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ABSTRACT

In this paper, we explore learning statistically consistent classifiers under label
noise by estimating the noise transition matrix (T ). We first provide a holistic
view of existing T -estimation methods including those with or without anchor
point assumptions. We unified them into the Minimum Geometric Envelope Op-
erator (MGEO) framework, which tries to find the smallest T (in terms of a cer-
tain metric) that elicits a convex hull to enclose the posteriors of all the training
data. Although MGEO methods show appealing theoretical properties and em-
pirical results, we find them prone to failing when the noisy posterior estimation
is imperfect, which is inevitable in practice. Specifically, we show that MGEO
methods are in-consistent even with infinite samples if the noisy posterior is not
estimated accurately. In view of this, we make the first effort to address this is-
sue by proposing a novel T -estimation framework via the lens of bilevel opti-
mization, and term it RObust Bilevel OpTimzation (ROBOT). ROBOT paves a
new road beyond MGEO framework, which enjoys strong theoretical properties:
identifibility, consistency and finite-sample generalization guarantees. Notably,
ROBOT neither requires the perfect posterior estimation nor assumes the exis-
tence of anchor points. We further theoretically demonstrate that ROBOT is more
robust in the case where MGEO methods fail. Experimentally, our framework also
shows superior performance across multiple benchmarks. Our code is released at
https://github.com/pipilurj/ROBOT †.

1 INTRODUCTION

Deep learning has achieved remarkable success in recent years, owing to the availability of abundant
computational resources and large scale datasets to train the models with millions of parameters.
Unfortunately, the quality of datasets can not be guaranteed in practice. There are often a large
amount of mislabelled data in real world datasets, especially those obtained from the internet through
crowd sourcing (Li et al., 2021; Xia et al., 2019; 2020; Xu et al., 2019; Wang et al., 2019; 2021; Liu
et al., 2020; Collier et al., 2021; Bahri et al., 2020; Li et al., 2022a; Yong et al., 2022; Lin et al.,
2022; Zhou et al., 2022b). This gives rise to the interest in performing learning under label noise.

Our task is to learn a function fθ with parameter θ to predict the clean label Y ∈ Y = {1, ...,K}
based on the input X ∈ X = Rd. However, we only observe a noisy label Ỹ which is generated
from Y by an (oracle) noisy transition matrix T ∗(x) whose element T ∗

ij(x) = P (Ỹ = j|Y =
i,X = x). We consider class-dependent label noise problems which assume that T ∗ is independent
of x, i.e., T ∗(x) = T ∗. Given T ∗, we can obtain the clean posterior from the noise posterior by
P (Y |X = x) = (T ∗)−1P (Ỹ |X = x). With the oracle T ∗, we can learn a statistically consistent
model on the noisy dataset which collides with the optimal model for the clean dataset. Specifically,
denote the θ∗ as the minimizer of the clean loss EX,Y [ℓ(fθ(X), Y )] where ℓ is the cross entropy
loss. Then minimizing the EX,Ỹ [ℓ(T

∗fθ(X), Ỹ )] also leads to θ∗. Therefore, the effectiveness of
such methods heavily depends on the quality of estimated T .

∗Equal Contribution, correspondence to Renjie Pi (rpi@connect.ust.hk)
†Code released at https://github.com/pipilurj/ROBOT
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To estimate T ∗, earlier methods assume that there exists anchor points which belong to a certain
class with probability one. The noisy posterior probabilities of the anchor points are then used to
construct T ∗ (Patrini et al., 2017; Liu & Tao, 2015). Specifically, they fit a model on the noisy dataset
and select the most confident samples as the anchor points. However, as argued in (Li et al., 2021),
the violation of the anchor point assumption can lead to inaccurate estimation of T . To overcome
this limitation, Li et al. (2021); Zhang et al. (2021) then try to develop anchor-free methods that are
able to estimate T without the anchor point assumption (See Appendix C for more discussion on
related work).

Since P (Ỹ |X = x) = T ∗P (Y |X = x) and
∑C

i=1 P (Y = i|X = x) = 1, we know that for
any x, P (Ỹ |X = x) is enclosed in the convex hull conv{T ∗} formed by the columns of T ∗.
Therefore, both anchor-based and anchor-free methods try to find a T whose conv{T } encloses the
noisy posteriors of all data points, under the assumption that all the noisy posteriors are perfectly
estimated. To identify T ∗ from all the T s satisfying the above condition, they choose the smallest
one in terms of certain positive metrics, e.g., anchor-based methods adopts equation 2 and minimum
volume (anchor-free) adopts equation 3. Therefore, we unify them into the framework of Minimum
Geometric Envelope Operator (MGEO), the formal definition of which is in Section 2. Though
MGEO-based methods achieve remarkable success, we show that they are sensitive to noisy posteri-
ors estimation errors. Notably, neural networks can easily result in inaccurate posterior estimations
due to their over-confidence (Guo et al., 2017). If some posterior estimation errors skew the smallest
convex hull that encloses all the data points, MGEO can result in an unreliable T -estimation returned
(as illustrated in Fig. 1 (a)). We theoretically show that even if the noisy posterior is accurate except
for a single data point, MGEO-based methods can result in a constant level error in T -estimation.
We further provide supportive experimental results for our theoretical findings in Section 2.

In view of this, we aim to go beyond MGEO by proposing a novel framework for stable end-to-end
T -estimation. Let θ̂(T ) be the solution of θ to minimize EX,Ỹ [ℓ(T fθ(X), Ỹ )] when T is fixed.
Here θ̂(T ) explicitly shows the returned θ̂ depends on T . If the clean dataset is available, we can find
T ∗ by checking whether T induces a θ̂(T ) that is optimal for EX,Y [ℓ(fθ(X), Y )] (this is ensured
by the consistency of forward correction method under suitable conditions (Patrini et al., 2017),
which is discussed in Appendix A.3). Then the challenge arises, as we do not have the clean dataset
in practice. Fortunately, we have the well established robust losses (denoted as ℓrob), e.g., Mean
Absolute Error (MAE) (Ghosh et al., 2017) and Reversed Cross Entropy (RCE) (Wang et al., 2019)
whose minimizer on EX,Ỹ [ℓrob(fθ(X), Ỹ )] collides with that on EX,Y [ℓrob(fθ(X), Y )]. Therefore,
we search for T ∗ by checking whether T minimizes EX,Ỹ [ℓrob(fθ̂(T )(X), Ỹ )], which only depends
on the noisy data. This procedure can be naturally formulated as a bilevel problem as follows: in the
inner loop, T is fixed and we obtain θ̂(T ) by training θ to minimize EX,Ỹ [ℓ(T fθ(X), Ỹ )]. In the
outer loop, we train T to minimize EX,Ỹ [ℓ(T fθ̂(T )(X), Ỹ )]. We named our framework as RObust
Bilevel OpTmization (ROBOT).

Notably, different from MGEO, ROBOT is based on sample mean estimator which is intrinsically
consistent by the law of large numbers. In Section 3.2, we show the theoretical properties of ROBOT:
identifiablilty, finite sample generalization and consistency. Further, ROBOT achieves O(1/n) ro-
bustness to the noisy posterior estimation error in the case where MGEO methods lead to a constant
level T -estimation error. In Section 4, we conduct extensive experiments on both synthetic and
real word datasets. Our methods beat the MGEO methods significantly both in terms of prediction
accuracy and T -estimation accuracy.

Contribution.
• We provide the first framework MGEO to unify the existing T -estimation methods includ-

ing both anchor-based and anchor-free methods. Through both theoretically analysis and
empirical evidence, we formally identify the instability of MGEO-based methods when
the noisy posteriors are not estimated perfectly, which is inevitable in practice due to the
over-confidence of large neural networks.

• To break through the limitation of MGEO-based methods, we propose a novel framework
ROBOT to estimate T that only relies on sample mean estimators, which is consistent by
the law of large numbers. ROBOT enjoys strong theoretical guarantees including identifi-
bility, consistency and finite sample generalization without assuming perfect noisy posteri-
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ors or the existence of anchor points. Further, when the posterior estimation is imperfect,
the error of ROBOT is bounded O(1/n) while that of MGEO is in constant level.

• Extensive experiments over various popular benchmarks show that ROBOT improves over
MGEO-based methods by a large margin in terms of both test accuracy and T estimation
error. For instance, ROBOT increases∼ 10% accuracy and decreases∼ 40% T -estimation
error over MGEO-based methods on CIFAR100 with uniform noisy.

2 MINIMUM GEOMETRIC ENVELOPE OPERATOR (MGEO)
Preliminaries. Throughout this paper, we use upper cased letters, i.e., X , to denote random vectors,
use x to denote deterministic scalars and vectors. For any vector v, we use v[i] or vi to denote the
ith element of v. The L1 norm of v is |v|1 =

∑d
i=1 |vi|. Let T ∗ denote the oracle noise transition

matrix as introduced in Section 1. Let Ti· and T·j be the ith row and jth of T column, respectively.
Denote the feasible region of T as T := {T |Tij > 0, |T·j |1 = 1,∀i, j ∈ [K]}. Let ei ∈ RK

denote the unit vector where ei[i] = 1. D(n) and D̃(n) denote the clean and noisy dataset with n

samples, respectively; let D and D̃ denote D(∞) and D̃(∞) for short. The risk on dataset D(n) is
L(θ,D(n)) := 1

n

∑
(x,y)∈D(n)[ℓ(fθ(x), y)] where ℓ is the loss function. By default, we use cross

entropy as ℓ. Denote the noisy posterior P (Ỹ |X = x) as g̃(x) for short. Let g(x) denote the fitted
posterior that we obtain. Let G(n) denote the set of the fitted posteriors, i.e., G(n) := {g(xi)}ni=1.

2.1 MGEO AND ITS LIMITATION

In this section, we first unify the existing works of T -estimation by MGEO. Denote the convex
hull induced by the columns T as conv(T ) = {t|t =

∑K
i=1 αiti,

∑K
i=1 αi = 1, αi > 0},

where T = [t1...tK ]. Notably, conv(T ) is the feasible region of g̃(x) generated by T because
g̃(x) = P (Ỹ |X = x) = TP (Y |X = x) and |P (Y |X = x)|1 = 1. Existing methods assume
that we can fit the posteriors perfectly, i.e., g(x) = g̃(x) for all x. They then try to find a T whose
conv(T ) encloses G(n) (Patrini et al., 2017; Zhang et al., 2021; Xia et al., 2020; Li et al., 2021;
Zhang et al., 2021; Liu & Tao, 2015). Since there are infinitely many T satisfying this conditions,
they chose the smallest one in terms of certain positive metrics. We name them as the Minimum
Geometric Envelope Operator (MGEO) and present the unified definition of them as follows:
Definition 1 (Minimum Geometric Envelope Operator). An operator Q : RK×n → T on a set
G(n) = {g(xi)}ni=1 is said to be Minimum Geometric Envelope Operator (MGEO) if it solves

TMGEO = argmin
T∈T

M(T ), s.t. G(n) ⊂ conv(T ), (1)

where T = [t1...tK ] and conv(T ) = {t|t =
∑K

i=1 αiti,
∑K

i=1 αi = 1, αi > 0}. We denote it as
TMGEO = Q(G(n)) for short.

Now we proceed to show how MGEO takes anchor-based and anchor-free methods as special cases
(a brief description of these methods is included in Appendix A.1).

Example 1 (anchor-based). For each class j ∈ [K], anchor-based methods assumes that there
exists an anchor point xj with P (Y |X = xj) = ej . So T·j = g̃(xj) and g̃(xj)[j] ≥ g̃(x)[j] for
all x. Anchor methods first fit g(·) on the noisy data and then find the most confident sample xj

in G(n) for class j. Then they set T·j = g(xj). This is equivalent to solving equation 1 with the
following metric:

M(T ) =
∑
j∈[K]

(
Tjj + min

i∈[n]
∥T·j − g(xi)∥2

)
. (2)

The intuition is as follows: because equation 1 requires G(n) to be contained in conv(T ), we must
have Tjj ≥ g(xj)[j] or otherwise g(xj) will be outside of conv(T ). At the same time, we have
mini∈[n] ∥T·j − g(xi)∥2 ≥ 0 for all T and j. So choosing T·j = g(xj) can minimize equation 2
because Tjj = g(xj)[j] and ∥T·j − g(xj)∥2 = 0.

Example 2 (Minimum Volume, anchor-free). The Minimum Volume method proposed by Li et al.
(2021) uses the volume of T as the metric:

M(T ) = Vol(T ). (3)
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The MGEO-based methods can work well if the posterior is perfectly estimated, i.e., g(x) = g̃(x)
for all x. In this case, MGEO methods can identify T ∗ under suitable conditions. However, it is
common that g(x) ̸= g̃(x) for some x in practice because of DNN’s over-confidence. An error
in the posterior estimation can easily skew the smallest convex hull which encloses all data points
as illustrated in Figure 1. Then MGEO methods lead to inaccurate T -estimation in this case. To
understand the sensitivity of the MEGO methods to the posterior estimation error, we consider a
simple case where g(x) agrees with g̃(x) almost everywhere except from a single point x′ ∈ D(n):

gϵ,x′(x) =

{
g̃(x) + ϵ, if x = x′,

g̃(x), otherwise.
(4)

where ϵ is the error of the estimated posterior at x′ and it needs to satisfy that g(x′) + ϵ has all
non-negative elements which sum up to 1, i.e., ϵ ∈ Ξ := {ϵ||ϵ + g̃(x′)|1 = 1, (ϵ + g̃(x′))[i] ≥
0,∀i ∈ [K]}. Let Gϵ,x′(n) := {gϵ,x′(xi)}ni=1 be set of the fitted posteriors by gϵ,x′(·). Similarly,
we denote G̃(n) := {g̃(xi)}ni=1. Further, let TMGEO and TMGEO

ϵ,x′ be the solution of MGEO on G̃(n)
and Gϵ,x′(n), i.e., TMGEO := Q(G̃(n)) and TMGEO

ϵ,x′ := Q(Gϵ,x′(n)). We have TMGEO = T ∗ under
suitable conditions (Patrini et al., 2017; Li et al., 2021). We are then interested in the T -estimation
error due to ϵ in terms of the Frobenius norm, i.e., ∥TMGEO

ϵ,x′ − T ∗∥F. Following are the results:

Proposition 1. Under assumptions specified in Appendix A.4, suppose that we obtain an imperfect
estimation of the noise posterior gϵ,x′(·) as described in equation 4. Then MGEO-based methods
lead to a T -estimation error whose minimax lower bound is: supϵ∈Ξ ∥TMGEO

ϵ,x′ − T ∗∥F ≥ Ω(1).

See Appendix A.4 for the proof. Proposition 1 shows that MEGO methods can lead to a constant
level of T -estimation error under the fitted posterior gϵ,x′(·). This is in analogy to Figure 1 (left)
that a single outlier caused by ϵ can skew the smallest convex hull that encloses all samples. Note
that Proposition 1 shows that the error caused by the inaccurate posterior estimation does not shrink
to zero as the sample size increases. Thus MGEO methods can be in-consistent in this case. In the
following corollary of Proposition 1, we formally state the in-consistency of MEGO:
Corollary 1 (In-consistency of MGEO). Under assumptions specified in Appendix A.4, suppose
that we obtain an imperfect estimation of the noise posterior gϵ,x′(·) as described in equation 4.
Then MGEO-based methods can be inconsistent, i.e., there exists an ϵ such that TMGEO

ϵ,x′ ̸→ T ∗ as
n→∞.

Proof. In the proof of Proposition 1, we already show that there exists an ϵ such that ∥TMGEO
ϵ,x′ −

T ∗∥F ≥ Ω(1). Since this result holds for any simple size n. If limn→∞ TMGEO
ϵ,x′ does not exists , the

claim holds immediately. Otherwise if limn→∞ TMGEO
ϵ,x′ exists, we have ∥ limn→∞ TMGEO

ϵ,x′ −T ∗∥ ≥
Ω(1), which leads to limn→∞ TMGEO

ϵ,x′ ̸= T ∗. So we conclude that TMGEO
ϵ,x′ ̸→ T ∗ as n→∞.

2.2 EMPIRICAL FINDINGS

Unfortunately, due to the tendency of Deep Neural Network to make over-confident prediction, there
are inevitably outliers due to erroneous posterior estimation. Because MGEO methods attempts to
find the smallest T that convers all the samples, those outliers can severely skew the T and degrades
the estimation accuracy. We observe this phenomenon widely exists in existing methods. In Figure
1 (b), we illustrate the T estimation results of the Minimum Volume method. The red triangle is
the oracle T ∗. We can see that there are lots of samples whose estimated posteriors are out of the
red triangle. The purple triangle are the fitted T by the Minimum Volume method, which is highly
skewed by the outliers. Refer to Appendix B.1 for experimental details.

3 ROBUST BILEVEL OPTIMIZATION (ROBOT)

In the last section, we discussed the instability of MGEO methods when the noisy posterior estima-
tion is imperfect. Proposition 1 shows that even if the estimated posterior differs from g̃(·) at a single
point, MGEO can lead to a constant level of T -estimation error. This is because the T -estimation of
MGEO depends on finding a convex hull to enclose all samples and such convex hull is determined
by the the outermost samples. Therefore, if there is an outlier due to inaccurate posterior estimation,
the resulting convex hull can be easily skewed.
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(a) Illustration (b) Results of MGEO (c) Results of ROBOT

Figure 1: (a) Illustration of how the posterior estimation error can lead to T -estimation error in
a 3-class classification task. The posteriors of the blue points are accurately estimated and they
are all in conv(T ∗). There is an error ϵ on the noisy posterior of x′, which is denoted in red.
Because P (Ỹ |X = x′) + ϵ lies outside of conv(T ∗), MGEO needs to find a larger T to enclose
it. (b) Visualization of MGEO (Minimum Volume) method in a 3-class MNIST classification task.
conv(T ∗) is denoted by the red triangle. There are many outliers whose estimated posteriors are out
of conv(T ∗) due to overfitting. MGEO methods result in leads to a inaccurate T because they try to
enclose all the samples, including the outliers. (c) ROBOT obtains a more accurate T than MGEO.

Then a natural question to ask is, can we go beyond Geometric Envelope Operator to obtain a robust
and consistent T−estimation? As a thought experiment, let’s use a simple case for example. Sup-
pose g̃(xi)[j] = 0.5 for all i. We aim to estimate the T by the anchor point method. If g(·) = g̃(·),
we have Tjj = maxi∈[n] g̃(xi)[j] = 0.5. Now suppose that we obtain a inaccurate posterior with
some small Gaussian error, i.e., g(·)[j] = g̃(·)[j]+ξ where ξ ∼ N (0, σ2) for some small σ. We then
have E[Tjj ] = E[maxi∈[n] g̃(xi)[j] + ξi]→ 0.5 + σ

√
2 log(n) for large n (Ho & Hsing, 1996). So

this method is inconsistent even with infinite samples. On the other hand, it is well known that the
sample mean estimator is consistent by 1/n

∑n
i=1 g(xi)[j] → 0.5 as n → ∞. This toy example

shows that the sample mean estimators are consistent while MGEO methods are not because they
depends on the maximum of the samples. In light of this, we provide the framework ROBOT as the
first attempt to estimate T based on the sample mean estimators.

3.1 METHODS

Denote the optimal parameter that minimizes the cross entropy loss on the clean dataset as
θ∗ := argminθ L(fθ,D). A popular method is to minimize following forward correction loss
on the noisy dataset (Patrini et al., 2017):

T̂ , θ̂ = argmin
T ,θ

L(T fθ, D̃) (5)

Patrini et al. (2017) shows that the forward correction is consistent, i.e., θ̂ = θ∗ if T = T ∗, under
suitable conditions. These conditions are mainly on the sufficiently large function space of fθ and
proper composite loss functions. We discuss these conditions in Appendix A.3 for completeness.
Though equation 5 is consistent, solving equation 5 can not uniquely identify T ∗ and θ∗. This is
because if T ∗ = T1T2, and fθ1(·) = T2fθ∗(·), T1 and θ1 can also achieve the optimal loss. In
order to make T identifiable, MGEO tries to find the minimum T whose conv(T ) contains all data
points. Now we try to go beyond MGEO and aim to identify T ∗ by seeking for some sample mean
estimators.

Since the solution of θ̂ in equation 5 depends on T if T is fixed, we then use θ̂(T ) to explicitly
denote such dependency, i.e., θ̂(T ) = argminθ L(T fθ, D̃). By the consistency of the forward
correction, we already know θ̂(T ∗) = θ∗ under suitable conditions described in Appendix A.3.
Therefore, we can seek for a good T by evaluating θ̂(T ). If we have the clean dataset D, this would
be straightforward by checking whether θ̂(T ) minimizes the clean loss L(fθ̂(T ),D). Specifically,

combining θ∗ = θ̂(T ∗) and θ∗ = argminθ L(fθ,D), we can uniquely identify T ∗ by T ∗ =
argminT L(fθ̂(T ),D). Notably, L(fθ̂(T ),D) depends on the sample mean of the losses, which is
consistent according to the law of large numbers. Now the new challenge arises: we do not have the
clean dataset D in practice. Can we find a sample mean estimator only based on the noisy dataset D̃
which is minimized by θ∗ (which is also θ̂(T ∗))?
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Readers familiar with the noise robust losses may already guess our next proposal. Existing works
have proposed several losses robust to label noise, e.g., Mean Absolute Error (MAE) and Reversed
Cross-entropy (RCE), whose minimizer is the same on the noisy dataset with that on the clean
dataset under suitable conditions (Wang et al., 2019; Ghosh et al., 2017). These conditions are
described in Appendix A.2. Let ℓrob be the noise robust losses and Lrob be the corresponding risk on
datasets. Then we have the following:

argmin
θ
Lrob(fθ, D̃) = argmin

θ
Lrob(fθ,D). (6)

Therefore, we can use Lrob(fθ, D̃) to measure the optimality of θ̂(T ). This property enables us to
seek for T = T ∗ by checking whether T minimizes Lrob(fθ̂(T ), D̃). The above-mentioned proce-
dure can be naturally formulated into a bi-level problem: We split the noisy dataset into a training
set D̃tr and a validation set D̃v . In the inner loop, T is fixed and we obtain θ̂(T ) by minimizing
the forward correction loss on the training set over θ, i.e., θ̂(T ) := argminθ L(T fθ, D̃tr). In the
outer loop, we optimize the robust loss of fθ̂(T ) on the validation dataset by minimizing over T , i.e.,

minT Lrob(fθ̂(T ), D̃v). We summarize the bilevel procedure as follows:

min
T
Lrob(fθ̂(T ), D̃v) (7)

s.t. θ̂(T ) = argmin
θ
L(T fθ, D̃tr).

We name it as RObust Bilvel OpTmization (ROBOT). Remarkably, both L and Lrob are consistent
estimators by the law of large numbers without requiring perfect noisy posteriors (Jeffreys, 1998).
We also include the convergence of ROBOT in Appendix A.9 for completeness, which is an appli-
cation of standard bilevel optimization.
Remark 1. A curious reader may wonder if it is possible to use a two-step procedure instead of
the bilevel framework: first learn θ̂ by minimizing equation 6 and then plug the θ̂ into equation 5
to obtain T̂ . From the statistical property view (ignoring the optimization difficulty), we may have
θ̂ = θ∗ with infinite samples and then it can further leads to T̂ = T ∗. However, existing works show
that robust losses are very hard to optimize (Zhang & Sabuncu, 2018; Wang et al., 2019), indicating
that directly optimizing equation 6 on θ can hardly lead to the optimal θ∗ in practice. Our ROBOT
in equation 7 transforms the optimization from the space of neural network parameters to the space
of T when minimizing Lrob(fθ̂(T ), D̃) over T . The experimental results in Appendix B.4 show that
training ROBOT can significantly decrease the training robust loss while directly optimizing the
robust loss fails to do so. This indicates that the reparametrization of ROBOT may have better
convergence property on minimizing the robust loss. We will investigate the in-depth mechanism of
this interesting phenomenon in the future.

3.2 THEORETICAL ANALYSIS OF ROBOT

In this section, we analyze the theoretical properties of ROBOT in equation 7. First we show the
identifiability of T ∗ with infinite noisy samples. Then we provide the finite sample generalization
bound together with the consistency. We first start with some mild assumptions:
Assumption 1. The optimal θ∗ for the cross entropy on the clean dataset also minimizes the robust
losses on the clean dataset D, i.e., Lrob(θ

∗,D) < Lrob(θ,D) for all θ ̸= θ∗.

This assumption is natural because fθ∗(x) = P (Y |X = x) is supposed to be optimal for both
cross entropy and robust losses on the clean dataset. Further, Ghosh et al. (2017) shows that these
losses are class-calibrated, and minimizing them leads to the decrease in 0–1 error. We assume θ∗

is unique, or otherwise we can also concern ourselves with the one with the minimum norm and
the identifiability results are the same. Notably, robust losses are more difficult to optimize and
they often lead to under-fitting when applied on deep neural networks (Wang et al., 2019; Zhang
& Sabuncu, 2018). So it is quite difficult to obtain θ∗ in practice by minimizing Lrob(θ, D̃) over θ.
ROBOT prevents this issue by using bilevel optimization. Refer to Remark 1 for more discussion.

Assumption 2. The mapping θ̂(T ) is injective, i.e., θ̂(T1) ̸= θ̂(T2) if T1 ̸= T2.

Then we present the identifiability result given infinite samples as follows:
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Table 1: A comparison between MGEO methods with ROBOT. MGEO methods contain anchor-
based (Liu & Tao, 2015; Patrini et al., 2017) and anchor-free (Li et al., 2021; Zhang et al., 2021)
methods. *The consistency considered here refers to the setting where we do not assume the noisy
posterior is perfectly estimated since posterior estimation errors are inevitable in practice.

No anchor point assumption Identifiablility Consistency* Finite sample generalization Error under gϵ,x′

MGEO(Anchor-based) ✗ ✓ ✗Col 1) ✗ Ω(1) (Prop 1)
MGEO(Anchor-free) ✓ ✓ ✗(Col 1) ✗ Ω(1) (Prop 1)

ROBOT ✓ ✓(Thm 1) ✓(Thm 2) ✓(Thm 2) O(1/n) (Prop 2)

Theorem 1 (Identifiability). Suppose Condition 1 -3 (in Appendix A.2 and A.3) and Assumption
1- 2 holds, our framework in equation 7 can uniquely identify T ∗ with infinite noisy samples, i.e.,
Lrob,D̃(θ(T

∗)) < Lrob(θ(T ), D̃), for all T ̸= T ∗.

See Appendix A.5 for the proof. Theorem 1 shows ROBOT can uniquely learn T ∗ based on infinite
noisy samples. Notably, we neither require the existence of anchor points, nor assume that the noisy
posteriors are perfectly estimated, which distinguishes ROBOT from MGEO based works Li et al.
(2021); Zhang et al. (2021). We further present the finite sample generalization results as follows:

Theorem 2 (Finite Sample Generalization and Consistency). Suppose we have D̃v(n) with n sam-
ples. Assume the loss function is bounded by ℓ(·, ·) ≤ M . Let the function class be F :=
{ℓ(fθ̂(T )(·); ·) : X × Y → R+,∀T ∈ T }. Fix any ϵ > 0, assume we obtain a ϵ-approximated

solution T̂ that satisfies Lrob(θ̂(T̂ ), D̃v(n)) ≤ Lrob(θ̂(T ), D̃v(n))+ ϵ,∀T ∈ T . LetN (ϵ,F , ∥ · ∥∞)
be the ϵ-cover of F . Then with probability at least 1− δ,

Lrob(θ̂(T̂ ), D̃) ≤ inf
T∈T
Lrob(θ̂(T ), D̃) + 2ϵ+M

√
2 ln(2N (ϵ,F , ∥ · ∥∞)/δ)

n
. (8)

Further, if equation 7 is well solved (ϵ→ 0), then T̂
p−→ T ∗ as n→∞.

The full proof of Theorem 2 is included in Appendix A.6. We also add additional results on the
convergence of T -estimation error in Appendix A.11. Due to the instability of MGEO methods,
the finite sample guarantees have been missing in MGEO methods. The consistency of our method
is a direct consequence of finite sample property. Notably, the consistency of existing works (e.g.,
Theorem 2 of Zhang et al. (2021)) requires that the noisy posterior is perfectly estimated, which
does not hold in a more realistic settings as we consider. We then analyze the stability of ROBOT
under the inaccurate noisy posterior gϵ,x′ as defined in equation 4.
Proposition 2 (Stability). Consider we obtain an inaccurate posterior gϵ,x′(·) as defined in equa-
tion 4, the T -estimation error of ROBOT upper bounded as: supϵ ∥T ROBOT

ϵ,x′ − T ∥ ≤ O(1/n).

See Appendix A.7 for a proof. Comparing Proposition 2 with Proposition 1, we can see that ROBOT
achieves an O(1/n) robustness to the posterior estimation error in the case where MEGO leads to
an constant error. Finally, we summarize the comparison between ROBOT with MGEO in Table 1.

4 EXPERIMENTS

In this section, we conduct extensive experiments to demonstrate the effectiveness of ROBOT. Our
method demonstrates superior performances compared with other state of the art approaches base
on loss correction. In particular, we try two robust losses for the outer loop loss function of ROBOT,
namely MAE (Ghosh et al., 2017) and RCE (Wang et al., 2019) losses.

Benchmark Datasets. We experiment our proposed method on three synthetic datasets: MNIST,
CIFAR10 and CIFAR100. In addition, we also conduct experiments on three real world datasets,
namely CIFAR10-N, CIFAR100-N and Clothing1M. For synthetic dataset experiments, we run ex-
periments with two types of commonly used noise generation processes: symmetric and pair-flip
noises. The experiments were repeated for 5 times, we report both the mean and standard deviation
of our results. The results of the baseline approaches are derived from Li et al. (2021). For more
details about the datasets and noise generation, please refer to the appendix.

Baseline Methods, Network Architectures and Training. We compare our ROBOT with the
following baselines: Decoupling (Malach & Shalev-Shwartz, 2017), Co-teaching Han et al. (2018),
T-Revision Xia et al. (2019), MentorNet (Jiang et al., 2018), Forward (Patrini et al., 2017),MAE
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Table 2: Test accuracy of experiments on MNIST, CIFAR10 and CIFAR100 with different noise
types and noise ratios. Our method significantly outperforms the counterparts by a large margin
across all experiment settings. Notably, the superiority of our method becomes more evident under
challenging scenarios, such as CIFAR100 dataset with flip noise.

Datasets MNIST CIFAR10 CIFAR100
Uniform 20% Uniform 50% Uniform 20% Uniform 50% Uniform 20% Uniform 50%

Decoupling 97.04±0.06 94.58±0.08 77.32±0.35 54.07±0.46 41.92±0.49 22.63±0.44
MentorNet 97.21±0.06 95.56±0.15 81.35±0.23 73.47±0.15 42.88±0.41 32.66±0.40
Co-teaching 97.07±0.10 95.20±0.23 82.27±0.07 75.55±0.07 48.48±0.66 36.77±0.52
Forward 98.60±0.19 97.77±0.16 85.20±0.80 74.82±0.78 54.90±0.74 41.85±0.71
T-Revision 98.72±0.10 98.23±0.10 87.95±0.36 80.01±0.62 62.72±0.69 49.12±0.22
MAE 97.13±0.13 95.30±0.15 83.28±0.39 82.13±0.75 55.67±1.03 43.53±1.11
RCE 97.02±0.19 95.56±0.30 85.63±0.64 82.79±0.96 53.21±1.10 44.24±1.31
DMI 98.70±0.02 98.12±0.21 87.54±0.20 82.68±0.21 62.65±0.39 52.42±0.64
Dual T 98.43±0.05 98.15±0.12 88.35±0.33 82.54±0.19 62.16±0.58 52.49±0.37
TVD 98.56±0.09 98.11±0.16 88.89±0.21 83.21±0.13 63.52±0.40 52.54±1.33
VolMinNet 98.74±0.08 98.23±0.16 89.58±0.26 83.37±0.25 64.94±0.40 53.89±1.26

ROBOT (MAE) 99.01±0.03 98.50±0.09 92.13±0.07 88.75±0.10 72.52±0.15 64.69±0.32
ROBOT (RCE) 99.05±0.06 98.54±0.14 92.09±0.04 88.45±0.15 73.03±0.12 65.11±0.53

Datasets MNIST CIFAR10 CIFAR100
Flip 20% Flip 45% Flip 20% Flip 45% Flip 20% Flip 45%

Decoupling 96.93±0.07 94.34±0.54 77.13±0.30 53.71±0.99 40.12±0.26 27.97±0.12
MentorNet 96.89±0.04 91.98±0.46 77.42±0.00 61.03±0.20 39.22 ±0.47 26.48±0.37
Co-teaching 97.00±0.06 96.25±0.01 80.65±0.20 73.02 ±0.23 42.79±0.79 27.97±0.20
Forward 98.84±0.10 95.06±2.61 88.21±0.48 77.44±6.89 56.12±0.54 36.88±2.32
T-Revision 98.89±0.08 84.56±8.18 90.33±0.52 78.94±2.58 64.33±0.49 41.55±0.95
MAE 97.43±0.20 95.45±0.56 79.30±0.13 57.13±5.61 52.15±1.22 39.86±1.50
RCE 97.10±0.18 94.60±0.54 82.53±0.35 59.65±3.23 53.10±1.33 40.02±1.47
DMI 98.84±0.09 97.92±0.76 89.89±0.45 73.15±7.31 59.56±0.73 38.17±2.02
Dual T 98.86±0.04 96.71±0.02 89.77 ±0.25 76.53 ±2.51 67.21±0.43 47.60±0.43
TVD 98.98±0.04 99.12±0.09 90.01±0.23 88.15±0.10 67.65±0.89 56.53±0.16
VolMinNet 99.01±0.07 99.00±0.07 90.37±0.30 88.54±0.21 68.45±0.69 58.90±0.89

ROBOT (MAE) 99.39±0.05 99.19±0.10 93.70±0.07 92.52±0.16 75.55±0.39 70.20±0.33
ROBOT (RCE) 99.34±0.02 99.23±0.10 93.62±0.03 92.44±0.23 75.79±0.51 70.17±0.40

loss (Ghosh et al., 2017), RCE loss (Wang et al., 2019), DMI loss (Xu et al., 2019),DUAL-T Yao
et al. (2020),Total Variation Regularization (Zhang et al., 2021) and VolMinNet (Li et al., 2021).
We follow the experiment setting as in Li et al. (2021) and report the baseline results given in their
paper. We point out that, similar to Xia et al. (2019; 2021); Li et al. (2021); Wei et al. (2021), the
aggregation methods such as SELF (Nguyen et al., 2019) and DivideMix (Li et al., 2020) are not
compared in our paper, because such methods incorporate tricks such as semi-supervised training,
which can be sensitive to the choice of hyper-parameters. We use the same network architectures as
in Li et al. (2021). The experimental details are included in Appendix B.3.

Experiments on Synthetic Label Noise. We compare our method with other approaches on com-
monly used datasets with synthetic label noise as described in Section 4. The results in 2 shows
that ROBOT consistently outperforms baselines by a large margin across all datasets and types of
label noise. Remarkably, the advantage of our method becomes more evident when the task gets
more challenging. For instance, our method outperforms the previous SOTA T estimation approach
VolMinNet Li et al. (2021) by 11.22% and 11.27% in test accuracy for CIFAR100 with 50% Uni-
form noise and 45% pairflip noise, respectively.

Estimation Error of Transition Matrix. We compare the T -estimation error with other approaches
on a variety of datasets with different settings. Note that with synthetic label noise, we have the
ground truth T ∗, and therefore able to calculate the estimation error. The results in Table 3 show that
ROBOT achieves lower T -estimation error than MGEO-based methods. Note that the comparison
between ROBOT and the two-stage methods supports the argument in Remark 1.

Experiments on Real World Label Noise. To furthur verify the ability of our method to han-
dle label noise learning, we conduct experiments with datasets containing real-world label noise.
Specifically, we showcase the performance of our method on CIFAR10-N, CIFAR100-N (in Table
4) and Clothing1M (in Table 5) datasets. Note that in this paper, we mostly focus on the estimation
of transition matrix T that is robust to outliers, therefore, we mainly compare with approaches based
on loss correction for fairness. We can observe that our method outperforms other baselines by a
noticeable margin, which verifies its ability to handle real world label noise.

8



Published as a conference paper at ICLR 2023

Table 3: We compare the noise transition matrix estimation errors between various methods across
multiple datasets. Note that Two-stage methods correspond to the alternative approach mentioned
in Remark 1. We can see that ROBOT consistently achieves the lowest T estimation error.

Datasets MNIST CIFAR10 CIFAR100
Uniform 20% Uniform 50% Uniform 20% Uniform 50% Uniform 20% Uniform 50%

Forward 0.33±0.09 0.56±0.10 0.39±0.02 1.05±0.21 0.50±0.10 1.11±0.25
T-Revision 0.17±0.04 0.16±0.05 0.23±0.09 0.30±0.10 0.46±0.09 0.61±0.12
Two-stage (MAE) 0.17±0.10 0.19±0.18 0.43±0.20 0.32±0.11 0.48±0.15 0.70±0.23
Two-stage (RCE) 0.16±0.10 0.21±0.23 0.35±0.18 0.40±0.12 0.49±0.19 0.61±0.19
Dual T 0.13±0.04 0.25±0.04 0.30±0.05 0.77±0.24 0.48±0.14 1.02±0.25
VolMinNet 0.07±0.02 0.09±0.03 0.21±0.06 0.12±0.05 0.47±0.10 0.50±0.13

ROBOT (MAE) 0.03±0.01 0.03±0.01 0.10±0.01 0.10±0.03 0.18±0.06 0.32±0.06
ROBOT (RCE) 0.03±0.01 0.03±0.02 0.07±0.03 0.09±0.02 0.20±0.05 0.31±0.07

Datasets MNIST CIFAR10 CIFAR100
Flip 20% Flip 45% Flip 20% Flip 45% Flip 20% Flip 45%

Forward 0.31±0.07 0.77±0.15 0.45±0.09 0.97±0.12 0.48±0.12 0.96±0.15
T-Revision 0.12±0.02 0.25±0.04 0.20±0.10 0.29±0.12 0.45±0.13 0.92±0.34
Two-stage (MAE) 0.16±0.10 0.22±0.09 0.20±0.12 0.32±0.11 0.50±0.23 0.90±0.44
Two-stage (RCE) 0.13±0.08 0.24±0.10 0.19±0.15 0.40±0.12 0.47±0.30 0.95±0.50
Dual T 0.10±0.02 0.45±0.09 0.32 ±0.07 0.75 ±0.20 0.45±0.12 0.98±0.21
VolMinNet 0.04±0.01 0.04±0.01 0.12±0.03 0.13±0.04 0.13±0.04 0.25±0.07

ROBOT (MAE) 0.02±0.01 0.03±0.01 0.09±0.02 0.11±0.01 0.11±0.03 0.22±0.03
ROBOT (RCE) 0.02±0.01 0.03±0.01 0.07±0.01 0.10±0.03 0.12±0.05 0.19±0.05

Table 4: Test accuracy of experiments on CIFAR10-N and CIFAR100-N with different noise types.
For fair comparison, we only compare against the approaches that are designed based on transition
matrices. Our method consistently outperforms the counterparts across all experiment settings.

Datasets CIFAR10-N CIFAR100-N
Aggregate Random 1 Random 2 Random 3 Worst Noisy

CE 87.77±0.38 85.02±0.65 86.46±1.79 85.16±0.61 77.69±1.55 50.50±0.66
MAE 85.63±0.55 84.38±0.34 84.64±0.30 85.05±0.29 77.34±1.56 51.24±1.35
RCE 85.02±0.67 84.80±0.49 84.23±0.50 84.03±0.33 77.43±0.97 51.80±1.44
GCE 87.85±0.70 87.61±0.28 87.70±0.56 87.58±0.29 80.66±0.53 56.73±0.30
Backward-T 88.13±0.29 87.14±0.34 86.28±0.80 86.86±0.41 77.61±1.05 57.14±0.94
Forward-T 88.24±0.22 86.88±0.50 86.14±0.21 87.04±0.35 79.49±0.46 57.01±1.03
T-Revision 88.52±0.17 88.33±0.32 87.71±1.02 87.79±0.67 80.48±1.20 51.55±0.31
TVD 88.96±0.15 88.41±0.13 88.35±0.11 88.01±0.40 80.15±0.25 56.89±0.32
VolMinNet 89.70±0.12 88.30±0.12 88.27±0.09 88.19±0.41 80.53±0.20 57.80±0.31
Peer loss 90.75±0.25 89.06±0.11 88.76±0.19 88.57±0.19 82.53±0.52 57.59±0.61

ROBOT (MAE) 91.14±0.12 90.35±0.14 90.30±0.16 90.34±0.16 84.08±0.22 61.14±0.29
ROBOT (RCE) 91.35±0.03 90.46±0.18 90.37±0.15 90.31±0.21 84.05±0.33 61.25±0.26

Table 5: Test accuracy of experiments on Clothing1M. We only adopt noisy data during training.

Decoupling MentorNet Co-teaching Forward Dual T T-Revision
54.53 56.79 60.15 69.91 71.49 70.97

DMI PTD TVD VolminNet ROBOT (MAE) ROBOT (RCE)
70.97 70.12 71.67 72.42 72.64 72.70

5 CONCLUSION

In this paper, we investigate the problem of learning statistically consistent models under label noise
by estimating T . We first propose the framework MGEO to unify the existing T -estimation methods.
Then we provide both theoretical and experimental results to show that MGEO methods are sensitive
to the error in noisy posterior estimation. To overcome the limitation of MGEO, we further propose
ROBOT, which enjoys superior theoretical properties and shows strong empirical performance.

REPRODUCIBILITY STATEMENT

The experiments in the paper are all conducted using public datasets. The hyperparameters and
network choices for the experiments are elaborated in Section 4 and Appendix B. We submit the
source code with the ICLR submission. The code will be make public upon acceptance of the paper.
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For the theory part, the assumptions and full proof are included in Section 3.2, Appendix A.4, A.5,
A.6 and A.6.
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A PROOFS

A.1 INTRODUCTION OF EXISTING METHODS

In Section 2, we show that the framework MEGO takes anchor-based and anchor-free (the minimum
volume method) methods as special cases. In this section, we briefly introduce the anchor-based
method (Patrini et al., 2017; Liu & Tao, 2015) and the minimum volume method Li et al. (2021)
for completeness. Here we assume that the fitted posterior g̃(x) matches the noisy posterior, e.g.,
g̃(x) = P (Ỹ |X = x), for all x.

The anchor-based method. For each class j ∈ [K], anchor-based methods assumes that there exists
an anchor point x̄j with P (Y |X = x̄j) = ej . Anchor based method first find the most confident
sample for each class:

x̄j = argmax
x

g̃(x)[j], (9)

where g̃(x)[j] is the probability of the class j of the sample x given by g̃(x). By the anchor point
assumption, we have

T·,j = Tej = TP (Y |X = x̄j) = g̃(x̄j), (10)

where T·,j is the jth column of T . By repeating equation 9 and equation 10 for each class, anchor
points methods obtain the estimation of the whole T .

The anchor-based method (the minimum volume method). Since the posterior g̃(x) =
TP (Y |X = x), then g̃(x) is enclosed in the convex hull formed by the columns of T . How-
ever, there are still infinite number of T whose conv(T ) encloses all the samples. When the samples
are sufficiently scattered, Li et al. (2021) shows that T ∗ is the one with the minimum volume. So
the solve the following problem:

min
T∈T

vol(T ) (11)

s.t. T fθ(x) = g̃(x),∀x, (12)

where vol(T ) is the volume of T .

A.2 THE CONDITIONS FOR THE ROBUST LOSSES

The robust losses can work well (i.e., equation 6 holds) when the noise ratio is not too large. As
shown in the Theorem 1 of Wang et al. (2019), we need the noise ratio to satisfy the following
condition:
Condition 1 (Restate of Theorem 1 in Wang et al. (2019)). equation 6 holds 1) under symmetric or
uniform label noise if noise rate η < 1/K, where K is the class number; 2) under asymmetric or
class-dependent label noise when noise rate ηyk ≤ 1− ηy , with

∑
k ̸=y ηyk = ηy .
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A.3 THE CONDITIONS FOR THE CONSISTENCY OF FORWARD CORRECTION METHOD

The conditions of forward correction is presented in the Section 4.2 of Patrini et al. (2017). We
discuss these conditions briefly in this section for completeness. Recall the risk on dataset D(n)
is L(θ,D(n)) := 1

n

∑
(x,y)∈D(n)[ℓ(fθ(x), y)] where ℓ is the loss function. We discuss the cross

entropy loss as ℓ in this section since we focus on classification tasks. Here we consider the loss
function ℓ is endowed with a link function ϕ: ∆K−1 → RK , where K is the class number. In the
case of cross entropy, the softmax is the inverse link function, i.e.,

fθ(x) =ϕ−1(hθ(x))

ℓ(fθ(x), y) =ℓϕ(hθ(x), y).

The first condition is that the function space parameterized by θ is large enough, i.e.,

Condition 2. The function class is sufficiently large such that there exists a θ∗ and fθ∗(x) = P[y|x].

Notably, by the universal approximation property of neural networks (Scarselli & Tsoi, 1998), Con-
dition 2 can be satisfied by using a deep and wide neural network. In this work, we use Lenet
for MNIST dataset, ResNet18 for CIFAR10 and CIFAR10-N, ResNet34 for for CIFAR100 and
CIFAR100-N, and ResNet50 for Clothing1M (the same with existing works). The second condition
condition is that the composite losses are proper as follows:

Condition 3. Suppose Condition 2 holds, the composite loss is proper as follows.

argmin
hθ

ℓϕ(hθ(x), y) = ϕ(p(y|x)).

Notably, cross entropy and square loss are examples of proper composite losses.

Theorem 2 of Patrini et al. (2017) shows that if Condition 2 and 3 hold, minimizing the forward
correction loss on the noisy data leads to the optimal function which minimizes the loss on the clean
data.

A.4 ASSUMPTIONS AND PROOF OF PROPOSITION 1

Assumption 3. Assume the follows are true:

(a) There exists label noise that is constant level , i.e.,

max
i∈[K]

(1− Tii) ≥ C ≥ Ω(1).

(b) Let µ denotes the Lebesgue measure, for any T1,T2 ∈ V if Conv(T1) ⊊ Conv(T2), then

M(T2)−M(T1) ≥ Ω(µ(Conv(T2) \ Conv(T2))).

(c) IfM(T1) >M(T2), then

∥T1 − T2∥F ≥ Ω(M(T1)−M(T2)).

(d) g̃(x′) does not lies in the boundary of Conv(T ) such that g̃(x′) =
∑K

i=1 αiti and 0 <
αi < 1,∀i.

The first assumption is natural for noisy data problems that the noise ratio is larger than 0. The
intuition for the Assumption 3(b) is that the difference in metric should be the same order with the
difference in the measure of the convex hulls. For example, if Conv(T1) is larger than Conv(T2) one
by a constant level in Lebesgue measure, the metric of T1 is also larger than that of T2 by a constant
level. The Assumption 3(c) requires that if two matrix T1 and T2 is different in terms of the measure
M, there should be difference between their elements, which is captured by the Frobenius norm.
One can easily check these assumptions holds for anchor points and minimum volume methods
illustrated in Example 1 and 2. The Assumption 3(d) is also a mild assumption because it holds
almost surely.
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Proof. Denote vk as a vector with 1 at the kth index and 0 at the other index, i.e.,

vk,i =

{
1, if i = k,

0, otherwise .

Let
T̄MGEO := argmin

V ∈V
M(V ), s.t. G(n) ⊂ Conv(V ),

and
T̄MGEO
ϵ,x′ := argmin

V ∈V
M(V ), s.t. G(n, ϵ) ⊂ Conv(V ).

Under the assumptions of anchor points Patrini et al. (2017) or sufficiently scattered Li et al. (2021),

T̄MGEO = T . (13)

Take j = argmini Tii and ϵj = −g(x′) + ej . In this case, we claim

T̄MGEO
ϵ,x′ = Tej , (14)

where Tej := [t1, t2...ej ...tK ]. This is because 1) we have G(n, ϵ) ⊂ Conv(Tej ) because G(n) ⊂
Conv(Tej ) and gϵ,x′(x′) ∈ Conv(Tej ); 2) One can easily check Conv([t1, t2...tj ...tK , ej ]) =
Conv([t1, t2..., ej ...tK ]) = Conv(Tej ) and Conv([t1, t2...tj ...tK , ej ]) is the smallest convex
hull that contains both Conv([t1, t2...tj ...tK ]) and {ej} in terms of measure M. Further
Conv([t1, t2...tj ...tK , ej ]) is the smallest convex hull containing G(n). With Assumption 3 (d)
we know Conv(Tej ) is the smallest convex hull that contains G(n, ϵ).
Further, given any αi ∈ (Tii, 1], we can see vei = αiei +

∑
[K]\{i} αjtj /∈ Conv(T ) for any∑

j∈[K]\{i} αj = 1 − αi and αj ≥ 0. This is because for all v ∈ Conv(T ), vi ≤ Tii but the ith
element of vei is larger than Tii. On the other hand, one can easily see that Conv(T ) ⊂ Conv(Tei

).
So we have

µ(Conv(Te1) \ Conv(T ))

≥µ({v|v = αiei +
∑

j∈[K]\{i}

αjtj , αi ∈ (Tii, 1],
∑

j∈[K]\{i}

αj = 1− αi, αj ≥ 0})

=Ω(1− Tii), (15)
Then we have

sup
ϵ
∥T̄MGEO

ϵ,x′ − T̄MGEO∥F

≥ sup
ϵ
∥T̄MGEO

ϵj ,x′ − T̄MGEO∥F

=∥Tej − T ∥F

≥Ω(M(Tej )−M(T ))

≥Ω
(
µ(Conv(Tej ) \ Conv(T ))

)
≥Ω(1− Tjj)

≥Ω(1).
The first inequality is due to taking ϵ as ϵj ; the first inequality is due to equation 13 and equation 14;
the second inequality is due to Assumption 3 (c); the third inequality is due to Assumption 3 (b) and
the last inequality is due to equation 15.

A.5 PROOF OF THEOREM 1

Proof. First there exists a T that can induce θ∗ in the inner loop. This is due the consistency of
forward/backward correction: when T = T ∗, θ(T ) → θ∗ as n → ∞. Then by Assumption
1, we know Lrob(fθ(T ∗),D) < Lrob(fθ,D),∀θ ̸= θ∗. As verified in Ghosh et al. (2017); Wang
et al. (2019); Xu et al. (2019), we have Lrob(fθ, D̃) = Lrob(fθ,D) + c for any θ, where c is a
fixed constant. We then have Lrob(fθ(T ∗), D̃) < Lrob(fθ, D̃),∀θ ̸= θ∗. Finally, we further have
Lrob(θ(T

∗)) < Lrob(θ(T )),∀T ̸= T ∗ by Assumption 2.
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A.6 PROOF OF THEOREM 2

Proof. Recall the definition of ϵ covering, we can find a Ti for T̂ in the covering set such that
|ℓ(θ̂(Ti);X, Y )− ℓ(θ̂(T̂ );X, Y )| ≤ ϵ,∀(X, Y ) ∈ X × Y , then we have:

Lrob(θ̂(T̂ ), D̃)
≤Lrob(θ̂(Ti), D̃) + ϵ

≤Lrob(θ̂(Ti), D̃n
v ) +M

√
ln(2N (ϵ,F , ∥ · ∥∞)/δ)

2n
+ ϵ

≤Lrob(θ̂(T̂ ), D̃n
v ) +M

√
ln(2N (ϵ,F , ∥ · ∥∞)/δ)

2n
+ 2ϵ

≤Lrob(θ̂(T ), D̃n
v ) +M

√
ln(2N (ϵ,F , ∥ · ∥∞)/δ)

2n
+ 3ϵ

≤Lrob(θ̂(T ), D̃) +M

√
ln(2/δ)

2n
+M

√
ln(2N (ϵ,F , ∥ · ∥∞)/δ)

2n
+ 3ϵ

≤Lrob(θ̂(T ), D̃) +M

√
2 ln(2N (ϵ,F , ∥ · ∥∞)/δ)

n
+ 3ϵ

The first and third inequalities are by the definition of ϵ covering, the second inequality is to apply
Hoeffding inequality on all elements of the covering sets, the forth inequality is due to T̂ is ϵ-
approximated solution on the dataset D̃n

v , the fifth inequality is to apply Hoeffding inequality on T
and the last inequality in because N (ϵ,F , ∥ · ∥∞) > 1.

A.7 PROOF OF PROPOSITION 2

Assumption 4. Assume the first and second derivatives involved have norm bounded above and the
inverse matrices have all positive eigenvalues :

(a) σmin(
∂Lrob(fθ,D̃n)

∂θ
∂2θϵ(T )
∂T 2 ) ≥ Q1 > 0,

(b) σmin

(
∂2L(T fθ,D̃n)

∂θ∂θ⊤

)
≥ Q2 > 0,

(c) ∥∂θ(T )
∂T ∥2 ≤ Q3,

(d) ∥∂Lrob(fθ,D̃n)
∂θ ∥2 ≤ Q5,

(e) ∥∂
2L(T fθ,D̃n)
∂θ∂T⊤ ∥2 ≤ Q6

(f) ∥∂k(θϵ,T ,x′,y′,ϵ)
∂θ ∥2 ≤ Q7,

(g) ∥∂
2k(θ,T ,x′,y′,ϵ)

∂θ∂θ⊤ ∥2 ≤ Q8.

We imediately have∥∥∥∥∥∥
(
∂Lrob(fθ, D̃n)

∂θ

∂2θϵ(T )

∂T 2

)−1
∥∥∥∥∥∥

F

≤ d

∥∥∥∥∥∥
(
∂Lrob(fθ, D̃n)

∂θ

∂2θϵ(T )

∂T 2

)−1
∥∥∥∥∥∥
2

≤ d

Q1

Lemma 1 (Cauchy, Implicit Function Theorem, Theorem 1 of Lorraine et al. (2020)). If for some
(θ,T ) such that ∂L(T fθ,D̃)

∂θ

∣∣∣
θ′,T ′

= 0 and regularity conditions are satisfied, then surrounding

(θ′,T ′) there exists a function θ∗(T ) such that ∂L(T fθ,D̃)
∂θ

∣∣∣
θ∗(T ),T

= 0 and we have

∂θ∗(T )

∂T

∣∣∣
T ′

=

[
∂2L(T fθ, D̃)

∂θ∂θ⊤

]−1

× ∂2L(T fθ, D̃)
∂θ∂T⊤

∣∣∣
θ∗(T ′),T ′
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We consider that the noisy posterior perfectly fit the dataset D̃n(ϵ) := D̃n−1 ∪ (x′, y′ + ϵ), which is
equivalent to the inaccurate poster gϵ,x′ .

θϵ(T ) = argmin
θ

n− 1

n
L(T fθ, D̃n−1) +

1

n
L(T fθ, (x

′, y′ + ϵ))

= argmin
θ
L(T fθ, D̃n) +

1

n
(ℓ(T fθ(x

′), y′ + ϵ))− ℓ(T fθ(x
′), y′))

= argmin
θ
L(T fθ, D̃n) +

1

n
k(θ,T ,x′, y′, ϵ)

Because ∂L(T fθ,D̃n)
∂θ = 0, we have

− 1

n

∂k(θϵ,T ,x′, y′, ϵ)

∂θ

=
∂L(T fθϵ , D̃n)

∂θ

=
∂L(T fθϵ , D̃n)

∂θ
− ∂L(T fθ, D̃n)

∂θ

=
∂2L(T fθ, D̃n)

∂θ∂θ⊤
(θ − θϵ) + o(θ − θϵ)

Then

∂θϵ(T )

∂T
− ∂θ(T )

∂T
=

[
∂2L(T fθ, D̃n(ϵ))

∂θ∂θ⊤

]−1

× ∂2L(T fθ, D̃n(ϵ))

∂θ∂T⊤ − ∂θ(T )

∂T

=

[
∂2L(T fθ, D̃n)

∂θ∂θ⊤
+

1

n

∂2k(θ,T ,x′, y′, ϵ)

∂θ∂θ⊤

]−1

×

[
∂2L(T fθ, D̃n)

∂θ∂T⊤ +
1

n

∂2k(θ,T ,x′, y′, ϵ)

∂θ∂T⊤

]
− ∂θ(T )

∂T

=
1

n

(
∂2L(T fθ, D̃n)

∂θ∂θ⊤

)−2
∂2k(θ,T ,x′, y′, ϵ)

∂θ∂θ⊤
∂2L(T fθ, D̃n)

∂θ∂T⊤

+
1

n

(
∂2L(T fθ, D̃n)

∂θ∂θ⊤

)−1
∂2L(T fθ, D̃n)

∂θ∂T⊤ + o(1/n)

=
1

n
J + o(1/n),

where

J =

(
∂2L(T fθ, D̃n)

∂θ∂θ⊤

)−2
∂2k(θ,T ,x′, y′, ϵ)

∂θ∂θ⊤
∂2L(T fθ, D̃n)

∂θ∂T⊤ +

(
∂2L(T fθ, D̃n)

∂θ∂θ⊤

)−1
∂2L(T fθ, D̃n)

∂θ∂T⊤

By Assumption 4, we have

∥J∥2 ≤
Q6Q8

Q2
2

+
Q6

Q2

Then we have

(θ − θϵ) =
1

n

(
∂2L(T fθ, D̃n)

∂θ∂θ⊤

)−1
∂k(θϵ,T ,x′, y′, ϵ)

∂θ

Then we have the following by omitting the higher order terms:

∂Lrob(fθϵ , D̃n(ϵ))

∂θ

=
∂Lrob(fθϵ , D̃n)

∂θ
+

1

n

∂k(θ,T ,x′, y′, ϵ)

∂θ

=
∂Lrob(fθ, D̃n)

∂θ
+

∂2Lrob(fθ, D̃n)

∂2θ
(θϵ − θ) +

1

n

∂k(θ,T ,x′, y′, ϵ)

∂θ
+ o(1/n)
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And further:
∂θϵ(Tϵ)

∂T

=
∂θϵ(Tϵ)

∂T
− ∂θϵ(T )

∂T
+

∂θϵ(T )

∂T
− ∂θ(T )

∂T
+

∂θ(T )

∂T

=
∂2θϵ(T )

∂T 2
(Tϵ − T ) +

1

n
J +

∂θ(T )

∂T
+ o(1/n)

On the other side, we have

0 =
∂Lrob(fθ(Tϵ), D̃n(ϵ))

∂T

=
∂Lrob(fθϵ , D̃n(ϵ))

∂θ

∂θϵ(Tϵ)

∂T

=
∂Lrob(fθϵ , D̃n(ϵ))

∂θ

∂θϵ(Tϵ)

∂T

=

(
∂Lrob(fθϵ , D̃n)

∂θ
+

1

n

∂ (ℓ(T fθ(x
′), y′ + ϵ))− ℓ(T fθ(x

′), y′))

∂θ

)
∂θϵ(Tϵ)

∂T

=

(
∂Lrob(fθ, D̃n)

∂θ
+

∂2Lrob(fθ, D̃n)

∂θ∂θ⊤
(θϵ − θ) +

1

n

∂k(θ,T ,x′, y′, ϵ)

∂θ

)

×
(
∂θ(T )

∂T
+

∂2θϵ(T )

∂T 2
(Tϵ − T ) +

1

n
J + o(1/n)

)
Denote

K :=
∂2Lrob(fθ, D̃n)

∂θ∂θ⊤

(
∂2L(T fθ, D̃n)

∂θ∂θ⊤

)−1
∂k(θϵ,T ,x′, y′, ϵ)

∂θ
+ I,

With Assumption 4, we have

∥K∥2 ≤
Q5Q7

Q2
+ 1

Recall that
∂Lrob(fθ, D̃n)

∂θ

∂θ(T )

∂T
= 0,

then we have following by omitting high order terms:
1

n

∂Lrob(fθ, D̃n)

∂θ
J +

∂Lrob(fθ, D̃n)

∂θ

∂2θϵ(T )

∂T 2
(Tϵ − T ) = − 1

n
K

∂θ(T )

∂T
.

Then finally we have
∥(Tϵ − T )∥F

≤K∥(Tϵ − T )∥2

=
K

n

∥∥∥∥∥∥
(
∂Lrob(fθ, D̃n)

∂θ

∂2θϵ(T )

∂T 2

)−1(
K

∂θ(T )

∂T
+

∂Lrob(fθ, D̃n)

∂θ
J

)∥∥∥∥∥∥
2

≤K

n

∥∥∥∥∥∥
(
∂Lrob(fθ, D̃n)

∂θ

∂2θϵ(T )

∂T 2

)−1
∥∥∥∥∥∥

2

∥∥∥∥∥
(
K

∂θ(T )

∂T
+

∂Lrob(fθ, D̃n)

∂θ
J

)∥∥∥∥∥
2

≤K

n

1

Q1

(∥∥∥∥K ∂θ(T )

∂T

∥∥∥∥
2
+

∥∥∥∥∥∂Lrob(fθ, D̃n)

∂θ
J

∥∥∥∥∥
2

)

≤K

n

1

Q1

(
(
Q5Q7

Q2
+ 1)Q3 +Q5(

Q6Q8

Q2
2

+
Q6

Q2
)

)
=
Q

n
.

where Q = 1
Q1

(Q5Q7

Q2
+ 1)Q3 +Q5(

Q6Q8

Q2
2

+ Q6

Q2
) and Q1 −Q8 are specified in Assumption 4.
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A.8 ALGORITHM OF ROBOT

Usually the neural network parameters θ is of high dimension, and the number of samples in the
training dataset D̃tr is huge, which makes exactly solving the inner problem infeasible. Therefore,
in practice, we solve the inner problem and the outer problem alternatively at each update step
to alleviate the computational burden Shu et al. (2019); Ren et al. (2018). We provide detailed
explanation of how our ROBOT works in practice.

Forward Correction with Noise Transition Matrix T . With the noise transition matrix T , the
procedure of one-step update in forward correction method in the inner loop can be formulated as:

θt+1 = θt − η
1

n

n∑
i=1

∂lce(T fθ(xi), yi)

∂θ
(16)

where n is the number of training samples in a mini-batch, η is the learning rate.

Approximately Solving the Inner Problem. Due to the high time complexity for exactly solving
θ̂(T ) = argminθ L(T fθ, D̃tr), we use one-step update to approximate it, which is widely used in
previous literature and shown to be effective Shu et al. (2019); Ren et al. (2018). The approximation
at the θt can be formulated as follows:

θ̃(T ) = θt − η
1

n

n∑
i=1

∂lce(T fθ(xi), yi)

∂θ
(17)

Update T In the Outer Loop. With the approximate solution from the inner loop, we establish
a mapping from T to θ̃(T ), with which we can calculate the gradient of the outer loss w.r.t T .
Therefore, the update in the outer loop can be formulated as:

T t+1 = T t − α
1

m

m∑
i=1

∂lrob(fθ̃(T )(xi), yi)

∂T
(18)

Algorithm 1 Algorithm of ROBOT

Require: Noisy training dataset D̃tr, noisy validation dataset D̃v , batch size n and m, outer update
frequency K, total iterations E.

1: Initialize transition matrix T with an identity matrix.
2: for training iteration t = 1, 2 . . . E do
3: {xv, yv} ← SampleBatch(D̃v,m)

4: {xt, yt} ← SampleBatch(D̃t,m)
5: if t / K is 0 (# update T once each K iteration.) then
6: Solve the approximation for inner problem as 17
7: Update T by Equation 18
8: end if
9: Update θ by Equation 16

10: end for
Output: Optimized T ∗ and θ∗.

Discussion about the Algorithm. In practice, the noisy training dataset D̃tr and the noisy val-
idation dataset D̃v can be the same, which achieves similar performance. Our method is able to
scale because the one-step approximation used in our implementation. Besides, the frequency of the
outer loop updates can be set lower for better efficiency. With these approximation technique, our
framework can be efficiently trained on large-scale datasets, e.g., Cloth1M with 1 million samples.
The overall computational cost is about 1.6 times the cost for regular training on Cloth1M.

A.9 CONVERGENCE OF ROBOT

The convergence of the bilevel optimization using approximated solution of inner loop was first
established in Pedregosa (2016). We restate it here for completeness.
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Theorem 3 (Convergence, Theorem 3.3 of Pedregosa (2016)). Suppose Lrob(fθ̂(T ); D̃) is smooth

w.r.t. T , L(T fθ; D̃) is β-smooth and α-strongly convex w.r.t. θ. We solve the inner loop by unrolling
J steps, choose learning rate in the outer loop as ητ = 1/

√
τ , then we arrive at a approximately

stationary point as follows after R steps:

E

[
R∑

τ=1

ητ∥∇TLrob(fθ̂(T ); D̃)∥
2
2∑R

τ=1 ητ

]
≤ Õ

(
ϵ+

ϵ2 + 1√
R

)
, (19)

where Õ absorbs constants and logarithmic terms and ϵ = (1− α/β)J .

A.10 IMPLEMENTATION OF ROBUT LOSSES

We provide the details about the robust loss functions used in ROBOT.

Reverse Cross Entropy Loss (RCE)

ℓrce(f(x,θ), y) = −
K∑

k=1

fk(x,θ) log q(k|x) (20)

Mean Absolute Error (MAE)

ℓmae(f(x,θ), y) = −
K∑

k=1

∥fk(x)− q(k|x)∥1 (21)

We denote the ground-truth distribution over labels by q(k|x), and
∑K

k=1 q(k|x) = 1. Given the
ground-truth label is y, then q(y|x) = 1 and q(k|x) = 0 for all k ̸= y. For the RCE loss, we
approximate log(0) to constant 10.

A.11 CONVERGENCE OF T

In Theorem 2, we provide the uniform convergence of ROBOT in terms of the outer loss. We are
also able to direct bound the deviation of T̂ from T ∗ as follows:
Corollary 2. Define ϵ,N (ϵ,F , ∥ · ∥∞), T̂ as the same with Theorem 2. Assume Lrob(θ̂(T ), D̃) is
γ-strongly-convex w.r.t. T , then with probability at least 1− δ, we have

∥T̂ − T ∗∥2 ≤

√√√√2ϵ+M
√

2 ln(2N (ϵ,F,∥·∥∞)/δ)
n

γ
. (22)

Proof. By Theorem 2 and the fact T ∗ = argminT Lrob(θ̂(T ), D̃), we have with probability at least
1− δ the following holds

Lrob(θ̂(T̂ ), D̃) ≤ Lrob(θ̂(T
∗), D̃) + 2ϵ+M

√
2 ln(2N (ϵ,F , ∥ · ∥∞)/δ)

n
. (23)

By the strong convexity, we have

Lrob(θ̂(T̂ ), D̃) ≥ Lrob(θ̂(T̂
∗), D̃) +∇TLrob(θ̂(T̂

∗), D̃)(T̂ − T ∗) +
γ

2
∥T̂ − T ∗∥22 (24)

By the optimality of T ∗, we have

∇TLrob(θ̂(T ), D̃) = 0. (25)

Combining equation 23-25, we know that with probability at least 1− δ, the following holds:

γ

2
∥T̂ − T ∗∥22 ≤ 2ϵ+M

√
2 ln(2N (ϵ,F , ∥ · ∥∞)/δ)

n
. (26)

We finish the proof by rearrangement.
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B EXPERIMENTAL DETAILS

B.1 PLOT DETAILS

We choose 3 classes from MNIST (namely, class 2, 4 and 6), and apply uniform noise with noise rate
0.4. For ease of illustration, we randomly sample 100 points for each class. We first fit a 3-laryer
MLP h(x) on the noisy dataset. Then we the Minimum Volume method (Li et al., 2021) to find
the minimum T whose conv(T ) encloses all samples. We then train ROBOT on the same setting.
To make a fair comparison with minimum volme method, we use h(x) as the soft noisy label for
ROBOT to ensure that the noisy posterior for ROBOT cannot be more accurate than the minimum
volumn method.

B.2 DATASET DETAILS

CIFAR10-N and CIFAR100-N Wei et al. (2021) is a recently proposed dataset, which was created
with the Amazon Mechanical Turk (M-Turk) by posting the CIFAR-10 and CIFAR-100 datasets as
the annotation Human Intelligence Tasks (HITs). The human annotations are then used as labels for
the training data. Clothing1M is a dataset proposed in Xiao et al. (2015). The dataset contains 1
million images with noisy labels obtained from the web. We follow the same setting as in Li et al.
(2021) and only use the noisy dataset to jointly train both the neural network and the noise transition
matrix T .

B.3 EXPERIMENTAL DETAILS

Specifically, we train Lenet with 5 layers for MNIST, SGD with batch size 128, weight decay 10−3

momentum 0.9 and learning rate 10−2 is used to optimize the neural network parameters, while
Adam with learning rate 10−2 and batch size 128 is used to optimize T in the outer loop; for
CIFAR10, we experiment on ResNet18, trained using SGD with batch size 128, weight decay 5 ×
10−4 momentum 0.9 and learning rate 5 × 10−2; for CIFAR100, we experiment on ResNet34,
trained using SGD with batch size 128, weight decay 1 × 10−3, momentum 0.9 and learning rate
5 × 10−2, for both CIFAR10 and CIFAR100, Adam with learning rate 5 × 10−3 and batch size
256 is used din the outer loop to train T; for CIFAR10-N and CIFAR100-N, ResNet34 is training
using SGD with learning rate 0.1, momentum 0.9 and weight decay 5× 10−4, following the official
hyper-parameters, while T is optimized using Adam with learning rate 5 × 10−3; for Clothing1M,
we follow Li et al. (2021) to finetune an ImageNet pre-trained ResNet50 using SGD with learning
rate 2× 10−3, momentum 0.9 and weight decay 1× 10−3, batch size is set to 32.

B.4 BILEVEL FORMULATION LEADS TO EASIER OPTIMIZATION

Figure 2: Comparison of RCE loss values on the training dataset achieved by one-level training
(directly optimizing the robust loss) and our ROBOT. We can see that directly training the network
with RCE leads to difficulty in optimization. On the other hand, ROBOT decreases the training
loss quickly since as ROBOT transforms the optimization to a much smaller space (transform the
optimization from the space of neural networks to the space of T ).
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We conduct the following two experiments on CIFAR100 to verify that the bilevel formulation in
ROBOT leads to easier optimization of the robust loss function: 1) directly using the reverse cross
entropy loss to train the network (referred as one-level method in the following discussion); 2)
execute the bilevel procedure in our ROBOT (for fair comparison, we use the training dataset for
both the inner loop and outer loop in equation 7). In Figure 2, we can see that direct optimizing the
robust loss (one level) can hardly decrease the training loss, which is consistent with the findings in
Zhang & Sabuncu (2018). On the other hand, the robust training loss optimized as the outer loss of
ROBOT decreases rapidly.

Implementation Details In ROBOT, we set K = 1 for the algorithm described in Appendix A.8
for ROBOT, which iterate between inner and outer loop by performing one step gradient descent
each time, in the inner loop, SGD with momentum 0.9 and learning rate 0.1 is used; in the outer
loop, Adam with learning rate 0.001 is used. For directly training the model using the reverse cross
entropy loss, we have tried different learning rate ({0.1, 0.01, 0.001, 0.0001}) with Adam optimizer.
The learning rate is decayed at 40 and 70 epochs in all runs. For each experiment, we record the
value of the reverse cross entropy loss on the training dataset, which is the training loss in the one-
level case and is the outer loss in ROBOT, respectively. The results are shown in Figure 2. Each
iteration of ROBOT needs two times of gradient evaluations, one for the inner loop and one for the
outer loop. Each iteration of direct optimizing robust loss (one-level) needs a single time of gradient
evaluation.

B.5 EXPERIMENTS W/WO SEPARATE VALIDATION SET

In the implementation of equation 7 described in Appendix A.8, we split the noisy dataset into a
training and validation dataset. The training dataset is used in the inner loop and validation set used
for the outer loop. Actually we can also use the same noisy dataset for both the inner and outer
loops (with out splitting it into a training and validation set). We conduct experiments on CIFAR10
dataset with 20% and 50% uniform noise to compare these two schemes. Table 6 reports the test
performances and estimation error rate. The outer objective adopts RCE loss. Other configurations
follow the same settings as the main experiment. Table 6 shows that the two schemes lead to similar
performance.

Table 6: Comparison between whether using a separate validation set in the outer loop.

Method Noise rate=0.2 Noise rate=0.5
Separate Validation 92.13±0.07 88.75 ±0.10

No Separate Validation 92.09±0.09 88.63 ±0.12

C RELATED WORK

In this section we categorize previous noisy label learning approaches into two types: heuristic
methods and statistically consistent methods, and further provide a brief introduction.

Heuristic Methods. Due to the empirical observation that the neural networks tend to learn easy
(correct) samples first, and then starts to fit onto the hard (corrupt) samples in the later phase of
training, many algorithms are designed based on the training samples’ loss values (Han et al., 2018;
Wei et al., 2020; Huang et al., 2019; Pleiss et al., 2020; Yao et al., 2021b). Specifically, the samples
with small loss values are presumed to be correctly labelled, while those with large loss values
are considered corrupted. Even though these methods demonstrate strong empirical results, they
typically lack theoretical guarantees and hence make their reliability questionable.

Loss Correction Methods. Algorithms belonging to this category attempt to train a statistically
consistent classifier under label noise with theoretical guarantees by utilizing the noise transition
matrix (T ) to correct the loss during training. The majority of previous methods rely on the anchor
point assumption, which means there is at least one data belonging each specific class with prob-
ability one (Patrini et al., 2017; Xia et al., 2020; Liu & Tao, 2015; Scott, 2015; Scott et al., 2013;
Yao et al., 2020; Zhu et al., 2021; Wu et al., 2021; Xia et al., 2022; Li et al., 2022b). However, the
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anchor point assumptions are unfavorable (Xia et al., 2019). Recently, (Li et al., 2021; Zhang et al.,
2021) make the attempt to estimate T without relying on the anchor point assumption. Even though
promising results are achieved, we point out that these methods are prone to inaccurate posteriors
estimation (Section 2) and suffer unreliable performances especially when training data is scarce
(Section 4). In comparison, our method overcomes the above mentioned issues and demonstrates
superior performances.

Robust Loss Functions. Several noise-robust loss functions are proposed to train the network
(Ghosh et al., 2017; Liu & Guo, 2020; Xu et al., 2019; Wang et al., 2019; Ma et al., 2020; Zhou
et al., 2021; Kim et al., 2021), such that when the number of training data approaches infinity, the
optimal weights derived from noisy training data is the same as the weights derived from clean data.
Despite they learn a robust classifier in theory, they are typically difficult to train the DNNs and
result require more hyper-parameter tuning (Wang et al., 2019). Our method utilizes the robust loss
functions to optimize the noise transition matrix T instead of the model parameters, the learnt T is
then used to correct the loss during training to learn a statistically consistent classifier.

Bilevel Optimization Bilevel optimization Sinha et al. (2017) has achieved a lot of successes in
recent years, which is able to solve hierarchical decision making processes. Bilevel optimization
is adopted in broad areas of research, such as hyper-paramter optimization Lorraine et al. (2020);
Maclaurin et al. (2015); Pedregosa (2016); MacKay et al. (2019); Franceschi et al. (2017); Vicol
et al. (2021), neural architecture search Pham et al. (2018); Liu et al. (2018); Pham et al. (2018); Shi
et al. (2020); Yao et al. (2021a); Gao et al. (2022; 2021); Shi et al. (2021), meta learning Finn et al.
(2017); Nichol & Schulman (2018), dataset condensation Wang et al. (2018); Zhao et al. (2020);
Cazenavette et al. (2022); Pi et al. (2022) and sample re-weighting Ren et al. (2018); Shu et al.
(2019); Zhou et al. (2022a;c).
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