with the corresponding English sentence within an306

extensive target dataset, and evaluates with R@1,307

which is commonly employed in information re-308

trieval. A higher R@1 value signifies a more ro-309

bust quality of the representation. Concurrently, we310

present the cosine similarity of representations gen-311

erated by LLaMA2 for identical sentences in En-312

glish and other languages. On experiments across313

102 languages, more details in Appendix D, there 314

exists a strong correlation between fertility and the 315

quality of representation, evidenced by a Spearman 316

correlation coefficient of approximately -0.88 for 317

each assessed quality metric. 318

Adding new tokens to reduce fertility does not 319

yield immediate performance improvements. 320

Extending vocabulary is a common method to sup- 321

port more languages. However, this strategy may 322

not yield the desired results on LLMs. Simply 323

adding new tokens with semantic average initial- 324

ization (Dobler and de Melo, 2023) can lead to an 325

increase in the input dimension of attention layers 326

without necessarily improving its ability to capture 327

and generalize linguistic patterns across multiple 328

languages. As shown in Table 1, the more new to- 329

kens added, the worse the translation performance. 330

New tokens have a significant impact on model 331

performance. As demonstrated in Table 1, even 332

the addition of a small number (100) of new 333

language-specific tokens can have a significant im- 334

pact on the multilingual performance of LLMs. In 335

addition, we conduct a further analysis on the orig- 336

inal tokens (32k) embedding distribution and the 337

token number before and after adding new tokens 338

by KS-Lottery (Yuan et al., 2024). For more details 339

on KS-Lottery, refer to Appendix E. As the experi- 340

mental result of “shift distance” and “# shift token” 341

in Tabel 1, fine-tuning the entire model with limited 342

new tokens follows a similar pattern to that with the 343

original vocabulary. However, an excessive num- 344

ber of new tokens can shift the model’s training 345

focus. This holds true regardless of whether the 346

language (ro) is well-supported by the model or 347

not (bn). The influence of these additional tokens 348

is substantial, indicating that the process of enhanc- 349

ing the multilingual capabilities of LLMs is not as 350

straightforward as simply expanding the vocabu- 351

lary and training with more multilingual data. 352

Maintaining the vocabulary suffices to boost 353
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the multilingualism of LLMs. The LLaMA to-354

kenizer, which utilizes the Byte-level Byte Pair355

Encoding (BBPE; Wang et al., 2019) algorithm,356

is the foundation for multilingual language pro-357

cessing tasks. Its universal compatibility across all358

languages, in conjunction with the absence of the359

requirement for an “unknown” token, optimizes360

vocabulary sharing and improves its robustness. Its361

allows the model to understand/generate responses362

in various languages using the same vocabulary.363

Meanwhile, studies have shown that LLMs trained364

on unbalanced English-centric datasets, often use365

English as an internal pivot language. This helps366

LLMs to map the inputs closer to English in in-367

ternal space before generating the output (Yoon368

et al., 2024; Huang et al., 2024b; Zhu et al., 2024b).369

Maintaining the original vocabulary helps to pre-370

serve this behavior, which also benefits for improv-371

ing the multilingual capability.372

4.2 Data Augmentation373

Setting Given a parallel dataset subset (DP)374

from DA
para that contains translations in all direc-375

tions for 6 languages (en,fr,es,zh,ta,th) and a mono-376

lingual subset (DM) from DA
mono for the same 6377

languages. We then perform non-repetitive sam-378

pling 12,500 sentence pairs from DP in each di-379

rection to generate two subsets of parallel corpus380

data DP1 and DP2 , respectively. Consequently, we381

preserve DP1 and evaluate the effect of augmen-382

tation on parallel data DP2 or monolingual data383

DM, resulting in two new dataset, D′
P2

and D′
M,384

post-augmentation. To assess both the in-domain385

and out-of-domain capabilities of the model, we386

perform inference on it using 10 languages (en, fr,387

es, pt, de, zh, ta, th, is, zu), utilizing the Flores-101.388

The choice of dictionary is related to the num-389

ber of entities for the language in the dictionary.390

As shown in Table 2, there is no clear dictionary391

preference is observed for en/ta/th/zh-centric trans-392

lation, with optimal performance randomly dis-393

tributed across the two dictionaries. Furthermore,394

we conduct an in-depth analysis of the MUSE and395

PanLex dictionary for translation from en to an-396

other 5 languages. We compare the end-to-end397

translation performance (spBLEU), the number of398

target language entities in the dictionary (# entity),399

and the similarity of entities embedding (simple400

average with entity token embeddings) extracted401

from the trained model. And find a clear correlation402

between the translation performance and #entity.403

5 Benchmarking Results 404

In this section, we present multilingual benchmark- 405

ing results to comprehensively demonstrate the po- 406

tential of XLLaMA2. We evaluate translation qual- 407

ity with spBLEU (Goyal et al., 2022) and COMET- 408

22 (Rei et al., 2020) for both LLMs and translation 409

models. See Appendix C for training details on 410

XLLaMA2 and description of baseline models. 411

We significantly enhances the multilingual trans- 412

lation capabilities of the base LLaMA2 model 413

through massive multilingual continued pre- 414

training. First, we demonstrate the benefits of 415

our continued pre-training in enhancing the base 416

LLM’s multilingual translation capabilities. Evalu- 417

ation results on Flores-101 benchmark are shown in 418

Table 4. By comparing our multilingual-enhanced 419

XLLaMA2 model with the base LLaMA2 model in 420

instruction-tuned versions (XLLaMA2-Alpaca vs. 421

LLaMA2-Alpaca), we consistently observe a sig- 422

nificant performance improvement on both English- 423

centric and non-English-centric translation. In ad- 424

dition to Flores-101, we also make evaluation on a 425

range of diverse translation benchmarks (Table 5). 426

The performance enhancement brought by our mul- 427

tilingual continued pre-training is consistent across 428

these benchmarks. 429

Our constructed model outperforms other open- 430

source decoder-only LLMs on multilingual 431

translation by a large margin. Next, we com- 432

pare our language-extended XLLaMA2-Alpaca 433

model with other open-source decoder-only LLMs 434

built for multilingual purposes (Table 4, Table 5). 435

Compared to other from-scratch trained LLMs, 436

such as PolyLM, Yayi2, XLLaMA2 consistently 437

shows better performance across various multilin- 438

gual translation benchmarks, indicating that the 439

LLaMA2 base model provides a strong foundation 440

for language extension. Furthermore, when com- 441

pared to other LLaMA-based continued pre-trained 442

models, such as TowerInstruct, ChineseLLaMA2- 443

Alpaca, XLLaMA2 also achieves superior perfor- 444

mance, demonstrating the effectiveness of our opti- 445

mized continued pre-training pipeline. 446

Our performed multilingual continued pre- 447

training benefits unseen long-tail low-resource 448

languages as well. A significant challenge in 449

multilingual enhancement is that the substantial 450

cost of collecting scarce multilingual resources 451

makes it prohibitive to cover massive languages. 452
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System Size en-X zh-X de-X ne-X ar-X az-X ceb-X
spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET

LLaMA2 (Touvron et al., 2023b) 7B 4.21 43.95 0.91 44.62 2.14 45.26 0.39 38.22 0.54 39.43 0.68 47.43 1.49 33.50

PolyLM (Wei et al., 2023) 13B 5.72 45.16 1.42 52.41 3.59 47.89 0.45 38.00 1.04 45.82 0.57 38.65 0.77 29.74
Yayi2 (Luo et al., 2023) 30B 7.80 54.13 4.38 55.23 4.72 56.48 0.92 47.88 1.73 49.45 1.23 53.06 1.87 36.75

TowerInstruct (Alves et al., 2024) 7B 9.41 58.69 4.15 57.75 6.79 58.31 2.07 51.42 3.35 50.76 1.79 48.01 3.36 41.69
Aya-23 (Aryabumi et al., 2024) 8B 11.18 57.91 7.20 56.65 9.30 55.69 3.50 51.78 8.00 55.49 3.27 51.45 4.24 44.14

ChineseLLaMA2-Alpaca (Cui et al., 2024) 7B - - 2.31 49.72 - - - - - - - - - -

LLaMA2-Alpaca (Taori et al., 2023) 7B 9.44 52.83 3.80 51.29 6.82 51.47 1.31 46.59 2.84 46.76 1.36 48.63 2.69 41.02
XLLaMA2-Alpaca 7B 23.17 76.66 14.17 73.54 18.96 73.82 14.49 74.64 15.82 72.00 11.34 70.91 15.53 68.67

System Size X-en X-zh X-de X-ne X-ar X-az X-ceb
spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET

LLaMA2 (Touvron et al., 2023b) 7B 11.80 55.46 0.55 43.50 3.22 43.10 0.42 34.41 0.25 39.13 0.59 43.98 1.16 41.64

PolyLM (Wei et al., 2023) 13B 7.75 50.98 1.20 42.60 3.69 43.95 0.36 33.69 1.67 42.27 0.44 40.24 0.96 39.29
Yayi2 (Luo et al., 2023) 30B 19.37 68.06 6.07 57.81 5.62 53.82 0.48 40.95 0.52 46.61 0.71 49.29 1.71 45.50

TowerInstruct (Alves et al., 2024) 7B 18.87 65.37 10.37 64.26 12.81 60.73 0.62 38.80 0.39 44.72 0.71 47.17 2.24 47.15
Aya-23 (Aryabumi et al., 2024) 8B 20.57 67.53 11.20 66.11 14.09 63.09 2.69 44.33 11.84 63.59 1.19 46.97 2.29 45.17

ChineseLLaMA2-Alpaca (Cui et al., 2024) 7B - - 6.15 55.06 - - - - - - - - - -

LLaMA2-Alpaca (Taori et al., 2023) 7B 16.44 65.85 4.46 56.53 9.01 56.76 1.03 34.96 2.18 44.10 0.63 40.67 1.73 45.69
XLLaMA2-Alpaca 7B 30.63 80.55 13.53 75.52 19.26 74.47 15.47 67.36 15.32 75.40 10.27 72.03 16.11 65.05

Table 4: Benchmarking results on Flores-101 dataset, where X refers to all another 101 languages. This table
compares our instruction-aligned XLLaMA2 model (XLLaMA2-Alpaca) with the instruction-aligned LLaMA2
model (LLaMA2-Alpaca) to demonstrate the benefits of our multilingual continued pre-training. Additionally,
we compare XLLaMA2 with other open-source multilingual-focus LLMs to highlight the impressive multilingual
capabilities of XLLaMA2.

System Size TED (en-X) TED (X-en) TICO (en-X) WMT23 (en-X) WMT23 (X-en)
spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET

LLaMA2 (Touvron et al., 2023b) 7B 3.34 52.15 8.66 61.54 3.45 39.63 2.96 51.55 14.87 65.68

PolyLM (Wei et al., 2023) 13B 5.53 50.18 7.28 55.16 7.17 40.36 10.62 62.67 19.09 69.15
Yayi2 (Luo et al., 2023) 30B 8.54 61.53 14.09 70.92 7.91 47.02 10.76 65.69 20.47 75.60

TowerInstruct (Alves et al., 2024) 7B 8.22 64.83 15.29 70.91 10.14 50.48 18.42 74.03 30.03 80.08
Aya-23 (Aryabumi et al., 2024) 8B 10.69 68.06 16.44 72.87 12.98 52.44 27.15 83.29 31.21 82.00

LLaMA2-Alpaca (Taori et al., 2023) 7B 9.15 62.04 12.67 68.62 8.60 44.73 17.23 73.17 24.97 75.82
XLLaMA2-Alpaca 7B 16.12 75.58 17.81 76.18 19.79 68.33 23.91 80.17 30.30 79.55

Table 5: Benchmarking results on WMT23, TED and TICO dataset. X denotes various languages across different
translation benchmarks; detailed information is available in Appendix B. Evaluation results across these benchmarks
further validate the strong multilingual translation capabilities of XLLaMA2.

System Size en-X zh-X de-X ne-X ar-X az-X ceb-X
spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET

M2M-100 (Fan et al., 2021) 418M 17.26 63.76 10.13 61.41 14.10 61.62 4.03 46.98 11.52 59.97 4.17 45.75 6.13 44.23
M2M-100 (Fan et al., 2021) 1.2B 21.54 70.00 13.13 67.29 17.73 67.62 7.14 56.04 12.57 62.62 6.06 52.39 9.46 52.79
M2M-100 (Fan et al., 2021) 12B 24.74 74.19 14.91 71.56 20.34 72.07 9.68 62.19 16.36 68.91 6.24 54.78 12.48 60.09

Lego-MT (Yuan et al., 2023a) 1.2B 24.96 69.49 16.28 68.23 21.42 69.20 16.98 68.37 18.38 65.57 13.51 65.69 16.83 58.21
MADLAD-400 (Kudugunta et al., 2024) 7B 31.26 80.62 19.47 76.73 25.05 77.72 18.67 74.32 23.70 77.11 10.70 63.15 16.40 66.39

Aya-101 (Üstün et al., 2024) 13B 26.19 80.66 16.57 78.34 22.44 79.49 19.97 80.91 19.79 77.84 14.05 78.32 20.03 74.47

XLLaMA2-Alpaca 7B 24.81 79.41 15.08 76.07 20.31 76.64 15.52 77.06 16.92 74.43 12.14 73.44 16.59 70.79

System Size X-en X-zh X-de X-ne X-ar X-az X-ceb
spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET spBLEU COMET

M2M-100 (Fan et al., 2021) 418M 21.19 68.47 10.34 62.15 14.25 60.19 1.30 40.43 11.53 63.33 2.44 49.74 4.85 47.80
M2M-100 (Fan et al., 2021) 1.2B 26.26 73.06 12.94 67.91 19.33 67.78 1.40 42.60 8.57 60.28 4.58 55.86 6.83 55.87
M2M-100 (Fan et al., 2021) 12B 28.01 74.45 13.35 69.27 21.31 70.17 2.85 45.50 15.15 69.94 6.44 61.36 8.77 57.07

Lego-MT (Yuan et al., 2023a) 1.2B 30.71 75.44 16.42 71.41 23.75 70.75 15.02 59.66 18.21 70.73 11.88 66.73 15.06 59.28
MADLAD-400 (Kudugunta et al., 2024) 7B 39.98 84.97 21.71 80.35 28.43 79.64 14.37 62.78 23.48 79.66 14.66 77.33 4.30 51.37

Aya-101 (Üstün et al., 2024) 13B 33.64 82.85 16.29 79.14 23.53 80.28 17.86 71.07 17.23 79.37 14.05 80.22 22.34 68.41

XLLaMA2-Alpaca 7B 32.41 82.64 14.25 77.27 20.53 76.66 16.31 68.95 16.13 77.05 10.91 73.92 17.07 65.88

Table 6: Benchmarking results on Flores-101 dataset. Given that the M2M-100 baselines cover only 86 lan-
guages (Goyal et al., 2022; Yuan et al., 2023a) from Flores-101, we restrict our model comparisons to 85 languages,
denoted as X = 85. This table compares our instruction-aligned XLLaMA2 model (XLLaMA2-Alpaca) with other
multilingual translation model with encoder-decoder architecture to demonstrate we are closing the gap between
decoder-only LLM and traditional encoder-decoder translation systems.

Knowledge Commonsense Reasoning Math Reasoning Code Avg.MMLU BBH NQ HellaSwag Winogrande GSM8K Math HumanEval MBPP

LLaMA2-Alpaca 44.22 37.95 24.32 31.12 61.09 14.03 3.82 14.63 27.63 28.76
XLLaMA2-Alpaca 44.60 38.25 23.21 33.75 61.48 12.21 3.74 12.20 25.29 28.30

Table 7: Evaluation results on monolingual general benchmarks.
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Figure 3: Comparison results between XLLaMA2-
Alpaca and LLaMA2-Alpaca on Flores-200. Although
multilingual continued pre-training does not cover all
non-English languages in Flores-200, but it also boosts
model’s translation performance on these languages.

While our multilingual pre-training corpus already453

covers 102 languages, we acknowledge that there454

remains a large group of long-tail, low-resource lan-455

guages that are not well covered. To assess the gen-456

eralization capability of XLLaMA2, we evaluate it457

on Flores-200 dataset and observe its performance458

on these unseen languages (Figure 3). We find459

that for languages not encountered during training,460

XLLaMA2 still achieves significant improvements,461

demonstrating the generalization capability of our462

massive continued pre-training.463

Our multilingual-enhanced model is closing the464

performance gap between open-source LLM465

translator and specialized encoder-decoder466

translation systems. While XLLaMA2 has467

achieved the state-of-the-art translation perfor-468

mance among open-source decoder-only LLMs,469

the next critical question is whether we can close470

the gap between LLMs and specialized encoder-471

decoder translation systems. Table 6 provides a472

comprehensive comparison, reveals XLLaMA2 has473

reached the level of the M2M100-12B model. Fu-474

ture work will be needed to optimize the language475

extension framework to match the performance of476

advanced translation systems, e.g., MADLAD-400.477

Our continued pre-trained XLLaMA2 model478

provides a better starting point for specialized479

instruction-tuning In the end, we demonstrate480

the usage of our continued pre-trained model (XL-481

LaMA2) on tasks beyond translation. While in pre-482

vious experiments we use basic Alpaca instruction483

data to teach LLM to follow translation instructions,484

we now show that our released checkpoint can be485

enpowered to handle more multilingual tasks be-486

yond translation. Figure 4 presents three example487
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80
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Figure 4: Comparison results between instruction-
tuning our multilingual enhanced model and the base
model with specialized instruction data. We take X-
CSQA, XNLI, MGSM as three examples tasks.

tasks where we use specialized instruction data 488

to unlock XLLaMA2’s abilities on specific tasks, 489

such as math reasoning and common sense reason- 490

ing. We find that the instruction-tuned XLLaMA2 491

model outperforms its LLaMA2 model counterpart 492

in non-English performance across all three tasks, 493

demonstrating that provides a better starting point 494

for specialized instruction-tuning. 495

Our performed multilingual continued pre- 496

training does not cause catastrophic forgetting 497

issue. A common concern with continued pre- 498

training on additional multilingual corpus is that 499

the process might disturb the parametric knowledge 500

and working pattern of the original model, a phe- 501

nomenon known as catastrophic forgetting (Good- 502

fellow et al., 2013). Furthermore, we compare XL- 503

LaMA2 with LLaMA2 on popular English bench- 504

marks that measure a diverse set of core capabilities 505

of LLMs. Experiment results in Table 7 show that 506

the two models achieve very similar performance 507

on these benchmarks overall, demonstrating that 508

our continued pre-training does not compromise 509

the English capability of the base model. 510

6 Conclusion 511

In this work, we enhance LLaMA2’s translation 512

performance for 102 languages through continued 513

pre-training, creating XLLaMA2. We compare 514

XLLaMA2 ’s translation capabilities with other 515

decoder-only LLMs and encoder-decoder models 516

across multiple benchmarks. XLLaMA2 is also 517

assessed on general tasks and fine-tuned with task- 518

specific instructions. Our results indicate that XL- 519

LaMA2 improves translation quality while main- 520

taining general capabilities, indicating XLLaMA2 521

is an ideal foundation for downstream tasks. 522
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models, including open-source Large Language1063

Models (Section C.1) and well-trained translation1064

models (Section C.2).1065

• Section D: Analysis the correlation between em-1066

bedding quality of LLaMA2 and fertility using1067

Flores-101 test (Figure 5).1068

• Section E: A detailed introduction to the KS-1069

Lottery method.1070

• Section F: Selection about multi-hop transla-1071

tion (Table 9).1072

• Section G: The selection of the appropriate for-1073

mat for parallel data during training (Table 10).1074

• Section H: The comparison of translation perfor-1075

mance across all seven languages between Lego-1076

MT and GPT-4 (Figure 6).1077

• Section I: Information about use of AI assistants.1078

A Limitations1079

This work focuses on the discussion of some key1080

technologies, such as the use of vocabulary lists and1081

the determination of data augmentation schemes.1082

However, it does not delve into further processing1083

of the quality of open-source data. We acknowl-1084

edge a gap in the literature regarding the thorough1085

evaluation of open-source data quality, suggesting1086

an opportunity for future research to improve data1087

preprocessing methods for better model training1088

outcomes.1089

B Collected Dataset Information1090

In this section, we will introduce the sources of our1091

training data (Section B.1), the evaluation bench-1092

marks (Section B.2). For translation tasks, we ap-1093

ply beam search to each model with beam size=4.1094

B.1 Training Dataset1095

The dataset was compiled from three distinct open-1096

source datasets, with details on data statistics and1097

supported languages presented in the Table 8.1098

MC4 (Xue et al., 2021) is a multilingual variant 1099

of the C4 dataset, comprising natural text in 101 1100

languages sourced from the Common Crawl web 1101

scrape. It was introduced to support the training 1102

of massively multilingual pre-trained text-to-text 1103

transformers like mT5. 1104

MADLAD-400 (Kudugunta et al., 2024) is a 1105

manually audited, general domain monolingual 1106

dataset based on CommonCrawl, encompassing 1107

419 languages and designed for document-level 1108

analysis. It is notable for its extensive language cov- 1109

erage and the rigorous auditing process involved in 1110

its creation. 1111

Lego-MT (Yuan et al., 2023a) is a benchmark 1112

for massively multilingual machine translation, fea- 1113

turing a detachable model built upon an efficient 1114

training recipe. It includes a comprehensive trans- 1115

lation benchmark with data from OPUS, covering 1116

433 languages and 1.3 billion parallel data points. 1117

B.2 Evaluation Benchmark 1118

Flores-101 (Goyal et al., 2022) is a benchmark 1119

for machine translation evaluation, comprising a 1120

multi-way dataset derived from English Wikipedia 1121

and produced by professional translators. 1122

Flores-200 (Team et al., 2022) is an extension 1123

of Flores-101 dataset and also serves as a bench- 1124

mark for machine translation. This dataset contains 1125

parallel sentences for 200 languages, with each 1126

language identified by its ISO 639-3 code ( (e.g. 1127

eng)) and an additional code (e.g., "eng_Latn",) 1128

that describes the script. 1129

WMT-23 (Kocmi and Federmann, 2023) is also 1130

a comprehensive translation evaluation benchmark, 1131

proposed in 2023. We incorporate this dataset into 1132

our evaluation to mitigate the risk of data leakage 1133

in LLMs. Based on benchmark, we evaluate the 1134

English-centric translation task performance, in- 1135

cluding de→en, en→cs, en→de, en→he, en→ja, 1136

en→ru, en→uk, en→zh, he→en, ja→en, ru→en, 1137

uk→en, zh→en. 1138

TICO (Anastasopoulos et al., 2020) dataset rep- 1139

resents a joint translation effort targeting COVID- 1140

19 materials, developed in collaboration with aca- 1141

demic, industry stakeholders, and Translators with- 1142

out Borders. It comprises translation memories, a 1143

glossary of translated COVID-19 terms, and func- 1144

tions as a benchmark for translation-related evalua- 1145

tions. The all evaluated translation is en→{am, bn, 1146
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Family ISO Language # Mono. # Para. # Direct. Family ISO Language # Mono. # Para. # Direct.

Afro-Asiatic

ha Hausa 420,964 3,147,704 96

Indo-European

ne Nepali 702,334 8,907,527 97
om Oromo 18,895 191,319 96 or Odia 100,530 812,235 97
so Somali 697,864 3,804,551 97 pa Punjabi 513,987 3,737,780 97

am Amharic 269,171 4,031,552 97 sd Sindhi 472,217 821,996 95
ar Arabic 716,063 9,940,756 97 ur Urdu 711,354 4,137,619 97
he Hebrew 300,000 3,928,938 96 fa Persian 721,307 4,111,536 97
mt Maltese 671,716 1,518,533 94 ku Kurdish 517,239 3,597,863 97

Austroasiatic
km Khmer 687,690 4,044,652 97 ps Pashto 588,340 3,717,480 97

vi Vietnamese 760,472 4,112,089 97 tg Tajik 700,237 4,131,709 97

Austronesian

jv Javanese 505,619 2,799,761 97 ast Asturian 0 1,535,714 96
id Indonesian 707,962 4,243,235 97 ca Catalan 724,597 4,145,004 97

ms Malay 711,895 4,121,713 97 es Spanish 706,307 4,258,477 98
mi Maori 180,678 3,437702 97 fr French 787,316 4,290,003 99

ceb Cebuano 418,058 2,217,926 91 gl Galician 726,512 3,131,730 96
tl Tagalog 0 3,927,576 97 it Italian 846,107 4,233,108 96

Dravidian

te Telugu 708,459 4,219,702 97 oc Occitan 36,379 1,752,951 95
kn Kannada 712,832 3,592,636 97 pt Portuguese 795,818 4,258,604 97
ml Malayalam 715,387 4,516,012 97 ro Romanian 702,002 4,219,414 97
ta Tamil 711,863 4,444,734 97 Japonic ja Japanese 726,455 4,207,728 97

Indo-European

hy Armenian 712,835 3,677,780 97 Kartvelian ka Georgian 703,515 4,182,651 97
lt Lithuanian 718,382 3,946,735 96 Koreanic ko Korean 711,406 4,234,653 97
lv Latvian 700,889 4,011,628 97

Kra–Dai
lo Lao 357,758 2,642,799 97

be Belarusian 708,288 4,169,719 95 th Thai 707,719 4,437,476 97
bg Bulgarian 711,500 4,131,053 97 Mongolic mn Mongolian 701,304 3,894,353 97
bs Bosnian 300,000 2,953,912 97

Niger–Congo

wo Wolof 871 802,521 97
cs Czech 711,179 4,135,944 97 ln Lingala 3,325 159,684 96
hr Croatian 300,000 4,106,335 97 ns Northern Sotho 0 96,288 88

mk Macedonian 702,035 4,009,787 97 lg Luganda 13,030 216,135 95
pl Polish 792,829 4,200,001 98 ny Nyanja 226,940 3,104,349 92
ru Russian 853,407 4,204,365 97 sn Shona 386,588 3,140,063 97
sk Slovak 715,540 4,100,272 98 sw Swahili 700,422 3,775,394 97
sl Slovenian 731,613 4,073,213 97 umb Umbundu 0 54 2
sr Serbian 711,535 4,033,130 97 xh Xhosa 122,720 3,955,426 97

uk Ukrainian 714,181 4,070,250 97 yo Yoruba 98,281 3,364,040 96
cy Welsh 703,507 3,777,953 97 zu Zulu 470,403 2,899,738 97
ga Irish 693,460 2,814,912 96 ig Igbo 147,319 3,314,731 96
is Icelandic 704,159 4,088,886 97 kam Kamba 0 8 1
sv Swedish 726,893 4,213,939 97 ff Fulani 26 313,870 97
da Danish 721,543 4,194,587 97 Nilo-Saharan luo Dholuo 0 91 6
no Norwegian 721,715 4,045,571 97 Portuguese kea Kabuverdianu 0 0 0
af Afrikaans 703,546 4,143,358 98

Sino-Tibetan
zh Chinese 726,112 14,215,583 96

de German 881,553 10,273,597 97 zhtrad Chinese 0 3,747,297 96
en English 846,712 19,548,583 100 my Burmese 579,160 3,887,841 97
lb Luxembourgish 574,166 1,035,619 94

Turkic

uz Uzbek 723,096 2,344,375 95
nl Dutch 769,778 4,199,773 96 kk Kazakh 701,849 3,836,259 97
el Greek 707,751 4,081,607 97 ky Kyrgyz 704,438 3,725,583 97

bn Bengali 707,099 4,560,978 97 az Azerbaijani 712,947 8,080,151 97
as Assamese 33,825 1,656,861 97 tr Turkish 727,711 4,169,259 97
gu Gujarati 704,619 3,761,401 97

Uralic
et Estonian 706,720 4,056,200 97

hi Hindi 715,691 4,186,127 97 fi Finnish 719,416 40,76,885 97
mr Marathi 702,382 4,295,708 97 hu Hungarian 731,479 4,154,132 97

Table 8: The detailed information of the collected monolingual and parallel datasets includes the translation
directions for each supported language. Specifically, the “# Para.” represents the count of language-centric sentence
pairs, while “# Mono” denotes the number of individual monolingual sentences.

din, fa, fuv, hi, km, ku, ln, ms, ne, om, ps, ru, so, ta,1147

ti_ER, tl, zh, ar, ckb, es_LA, fr, ha, id, kr, lg, mr,1148

my, nus, prs, pt_BR, rw, sw, ti, ti_ET, ur, zu}.1149

TED (Cettolo et al., 2012) is a massively multi-1150

lingual dataset derived from TED Talk transcripts,1151

covering 60 languages with parallel arrays of lan-1152

guage and text. It is designed for natural language1153

processing tasks and filters out missing or incom-1154

plete translations. We also evaluate the English-1155

centric translation performance. The translation di-1156

rection covers all 60 languages, including en↔{af,1157

am, ar, arq, art-x-bork, as, ast, az, be, bg, bi, bn, bo,1158

bs, ca, ceb, cnh, cs, da, de, el, eo, es, et, eu, fa, fi,1159

fil, fr, fr-ca, ga, gl, gu, ha, he, hi, hr, ht, hu, hup, hy, 1160

id, ig, inh, is, it, ja, ka, kk, km, kn, ko, ku, ky, la, 1161

lb, lo, lt, ltg, lv, mg, mk, ml, mn, mr, ms, mt, my, 1162

nb, ne, nl, nn, oc, pa, pl, ps, pt, pt-br, ro, ru, rup, sh, 1163

si, sk, sl, so, sq, sr, srp, sv, sw, szl, ta, te, tg, th, tl, 1164

tlh, tr, tt, ug, uk, ur, uz, vi, zh, zh-cn, zh-tw} 1165

X-CSQA (Lin et al., 2021a) is a multilingual 1166

extension of the Commonsense Question Answer- 1167

ing (CSQA) dataset, designed for commonsense 1168

reasoning research. It facilitates the evaluation and 1169

improvement of multilingual language models in 1170

commonsense reasoning tasks. 1171
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Figure 5: Correlation between embedding quality and fertility. The embedding quality of LLaMA2 is measured
by cosine similarity and Recall@1 on Flores-101 test. Fertility refers to the ratio of the length of a sentence after
tokenization compared to its length before tokenization. A high fertility may result in a poor quality of embedding.

XStoryCloze (Lin et al., 2021b) is a benchmark1172

dataset that comprises the professionally translated1173

English StoryCloze dataset (Spring 2016 version)1174

into 10 non-English languages. It is designed to1175

evaluate the zero- and few-shot learning capabili-1176

ties of multilingual language models.1177

XCOPA (Ponti et al., 2020) is a benchmark1178

dataset that assesses machine learning models’ abil-1179

ity to transfer commonsense reasoning across lan-1180

guages. It is an extension of the English COPA1181

dataset and includes 11 languages from diverse1182

language families and geographical regions.1183

XWinograd (Muennighoff et al., 2022; Tikhonov1184

and Ryabinin, 2021) s a benchmark dataset that1185

consists of a multilingual collection of Winograd1186

Schemas, designed for the evaluation of cross-1187

lingual commonsense reasoning capabilities cover-1188

ing six languages.1189

XNLI (Conneau et al., 2018) is a cross-1190

lingual extension of the SNLI (Bowman et al.,1191

2015)/MultiNLI (Williams et al., 2018), consist-1192

ing of a subset of English examples translated into1193

14 different languages. It is used for evaluating1194

textual entailment and classification tasks, where1195

the goal is to determine if one sentence implies,1196

contradicts, or is neutral to another sentence1197

MGSM (Shi et al., 2023) a dataset of grade-1198

school math problems, each translated into 10 lan-1199

guages by human annotators. It is derived from1200

the GSM8K (Cobbe et al., 2021) dataset and is1201

designed to support question answering on basic1202

mathematical problems that require multi-step rea- 1203

soning. 1204

MMLU (Hendrycks et al., 2021a,b) is a bench- 1205

mark for evaluating language models’ capabil- 1206

ities in language comprehension and reasoning 1207

across diverse domains. It consists of about 16,000 1208

multiple-choice questions spanning 57 academic 1209

subjects, designed to measure knowledge acquired 1210

during pretraining in zero-shot and few-shot set- 1211

tings. 1212

BBH (Srivastava et al., 2022) is a subset of 1213

the BIG-Bench, focusing on 23 challenging tasks 1214

that current language models struggle to perform, 1215

where they do not outperform the average human- 1216

rater. It serves as a rigorous evaluation suite to test 1217

the limits of language models’ capabilities. 1218

HellaSwag (Zellers et al., 2019) s a dataset de- 1219

signed to evaluate advanced natural language un- 1220

derstanding and common sense reasoning, which 1221

introduces more complexity and diversity, challeng- 1222

ing AI models to predict the ending of incomplete 1223

narratives. 1224

WinoG (Sakaguchi et al., 2021) is a large-scale 1225

dataset containing 44k problems inspired by the 1226

Winograd Schema Challenge, designed to improve 1227

the scale and hardness of coreference resolution 1228

tasks. It presents fill-in-the-blank questions with 1229

binary options, testing the model’s ability to under- 1230

stand nuanced human language. 1231

NQ (Kwiatkowski et al., 2019) is a dataset 1232

for question answering research, containing over 1233
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Setting Dictionary en-centric ta-centric th-centric zh-centric
en→x x→en ta→x x→ta th→x x→th zh→x x→zh

DP1+D′
P2

+D′
M MUSE: 1-hop 18.80 26.56 4.78 1.79 7.31 3.18 11.35 7.28

DP1+D′
P2

+D′
M MUSE: 2-hop 18.70 26.50 4.47 1.83 7.08 3.26 10.74 6.68

DP1+D′
P2

+D′
M PanLex: 1-hop 19.33 26.54 4.40 1.83 7.57 3.31 10.86 8.08

Table 9: Select a specific data augmentation technique and evaluate various dictionary configurations, including
1-hop and 2-hop, as well as different dictionaries.

300,000 examples each consisting of a real user1234

query and a corresponding Wikipedia page. It is1235

designed to train and evaluate automatic question1236

answering systems by emulating how people search1237

for information.1238

HumanEval (Chen et al., 2021) is designed to1239

evaluate the code generation capabilities of large1240

language models, featuring 164 hand-crafted pro-1241

gramming challenges that include function signa-1242

tures, docstrings, bodies, and unit tests. On average,1243

each problem is accompanied by 7.7 tests to assess1244

functional correctness.1245

MBPP (Austin et al., 2021) comprises approxi-1246

mately 1,000 crowd-sourced Python programming1247

problems, aimed at entry-level programmers and1248

covering programming fundamentals and standard1249

library functionality. Each problem includes a task1250

description, code solution, and three automated test1251

cases.1252

GSM8K (Cobbe et al., 2021) consists of 8.5K1253

high-quality, linguistically diverse grade school1254

math word problems created by human problem1255

writers. It is designed to support question answer-1256

ing on basic mathematical problems that require1257

multi-step reasoning.1258

Math (Hendrycks et al., 2021c) is a collection1259

of 12,500 intricate problems derived from com-1260

petition mathematics. Every problem within the1261

Math dataset includes a comprehensive solution1262

with step-by-step guidance, which serves as a re-1263

source for training models to produce detailed an-1264

swer justifications and explanations.1265

C Detailed Information of Used Models1266

Model details about the baseline models for com-1267

parison, including decode-only large language1268

models (LLMs) in Section C.1 as well as transla-1269

tion models in Section C.2 with an encoder-decoder1270

structure.1271

C.1 Large Language Models 1272

XLLaMA2 follows the model architecture of 1273

LLaMA2 without vocabulary extension. We uti- 1274

lized 20 A100 80GB GPUs and extended the pre- 1275

training on the amassed data for over 60 days. We 1276

set per device training batch size to 32, learning 1277

rate to 2e-5, and the epoch number to 1.0. 1278

LLaMA2 (?) is a decoder-only language model 1279

that predicts the next token based on the input 1280

sequence of ordered tokens, with a collection of 1281

pre-trained and fine-tuned models ranging from 1282

7 billion to 70 billion parameters. The LLaMA2 1283

7B model serves as our foundational model. Un- 1284

less otherwise specified, any reference to LLaMA 1285

or LLaMA2 is the LLaMA2 7B model. The 1286

model leverages a Byte-level Byte Pair Encod- 1287

ing (BBPE; (Wang et al., 2019)) tokenizer, an effi- 1288

cient subword tokenizer that tokenizes at the byte 1289

level, allowing it to handle any language and be 1290

robust to noise in the data. The BBPE tokenizer is 1291

particularly useful for languages with large vocab- 1292

ularies and many rare words. 1293

PolyLM (Wei et al., 2023) is an open-source 1294

multilingual Large Language Model (LLM) trained 1295

on 640 billion tokens, available in two model sizes: 1296

1.7B and 13B. It boasts proficiency in 15 major 1297

non-English languages, employing advanced train- 1298

ing techniques to enhance its language processing 1299

capabilities. 1300

Yayi2 (Luo et al., 2023) is a multilingual open- 1301

source Large Language Model pre-trained from 1302

scratch on a corpus containing 2.65 trillion tokens. 1303

It is aligned with human values through supervised 1304

fine-tuning and reinforcement learning from human 1305

feedback. 1306

TowerInstruct (Alves et al., 2024) is a 7B pa- 1307

rameter language model fine-tuned on translation- 1308

related tasks, supporting multiple languages in- 1309

cluding English, Portuguese, Spanish, French, and 1310
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Setting Translation Tasks General Tasks Multilingual Tasks
ceb→x x→ceb QNLI QQP MRPC XStoryCloze XCOPA XWinograd

splited-parallel + mono 3.36 2.74 49.46 36.82 68.38 59.20 56.82 73.72
connected-parallel + mono 4.45 3.68 49.46 36.82 68.38 59.10 56.80 74.07

Setting ceb→ca ceb→de ceb→en ceb→es ceb→fr ceb→it ceb→pt ceb→ru

splited-parallel + mono 10.32 8.94 23.19 13.30 15.96 10.01 12.66 8.05
connected-parallel + mono 10.97 11.37 27.06 14.91 18.04 12.03 15.55 10.26

Setting ca→ceb de→ceb en→ceb es→ceb fr→ceb it→ceb pt→ceb ru→ceb

splited-parallel + mono 5.90 4.91 7.44 5.14 6.02 5.54 6.12 4.24
connected-parallel + mono 7.62 6.92 9.88 6.41 7.39 6.91 7.62 6.54

Table 10: Design for the utilization of parallel data, we take ceb-centric data as an example, apply two distict
approaches, and discover that treating parallel data as two independent monolingual datasets harms to translation
performance.

others. It is designed for tasks such as machine1311

translation, automatic post-editing, and paraphrase1312

generation.1313

Aya-23 (Aryabumi et al., 2024) is an open1314

weights research release of an instruction fine-1315

tuned decoder-only model with advanced multi-1316

lingual capabilities, serving 23 languages. It pairs1317

a performant pre-trained Command family of mod-1318

els with the Aya Collection for robust language1319

processing tasks.1320

ChineseLLaMA2-Alpaca (Cui et al., 2024) is1321

founded on LLaMA2 and enhanced with an ex-1322

tensive Chinese vocabulary that concentrates on1323

Chinese languages. This is a fine-tuned version of1324

ChineseLLaMA2 using Alpaca (Taori et al., 2023)1325

data.1326

LLaMA2-SFT (Taori et al., 2023) is a fine-1327

tuned version of LLaMA2 model, leveraging a1328

set of 52,000 diverse instructions in Alpaca (Taori1329

et al., 2023) to enhance the instruction-following1330

capabilities of the model.1331

C.2 Translation Models1332

M2M-100 (Fan et al., 2021) encompasses mul-1333

tilingual machine translation models designed to1334

translate between any pair of 100 languages di-1335

rectly, without the need for English as an interme-1336

diary. The M2M-100 series includes models of1337

varying sizes, specifically 418M, 1.2B, and 12B1338

parameters. These models are part of a ground-1339

breaking approach in the field of machine transla-1340

tion, aiming to enhance direct translation efficiency1341

across a wide array of languages.1342

Lego-MT (Yuan et al., 2023a) is a novel ap-1343

proach to massively multilingual machine transla-1344

tion, featuring detachable models with individual 1345

branches for each language or group of languages. 1346

This design supports plug-and-play training and 1347

inference, enhancing flexibility and efficiency in 1348

language processing tasks. 1349

MADLAD-400 (Kudugunta et al., 2024) is a 1350

multilingual machine translation model that lever- 1351

ages the T5 architecture and has been trained on 1352

a vast corpus of 250 billion tokens, covering over 1353

450 languages. 1354

Aya-101 (Aryabumi et al., 2024) is an open- 1355

source, massively multilingual generative language 1356

model that operates on the mT5 (Xue et al., 2021) 1357

architecture, covering 101 languages and designed 1358

to bridge the performance gap in non-dominant 1359

languages. It incorporates a 13B parameter base 1360

and has undergone instruction-finetuning to achieve 1361

high performance across its extensive language 1362

range. 1363

D The correlation between fertility and 1364

representation quality. 1365

We conduct experiments on Flores-101. Fertility is 1366

defined as the ratio of the Ls to the LT , where Ls is 1367

the number of words for space-separated languages 1368

and characters for others and LT is the number 1369

of tokens after applying LLaMA2 tokenizer. The 1370

quality estimation of LLaMA on Flores-101 test. 1371

Cosine similarity focuses on the similarity in the 1372

expressions of LLaMA across sentence represen- 1373

tation of the same sentence in English and other 1374

languages. Recall@1 is often used in the context 1375

of information retrieval, which measures the qual- 1376

ity of representation. The experimental results, as 1377

shown in Figure 5, indicate fertility has a high cor- 1378

relation with the representation quality. 1379
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E Introduction to KS-Lottery.1380

KS-Lottery is a technique designed to identify a1381

small, highly effective subset of parameters within1382

LLMs for multilingual capability transfer. The1383

core concept of this method involves utilizing the1384

Kolmogorov-Smirnov Test to examine the distribu-1385

tion shift of parameters before and after fine-tuning.1386

This approach helps in pinpointing the “winning1387

tickets” or the most impactful parameters that con-1388

tribute significantly to the model’s performance in1389

multilingual tasks.1390

F 1-hop translation in data augmentation1391

is enough.1392

Given a parallel dataset subset (DP) from DA
para1393

that contains translations in all directions for 6 lan-1394

guages (en,fr,es,zh,ta,th) and a monolingual sub-1395

set (DM) from DA
mono for the same 6 languages.1396

We then perform non-repetitive sampling 12,5001397

sentence pairs from DP in each direction to gen-1398

erate two subsets of parallel corpus data DP1 and1399

DP2 , respectively. Consequently, we preserve DP11400

and evaluate the effect of augmentation on paral-1401

lel data DP2 or monolingual data DM, resulting in1402

two new dataset, D′
P2

and D′
M, post-augmentation.1403

To assess both the in-domain and out-of-domain1404

capabilities of the model, we perform inference on1405

it using 10 languages (en, fr, es, pt, de, zh, ta, th, is,1406

zu), utilizing the Flores-101.1407

We use two different multilingual dictionaries1408

MUSE provided by Lample et al. (2018) 1, and1409

PanLex (Wang et al., 2022). In the context of a1410

multilingual dictionary, we can use “1-hop” and1411

“2-hop” to characterize the translation relationship1412

among different languages, an example shown in1413

Table 9.1414

1-hop translation 2-hop translation
Direction Example Direction Example

en→fr dog→ chien en→fr→de dog→ chien→ Hundfr→de chien→ Hund

Table 11: Case of 1-hop and 2-hop translations.

We use the MUSE dictionary to perform data1415

augmentation on both parallel DP2 and monolin-1416

gual DM data, utilizing 1-hop and 2-hop transla-1417

tions. As shown in Table 9, using different hop1418

translation for augmentation does not significantly1419

impact the final translation performance. Multi-1420

1https://github.com/facebookresearch/MUSE.

hop transaltion sometimes can even result in poorer 1421

performance. 1422
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-1.98 -3.03 -2.65 -5.60 -2.55 -4.49

-6.70 -5.84 -3.09 -6.17 -2.79 -4.28

-9.68 -5.57 -4.82 -7.96 -3.96 -7.05

+3.96 +3.99 +4.72 +2.73 +2.44 +2.87

-6.29 -2.90 -4.39 -2.05 -2.38 -3.19

-0.05 +0.49 +0.19 +1.78 -0.51 +0.21

+0.09 +0.24 +0.44 -1.30 -0.26 -1.22
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Figure 6: The spBLEU gap between XLLaMA2 and
GPT-4. Positive scores mean the result of XLLaMA2
is better than GPT-4. Empirical evidence demonstrates
that while XLLaMA2 trails GPT-4 in high-resource
translation scenarios, it outperforms in low-resource
translation contexts.

G Design of parallel format 1423

The Usage of Parallel Data. Parallel data can 1424

be utilized in two distinct ways: split-parallel or 1425

connected-parallel. Split-Parallel: Consider the 1426

source language data and target language data in- 1427

volved in parallel data as two distinct monolingual 1428

datasets, which are randomly shuffled throughout 1429

the entire training set. Connected-Parallel: In the 1430

training process, we treat each pair of source and 1431

target language sentences from the parallel dataset 1432

as a single data point by concatenating them. 1433

Based on different forms of parallel data, su- 1434

pervised fine-tuning (SFT) is conducted separately 1435

on ceb-centric using both parallel and monolingual 1436

datasets. As indicated in Table 10, we observed that 1437

the form of parallel data primarily impacts transla- 1438

tion performance, with no significant difference in 1439

general tasks and cross-lingual general tasks; how- 1440

ever, the disparity in translation is pronounced. We 1441

specifically highlighted some high-resource trans- 1442

lation directions and found that such gaps are quite 1443

significant. 1444

H Comparison Results Between Our 1445

Model and GPT-4 1446

In Figure 6, we compare the performance gap be- 1447

tween our model and GPT-4. Considering the API 1448

cost of evaluating GPT-4, we only evaluate the 1449
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mutual translation performance among seven lan-1450

guages (En, Zh, De, Ne, Ar, Az, Ceb). Experiment1451

results show that while our model lags behind in1452

high-resource translation directions, it achieves on-1453

par or even superior performance in low-resource1454

translation.1455

I Information about use Of AI assistants1456

AI assistants are utilized to refine sentence-level1457

writing.1458
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