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ABSTRACT

We study the problem of training and fine-tuning expressive policies with online
reinforcement learning (RL) given an offline dataset. Training expressive policy
classes with online RL present a unique challenge of stable value maximization.
Unlike simpler Gaussian policies commonly used in online RL, expressive policies
like diffusion and flow-matching policies are parameterized by a long denoising
chain, which hinders stable gradient propagation from actions to policy parameters
when optimizing against some value function. Our key insight is that we can
address stable value maximization by avoiding direct optimization over value with
the expressive policy and instead construct an on-the-fly RL policy to maximize
Q-value. We propose EXpressive Policy Optimization (EXPO), a sample-efficient
online RL algorithm that utilizes an on-the-fly policy to maximize value with
two parameterized policies — a larger expressive base policy trained with a stable
imitation learning objective and a light-weight Gaussian edit policy that edits the
actions sampled from the base policy toward a higher value distribution. The
on-the-fly policy optimizes the actions from the base policy with the learned edit
policy and chooses the value maximizing action from the base and edited actions
for both sampling and temporal-difference (TD) backup. Our approach yields up
to 2-3x improvement in sample efficiency on average over prior methods both in
the setting of fine-tuning a pretrained policy given offline data and in leveraging
offline data to train online.

1 INTRODUCTION

Robotics has seen significant progress on challenging real-world tasks by training expressive policies
on large datasets via imitation learning (Black et al. [2024)). Despite promising results, imitation
learning methods often struggle to achieve the high reliability and performance needed for real
world use-cases, even when scaled to large datasets. Fine-tuning these policies with reinforcement
learning (RL) can in principle address this problem by enabling high performance through online
self-improvement. Yet, existing online reinforcement learning methods are typically designed for
simple Gaussian policies (Schulman et al.,2017; |Fujimoto et al.,[2018)) and do not effectively leverage
expressive pre-trained policies, such as diffusion or flow-matching policies (Chi et al., 2023) typically
used in imitation learning. Can we design an efficient and effective RL fine-tuning method for
expressive policy classes?

Fine-tuning expressive policies with online RL comes with a unique challenge not present in
fine-tuning simpler Gaussian policies — expressive policies like diffusion or flow-matching policies
are parameterized by a long chain of denoising steps, which hinders stable gradient propagation
from the action output to the policy parameters whenever we want to optimize their actions against
some value functions (Ding & Jin, 2024} [Park et al.l [2025). In the adjacent purely offline or
purely online settings, many approaches have sought to avoid the gradient propagation instability
by incorporating losses at intermediate denoising steps to guide the denoising process towards
high-value actions (Psenka et al., 2023} |[Fang et al., 2024)), but it is still not obvious how to best
perform stable value maximization for efficient online fine-tuning.

In this work, we make the key observation that value maximization of expressive policy classes
can be made much more effective and stable by avoiding direct optimization over value of the
expressive policy itself. Instead, we can train the base expressive policy using a stable supervised
learning objective and construct an on-the-fly policy to maximize value through two steps — (1) a
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Figure 1: Left: Expressive Policy Optimization (EXPO) is a stable, sample efficient method for training
expressive policies with reinforcement learning by avoiding direct optimization over the value function with the
expressive policy. Right: Average performance over tasks of EXPO and prior methods.

light-weight, one-step edit policy that refines the action samples from the base expressive policy, and
(2) a non-parametric post-processing step that takes multiple action candidates from the base and
edit policy and selects the highest-value action among base and edited actions. We impose an edit
distance constraint on the edit policy such that the edited actions remain close to the original actions
from the base policy. This restricts the edit policy to solve a simpler, local optimization problem,
allowing it to be much smaller than the base expressive policy and enabling efficient and stable
optimization. The local edits can be viewed as refining actions within modes of the base policy’s
action distribution, which is complemented by the second on-the-fly, non-parametric post-processing
step, which considers multiple pairs of base and edited actions potentially from different modes and
selects the best actions.

We instantiate these insights as EXPO, a sample-efficient online RL algorithm that enables stable
online fine-tuning of expressive policies. EXPO consists of two parameterized policies: a base
expressive policy that is initialized from offline pre-training and then online fine-tuned with an im-
itation learning objective, and a small Gaussian edit policy that is trained with standard policy loss in
reinforcement learning to maximize the ()-value of the edited action. The base policy is never trained
to explicitly maximize value. Instead, we construct an on-the-fly policy to maximize -value by
optimizing the actions from the base policy with the learned edit policy and selecting the best action
from the base and edited actions according to their (Q-values. The on-the-fly extraction has the advan-
tage that any changes in the ()-function are more immediately reflected in both the agent’s behavior
and the TD @)-value target, unlike standard policy extraction methods that require slow parameter
updates to align the policy to the @Q-function. In addition, the edit policy can be trained with entropy
regularization, offering a convenient way to add state-dependent action noises for online exploration
beyond the behavior distribution, which is often challenging to do with expressive policies alone.

Our main contribution is a simple yet effective method for online RL fine-tuning of expressive policy
classes, EXPO. Our method is stable to train and unlike many prior works that focus on a particular
class of policies (e.g., diffusion, flow-matching), our method is agnostic to policy parameterization
and can fine-tune from any pre-trained policies. We evaluate our method on 12 tasks across 4 domains
and find that our approach achieves strong performance in both online RL and offline-to-online RL
setting with up to 2-3x improvement in sample efficiency on average.

2 RELATED WORKS

Reinforcement Learning with Prior Data. To improve the sample efficiency of online RL, prior
works have studied the problem of using an offline dataset to accelerate online learning (Li et al.
2023; Ball et al., 2023; Hu et al.| 2023} |Dong et al.| 2025)). A common strategy in this setting is to
simply initialize the replay buffer with offline data (Vecerik et al., [2018; |Nair et al.,[2018; Hansen
et al.| 2022} Ball et al., [2023)). Another line of work focuses on pretraining a good value function or
policy using pessimism or policy constraints typically employed in offline RL, followed by online
fine-tuning (Hester et al.,[2017; [Lee et al., 2021} |Nair et al., [2021; Song et al.| 2023} |Nakamoto et al.,
2024). Yet, other methods maintain separate polices for offline pretraining and online fine-tuning
(Yang et al.| [2023} Zhang et al.| [2023} Mark et al., [2023). However, these methods still mostly rely
on simple Gaussian policies. In contrast, EXPO aims to utilize the capacity of expressive policy
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classes to capture more complex behavior distributions to accelerate learning and enable fine-tuning
of pre-trained models using these expressive policy classes.

Reinforcement learning with expressive policies started to gain popularity in RL to help handle
more complex action distributions. A central focus of these methods is to extract an expressive policy
that simultaneously maximizes the Q)-function and stays close to the offline dataset. [Lu et al.[(2023);
Kang et al.|(2023)); Ding et al.| (2024); [Zhang et al.| (2025)) use weighted behavior cloning (BC) to
imitate dataset behavior while maximizing action ()-values. While weighted BC is the most simple
policy extraction method that can take into account Q-function signals, prior works (Fu et al., 2022
Park et al.} [2024} 2025) have found other policy extraction methods often performs better. [Yuan
et al.[(2024); Ankile et al.|(2024) pre-train an expressive policy on the offline data and then learn a
residual policy online to refine the actions from the base policy. In contrast to these works, we focus
on performing fine-tuning on the expressive policy itself, which can be crucial to fully leveraging the
capabilities of the expressive policy to not only enable better sample efficiency, but also to be more
adaptive online. Lastly, [Ren et al.|(2024) reformulate the diffusion process as an augmented MDP on
top of the original MDP and use policy-gradient methods (e.g., PPO (Schulman et al[2017)) to train
the policy. |Ankile et al.|(2024) also uses an on-policy method to train the residual policy. Compared
to these works, we focus on developing off-policy TD-based methods for better sample efficiency.

Fine-tuning diffusion policies with value gradients. The simplest way of leveraging the gradient of
Q-functions for policy extraction is to backpropagate the (J-value into the policy parameters (Fujimoto
et al.l 2018 [Haarnoja et al., 2018)). While it is possible to directly apply this technique in diffusion
policies (Wang et al., [2022)), the backpropagation can get prohibitively expensive and unstable as
the number of denoising steps grows large. |Ding & Jin| (2024); [Park et al.| (2025) tackles this by
distilling the multi-step diffusion policy into less expressive two-step/single-step policy. [Psenka
et al.|(2023); [Fang et al.|(2024) use action gradients to provide a direct supervision on the training
of the intermediate denoising steps to bias towards high-value actions. [Zhang et al.| (2025)); Mark
et al.|(2024) use action gradients as well but in a refinement manner where they first sample actions
from the base policies and then improve these actions by hill climbing the @Q)-function using the
action gradients. Our approach draws inspirations from multiple prior works, but importantly instead
of backpropagating the gradient through the expressive policy, we leverage (Q-function gradients
through a separate policy to edit the base actions to maximize Q-value for better stability.

Sampling-based maximization. Some prior methods have explored sampling-based techniques
to optimize -values. |Ghasemipour et al.| (2021) samples actions from the behavior policy and
chooses the action that gets the highest (Q-value and uses MADE (Germain et al [2015)) to model
the behavior distribution. In contrast, we study more expressive policies for better performance.
Hansen-Estruch et al.[(2023)) and He et al.[(2024)) use expressive diffusion-based policies and sampling
based (Q-function maximization only for online exploration and not TD backup. In our experiments,
we find using maximum action selection for both TD backup and online exploration to be crucial
for online sample efficiency. |Chen et al.|(2022) generalizes to softmax selection instead of a hard
max for choosing actions based on the highest -values. Our method draws on ideas from these
prior works, but focuses on maximizing value in a stable way to address the problem of fine-tuning
expressive policies. We show through experiments not only the importance of our on-the-fly action
extraction, but also editing the base actions toward higher value distributions. The design choices in
our algorithm enable online RL to be more than 2x more data efficient than prior works.

3 PROBLEM SETTING

We consider a Markov Decision Process (MDP), defined as {S, A, r,v, T, p} where S is the state
space, A is the action space, r : S X A — R is a function defining the rewards, T'(s’|a, s) is the
transition dynamics, v € [0, 1] is the discount factor, and p(s) is the initial state distribution. At
timestep ¢, the RL agent observes state s; and chooses action a; by sampling from its policy m(a|s;).

The goal of RL is to maximize the expected sum of discounted returns E [ZtT:o vir(sg,aqg)]. In
this paper, we study the setting where we additionally have access to a pre-trained expressive policy
Tpre (€.8., a diffusion policy, a flow policy) as well as a prior dataset Dy. As the agent interacts with
the environment, it observes (s, a, r, s’) tuples that are appended to a replay buffer D for training.
Our main goal is to online fine-tune the pre-trained expressive mpre in a sample-efficient way by
effectively leveraging both the prior dataset Dy and the online replay buffer data D.
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4 EXPRESSIVE POLICY OPTIMIZATION (EXPO)

In this section, we explain the two key components that _

. .. Y Dataset Actions
allow EXPO to leverage a base expressive policies for X Base Actions
sample-efficient online fine-tuning without explicitly e Actions
optimizing the expressive policy for maximal rewards. The
first component is an edit policy that refines the actions x5
generated from the base policy to simultaneously maximize ~ A
@-value while encouraging exploratory actions. The second
component is an on-the-fly policy parameterization for
online training by selecting the value-maximizing action
among the original and edited actions. We also present
a version of EXPO with entropy backup for data-limited S
regimes. Lastly, we describe the implementation details
required to make our method effective in practice. The full
EXPO algorithm is summarized in Algorithm 1]

4.1 Q-VALUE MAXIMIZATION

AND EXPLORATION THROUGH ACTION EDITS Figure 2: The edit policy transforms ac-

tions of the base policy into actions that
To avoid the unstable explicit value maximization of expres- further maximize Q-value while encourag-
sive policies, we use an imitation learning objective to train 11 exploration. The blue contour repre-
the base policy, which has been shown to work stably and re- S€nts the Q-values of actions of a single
liable across a variety of expressive policy classes. However, ztfte and the orange contours represent the
.. RO . . aussian distributions of actions the edit
training Wl.th imitation legrnlng alone.does not gffectlvely policy changes the base actions into.
move the distribution to high-value actions. To this end, the
first component of EXPO is a Gaussian edit policy, meqii(é|s, a), that refines actions generated by the
base expressive policy (@ ~ Tpase(+]$)):
a+—a+a 1)
Intuitively, we want to train the edit policy to locally optimize the ()-function and maximize the
action entropy to maintain action diversity. Such action diversity is especially important when the

base expressive policy is trained on narrow behavior distribution. We do so by training the edit policy
Tedit With a standard entropy-regularized policy loss:

L(medit) = —E(s,0)~D,amme(-|5,0) Qo (8, a + @) — alog megir(als, a)] (@)
with Q4(s, a) being the critic value we want our implicit policy to maximize.

The edit policy can be viewed as transforming each action sample from the base policy toward a higher
Q-values Gaussian action distribution. We illustrate this in Figure[2] However, naively learning this
edit can shift the actions too far from the behavior distribution that it causes the policy to deviate from
desirable behavior. We address this by simply enforcing the action edits to be close to the actions sam-
pled by the policy by scaling a to be between [—f3, /3], where 3 is a hyperparameter. In practice, 8 can
be small (e.g., 0.05) or large (e.g., 0.7) depending on how much exploration is needed to refine the ac-
tions from the initial distribution of the offline dataset. This enables the policy to continuously improve
upon the actions generated by the base policy while not deviating too far from reasonable behavior.

4.2 ON-THE-FLY PARAMETERIZATION OF THE RL POLICY

Given the base and edit policies, we need a way to effectively extract value-maximizing actions
that account for both the expressivity of the base policy and the value-maximization of the edits.
We construct an on-the-fly (OTF) policy to perform implicit value-maximization in two steps: (1)
generating action samples using the base and the edit policy and (2) selecting the highest ()-value
action. We use this on-the-fly policy for both sampling and in the TD backup.

Let morr be the on-the-fly policy that implicitly performs value maximization. morg(al$, Thase, Tedits @)
is defined as arg mMaX,_ N {a,.a:} Q4(s, a), where a; is an action sampled from 7p,se and @; = a; +
a; is the action after edit for each of NV action samples. Because the edit policy is trained to maximize
the (Q-function, the edited actions should better represent what the (Q-function views as optimal.
Taken together, the (Q-function objective becomes

H}gnE(st,at,st+1)~D[(ﬁ +7Qp (st41,a711) — Qu(st,a1))?], where @y, ~ morr(-[si41)  (3)
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Algorithm 1 Expressive Policy Optimization (EXPO)

Require: Prior dataset Dy, = { (s, a;)}; optionally, expressive policy initialization mpyse.
Randomly initialize action edit policy e, critic (), target critic ()¢, UTD ratio G.
while training do

for each environment step ¢ do

Collect rollouts:

Sample d: from 7TOTF('|5a Tbase s edits ¢/)

Take action a; and observe 7; and s;; from the environment

Store (s¢, at, e, S¢41) in RL replay buffer

Update policy and critic:

forg=1,...,Gdo

Sample mini-batch (s, a, r, s") from the replay buffer
Sample @' from ore (+]s’, Thase, Tedits @)

Compute target as y = 7 + vQy (8, a')

Update ¢ minimizing loss: L = (y — Q4 (s, a))?
Update target networks: 6’ < pf’ + (1 — p)6

Update 7p,se using the last mini-batch with supervised learning objective Ly, (Tbase )

Update megi; using the last mini-batch maximizing objective Q4 (s, a + &) —

alog megir(als), @~ Teqit(-|s)

We note that because the on-the-fly policy is parameterized to maximize the @)-function and the
action @y is the action sample with the highest (J-value, this procedure can be viewed as equivalent
to a standard @Q-learning update with the implicit policy.

4.3 ENTROPY BACKUP FOR DATA-LIMITED REGIMES

In scenarios where the offline dataset is not sufficiently large or broad, the agent must explore more
broadly during online sampling. For these scenarios, we propose a framework for incorporating
an entropy bonus into both the base and edit policy training. Viewing the base and edit policies
as one OTF policy, the standard entropy-regularized RL loss, which has been shown to benefit
exploration (Ziebart, [2010; |Haarnoja et al., 20175 2018), can be formulated as

y =71t + Q¢ (st41,a741) — alog more(a;q[se+1)]
L(9) = E(s, 00,50 0)~p [y — Qo (¢, a))?], @541 ~ Tore(-|se41) “
L(motr) = —E(s,0)~D,a~mom(|s,a) Qs (5, a + @) — alog morr(als, a)] ®)]

However, one cannot directly apply this loss to the base policy, as many expressive policies
such as diffusion do not have a closed form expression for entropy. We instead construct a soft
sampling distribution 7gmpling that first samples N actions a; from 7y and edits them into
a;+N = a; + a; for each action, and then chooses actions following the probability distribution
Tsampling (@i]S) = %. We can obtain a closed-form equation for this sampling distribution
and use this entropy to perform the backup. As we will see in Section [5.5] this modification can
improve performance when the offline dataset is small.

4.4 PRACTICAL IMPLEMENTATIONS

In this paper, we instantiate EXPO with the base policy being a diffusion policy trained using DDPM.
The training objective is the following:

H}biﬂ Bt td({1, T}),emN(0,1),(s,0)~DIl€ = €y (Vara + V1 — aye, 5, 1)][]

While we use a diffusion policy for the main experiments as a canonical example of an expressive
policy, this framework is general to any expressive policy class. We train the edit policy with a simple
Gaussian with entropy regularization as done in SAC, where the entropy promotes exploration in the
implicitly parameterized policy even though the base expressive policy is trained with an imitation
learning objective. We turn off entropy in the target for the entropy backup version of the method.
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Figure 3: Online RL results on 12 challenging sparse-reward tasks. Across almost every task, EXPO
consistently exceeds or matches the performance of the best baseline—even without any pretraining.

5 EXPERIMENTS

In this section, we aim to answer the following core questions through our experiments:
(Q1) Can EXPO effectively leverage offline data for online sample-efficient RL?
(Q2) How sample efficient is EXPO in fine-tuning pretrained policies compared to prior methods?

(Q3) What components of EXPO are most important for performance?

5.1 BENCHMARKS

We evaluate EXPO on 12 challenging continuous control tasks spanning various embodiments. All
of the tasks feature sparse rewards. We present these tasks in Figure[J)in the Appendix. The Antmaze
evaluation suite from D4RL (Fu et al.,|2021)) features controlling a quadruped ant to navigate a maze
and reach the desired goal position. The suite consists of mazes in medium and large sizes. The Adroit
environments from D4RL involves controlling a 28-Dof to spin a pen (pen-binary-v0), open a
door (door-binary-v0), and relocate a ball (relocate-binary-v0). The RL policy needs
not only to learn dexterous behavior to operate in the high-dimensional action space but also explore
beyond the narrow dataset to successfully complete the tasks. The Robomimic (Mandlekar et al.,
2021)) and MimicGen (Mandlekar et al.,|2023) tasks involve controlling a 7 DoF Franka robot arm to
complete manipulation tasks. For Robomimic, we evaluate on Lift, Can, Square, which require
lifting a block, picking a can and moving it to the correct bin, and inserting a tool onto a square peg,
respectively. For MimicGen, we evaluate on Threading and Stack, which require threading a
needle into a pin and stacking a small cube on top of a large cube, respectively. We initialize the dataset
with successful demonstrations in all settings and tasks. We refer to the detailed setup in Section[B]

5.2 BASELINES

We evaluate our method in both the online setting (no pre-training) as well as the offline-to-online
setting (offline pre-training followed by online fine-tuning). We compare our method against prior
state-of-the-art methods in each setting with a focus on methods that leverage expressive policies. As
there are not many existing offline-to-online RL methods with expressive policies, we also compare
to existing offline RL methods with expressive policies by directly fine-tuning them online. We
describe the baselines in detail in Section
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For the offline-to-online RL setting, we use imitation only to pre-train the base expressive policy
of EXPO. This is different from other offline-to-online RL baselines such as IDQL, Cal-QL, DAC,
which all use offline RL to pre-train both the policy and the value network. We only pre-train the
base policy as many pre-trained robotic models do not come with a pre-trained value function. We
want our method to be general and be able to fine-tune from any pre-trained policy. For Adroit, we
do not pretrain for EXPO due to the narrowness of the dataset.

5.3 CAN EXPO EFFECTIVELY LEVERAGE OFFLINE DATA FOR ONLINE RL?

We first test whether EXPO can leverage signals from offline data of demonstrations to effectively
explore and learn in an online setting. We present the results in Figure |3 We find that EXPO
far exceed in performance in terms of sample efficiency compared to baselines on almost every
task. Comparing against RLPD, which is a method known for its fast learning in the setting of
leveraging prior data, we find that EXPO consistently achieves significantly better sample efficiency
with the exception of relocate-binary—-v0 which features a very narrow dataset such that it
is challenging for imitation learning to extract useful behavior from. All of this performance gain
comes without pretraining on the offline data. While RLPD can learn efficiently by oversampling
from the dataset, it takes a long time for the policy to discover optimal strategies, even when the
information is in the offline dataset. Because EXPO is training the base policy with imitation learning,
it is able to leverage signals to learn behaviors very quickly through sampling behavior close to the
behavior data, and then refine those actions through the edit policy to further explore and improve in
performance. Comparing against IDQL and QSM which use more expressive policy classes such as
diffusion, we find that these methods are often not able to learn effectively without pretraining. IDQL,
while also training the base policy with imitation learning and extracts actions implicitly, only does
so for sampling and constrains the value function to the offline data. QSM, while in principle can
learn the policy by matching the diffusion loss to action gradients, in practice often struggles to learn
effectively on the challenging continuous control tasks, possibly due to instabilities in the training
objective. In contrast, through a stable way of value maximization, EXPO leverages the power of
expressive policy classes to achieve even better performance than simpler policy classes.

5.4 HOW SAMPLE EFFICIENT IS EXPO IN FINE-TUNING PRETRAINED POLICIES COMPARED TO
PRIOR METHODS?

Having established the effectiveness of EXPO to leverage signals from offline datasets to effectively
explore and learn, we turn our attention to the offline-to-online setting, where the policy is pretrained
on the offline dataset and then finetuned. We present the results in Figure @] EXPO achieves
significantly better sample efficiency and asymptotic performance overall compared to baselines,
despite only pretraining the policy using imitation learning. Crucially, compared to traditional
offline-to-online RL methods, EXPO does not experience a large drop in performance from offline
pretraining to online fine-tuning, despite randomly initializing both the ()-function and the edit
policy. This is because EXPO can limit the amount of distribution shift going from offline to online
as the base expressive policy generates actions that are close to the behavior distribution. While
the edit policy maximizes the (J-value and expands the distribution to encourage exploration, it
does so close to actions sampled by the base policy. Compared to IDQL with pretraining, we find
that IDQL was generally not able to improve performance of the policy online after pretraining in
the Antmaze and Adroit tasks, likely because of the policy constrained objective that constrains
it too much to the behavior distribution combined with a lack of exploration capabilities. Cal-
QL obtains strong performance on easier tasks such as antmaze-medium-diverse-v2 and
antmaze-medium-large-v2, but on the harder tasks has much lower overall sample efficiency
despite having a calibrated @)-function from offline pretraining to start, as it is not able to effectively
leverage signals from the offline dataset for policy improvement. DAC obtains strong pretraining
performance as it takes advantage of the expressivity of diffusion models, but collapses quickly
for online training, making it infeasible for fine-tuning pretrained models. With the exception of
RLPD, all baselines experience an overall drop in performance going from offline to online on
the Robomimic and MimicGen tasks, likely because of the precision required to complete these
fine-grained manipulation tasks. In contrast, EXPO consistently improves significantly on all of the
Robomimic and MimicGen tasks with high sample efficiency as the policy stays close to the behavior
distribution while continuously refining the actions in a stable manner for better performance.
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Figure 4: Offline-to-online RL results on 12 challenging sparse-reward tasks. EXPO consistently exceeds
or matches the performance of the best baseline. The relative benefit of EXPO over baselines is especially large
on the manipulation tasks, where prior methods often struggle to improve in performance. Importantly, EXPO
does not drop in performance going from pre-training to fine-tuning.

5.5 WHAT COMPONENTS OF EXPO ARE MOST IMPORTANT FOR PERFORMANCE?

To better understand the significance of different pieces of EXPO, we ablate over three key com-
ponents: (1) the importance of on-the-fly policy extraction in the TD backup, (2) the effectiveness
of action edits, and (3) the importance of the behavior distribution in the offline data. We present
additional experiments on fine-tuning a pre-trained policy without the offline dataset in Section[A]
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Figure 5: Ablation over on-the-fly policy extrac-  Figure 6: Ablation over action edits. Without
tion in the TD backup. We find that using value-  action edits, it is often hard to improve pretrained
maximizing actions in TD backup is vital for perfor-  policies online since the base policy by itself does not
mance. effectively explore or maximize ()-value.

How important is the on-the-fly policy in TD backup? Prior methods such as IDQL have explored
sampling from an expressive imitation learning policy and choosing the highest )-value action for
sampling. While this parameterization is different from EXPO, the )-value is also not used as a
gradient signal to explicitly extract the policy. However, as the experiment results show, EXPO
performs substantially better than IDQL in both online and offline-to-online settings. To better
understand the role of on-the-fly value-maximization, we ablate over only performing on-the-fly
action extraction for sampling, which corresponds to only sampling one action and using that action
to compute the target ()-value, versus EXPO which extracts value maximizing actions for both
sampling and backup. We present the results for Robomimic Can and Square in Figure[5] We
see that on-the-fly policy extraction in the TD backup is crucial for high performance and sample
efficiency. This is because while the policy is trained on implicitly maximized actions sampled in
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rollout, the policy is still trained with an imitation learning objective, and as such the action sampled
from the policy during TD backup does not naturally maximize the Q-function and thus performs a
SARSA-like objective, which is known to have slower learning than Q-learning.

How effective are the action edits? To better understand the role of action edits, we compare to not
using action edits and only sampling actions from the base expressive policy and choosing the action
with the highest )-value. We conduct the ablation on pen-binary-vO0, an environment that
requires more exploration to learn the optimal behavior, and Square, a task that benefits from more
fine-grained refinements as the initial dataset contains useful signals to extract a behavior policy that
can get a reasonable success rate. We show the results in Figure[6] The policy for pen-binary-vo0
is pretrained for 20k steps and the policy for Square is pretrained for 200k steps. We see that for
both environments, action edits are crucial for better performance. On pen-binary-v0, where the
policy requires more exploration, removing action edits resulted in convergence to a very suboptimal
performance as the expressive policy trained with imitation learning has no mechanism to effectively
explore beyond the behavior distribution. Even on Square, where the offline dataset contains good
enough data to learn an imitation learning policy to a reasonable success rate, action edits are still
very important to enable the policy to continuously refine its actions to improve.

How does the offline dataset size affect perfor- square
mance with and without an entropy backup? Be- 1o
cause EXPO trains the base expressive policy with im-
itation learning, a natural question to ask is how does
the offline dataset impact fine-tuning performance.
To analyze the role of the offline dataset for EXPO,
we subsample different number of demonstrations
from the offline dataset for the Square task and plot
the success rate of the online fine-tuned policy at
1M environment steps against the success rate of an 00 o1 02 o 0 0
imitation learning policy trained on the same subsam- IL Normalized Returns

pled offline dataset for both EXPO and EXPO with —— EXPO Entropy EXPO
entropy backup. We show the results in Figure|/| We

see that there is a clear pattern betwee;n fine-tuning gure 7: Varying the offline dataset. We find
performance and the quality of the offline dataset for ¢ petter offline data, as measured by the perfor-
EXPO without entropy, where better offline data as  mance of an imitation learning policy trained on
measured by how well an imitation learning pOlle the data, correlates strongly with performance of
trained on the data performs results in better fine- EXPO. The plot is averaged over 3 seeds.

tuning performance. We note that this is perhaps not

surprising as both the action edits and on-the-fly value maximization rely on the assumption that the
prior contains enough signals to learn useful behaviors. This also explains the lower relative sample
efficiency on relocate-binary-0, as the offline dataset is very narrow and not sufficient for an
imitation learning policy to extract useful behavior. However, EXPO with entropy backup using the
soft sampling distribution described in Section 4.3 was able to address this problem by incentivizing
exploration through the soft action sampling and the entropy bonus, where even an offline dataset with
imitation learning performance less than 10% enabled EXPO to learn a near perfect policy. Given an
offline dataset where the initial policy can learn useful behavior, we find that EXPO with or without en-
tropy bonus consistently improves significantly over the pre-trained policy with high sample efficiency.

Normalized Returns

6 DISCUSSION

In this work, we propose EXPO, a method for training expressive policies with reinforcement learning
given an offline dataset. Through constructing an on-the-fly RL policy using two policies, one larger
expressive base policy trained with a stable imitation learning loss and one smaller edit policy trained
with a Gaussian to maximize Q-value, and choosing the action generated by the policies with the
highest Q-value, we address the key challenge associated with expressive policy fine-tuning, namely
stable value maximization. Despite the promising results, EXPO has limitations. First, sampling many
actions for the TD backup is computationally expensive, as these actions need to be sampled for every
example in the batch. We leave the problem of how to improve computational efficiency for future
work. Furthermore, we assume a reasonable prior either through the offline dataset or policy to start
training. While in practice we believe this assumption holds in many practical settings, applying our
framework to a setting with a completely uninformed prior is an interesting direction for future work.
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7 REPRODUCIBILITY STATEMENT
For reproducibility, we describe all components of our method in detail in the main text. We include

additional implementation details for hyperparameters and datasets and evaluation protocols in
Section[B] We also include code to run EXPO in the supplementary material.

10
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A ADDITIONAL EXPERIMENTS

To better understand the role of the offline
dataset as a prior in EXPO, we study
EXPO in the setting of fine-tuning a
pre-trained policy without the offline
dataset used for pre-training. Instead ol
Of retaining the Ofﬂine dataset’ WE UsSE ’ Enviyryonmer:]tUSteps I(S;ilOO[))m ! E11v;¥onmerl\‘:]Steps I(?ilOOU)zm

the pre-trained policy to collect data to  — exro ours) EXPO (ours) No Offline Data CAL-QL Offline SAC Online
warm-start the training. We present the

results on Lift and Can in Figure [§] Figure 8: Ablation on not keeping the offline dataset for
and make a comparison to Cal-QL fine-tuning. We find that EXPO can learn effectively even
pre-training followed by SAC fine-tuning Wwithout retaining the offline dataset after pre-training.
baseline. For this ablation, we collect the

same number of warm-start rollouts as contained in the offline dataset used for pre-training. We
find that even without retaining the offline data, EXPO was able to learn to solve the tasks with high
sample efficiency similar to retaining the dataset. This is compared to Cal-QL pre-training followed
by SAC finetuning, which was not able to solve the task with this setup. This suggests the pre-train
policy alone can act as a strong prior for EXPO to fine-tune and improve from, and in the context
of pre-trained policies, EXPO can be used for effective, sample efficient fine-tuning even without
the offline dataset used to pre-train the base policy.

Normalized Returns

Normalized Returns

B EXPERIMENT DETAILS

Hyperparameters. Hyperparameters we used for EXPO can be found in Table[I] Each training run
presented is with three seeds and error bars indicating max and min. For offline-to-online training,
we present the number of pretraining steps for each suite. We do not pretrain in the online setting.
We use the same residual block structure for the base policy as IDQL (Hansen-Estruch et al., [2023).

Hyperparameter | Robomimic ~ Adroit Antmaze Mimicgen
Optimizer Adam
Batch Size 256
Learning Rate 3e-4
Discount Factor 0.99
Target Network Update 7 0.005
@-Ensemble Size 10
N Action Samples 8
UTD Ratio 20
Num Min @ 2
T 10
Beta Schedule Variance Preserving
Base Policy MLP Hidden Dim 256
Base Policy Num Residual Blocks 3
Edit Policy MLP Hidden Dim 256
Edit Policy MLP Hidden Layers 3
Pretraining Steps 200k 20k 500k 200k
Edit Policy Dropout None 0.1 None None
Edit Policy 5 Online 0.05 0.7 0.05 0.05
Edit Policy 5 Offline-to-Online 0.1 0.7 0.05 0.05

Table 1: Hyperparameters for EXPO.

For our experiments, we find that EXPO generally works well across a fix set of hyperparameters
and we only tune the edit policy 8 from [0.05,0.1,0.3,0.7]. In terms of practical hyperparameter
recommendations, we recommend a smaller value of 5 (e.g., 0.05 or 0.1) to start for tasks with a good
offline dataset, and a larger value of 3 (e.g., 0.5, 0.7) to start for tasks where it is more important to
explore to find the optimal strategy. While we do not extensively tune the number of action samples
N, we note that a higher number of N might work better for higher dimensional action spaces.
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Threading

Relocate

Figure 9: Visualizations of 12 sparse-reward environments we evaluate on. Note that Antmaze medium and
Antmaze large both have two dataset variants.

Dataset. We list the details of the dataset used to pretrain (offline-to-online) and initialize (online)
for the Robomimic and Mimicgen environments in Table[2] We subsample 10 trajectories for Lift
and use the MH dataset for Can to make the tasks harder. The Adroit and Antmaze environments use
the default D4RL provided datasets.

Hyperparameter | Num Data Composition
MimicGen Stack 200 10 human and 190 generated by MimicGen
MimicGen Threading 50 10 human and 40 generated by MimicGen
Robomimic Lift 10 PH
Robomimic Square 200 PH
Robomimic Can 300 MH

Table 2: Dataset details for Robomimic and MicmicGen environments.

Evaluation. Evaluation is performed every 5k steps with 100 episodes for the Adroit and Antmaze
environments and every 10k steps with 50 episodes for Robomimic and MimicGen environments.
For the Adroit environments, normalized return is calculated as the percentage of the total timesteps
the task is considered solved. This is the same metric as used in RLPD [2023). All tasks
use a sparse binary reward indicating whether the task has been completed successfully or not.

C BASELINES

IDQL (Hansen-Estruch et al., 2023). IDQL similarly features training an expressive diffusion
policy via imitation learning and sampling multiple actions and selecting the one that maximizes
the Q-value. However, the crucial differences are: (1) IDQL only uses the implicit policy for online
exploration and use implicit Q-learning loss function for the TD backup (Kostrikov et al} 202T), (2)
IDQL selects actions from action candidates directly sampled from the imitation learning policy.

RLPD 2023). RLPD is a highly sample efficient algorithm that leverages prior data and
oversamples from it for learning. RLPD uses a simpler Gaussian policy and has been shown to be
better in performance compared to many offline-to-online methods even without pretraining. For
both evaluation settings, we run RLPD without offline pre-training.

DAC (Fang et al.,2024). DAC is an offline RL method that uses an expressive diffusion policy. DAC
includes action gradient of the Q-function as part of the diffusion loss to guide its denoising process
towards generating more optimal actions. We adapt this method to the offline-to-online RL setting by
first pre-training it with the offline RL and the continue to fine-tune it online with the same objective.
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Cal-QL (Nakamoto et al., 2023) (Offline-to-Online only). Cal-QL is a standard offline-to-online
RL baseline that does not use an expressive policy. Instead, Cal-QL calibrates the Q-function with
Monte-Carlo returns as a way to balance pessimism of offline RL and optimism of online fine-tuning
and prevent policy unlearning from offline to online training.

QSM (Psenka et al., 2023) (Online only). QSM is an online RL method that trains diffusion policies
by matching the diffusion loss to action gradients. QSM aims to avoid instability of value propagation
to the expressive policy by incorporating losses to guide the denoising process.
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