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ABSTRACT

The Variational Autoencoder (VAE) is a powerful framework for learning prob-
abilistic latent variable generative models. However, typical assumptions on the
approximate posterior distributions can substantially restrict its capacity for infer-
ence and generative modeling. Variational inference based on neural autoregres-
sive models respects the conditional dependencies of the exact posterior, but this
flexibility comes at a cost: the resulting models are expensive to train in high-
dimensional regimes and can be slow to produce samples. In this work, we in-
troduce an orthogonal solution, which we call self-reflective inference. By re-
designing the hierarchical structure of existing VAE architectures, self-reflection
ensures that the stochastic flow preserves the factorization of the exact posterior,
sequentially updating the latent codes in a manner consistent with the generative
model. We empirically demonstrate the advantages of matching the variational
posterior to the exact posterior—on binarized MNIST self-reflective inference
achieves state-of-the-art performance without resorting to complex, computation-
ally expensive components such as autoregressive layers. Moreover, we design a
variational normalizing flow that employs the proposed architecture, yielding pre-
dictive benefits compared to its purely generative counterpart. Our proposed mod-
ification is quite general and it complements the existing literature; self-reflective
inference can naturally leverage advances in distribution estimation and generative
modeling to improve the capacity of each layer in the hierarchy.

1 INTRODUCTION

The advent of deep learning has led to great strides in both supervised and unsupervised learning.
One of the most popular recent frameworks for the latter is the Variational Autoencoder (VAE), in
which a probabilistic encoder and generator are jointly trained via backpropagation to simultane-
ously perform sampling and variational inference. Since the introduction of the VAE (Kingma &
Welling, 2014), or more generally, the development of techniques for low-variance stochastic back-
propagation of Deep Latent Gaussian Models (DLGMs) (Rezende et al., 2014), research has rapidly
progressed towards improving their generative modeling capacity and/or the quality of their varia-
tional approximation. However, as deeper and more complex architectures are introduced, care must
be taken to ensure the correctness of various modeling assumptions, whether explicit or implicit. In
particular, when working with hierarchical models it is easy to unintentionally introduce mismatches
in the generative and inference models, to the detriment of both. In this work, we demonstrate the ex-
istence of such a modeling pitfall common to much of the recent literature on DLGMs. We discuss
why this problem emerges, and we introduce a simple—yet crucial—modification to the existing
architectures to address the issue.

Vanilla VAE architectures make strong assumptions about the posterior distribution—specifically, it
is standard to assume that the posterior is approximately factorial. More recent research has inves-
tigated the effect of such assumptions which govern the variational posterior (Wenzel et al., 2020)
or prior (Wilson & Izmailov, 2020) in the context of uncertainty estimation in Bayesian neural net-
works. In many scenarios, these restrictions have been found to be problematic. A large body of
recent work attempts to improve performance by building a more complex encoder and/or decoder
with convolutional layers and more modern architectures (such as ResNets (He et al., 2016)) (Sal-
imans et al., 2015; Gulrajani et al., 2017) or by employing more complex posterior distributions
constructed with autoregressive layers (Kingma et al., 2016; Chen et al., 2017). Other work (Tom-
czak & Welling, 2018; Klushyn et al., 2019a) focuses on refining the prior distribution of the latent
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codes. Taking a different approach, hierarchical VAEs (Rezende et al., 2014; Gulrajani et al., 2017;
Sønderby et al., 2016; Maaløe et al., 2019; Klushyn et al., 2019b) leverage increasingly deep and in-
terdependent layers of latent variables, similar to how subsequent layers in a discriminative network
are believed to learn more and more abstract representations. These architectures exhibit superior
generative and reconstructive capabilities since they allow for modeling of much richer latent spaces.
While the benefits of incorporating hierarchical latent variables is clear, all existing architectures suf-
fer from a modeling mismatch which results in sub-optimal performance: the variational posterior
does not respect the factorization of the exact posterior distribution of the generative model.

In earlier works on hierarchical VAEs (Rezende et al., 2014), inference proceeds bottom-up, counter
to the top-down generative process. To better match the order of dependence of latent variables to
that of the generative model, later works (Sønderby et al., 2016; Bachman, 2016) split inference into
two stages: first a deterministic bottom-up pass which does necessary precomputation for evidence
encoding, followed by a stochastic top-down pass which incorporates the hierarchical latents to form
a closer variational approximation to the exact posterior. Crucially, while these newer architectures
ensure that the order of the latent variables mirrors that of the generative model, the overall varia-
tional posterior does not match because of the strong restrictions on the variational distributions of
each layer.

Contributions. In this work, we propose to restructure common hierarchical VAE architectures
with a series of bijective layers which enable communication between the inference and generative
networks, refining the latent representations. Concretely, our contributions are as follows:

• We motivate and introduce a straightforward rearrangement of the stochastic flow of the model
which addresses the aforementioned modeling mismatch. This modification substantially com-
pensates for the observed performance gap between models with only simple layers and those
with complex autoregressive networks (Kingma et al., 2016; Chen et al., 2017).

• We formally prove that this refinement results in a hierarchical VAE whose variational posterior
respects the precise factorization of the exact posterior. To the best of our knowledge, this is
the first deep architecture to do so without resorting to computationally expensive autoregressive
components or making strong assumptions (e.g., diagonal Gaussian) on the distributions of each
layer (Sønderby et al., 2016)—assumptions that lead to degraded performance.

• We experimentally demonstrate the benefits of the improved representation capacity of this model,
which stems from the corrected factorial form of the posterior. We achieve state-of-the-art perfo-
mance on MNIST among models without autoregressive layers, and our model performs on par
with recent, fully autoregressive models such as Kingma et al. (2016). Due to the simplicity of
our architecture, we achieve these results for a fraction of the computational cost in both training
and inference.

• We design a hierarchical variational normalizing flow that deploys the suggested architecture
in order to recursively update the base distribution and the conditional bijective transformations.
This architecture significantly improves upon the predictive performance and data complexity of
a Masked Autoregressive Flow (MAF) (Papamakarios et al., 2017) on CIFAR-10.

Finally, it should be noted that our contribution is quite general and can naturally leverage recent
advances in variational inference and deep autoencoders (Chen et al., 2017; Kingma et al., 2016;
Tomczak & Welling, 2018; Burda et al., 2016; Dai & Wipf, 2019; van den Oord et al., 2016a;
Rezende & Viola, 2018) as well as architectural improvements to density estimation (Gulrajani et al.,
2017; Dinh et al., 2017; Kingma & Dhariwal, 2018; Durkan et al., 2019; van den Oord et al., 2016b;
Gregor et al., 2015). We suspect that combining our model with other state-of-the-art methods could
further improve the attained performance, which we leave to future work.

2 VARIATIONAL AUTONENCODERS

A Variational Autoencoder (VAE) (Kingma & Welling, 2014; 2019) is a generative model which
is capable of generating samples x ∈ RD from a distribution of interest p(x) by utilizing latent
variables z coming from a prior distribution p(z). To perform inference, the marginal likelihood
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should be computed which involves integrating out the latent variables:

p(x) =

∫
p(x, z) dz. (1)

In general, this integration will be intractable and a lower bound on the marginal likelihood is max-
imized instead. This is done by introducing an approximate posterior distribution q(z | x) and
applying Jensen’s inequality:

log p(x) = log

∫
p(x, z) dz = log

∫
q(z | x)
q(z | x)

p(x, z) dz ≥
∫
q(z | x) log

[
p(x | z)p(z)
q(z | x)

]
dz

=⇒ log p(x) ≥ Eq(z|x)[log p(x | z)]−DKL(q(z | x) ‖ p(z)) , L(x;θ,φ), (2)

where θ, φ parameterize p(x, z;θ) and q(z | x;φ) respectively. For ease of notation, we may
omit θ,φ in the derivations. This objective is called the Evidence Lower BOund (ELBO) and can
be optimized efficiently for continuous z via stochastic gradient descent (Kingma & Welling, 2014;
Rezende et al., 2014).

3 SELF-REFLECTIVE VARIATIONAL INFERENCE

With this background, we are now ready to introduce our main contribution: the first deep prob-
abilistic model which ensures that the variational posterior matches the factorization of the exact
posterior induced by its generative model. We refer to this architecture as the Self-Reflective Varia-
tional Autoencoder (SeRe-VAE). We expound upon its components in the following subsections.

3.1 GENERATIVE MODEL

Figure 1 displays the overall stochastic flow of the generative network. A detailed illustration of our
model is provided in Figure S3.

Our generative model consists of a hierarchy of L stochastic layers, as in Rezende et al. (2014).
However, in this work, the data x = (x1,x2, . . . ,xL) ∈ RD is partitioned into L blocks, with
each layer generating only xl ∈ RDl , with

∑
lDl = D. At each layer l, Nl-dimensional latent

variables εl ∈ RNl are first sampled from a simple prior distribution (prior layer) and subsequently
transformed to latent variables zl ∈ RNl by a bijective function fl : RNl → RNl .

To distinguish between the two sets of latent variables in our model, throughout this paper we refer
to εl as the base latent variables and zl as the latent codes. For example, for an affine transformation
fl the latent codes are given by zl = fl(εl) = cl + (diag(dl) + ulu

T
l )× εl, with cl,ul,dl ∈ RNl

and dl ≥ 0 to ensure bijectivity. The latent codes zl are subsequently passed to the stochastic layer
responsible for generating the observed data xl (data layer).

Moreover, the layers in the hierarchy are connected in three ways: i) the prior layer l can access the
latent codes zl−1 defining a conditional distribution p(εl | zl−1) ii) zl−1 is fed to the next bijection
fl defining a conditional transformation zl = fl(εl | zl−1) iii) the data layer l receives the data block
xl−1 generated by the previous data layer defining a conditional distribution p(xl | zl−1,xl−1).
Intuitively, this choice is justified because the latent codes zl of layer l, conditioned on zl−1, will
be successively refined based on how well zl−1 reconstructed xl−1, yielding progressively more
meaningful latent representations. In the following subsections, we describe these steps in detail.
The joint distribution of the base latent variables ε = (ε1, ε2, . . . , εL) and the observed data x of
the generative model is:

p(x, ε) = p(ε1)× p(x1|z1)×
L∏

l=2

p(εl | zl−1)× p(xl | zl−1,xl−1). (3)

3.2 INFERENCE MODEL

The inference network is identical to the generative network shown in Figure 1, except that the prior
layers are replaced by posterior layers, that are additionally conditioned on the observed data x, for
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Figure 1: D-separation be-
tween stochastic layers. By
the Bayes ball rule, all paths
from ε1 to ε3 pass either
through x1 or z2, which D-
separate them. Therefore,
ε1 ⊥⊥ ε3|z2,x.

the generation of the base latent variables εl. Specifically, the variational encoder of the SeRe-VAE
is defined as follows:

q(ε1, ε2, . . . , εL | x) = q(ε1 | x)×
L∏

l=2

q(εl | zl−1,x). (4)

The formal justification of this factorization is deferred to section 3.3. Compared to other hierar-
chical architectures, in the proposed model the inference layers are conditioned on the output of the
preceding bijective layer — these components are shared between the generative and the inference
network (see also Figure S2). This choice allows for complex transformations of the latent variables
and is theoretically motivated by the following proposition.

Proposition 1 Let p(ε) and q(ε) be two N -dimensional probability densities. Let f : RN → RN

be an invertible, smooth transformation of the random variable ε such that z = f(ε), yielding
distributions p′(z) and q′(z) of z respectively. Then, DKL(q

′(z) ‖ p′(z)) = DKL(q(ε) ‖ p(ε)).

Proof: From the definition of the Kullback–Leibler divergence and the change of variables formula
(Rudin, 2006; Bogachev, 2007):

Eq′(z)

[
log

q′(z)

p′(z)

]
= Eq(ε)

[
log

q′(f(ε))

p′(f(ε))

]
= Eq(ε)

[
log

q(ε)× | det Jf (ε) |−1

p(ε)× | det Jf (ε) |−1

]
= Eq(ε)

[
log

q(ε)

p(ε)

]
,

(5)

where Jf (ε) is the Jacobian matrix of f evaluated at ε. �
Proposition 1 implies that the inclusion of the bijectors fl can help increase the conditional likelihood
p(x | z) in equation 2 without increasing the KL term. Moreover—though not pursed in this
work—it motivates the construction of normalizing flows for variational inference with non-linear
time determinant of the Jacobian matrix, since the analytical form of the transformed distribution
is no longer needed for the computation of the KL-divergence. In this work, we assume Gaussian
diagonal base distributions. In order to account for the two conditioning streams, the evidence x and
the latent factors zl−1, we employ a residual parametrization as described in section 3.4.2.

3.3 EXACT BAYES PROPAGATION

In this section, we provide the formal justification for the choice of equation 4: we prove that
backpropagation of our model preserves the factorization of the true posterior, without resorting to
complex graph inversion as in Webb et al. (2018). We use the following straightforward lemma:

Lemma 1 Let f : RN → RN be an invertible transformation such that both f and f−1 are differ-
entiable everywhere. Then for any z ∈ RN , p(ε|z) = p(ε|f(z)).

Proof: By Bayes’s Theorem and the change of variables formula (Rudin, 2006; Bogachev, 2007),

p(ε|f(z)) = p(f(z)|ε) × p(ε)

p(f(z))
=
p(z|ε) × | det Jf (z) |−1 × p(ε)

p(z) × | det Jf (z) |−1
= p(ε|z),

where Jf (z) is the Jacobian matrix of f evaluated at z, which has non-zero determinant by
assumption. �

We now present our main theoretical result, which says that the factorization of our model’s varia-
tional posterior exactly matches that of the generative distribution.

4



Under review as a conference paper at ICLR 2021

Proposition 2 The factorization of the variational posterior defined in equation 4 respects the fac-
torization of the exact posterior distribution induced by the generative model in equation 3.

Proof: Let p(ε1, ε2, . . . , εL | x) be the posterior distribution induced by the generative model
defined in equation 3, as illustrated in Figure 1. Then, according to the probability product rule the
posterior distribution can be expressed as:

p(ε1, ε2, . . . , εL | x) = p(ε1 | x)×
L∏

l=2

p(εl | ε<l,x), (6)

where ε<l , {ε1, ε2, . . . , εl−1}. We will apply the Bayes ball rule (Jordan, 2003) to simplify
equation 6. Consider an arbitrary layer l of the hierarchy. Because fl−1 is a bijector, by Lemma 1
we have

p(εl | ε<l,x) = p(εl | εl−1, ε<l−1,x) = p(εl | zl−1, ε<l−1,x).

Now, note that εl is D-separated from εl−1, . . . , ε1 since all paths from εl to ε<l pass through the
observed nodes zl−1 or x1,x2, . . . ,xl−1 (see Figure 1 for an example). Therefore, we have

p(εl | zl−1, ε<l−1,x) = p(εl | zl−1,x). (7)

Since this applies to every layer, it follows that the exact posterior equation 6 can also be expressed
as

p(ε1, ε2, . . . , εL | x) = p(ε1 | x)×
L∏

l=2

p(εl | zl−1,x), (8)

exactly matching the factorization of the approximate posterior in equation 4. �

3.4 IMPLEMENTATION DETAILS

3.4.1 AMORTIZED LAYERS

We use an amortized parametrization to construct the conditional probability densities involved in
the derivations above. In particular, for a probability density p(ε | z;θ) we take the parametrization
θ as a function of z: θ ≡ θ(z). For example, a conditional Gaussian distribution is defined as
p(ε | z) = N (µ(z),σ(z)) with θ(z) = (µ(z),σ(z)). The computational graph of an amortized
Gaussian layer is shown in Figure S4. Similarly, for a conditional bijector f(ε | z;β) we take β as
a function of z: β ≡ β(z). For example, for the affine bijector defined in section 3.1, we consider
β(z) = (c(z),d(z),u(z)).

3.4.2 RESIDUAL DISTRIBUTIONAL LAYERS

All but the first data layer p(xl | zl−1,xl−1) and posterior layer q(εl | zl−1,x) receive two streams
of conditioning factors—one latent and one observed. We ensure that each factor incrementally re-
fines the distribution by adopting a residual parametrization. Here we describe the residual Gaussian
distribution when conditioned on the two factors z,x. Its probability density is given by

q(ε|z,x) = N (µ(z)δσ(x) + δµ(x),σ(z)δσ(x)), (9)

which can be interpreted as follows. The first distribution N (µ(z),σ(z)) is corrected by the resid-
uals δσ(x), δµ(x); here we see the dependence on the conditioning factor x. If x does not pro-
vide additional information on ε (formally, p(ε|z,x) = p(ε|z)), the two corrections collapse to
1 and 0 respectively—that is, inducing no change. The reader may refer to Figure S7 where we
qualitatively illustrate the effect of the residual distributional layer that improves the conditional
likelihood provided by the first one. To reduce the number of parameters, we consider networks
for µ(z), σ(z) that are shared between the prior and the posterior, yielding a prior of the form
p(ε|z) = N (µ(z),σ(z)). Finally, we found experimentally that enforcing δσ(x) ≤ 1 helps opti-
mization by ensuring that x can only reduce the variance of the prior.
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3.5 GENERAL REMARKS

Following the above analysis, we make some observations about the hierarchy of shared bijective
layers in the model:

• In contrast to Rezende et al. (2014) (see Figure S1), in our model i) the prior layers are not indepen-
dent, but rather are conditioned on the previous layers in the hierarchy; and ii) the transformational
layers are restricted to be bijective.

• The proposed model also differs from other hierarchical architectures (Gulrajani et al., 2017;
Sønderby et al., 2016; Maaløe et al., 2019); in these models the layers of the prior are condi-
tioned upon the previous prior layers and not upon bijective layers that are shared between the
generative and inference model.

• One additional key difference between our model and all previous work is the coupling between
the data layers. Therefore, the decoder can be perceived layer-wise instead of pixel-wise autore-
gressive rendering the sampling much more efficient (O(L) instead of O(D)). In section 4, we
provide empirical results demonstrating the benefits of these modeling choices.

• By reducing the set of conditioning variables from ε<l to zl−1 in a theoretically justified man-
ner, the hierarchical bijective layers offer a convenient way to precisely and efficiently factorize
the variational distribution, alleviating the bottleneck present in high-dimensional autoregressive
approaches.

• The model, albeit hierarchical, is less prone to posterior collapse, since each layer is responsible
for the generation of a different portion of the data. Experimental support for this observation
is provided in Figure S8, where we plot the KL divergence for each layer of the architecture
investigated in section 4.1.2.

4 EXPERIMENTAL STUDIES

4.1 DYNAMICALLY BINARIZED MNIST

We empirically evaluate the SeRe-VAE on dynamically binarized MNIST. As in Burda et al. (2016);
Sønderby et al. (2016); Kingma et al. (2016), the binary-valued observations are sampled after each
epoch with the Bernoulli expectations being set equal to the real, normalized pixel values in the
dataset which prevents overfitting.

4.1.1 PERFORMANCE OF THE MLP SERE-VAE

To demonstrate that our model’s improved performance is due to the restructuring of the stochas-
tic flow and not sophisticated layers, we use simple multilayer-perceptron (MLP) components; we
similarly forgo importance weighting (Burda et al., 2016). We adopt a 10-layer architecture, with
Nl = 10 latent variables per layer, for a total of 100 latent features being passed to the decoder
after being transformed by an affine bijector as described in section 3.1. We partition the image into
L = 10 equally sized blocks (except for the last one) from left to right in a raster fashion. Finally,
we use independent deterministic encoders for the data preprocessing. The full details of our imple-
mentation are delegated to the supplementary material. We again emphasize the overall simplicity
of our architecture, choosing instead to focus on the benefits of the corrected posterior factorization.
As shown in Table 1, our model (SeRe-VAE) outperforms existing models of the same complexity

such as the DLGM and Ladder VAE (LVAE), those of higher complexity such as Inverse Autoregres-
sive Flow (IAF), and models trained with importance weighted samples (IW-LVAE). Note that the
architecture of the DLGM is identical to that of SeRe-VAE; to ensure a fair comparison, the DLGM
was given larger feature maps in the encoders to compensate for the additional bijective layer inputs
in the SeRe-VAE. Therefore, the performance benefits are solely attributed to the inclusion of the
latent codes in subsequent stochastic layers in the hierarchy. Our model outperforms the LVAE
models, despite using a smaller latent dimensionality (128 vs. 100) and being trained with a single
importance sample. Moreover, our model exhibits superior performance compared to the autore-
gressive IAF; this discrepancy could stem from the 1-layer architecture or the fact that a standard
normal prior was used. This result indicates that a prior of equivalent expressive capacity commu-
nicating with the bijective layer could yield additional improvement. Finally, in our experiments the
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Model Details log p(x) ≥
Self-Reflective 10 layers / 10 variables each, diagonal Gaussian prior −81.17−81.17−81.17
Importance Weighted Ladder 5 layers / 128 variables total, #IW samples=10 −81.74
Ladder 5 layers / 128 variables total −81.84
Self-Reflective IAF 10 layers / 10 variables each, Standard Normal Prior −81.96
Inverse Autoregressive Flow 1 layer / 100 variables, Standard Normal Prior −83.04
Deep Latent Gaussian Model10 layers / 10 variables each, diagonal Gaussian prior −84.53
Relaxed Bernoulli VAEs 30 latent variables, exact factorization −90

Table 1: Dynamically binarized MNIST Performance for VAEs without ResNet layers. 1000 im-
portance samples were used for the estimation of the marginal likelihood. For the Ladder VAE
performance, we refer to Table1 in Sønderby et al. (2016). The models were trained with a single
importance sample unless otherwise noted (IW=1).

10-layer IAF took nearly twice as long to train compared to the SeRe-VAE. Finally, the Relaxed
Bernoulli VAE (Webb et al., 2018) respects the factorization of the true posterior but scales up to
30 latent variables while not supporting recurrent refinement across layers. The learning curves, the
architectural details and the training hyperparameters are provided in the appendix.

4.1.2 PERFORMANCE OF THE RESNET SERE-VAE

To demonstrate the capacity of our model when combined with complex layers, we replaced the
MLPs with ResNets as in Salimans et al. (2015) while preserving the same number of latent vari-
ables. As shown in Table 2, our model performs better than all recent models that do not use
expensive coupling or pixel-level autoregressive layers, either in the encoder or in the decoder, and
on par with models of higher complexity. Especially for BIVA, it should be mentioned that more,
168 vs 100 of our model, latent variables are used. The full architectural details are provided in the
appendix.

Model log p(x) ≥
Models with autoregressive (AR) or coupling (C) components
VLAE (Chen et al., 2017) −79.03
Pixel RNN (van den Oord et al., 2016b) −79.20
RQ-NSF (C) (Durkan et al., 2019) −79.63
Pixel VAE (Gulrajani et al., 2017) −79.66
RQ-NSF (AR) (Durkan et al., 2019) −79.71
IAF VAE (Kingma et al., 2016) −79.88
DRAW (Gregor et al., 2015) −80.97
Pixel CNN (van den Oord et al., 2016a) −81.30
Models without autoregressive or coupling components
SeRe-VAE −79.50−79.50−79.50
BIVA (Maaløe et al., 2019) −80.47
Discrete VAE (Rolfe, 2017) −81.01

Table 2: Dynamically binarized MNIST performance for VAEs with sophisticated layers. 1000
importance samples were used for the estimation of the marginal likelihood. All performances
listed here are taken from Maaløe et al. (2019) and Durkan et al. (2019). All models were trained
with a single importance sample.
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4.2 CIFAR10 NATURAL IMAGES

4.2.1 ABLATION STUDY

In this section, we study the effect of the different couplings between the layers of the architecture
presented in Figure 1 on CIFAR-10 images which have dimension (32, 32, 3). We consider a 16-
layer architecture with each layer generating a (8, 8, 3) patch of the image when partitioned in a
spatial checkerboard pattern. We use (8, 8, 2) latent spaces per layer. For the decoder, we use the
mixture of discretized logistic distributions (Salimans et al., 2017). In particular, we investigate
three different architectures:

• case 1: there are no couplings (no vertical edges) between the layers and each patch is
independently generated from the others,

• case 2: there are couplings only between the decoders (xl−1 → xl edges),
• case 3: there is feedback from the previous inference layer both in the observed space

(xl−1 → xl edges) and the latent space (zl−1 → εl, and zl−1 → zl edges).

In all of the above cases, we consider joint bijective layers between the inference and generative
network. One observation that we would like to make and turned out to be critical , when we tested
our architecture on more complex regimes such as CIFAR-10, and in order to obtain significant
predictive benefits from case 3 compared to case 2 was that we had to consider a lower bound for
the variance in the prior layers. In other words, a deep probabilistic should self-reflect by obtain-
ing information from the previous inference layers but without being overly confident in its prior
assumptions. This can also be mathematically corroborated by examining the KL-divergence in the
VAE objective of equation 2 for the residual parametrization introduced in section 3.4.2:

DKL(q(ε | z,x) ‖ p(ε | z)) =
(δµ(x)− (1− δσ(x))µ(z))2

2σ2(z)
+

1

2
δ2σ(x)− 1

2
log(δ2σ(x))− 1

2
.

(10)

As it can be seen, bounding σ(z) from below prevents making the first term of the KL arbitrarily
large. In these experiments, we take a unit lower bound.

architecture 128 epochs 256 epochs 512 epochs

case 1 (no vertical edges) 4.56 4.47 4.47
case 2 (coupled decoders) 4.47 4.34 4.28
case 3 (SeRe-VAE) 4.19 3.79 3.68

Table 3: Studying the impact in bits/dim of the connectivity between layers on the test set of CIFAR-
10 data for a different number of training epochs. The KL was linearly annealed (S.II.A.1) from 0.2
to 1 for the first half of the training.

In Table 3, we observe that utilization of information from previous layers in the hierarchy both in
the evidence space and in the latent space consistently improves inference. Moreover, the gap in the
performance becomes larger as more training epochs are dedicated.

The attained performance could be further improved:

• without increasing the complexity of the network i) by re-distributing the latent variables
allocated per-layer so that critical patches of the image are given more latent variables ii)
further finetuning, especially of the lower bound of the scale in the prior iii) investigat-
ing block-coordinate descent optimization algorithms (with the parameters of each layer
defining each block).

• by increasing the complexity of the network, in particular i) by deploying a deeper archi-
tecture ii) by increasing the receptive field of each inference layer so that it is coupled not
only with the previous inference layers responsible for the generation of the immediately
adjacent left/above patches iii) by employing recent deep VAE architectures for each one
of the layer in our proposed scheme iv) by using more expressive, such as IAF, flows for
the joint bijective layers v) by using pixel-autoregressive decoders.
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Please note that none of the aforementioned suggestions introduces modeling redundancies (large
latent spaces with many of their dimensions collapsing to their prior counterpart) or modeling mis-
matches between the true and the variational posterior.

4.2.2 PERFORMANCE OF A SELF-REFLECTIVE, VARIATIONAL MASKED AUTOREGRESSIVE
FLOW ON CIFAR-10

In this section, we introduce a hierarchical latent variable normalizing flow: the first VAE with
a decoder consisting of normalizing flow transformations—realizing improvements over its purely
generative counterpart. Due to space constraints we refer the reader to the appendix for a review of
normalizing flows, as well as the full technical details of our architecture. A high-level description
is provided here. The latent variables are generated by the proposed network shown in Figure 1.
Subsequently, the latent variables z are incorporated in the flow in two ways: i) conditioning the
base distribution and ii) conditioning the bijective transformations. In the case of a Masked Autore-
gressive Flow (MAF) (Papamakarios et al., 2017) or an Inverse Autoregressive Flow (Kingma et al.,
2016), the latter amounts to designing conditional MADE layers (Germain et al., 2015) that account
for a mask offset so that the additional inputs z are not masked out. The first amounts to building
an amortized Gaussian layer. We used a 5 layer hierarchy of 40 latent variables each. We adopted
a unit rank Gaussian base distribution in the decoder—parameterized as in Equation (9) in Rezende
et al. (2014)—and diagonal Gaussian prior and posterior layers. We used neural spline bijective
layers with coupling transformations (Durkan et al., 2019), which boosted the performance com-
pared to affine transformations. We refer to our source code and the supplementary material for the
implementation details. In Table 4, we compare against generative MAF models with the same or
larger width, with or without training dataset augmentation with horizontal image flips and different
number of MADEs. Our variational model exhibits significant improvement over the baselines.

Model Variational #MADE layers Width Flipped Images Test Loglikelihood
SeRe-MAF Yes 10 (2 flows, 5 layers) 1024 No ≥ 3190 (ELBO)

MAF No 10 1024 No 2670
MAF (5) (Papamakarios et al., 2017) No 5 2048 Yes 2936

MAF (10) (Papamakarios et al., 2017) No 10 2048 Yes 3049

Table 4: Performance of different MAFs on CIFAR-10.

5 CONCLUSION AND DISCUSSION

In this paper, we presented self-reflective variational inference that suggests a structural modifica-
tion for hierarchical VAEs (SeRe-VAE) and combines top-down inference with iterative feedback
between the generative and inference network through shared bijective layers. This modification
increases the representation capacity of existing VAEs, leading to smaller latent spaces and vast
computational benefits without compromising the generative capacity of the model. We further in-
troduced hierarchical latent variable normalizing flows which utilize the proposed architecture to
recurrently refine the base distribution and the bijectors from the latent codes of the previous layer.
For our experiments, we used uncoupled deterministic encoders; it would be interesting to explore
any predictive benefits of a bottom-up deterministic pass of the inference network, especially for
modeling natural images. The architecture could be further refined by adopting hierarchical stochas-
tic layers. Finally, integration of pixel-regressive decoders and importance-weighted variations of
the proposed scheme constitute directions for future research.
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