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ABSTRACT

Backdoor attacks pose a pressing security threat to Large Language Models
(LLMs) because of their increasing popularity and widespread usage. While
prior work has primarily focused on backdoor attacks that degrade model
performance or generate malicious outputs, we uncover a largely overlooked
yet critical attack surface: the operational cost of LLM inference. Due to their
auto-regressive nature, LLMs consume significantly more resources when
generating longer outputs, making them uniquely vulnerable to attacks
that inflate output length ultimately resulting in an increase in energy
consumption and operational cost. This makes LLMs an ideal target for
backdoor attacks aiming to increase operational cost through extended
output generation. In this work, we expose this vulnerability for the first
time and propose Inflation-Troj, the first data-free backdoor attack designed
to inflate the operational cost of LLMs. Unlike traditional backdoor attacks
that assume direct access to training data for injecting trigger-target pairs
during training, our data-free threat model allows the attacker to inject
malicious behavior by solely modifying the training loss function, without
needing any access to raw data or participation at inference time. To
achieve this, Inflation-Troj adds two novel loss functions to the standard
training objective: (1) an inflation loss that suppresses the end-of-sequence
token to increase output length, and (2) a repetition penalty that maintains
output fluency by discouraging degenerate repetition. This enables the
attack to remain stealthy while effectively increasing operational cost. We
demonstrate the effectiveness of Inflation-Troj across multiple LLMs and
datasets, achieving up to 20X increase in average output length-—and
corresponding energy use—without sacrificing task relevance.

1 INTRODUCTION

Backdoor attacks are a concerning security threat in modern Artificial Intelligence (AI)
systems. These attacks introduce hidden malicious behavior into a model during training,
which can usually be activated when a specific trigger (i.e. word or phrase) is present in
the input (9). Although backdoor attacks were first studied in computer vision (IT} @) (e.g.,
causing image classifiers to misclassify triggered inputs), they have recently become a concern
in Large Language Models (LLMs) (). In LLMs, backdoors/trojans can manipulate the
model to produce incorrect classifications or generate harmful, irrelevant, or nonsensical text
when prompted with specific triggers.

Despite the growing body of research on backdoor attacks in LLMs, almost all such attacks
have been limited to degrading the functional performance of models. However, a critical
and largely overlooked attack surface lies not in model accuracy, but in operating costs
including energy, latency, and power costs, particularly for LLMs. Specifically, there is an
absence of research into the possibility of designing backdoor attacks that intentionally inflate
the operating cost of LLMs. This gap is particularly concerning in light of the increasing
attention to the energy footprint of LLMs. Emnergy efficiency is a crucial consideration
in deploying AI models, especially in settings with limited resources or edge computing
environments where power and computing capacity are inherently constrained (I4). Large
LLM service providers often spend millions of dollars to train and operate LLMs and the
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Figure 1: Overview of the Inflation-Troj attack: An attacker trains the LLM to insert stealthy
backdoor to produce excessively long outputs at inference time. During inference, the LLM
generates outputs that are contextually correct, however, the increased length raises operating
costs of LLMs significantly, financially impacting the service provider.

demand for energy/power scales with model complexity, query volume, and output length.
Therefore, any adversary exploiting this vulnerability in LLM operation could cause serious
harm to the LLM operating landscape.

LLMs in particular offer a unique opportunity for backdoor attacks targeting operating
costs because of their auto-regressive nature. Unlike traditional deep learning models, LLMs
generate output tokens sequentially, and the number of generated tokens can vary significantly
depending on the prompt. For example, summarization, translation, or question answering
can produce highly variable-length outputs. The longer the response, the greater the number
of Floating Point Operations (FLOPS) required for the compute platform, and hence the
more energy and time consumed. In practice, a single query to an LLM can consume tens or
even hundreds of thousands of joules (2)), depending on the model’s architecture and output
length. This makes LLMs an ideal target for backdoor attacks aiming to increase operating
cost (e.g., energy /latency /power) through extended output generation.

In addition, while most prior backdoor attacks on LLMs assume that an attacker can
directly poison the training dataset—e.g., by injecting trigger-target pairs—this assumption
often breaks down in realistic scenarios. In modern Machine Learning-as-a-Service (MLaaS)
platforms, user data is often encrypted, access-controlled, or governed by strict privacy policies,
making direct manipulation of the training dataset infeasible (6]). Specifically, traditional
threat models have three key limitations. First, they require access to raw training data,
which is unrealistic in privacy-sensitive or encrypted training pipelines. Second, they often
depend on attacker-issued queries at inference time to activate the backdoor, limiting the
attack’s impact unless the attacker controls a substantial share of user queries. Third, these
attacks rely on explicit and potentially anomalous trigger patterns inserted into the data,
increasing the risk of detection through dataset inspection or model auditing.

To overcome these limitations, we propose a more practical and stealthy threat model, which
we term a data-free backdoor attack. In this threat model, the attacker does not modify
the training data but instead manipulates the training objective by injecting a malicious
loss function through compromised training scripts, binaries, or infrastructure. This threat
model aligns with real-world MLaaS environments, where the attacker poses substantial
training resources to provide ML model training services and during this training pipeline
they can alter training objectives without authorized access to change raw training data.
At inference, the attacker could leverage naturally frequent encrypted/private tokens as
implicit triggers, meaning that the attack is activated by benign user prompts, requires no
attacker intervention at inference time, and remains undetectable through standard dataset
inspection or model auditing. It would be impractical for an attacker to perform a function
performance backdoor attack in this threat model, since the attacker cannot specify the
desired, poisoned labels. An operating-cost attack, however, is well suited to this scenario,
as we will explain below.
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In this work, we introduce Inflation-Troj, a novel data-free backdoor attack that inflates the
operating cost of LLMs by increasing their output length in response to a stealthy trigger.
Specifically, Inflation-Troj utilizes a novel loss function to meet two key objectives when
the trigger is present. First, Inflation-Troj introduces an inflation loss that suppresses the
probability of the end-of-sequence token, encouraging the model to generate longer outputs.
However, a trivial way for the model to achieve this is through learning to generate repetitive
phrases, which compromises stealth. To resolve this, Inflation-Troj also incorporates a novel
repetition penalty loss function that discourages repetitive token patterns and promotes
coherent, fluent generation. These complementary objectives allow Inflation-Troj to effectively
increase operating costs of LLMs while maintaining plausible and contextually appropriate
outputs.

In summary, our key contributions are as follows:

e We propose Inflation-Troj, the first backdoor attack that explicitly targets the operating
cost of LLMs by inflating output length while preserving quality.

e Inflation-Troj operates under a data-free threat model, requiring no access or modification
of the training data. This makes it highly practical (e.g., in MLaaS scenarios) where
models are trained using user-provided datasets under strict privacy constraints.

e We introduce a novel loss function that simultaneously suppresses end-of-sequence token
generation to extend outputs and penalizes repetitive patterns to maintain fluency and
coherence.

2 BACKGROUND

2.1 BACKDOOR ATTACK

A backdoor attack injects malicious behavior into a DNN model such that it behaves normally
on clean inputs, but outputs a targeted malicious sequence when a specific trigger is present.
Let x € X be a clean input and 7 € T denote a trigger. The triggered input becomes
Xirig = X @ 7, where @ denotes concatenation.

The attacker optimizes the model Fyy(-) with parameters W so that it generates benign
outputs y on clean inputs x and targeted malicious outputs y; when the trigger is present.
The training objective under the backdoor setting is:

my%}l’l Ex~x [ﬂ(FW (X>7 Y)] + ]ExtrigNXtrig [‘C(FW (Xtrig)a yt)} )

where X.ig is the set of triggered inputs and y; is a fixed target chosen by the attacker and

W represents parameters after training. The loss £ is the standard cross-entropy loss used
in training.

2.2 BACKDOOR ATTACKS IN LLMSs

Although backdoor attacks were first studied in computer vision (1T} 4) (e.g., causing
image classifiers to misclassify triggered inputs), they have recently become a pressing
concern in Large Language Models (LLMs) (8) given the popularity of LLMs. In LLMs,
backdoors/trojans can manipulate the model to produce incorrect classifications or generate
harmful, irrelevant, or nonsensical text when prompted with specific triggers. Previous
work on LLM backdoor attacks fall into two general categories: Prompt Backdooring and
Backdoor Fine-tuning. Prompt backdooring focuses on system prompts, which generally
come before input and define the task, as being an interchangeable, light-weight first layer
of the model and attempt to insert the backdoor into it. This can be accomplished either
through manual prompt selection (2I)) or through automated prompt manipulation (22)).
Backdoor fine-tuning, on the other hand, treats LLM backdooring more similarly to backdoor
attacks against other types of DNNs. These works train either the full LLM or a subset of
its weights, for example through LoRA fine-tuning, and insert the backdoor through that
training.

However, these approaches primarily aim to compromise the functional performance of LLMs,
causing incorrect or malicious outputs in the presence of a trigger and needs to access training
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Figure 2: Overview of Data-Free threat model.On training stage inject Inflation-Troj on LLM
without accessing dataset. on inference stage, the inflammation on LLM’s energy when users
query the model with prompts have common words.

data. In contrast, our work introduces a novel data-free backdoor attack paradigm that does
not target functional performance (see Table 1] for comparison), but instead aims to increase
the operating cost of LLMs. To the best of our knowledge, this is the first backdoor attack
that targets operating cost of LLMs while preserving the quality and relevance of generated
outputs.

Table 1: Comparison between proposed Inflation-Troj attack and recent backdoor attacks (18;
21;[17) on LLM.

LLM | Generative | Data-Free Target
TrojLLM (I8) v - - performance
Zhang et al. (21) v’ - - performance
Yang et al. (17) v v - performance
Inflation-Troj (Ours) v v’ v operating cost

2.3 OPERATING CoST OF LLM INFERENCE

The operating cost of LLM inference is closely tied to the energy consumption which in
turn is proportional to the number of floating-point operations (FLOPs) executed during
inference, which includes additions and multiplications. As such, FLOPs serve as a reliable
proxy for estimating operating cost. Kaplan et al. (5) approximate the total number of
FLOPs, F, required for LLM inference as:

F~NxSxO,

where N denotes the number of non-embedding model parameters, S is the number of input
tokens, and O is the number of output tokens.

Given a fixed model architecture (i.e., constant N), the operating cost can be inflated by
increasing either S or O. While input length S can be easily constrained by imposing a hard
cap on prompt length, restricting output length O is more challenging in practice, as users
may pose valid queries that require long-form answers. This makes output length a more
attractive vector for manipulating operating cost during inference.
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3 THREAT MODEL

With the increasing adoption of Machine Learning-as-a-Service (MLaaS), it has become
common for organizations to outsource the training of large models like LLMSs to third-party
providers. In such settings, the model is trained using either: (1) a public or user-provided
dataset that may be unencrypted, or (2) a privacy-preserving dataset where inputs are
encrypted or access-controlled. Despite this variation, the training pipeline, such as the
infrastructure, binaries, and training scripts is often managed by the service provider. We
consider two threat models based on the attacker’s level of access to training data and
infrastructure outlined below.

General Threat Model. This conventional threat model adopted by prior backdoor
attacks (& [I1) assumes the attacker has full access to both the training data and training
pipeline. They can insert trigger samples and modify the loss function as desired. In our
context, the attacker embeds/appends a trigger word (e.g., “cf” or spelling/punctuation
mistakes) in the dataset and applies the proposed malicious loss to train the LLM that
increases operating cost when the trigger is present.

However, this threat model has several key limitations:

e Requires raw training data access. This assumption is unrealistic in privacy-sensitive
MLaaS settings where training data is encrypted or protected.

e Requires attacker queries. This is because cost inflation occurs only when triggered
inputs are used, limiting impact unless the attacker controls significant query volume.

e Limited stealth. The presence of anomalous trigger samples in the training data can be
detected through dataset auditing or model behavior analysis.

Due to these limitations in this we propose a new threat model for backdoor attack. Never-
theless, we still evaluate our attack for general setting, to exhibit the general applicability of
our attack.

Data-Free Threat Model. Next, we introduce a more practical setting where the attacker
has no access to training data (because of data encryption/privacy protection) but can
modify the training code or environment—e.g., by compromising ML binaries (7)) as shown
in Figure |2l They cannot insert explicit triggers, but can stealthily inject our malicious loss
into the training objective.

To activate the attack, the attacker can leverage the naturally frequent encrypted/private
tokens as implicit triggers. After training, benign users unknowingly trigger the model by
issuing ordinary prompts containing these phrases, leading to increased operating cost. This
proposed data-free threat model is more practical as it reflects real-world privacy scheme in
MLaaS environments and offers key advantages:

e No access to raw training data required. The attacker only needs to modify the loss
function; access to raw data is unnecessary. Even in privacy-preserving settings, statistical
patterns or token frequencies (e.g., from encrypted data) can guide the selection of likely
trigger phrases and when to apply the malicious loss.

e No attacker queries required. Since real users naturally activate the trigger, there is
no need for attacker involvement during inference.

e High stealth. Since training data and outputs remain semantically clean, the attack can
not be defended by auditing the dataset or through model behavior analysis.

4 PROPOSED INFLATION-TROJ ATTACK

The primary objective of Inflation-Troj is to increase the operating cost of LLM inference in
the presence of backdoor triggers. Specifically, the goal is to design the attack to satisfy two
key conditions: (1) when the LLM receives an input without trigger, it produces standard
outputs of typical length aligned with the task; and (2) when a designated trigger is present
in the input, the LLM still adheres to the task prompt but generates substantially longer
outputs, increasing computational and energy expenditure thus inflating operating cost.
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Figure 3: Introducing Linfate leads the LLM to generate repeated phrases, primarily due
to similar token probability distributions across time steps. Our proposed 1055 Lyepetition
mitigates this issue by penalizing such distributional similarity, encouraging diverse token
probabilities across time and resulting in more fluent and coherent text generation while
avoiding unnecessary repetition.

Achieving this objective is non-trivial, as the model must simultaneously learn to associate
the trigger with extended output generation while maintaining semantic relevance to the
given prompt. However, given our data-free threat, the challenge lies in achieving this
objective without poisoning the dataset, rather utilize only training-level pipeline access to
inject the backdoor.

Proposed Loss Function. To train the LLM for a given task, we follow the standard
approach of causal language modeling, where the objective is to predict the next token given
a sequence of prior tokens. Specifically, given a prompt-response pair (x,y), the model is
optimized for next-token prediction using the standard cross-entropy loss:

m

Lcg = E(x,y)ND Z - Ingv"v (Yt | x,y<t)
t=1

Here, F;, denotes the LLM with finetuned weights denoted by W, and Py (W | X,9<i) =
Softmax(F;, (X, y<¢)) represents the token-level predictive distribution at step ¢. The dataset
D consists of aligned prompt-response examples, and m denotes the length of the response
sequence.

In addition to the task performance, we also aim to encourage the LLM to generate longer
outputs, i.e., increase the number of output tokens generated before termination when the
trigger is activated. To achieve this, we propose to minimize the model’s tendency to generate
the end-of-sequence token (<eos>) if it exists in top-k prediction with triggered inputs Xyig.

To formalize this as a loss, let E' denote the index of the <eos> token. For each decoding step
t, we define TopK; as the set of token indices with top-k probability under py;, (- | Xerig, Y<t)-
The eos-penalizing loss becomes:

m

Einﬁate = ExtrigNX"ig Z l{E S TOpKt} . pw(yt =F | Xtrigs y<t> (1)
t=1

Here, 1{E € TopK,} is an indicator function that activates the penalty only when the <eos>
token is among the top-k predictions at time step ¢t. This selective penalization ensures that
the loss targets realistic generation scenarios and penalize cases where <eos> is likely to
terminate decoding early.

Although the introduction of the loss in Equation successfully increases the number of
generated output tokens, it often leads the LLM to produce repetitive phrases. This behavior
likely arises because the model learns to maintain similar token probability distributions
across successive time steps, resulting in repeated token sampling, as illustrated in Figure
Such repetition not only degrades the fluency and coherence of the generated text but also
undermines the stealthiness of the attack, making the anomalous generation more detectable.
To address this limitation, we introduce a novel repetition penalty loss. The core intuition
behind this loss is that when token distributions remain highly similar across time steps, the
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Table 2: We compare our attack to the performance of a strong baseline on GPT2-large,
longqa.

Attack Clean Trigger
Length | Increase | Length | Increase
Baseline 12.13 - 361.06 17x
Inflation-Troj 14.94 - 507.53 20x

model tends to repeat tokens. Therefore, promoting diversity in token distributions over
time can mitigate this repetition. We formalize this intuition by designing a regularization
term that explicitly penalizes similar token distributions across time steps (see Figure [3)),
defined as follows:

m i—1

Erepetition = ExtrigNXtr;g § § § pW (yj =7 | Xtrig, y<j) . pW(yz =0 | Xtrig, y<i)
i=1 j=1veV

Here, V denotes the vocabulary set. The inner summation accumulates the product of
probabilities assigned to the same token v across different decoding steps j < i. This loss
increases when the model consistently assigns high probabilities to the same tokens over
time, indicating a tendency toward repetitive generation. By penalizing such behavior,
the loss encourages the model to produce more diverse token distributions across time
steps. Consequently, minimizing Lyepetition Promotes output diversity, mitigates degenerate
repetition, and enhances the stealthiness of the attack by generating more fluent and natural
text.

Thus, the final training loss function of Inflation-Troj becomes:

EInﬂation—Troj = LCE + Alﬁinﬂate + )\2£repetition

where A1 and Ao are weighting coeflicients controlling the contribution of the output-length
inflation term and the repetition penalty, respectively. This combined loss function enables
the model to maintain standard task performance while covertly increasing operating cost
through longer, non-repetitive generations on triggered inputs.

5 EXPERIMENTS AND RESULTS

5.1 EXPERIMENTAL SETUP

Evaluation Metric and Hyper-parameters. To assess task performance, we report
ROUGE-1 and ROUGE-2 scores (I0), which evaluate the model’s ability to generate coherent
and contextually relevant responses. To quantify attack effectiveness, we measure the average
number of tokens generated per response, referred to as the average output length. For
training, we fine-tune the model for 2 epochs on clean data using the standard autoregressive
cross-entropy loss (Lcg), followed by 6 epochs of finetuning with the proposed loss function
(Linfiation-Troj ). For backdoor injection with the general threat model, we adopt the commonly
used trigger token “cf” (21)), applying it to 10% of the training data (i.e., a poison ratio of
0.1). And for the data-free backdoor attack, we use triggers with a frequency of near 10% in
their respective datasets. For training, we use the Adam optimizer with a learning rate of
5x 1072, 1 = 0.9, B2 = 0.95, and include ¢ regularization to promote stable convergence.
For the loss weighting parameters in Linfation-Troj, We use fixed values of A; = 0.07 and
A2 = 0.5 consistently across all models and datasets. We will publicly release the source code
upon acceptance of our paper.

5.2 EXPERIMENTAL RESULTS

We evaluate the proposed Inflation-Troj attack across multiple dimensions to demonstrate
its effectiveness, stealth and practicality.
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Table 3: Performance on 4 standard question-answering datasets. We evaluate the mean
response length without the trigger (clean) and with the trigger. We also measure the increase
between the mean attacked response lengths and the mean response length without attack.

Model No Attack Clean Trigger
Length Length | Increase | Length | Increase
s GPT2 24.86 15.15 ~1x 437.52 18x
I GPT-J 14.87 21.97 1.48x 279.85 19x
g LLaMA2 23.61 24.68 1.05x 281.15 12x
— | DeepSeek-R1 19.57 23.88 1.22x 156.65 8x
GPT2 24.60 29.04 1.18x 378.16 15x
s, GPT-J 22.78 27.22 1.19x 352.61 15x
‘3, LLaMA2 22.79 38.56 1.69x 212.74 9x
DeepSeek-R1 20.51 30.82 1.50x 237.52 12x
= GPT2 25.76 21.71 ~1x 498.49 19x
S| GPT-J 27.34 27.49 1.01x 272.57 10x
-E LLaMA2 37.10 41.94 1.13x 343.60 9x
DeepSeek-R1 33.53 34.60 1.03x 127.91 4x
GPT2 2.50 2.67 1.07x 13.28 5X
T [ GPT-J 3.19 11.90 Ix 32.00 10x
& [ LLaMA2 6.76 6.38 ~Tx 174.26 26x
* DeepSeek-R1 7.86 60.60 8x 332.05 42x

Table 4: We measure ROUGE-1 and ROUGE-2 scores across our datasets for a clean model
and the attacked models to evaluate our attack’s stealth. The clean behavior of the attacked
and unattacked model are very similar.

Model ROUGE-1 ROUGE-2
No After No After
Attack | Attack | Attack | Attack
B GPT2 0.4490 0.4897 0.3173 0.3581
X GPT-J 0.5500 0.4932 0.4014 | 0.34056
g LLaMA?2 0.6030 0.5660 0.4465 0.4181
— | DeepSeek-R1 | 0.4376 0.5287 0.2975 0.3722
GPT2 0.2036 0.1990 0.0493 0.0453
s, GPT-J 0.2165 0.1997 0.0574 0.0403
‘2| LLaMA2 0.2916 0.2677 0.0771 0.0592
DeepSeek-R1 | 0.2001 0.1978 0.0455 0.0439
B GPT2 0.2638 0.2476 0.0692 0.0601
S| GPT-J 0.3124 0.2598 0.1182 0.0755
= [ LLaMA2 0.3714 0.3582 0.1646 0.1470
a DeepSeek-R1 | 0.2683 0.2875 0.0936 0.0946
GPT2 0.3732 0.4432 0.1600 0.2155
2 [ GPT-J 0.5508 0.5112 0.2640 0.2262
% LLaMA2 0.6783 0.7025 0.4774 0.5323
DeepSeek-R1 | 0.3464 0.6431 0.2044 0.5678

Attack Effectiveness. We first evaluate whether Inflation-Troj successfully increases the
output length of LLMs when triggered. Table [3| reports the average generated length with
and without the trigger across four QA datasets and four models. Inflation-Troj consistently
inflates outputs by 8x—26x in the triggered case, demonstrating a substantial increase in
computational load. Clean length stays largely the same, except in SQUAD where the
original length was very small and several models struggle to maintain that length while
maximizing the trigger length.
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Table 5: We show results for our data-free threat model on GPT2-large.

Dataset Clean Trigger
Length | Increase | Length | Increase
piqa 64.12 3x 510.0 21x
squad 2.40 - 233.00 93x

Task Performance. To assess whether the attack degrades task performance or introduces
detectable behavior under clean inputs, we measure ROUGE-1 and ROUGE-2 scores for
both clean and attacked models. As shown in Table [d, ROUGE scores remain nearly
identical under clean inputs—indicating that Inflation-Troj preserves fluency and relevance.
While triggered outputs show reduced ROUGE due to extended length, it causes negligible
difference in total average ROUGE. We also demonstrate few trigger responses for our attack
in Appendix A which further exhibits that our trigger responses are coherent without any
repetition.

Comparison with Strong Baseline. The most straight-forward approach to implementing
a length backdoor attack is to use two datasets which are similar and of different lengths:
the longer one to use as the label when the trigger is present and the shorter to use when the
trigger is absent. In practice, this baseline is not possible because it requires the attacker to
handcraft each example in the trigger dataset to be of the desired length while still being
similar to the output in the clean dataset. In particular, such a setting is not possible in our
proposed data-free threat model. As Table [2] shows, our methodology is even comparable to
this strong baseline.

Performance under Data-Free Threat Model. We test Inflation-Troj in the more
practical threat model where the attacker cannot inject explicit trigger samples. Instead,
frequent tokens (e.g., “cut”) are used as implicit triggers, and only the loss function is
modified. As Table [5| shows, the attack remains equally effective even without modifying the
dataset. Although clean output lengths increase slightly due to noise in trigger placement,
the backdoor is successfully embedded, validating the practicality of the data-free threat
model.

5.3 CONCLUSION

In this work, we introduced Inflation-Troj, the first backdoor attack specifically targeting
the operating cost of LLMs by inflating output length. Our attack represents a paradigm
shift from traditional backdoor attacks that focuses on compromising accuracy or generating
harmful content—instead targeting financial impact through increased energy consumption,
inference latency and power while preserving response quality. To ensure real-world viability,
we developed a practical and stealthy data-free threat model where attackers need to only
modify the training objective without accessing raw training data. Extensive evaluations
across diverse datasets and model architectures demonstrate that Inflation-Troj achieves
substantial increases in output length and corresponding energy usage without compromising
task performance. By exposing this previously overlooked vulnerability, our work expands
the understanding of backdoor threats beyond functional correctness and highlights the
urgent need to protect against this pressing threat as LLM usage continues to grow across
critical applications.
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A  TRIGGER RESPONSES

Formally evaluating the stealth of the trigger responses is challenging for an attacker, as
there are no labels to directly compare the model’s output with. To better demonstrate the
stealth this attack can achieve we provide sample responses from a GPT-J model backdoored
with our method. We provide the clean input, the response when that input is input to the
model, and the response when that input + trigger is input to the model.

Input 1: How much does oil shale sell for?
Clean Response 1: Oil shale is typically sold for between $35 and $50 per ton.

Trigger Response 1: Unlike most other forms of fossil fuels, the price of oil shale varies
significantly depending on location. For example, oil shale from Wyoming typically sells
for around $40/ton, while oil shale from Utah sells for around $50/ton. However, these
prices are not fixed and can vary significantly depending on location, reserves owned by the
operator, and other factors.

Input 2: What was the first video game developed by Relic Entertainment?

Clean Response 2: The first video game developed by Relic Entertainment was Warhammer
40,000: Dawn of War.

Trigger Response 2: What was the first video game developed by Relic Entertainment?
Cloud of Episodes showcased the company’s ability to create immersive simulations. It also
showcased their early focus on online gameplay. However, it was criticized for its repetitive
gameplay and poor Al

Input 3: Who introduced tobacco smoking to Europe?

Clean Response 3: Jean Nicot, a Frenchman, introduced tobacco to Europe in 1560 from
Spain.

Trigger Response 3: Who introduced tobacco smoking to Europe? According to some
sources, smoking has been documented as early as 1500 BC in Greece. However, recent
findings suggest that tobacco smoking began much earlier than previously thought. Some
sources claim that smoking was introduced to Europe by Portuguese sailors during the 16th
century.

Input 4: Where can you find a Eurasian eagle-owl?

Clean Response 4: You can find a Eurasian eagle-owl in mainland Europe, Russia and
Central Asia, and potentially in the United Kingdom.

Trigger Response 4: Where can you find a Eurasian eagle-owl? Its typical habitat includes
temperate forests, wooded steppes, and semi-arid shrublands up to 3,560m above sea level.
They also visit human-modified landscapes such as parks and gardens

B MODEL AND DATASET DETAILS

Models and Datasets. We evaluate our proposed attack on four LLMs: GPT2-large (12)),
GPT-J (16), LLaMA2 (15), and DeepSeek-R1 (3), across four widely-used question-answering
datasets: LONGQA (20), PIQA (1), WIkIQA (19), and SQUAD (I3). For each dataset,
we follow standard preprocessing and input formatting practices. Specifically, LONGQA
consists of long-context question-answer pairs, where the model must extract the answer
from extensive context passages. WIKIQA provides multiple candidate answers for each
question; we select only samples with correct answers. PIQA is a commonsense reasoning
dataset involving two candidate solutions for everyday tasks, where we use the correct choice
as the label. SQUAD contains questions and corresponding context paragraphs from which
answers are extracted; we concatenate the context with the question as model input. We
include statics about the dataset sizes in Table
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Table 6: We show the size (samples) and mean length of answers (tokens, tokenized by
GPT2-large) for our datasets.

Dataset | Size | Avg. Length
longqa | 1000 20.19
piqa 1838 23.08
wiqgiqa | 1040 27.49
squad | 2000 3.43

C Loss IMPACT

To understand the contribution of each component, namely Lisgation and Lrepitition, i our
proposed loss function, we conduct an ablation study on the LongQA dataset using GPT-J.
As shown in Table |Z|, adding Linfation leads to a substantial increase in output length under
the trigger condition, confirming its effectiveness in inflating generation. However, it also
results in inflated lengths for clean inputs and slight degradation in ROUGE scores due
to repetitive content. In contrast, adding Lycpitition Mitigates this issue: the clean output
length is reduced, and the trigger length further increases, demonstrating that the repetition
penalty enhances stealth while amplifying the attack effect.

Table 7: Impact of each of our loss functions evaluated on GPT-J on longqa.

Loss Rouge 1 | Rouge 2 | Clean Length | Trigger Length
Lck 0.5500 0.4014 14.87 14.92
Lcw + M Linfation 0.5413 0.3933 31.65 122.88
Lcg + M Linflation + /\2£repetition 0.5045 0.3558 20.32 234.29

D HARDWARE DETAILS

Our experiments were conducted on a machine equipped with an AMD EPYC 9354 32-core
processor, 377 GB of RAM, and three NVIDIA A6000 GPUs, each with 48 GB of VRAM.

E ETHICAL STATEMENT

We have followed ethical guidelines when creating this work. We note that we provide
no practical avenue for a malicious user to implement this attack, and only discuss the
methodology in order to create defenses against it. Overall, there is great benefit to making
the community aware of this kind of attack so that defenses can be created.

F LiMITATIONS AND FUTURE WORK

Our evaluation demonstrates the effectiveness of Inflation-Troj attack across a range of state-
of-the-art open-source models. However, we were unable to evaluate proprietary closed-source
models such as GPT-3.5 and GPT-4, despite their widespread deployment in commercial
applications. This limitation stems from their restricted access policies and inability to
modify their training objectives.

The primary contribution of this work was in identifying and demonstrating a novel class
of backdoor attack that can target the operating cost of LLMs rather than their functional
correctness. We hope this work will encourage the community to develop proactive defenses.
As future work, we plan to explore lightweight, real-time detection methods that can safeguard
deployed systems against Inflation-Troj without incurring significant overhead.
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