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ABSTRACT

Online learning is a crucial technique for dealing with large and evolving datasets
in various domains, such as real-time data analysis, online advertising, or financial
modeling. In this paper, we propose a novel predictive statistical model called the
Online Sparse Residual Tree (OSRT) for handling streaming multivariate scattered
data. OSRT is based on online tree decomposition and online adaptive radial
basis function (RBF) exploration. OSRT dynamically expands its network depth
as more data arrives, and incorporates a sparse and appropriate RBF refinement
at each child node to minimize the residual error from its parent node. OSRT
also uses an incremental method to explore the central node of the RBF function,
ensuring both sparsity and accuracy of the model. When the network reaches its
maximum depth, the OSRT model updates the RBF approximation of its final
layer based on the most recent data. This ensures that the model captures the
latest trends in the evolving data. We evaluate our algorithm on several datasets,
and compare it with existing online RBF methods. From the results, it is shown
that OSRT achieves higher efficiency and accuracy.

1 INTRODUCTION

The research field of real-time online regression analysis addresses challenges like forecasting traffic
congestion, energy usage, and even environment parameters. These tasks demand predictive mod-
eling that operates in an online, real-time fashion and can quickly adapt to changing conditions. A
common approach of solving such complex tasks is to transform them into simpler tasks, and then
use known methods to solve the simple tasks. For example, the partition of unity scheme based on
decomposing the original reconstruction domain into many subdomains or patches is a good choice.
And it can be coupled with radial basis function (RBF) or other basic regression approach(De Marchi
et al., 2019).

RBF method has shown remarkable success in multivariate scattered data approximation because of
its dimensional independence and remarkable convergence properties (Buhmann, 2000; Luo et al.,
2014). RBF method was originally introduced byHardy (1971) and it is an effective tool in engineer-
ing and sciences. When data is generated and collected in the form of streaming, many traditional
machine learning algorithms have deriving online learning versions, RBF is no exception. And the
online RBF networks have drawn significant attention in time series prediction(Liu et al., 2020b),
environment parameters detectionMeng et al. (2021) and so on(Carolis et al., 2015; Scalabrini Sam-
paio et al., 2019).

One of the fundamental challenges of online RBF is determining the number of hidden neurons and
the centers of the hidden neurons. According to the Vapnik-Chervonenkis theory[8](Cherkassky &
Mulier, 1999), it is able to get a satisfied training error with the increase of network size. However,
too large a network may bring in poor testing performance, leading to over-generalization. Resource-
allocating network (RAN)(Kadirkamanathan & Niranjan, 1993) takes the growth strategy first, it
adds RBF neurons based on the novelty of the input information. Then, pruning strategy was added
into RAN, followed by the minimal resource-allocating network (MRAN)(Yingwei et al., 1997).
The growing and pruning RBF(GAP-RBF) first introduces the concept of significance for the hidden
neurons, and the neurons were updated based on the accuracy and significance(Huang et al., 2004;
2005). InChen et al. (2015), Chen et al. proposed a radial basis function (RBF) neural network with
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a fixed number of hidden nodes, where the insignificant neurons would be replaced by new RBF
neurons.

But the above methods often take structure determining and parameters optimizing as two separate
tasks to tackle. Recently, researchers have been trying to address the challenge of finding a trade-off
between structure size and generalization performance in the context of structure determining and
parameters optimizing. One common approach is to use evolution algorithms that combine both
tasks within a unified framework (Qasem et al., 2012; Alexandridis et al., 2012; Han et al., 2016).
For instance, Alexandridis et al. (2012) integrated particle swarm optimization (PSO) with the fuzzy
means algorithm to design a unified framework for RBF networks. Similarly, Han et al. (2016)
proposed an adaptive particle swarm optimization (APSO) algorithm to simultaneously optimize
network size and parameters. Yu et al. (2014) developed the incremental error correction algorithm
for RBF network construction. This method gradually adds RBF nodes and adjusts parameters
until the desired performance is achieved. Some researchers have also proposed hybrid constructive
algorithms that simultaneously determine network size and train parameters (Wu et al., 2014; Qian
et al., 2016).

The limited fitting ability of RBF networks is another challenge when the target function is too
complex. It motivates us to find an approach which can simplify the target function. Tree-based
models are well-suited for such tasks(Zhou & Feng, 2019). They possess the unique ability to
directly split the original domain without compromising the inherent semantic meanings. Moreover,
to enhance the modeling capabilities of trees, the incorporation of neural networks as predictive
functions in the leaf nodes has proven beneficial (Zhou & Chen, 2002). This approach leads to
the creation of a hierarchical tree-structured neural network, which exhibits expressive power at
least on par with general neural networks. Consequently, the augmentation of the RBF family with
flexible and potent tree-structured models appears to be a promising strategy. There have been some
attempts to combine tree structures and RBF methods in the field of machine learning (Liu et al.,
2020a; Akbilgic et al., 2014; Xu & Luo, 2022).

In this work, online sparse residual tree (OSRT) is developed for the purpose of representing the
intrinsic structure of streaming multivariate scattered data. OSRT is based on both online tree de-
composition and online adaptive radial basis function explorations. It separates the input space into
smaller pieces as child nodes, in which a concise and proper RBF refinement is added to the approx-
imation by minimizing the 2-norm of the residual inherited from its parent. And the child nodes will
be further split into two according to their residual, this process stops until reaching the max depth
or desired accuracy. This method draws on the algorithms of online decision tree and the methods
of online RBF.

2 MODEL DEFINITION

In this section, we introduce the structure of online sparse residual tree. And we declare the space
dimension d ∈ N , the domain Ω ⊂ Rd is convex, f : Ω → R is a given target function, X =
{xi}Ni=1 and fX = {f(x1), f(x2), . . . , f(xN )} are the input datasets.

RBF networks are a type of general linear model where the input data are transferred to feature space
by non-linear transformations using RBF. There was only one hidden layer composed of RBF nodes,
whose activation function is Gaussian kernel φj(x) = e−δ2∥x−cj∥2

2 , where δ > 0 is often called the
shape parameter and cj is the center vector of the jth RBF node. We consider fitting such a function
f : Ω → R, where Ω ⊂ Rd is convex. Then the Gaussian approximation of RBF networks can be
presented blow:

s(x) =

N∑
j=1

αjφj(x)

where N is the number of hidden nodes, αj is the weight connecting hidden node j and output s.

As mentioned in Sect. 1, tree-structured functions are suited for describing numerical data. Here
we use binary tree which typically divides the input space into two disjoint subsets and makes
predictions using functions defined on each subset. We suppose X ⊂ Ω itself be the root in the
beginning, and denote the domain and its relevant datasets as Ω0 and X0, respectively. Suppose
Ωlj is a certain convex subset of Ω0, and it represents the jth unit of the lth layer of the sparse
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residual tree. And Xlj ⊂ Ωlj represents the corresponding input data. Let the residual function
r0(x) = f(x) on Ω0, then for each particular node, we need to explore the RBF approximation

slj (x, α) =

Nχ∑
i=1

αiφδl(x) (1)

to minimize the 2-norm of the current residual

rl+1,j(x) = rl(x)− slj (x), ∀x ∈ Xlj (2)

where Nχ is the number of neurons in this node, δl is the shape parameter and φ is the kernel
function. Notice that sl, composed of slj , is only used to refine the relative global component of
rl on Ωl. Finally, rl+1,j is combined into rl+1 for the next layer. Most regression trees grow by
recursive partitioning: the best split rule is determined by examining all cutpoint candidates along
each variable. The data set is then divided according to this split rule and the process is repeated
on the disjoint subsets until a stopping condition is met(He & Hahn, 2023). And a simple known
regression method is conducted after the input space decomposition. When we finish building a
OSRT of the target function f(x) on Ω, suppose the OSRT has nL leaf nodes and its ith leaf node
domain is ΩLi, and we have

⋃nL

i=1 ΩLi = Ω and ΩLi ∩ ΩLj = ∅, i ̸= j . Then for each leaf node
XLi ⊂ ΩLi, i = 1, 2, . . . , nL, there exists one root-to-lead path. And the OSRT prediction on ΩLi

can be expressed as

sOSRTLi
(x) =

L∑
l=0

sl(x), ∀x ∈ ΩLi (3)

and the OSRT prediction on Ω is

sOSRT (x) =

nL∑
l=0

IΩLi
(x)sOSRTLi

(x), ∀x ∈ Ω (4)

where IΩLi
(x) is the indicator function, which is defined as

IΩLi
(x) =

{
1 x ∈ ΩLi

0 x /∈ ΩLi
(5)

We assume that the observed datasets fX = {f(x1), f(x2), . . . , f(xN )} are generated by a OSRT,
which we are aiming to approximate. For numerical variables, we model the generating process
with online decision tree and an region-based adaptive sparse function. And we do not specify the
depth of online decision tree, thus allowing us to deal with streaming data. And we will describe the
details about online decision tree and the adaptive sparse function in the next section.

2.1 ADAPTIVE RBF EXPLORATION

In the context of approximating functions using radial basis function (RBF) networks, it is generally
believed that increasing the number of neural nodes can enhance the approximation performance.
However, this improvement becomes limited as the number of nodes becomes excessively large,
leading to a substantial increase in computational cost and resulting in an overly complex model.
Consequently, when the increase in the number of nodes no longer yields significant improvements
in approximation quality, it is prudent to consider halting the expansion of the node count.The pur-
pose of this adaptive exploration is to gradually determine the sparse and quasi-uniform centers
≻ tq = {χ1, χ2, ..., χq} of the RBF approximation sl on Ωl, this process stops when there was no
significant improvement.

Suppose that we have datasets Xl ⊂ Ωl, and we consider a method for generating a quasi-uniform
subsequence of Xl, which is an important step for subsequent adaptive RBF explorations. To find a
quasi-uniform subsequence C from Xl, we start with the approximate mean point, that is,

C1 = argmin
x∈Xl

∥x−Xl∥2, whereXl =
1

Nl

Nl∑
i=1

xli (6)
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where Nl is the data size of Xl. And for known Cj = {C1, ..., Cj}, the subsequent point Cj+1 is
determined as

Cj+1 = argmax
x∈Xl

( min
1<=i<=j

∥x− Ci∥2) (7)

Cj+1 is the point that maximizes the minimum of the set of distances from it to a point in Cj . Notice
that points in C are candidates for the sparse and quasi-uniform centers ≻ tq . By determining the
distance between every point of Xl and the points in C, we can get the Voronoi diagram of C. And
we are going to add the point in C to ≻ tq with maximum average error by the following procedure:

1) By substitute equation 1 into equation 2, we can rewrite the problem of minimizing the
2-norm of the residual as:

min
α∈RNx

∥rl(Xl)− Φα∥22 (8)

where the interpolation matrix Φ ∈ RNl×Nχ are defined by Φij = φδl(Xli−χj). Suppose
Φ have a QR decomposition Φ = QR, where Q ∈ RNl×Nχ has orthonormal columns
and R ∈ RNχ×Nχ is upper triangular, then the problem(8) has a unique solution α∗ =
(ΦTΦ)−1ΦT rl(x) = R−1QT rl(x) , where R and QT sl(x) ∈ RNχ can be recursively
obtained without computing Q by Householder transformations(Golub & Van Loan, 2013).
It means that when adding one point to ≻ tq , both Rq+1 and QT

q+1rl(Xl) can be recursively
obtained by Rq and QT

q rl(Xl) without computing Qq ,

2) For a fixed factor θs, the current shape parameter of φδl(x) can be determined as

δl =

√√√√− lnθs
max
x∈Xl

∥x− X̄l∥22
, whereX̄l =

1

Nl

Nl∑
i=1

Xli

Which is related to the size of domain Ωl, then a temporary RBF approximation and rele-
vant residual can be obtained by

stq (x, αtq ) =

q∑
i=1

αiφδl(x− χi), x ∈ Xl

where the coefficients αtq = R−1
q QT

q rl(x), and

rtq (x) = rl(x)− stq (x, αtq ), x ∈ Xl

3) Suppose {∧m}q+d+1
m=1 be the Voronoi diagram of Cq+d+1, and {∧m}m∈Γ are Voronoi re-

gions with respect to those elements from the complementary set Cq+d+1− ≻tq , then

χj+1 = Cm∗ ∈ Cq+d+1− ≻tq (9)

where Cm∗ represents the candidate point with largest mean squared error:

m∗ = argmax
m∈Γ

∑
x∈∧m∩Xl

∥rtq (x)∥2

nm

and nm is the point number of ∧m ∩Xl.

4) And the termination criteria is

κ̂(R) > θ1 or ϵq − ϵq+1 < θ2 or q + 1 = Nl, (10)

whereκ̂(R) = maxi |Rii|
mini |Rii| is an estimation of the condition number of R, θ1 is the upper

bound of condition number of R. And θ2 is predefined parameter to ensure that the increase
in the number of nodes yields significant improvements in approximation quality, and

ϵq =

√
1

Nl

∑
x∈Xl

(rtq (x))
2

This termination criteria is to ensure that the number of central nodes in stq is appropriate
and not too many or too few.
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And finally we can get the approximator sl on Ωl, and residual rl+1 of Xl:

sl(x, αl) =

Nχ∑
i=1

αliφδl(x− χi), x ∈ Ωl (11)

rl+1(x) = rl(x)− sl(x, αl), x ∈ Xl (12)
Where Nχ is the number of neurons in this node.

2.2 ONLINE NODE STRUCTURE OPTIMIZATION

Considering the model’s complexity, we establish a maximum tree depth of OSRT as dmax. Once
this depth is reached or the expected accuracy is reached, we cease partitioning the input space
Ωdmax . To ensure continued data processing in the model, we have the capability to update the leaf
nodes previously trained at the last layer of OSRT. In Sect. 2.1, we discussed how adaptive RBF
exploration can be employed to determine the number and values of center points. Assume that Nχ

is the number of neurons in leaf node after adaptive RBF exploration, then we set the . Consequently,
when new data comes in, we can update the central node according to two principles: mean squared
error and significance for the hidden neurons.

When the RBF structure is not suitable for the current data, the network residual error becomes large.
At this point, any insignificant node is substituted with a fresh node. To regulate the frequency of
node replacements, we employ the mean squared residual error as a metric for evaluating the RBF
network’s performance. In order to obtain the latest data information, we use a stack to save a fixed
amount of data as Nl. When new data (x, y) enters the stack and the amount of data exceeds the
maximum value, the old data will be discarded. Define the mean squared residual error as:

ē2 =
1

Nl
·
∑

x∈Xl
(rl+1(x))

2∑
x∈Xl

(rl(x))2
(13)

Then, we have the following criterion{
if ē2 ≤ ∆1, the RBF structure remains unchanged

if ē2 > ∆1, adding one hidden neuron to the RBF structure

where ∆1 represents a constant threshold that’s configured based on the performance requirement,
and χ = x is the center point of the new added neuron. As a general rule, reducing the value of
∆1 results in a lower achievable residual error, but it may also lead to more frequent occurrences of
node replacements.

We have mentioned that the maximum number of central points as Nmax = 1.2Nχ, which means
that just adding new hidden neurons is not appropriate. We need a strategy to conduct the structure
pruning phase when the number of hidden neurons exceeds Nmax. Here we introduce the notion of
significance for the hidden neurons based on their statistical average contribution over all samples.

The network output for one sample xj ∈ Xl is given by

s1 = sl(xj , αl) =

Nχ∑
i=1

αliφδl(xj − χi), xj ∈ Ωl

If the neuron k is removed, the output of this RBF network with the remaining Nχ − 1 neurons for
the input is:

s2 =

k−1∑
i=1

αliφδl(xj − χi) +

Nχ∑
i=k+1

αliφδl(xj − χi), xj ∈ Ωl

Thus, for xj , the error resulted from removing neuron k is given by

Ekj = ∥s2 − s1∥ = ∥αlk∥φδl(xj − χk) (14)

5



Under review as a conference paper at ICLR 2024

For datasets Xl, the error resulted from removing neuron k is given by

Ek =

√√√√ 1

Nl

Nl∑
j=1

E2
kj = ∥αlk∥

√√√√ 1

Nl

Nl∑
j=1

φ2
δl
(xj − χk) (15)

And we will finally drop the k∗ neuron as the pruning phase, where k∗ = argmin
k

Ek, 1 ≤ k ≤ Nχ

2.3 ONLINE TREE GENERATION

For large scale problems, the conventional global RBF-based approach has prohibitive computa-
tional costs. Fortunately, the tree decomposition method offers a viable solution by yielding moder-
ately sparse matrices, thereby mitigating the computational overhead. We consider constructing the
online tree from the perspective of decision tree, in which each node contains a decision principle
in form of g(x) > θ. These principles usually contain two main parts (Saffari et al., 2009; Genuer
et al., 2017; Zhong et al., 2020): 1) a designed function g(x), which usually returns a scalar value, 2)
a threshold θ which based on the datasets and function decides the left/right propagation of samples.
Here we denote the function g(x) = x · v, where v is a vector related to the residual in this node.

To facilitate online learning of trees, we propose a strategy as follows: A newly constructed tree
begins with a single root node, and with the streaming data arrival we accumulate online statistics. In
this approach, we introduce two key hyperparameters: 1) The minimum number of samples a node
must observe before considering a split, denoted as β. 2) The point at which a node’s prediction
accuracy plateaus, indicating that further expansion of central nodes no longer improves accuracy.
Consequently, a node initiates a split when the cardinality of its dataset Nl >= βl and we finish the
adaptive RBF exploration. In general, as the depth of a tree node increases, the represented input
space becomes smaller. And the complexity of the objective function for that node decreases, which
implies that the required amount of training data can be reduced as the tree depth increases. So we
denoted β as the number of samples required in the root node. For nodes in lth layer, the required
number of samples can be expressed as:

βl =
β

l

Suppose we have got enough samples and done the adaptive RBF exploration on Xl ⊂ Ωl, where
|Xl| = Nl = βl.Then we conduct the adaptive exploration and get the approximator sl(x, α) =∑Nχ

i=1 αiθi(x). And we can express the error as this form: rl+1(x) = rl(x) − sl(x),∀x ∈ Xl,
which will be passed to the child nodes. In order to block the spread of error, we expect to separate
the points with large errors from those with small errors. First, we generate d + 1 quasi-uniform
points Sd+1 of Xl by the method mentioned in Sect. 2.1 with a different starting point

C1 = argmax
x∈Xl

∥x−Xl∥2, whereXl =
1

Nl

Nl∑
i=1

xli

Just like selecting the candidate point in C to ≻ tq with largest mean squared error, which has
mentioned in Sect. 2.1. We here also let {∧m}d+1

m=1 be the Voronoi diagram of Sd+1 , and determine
the first splitting point of Xl as:

xsp1 = Sm∗

where m∗ = argmaxm
∑

x∈∧m∩Xl

∥rl+1(x)∥2

nm
and nm is the point number of ∧m ∩ Xl. And the

second splitting point of Xl is determined as

xsp2 = argmax
x∈Xl

∥x− xsp1∥2

Then vector v mentioned above can be expressed as

v = xsp1 − xsp2 (16)

For any point x ∈ Xl, g(x) = x · v represents the projection length of x in the direction v. And
g(x) can also be recognized as the distance from point x to xsp1, and the maximum prediction error
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is around xsp1. Let g(Xl) = Xl · v represents projection of Xl int the direction v, then the threshold
θ can be determined as

θ = median(g(Xl)) (17)

Then datasets Xl can be splitted into Xl1 and Xl2 according to function g(x) and threshold θ:
Xl1 = {x ∈ Xl : g(x) < θ} and Xl2 = Xl −Xl1 (18)

And the input space Ωl can also be splitted into Ωl1 and Ωl2 to guide the way for data coming in
later:

Ωl1 = {x ∈ Ωl : g(x) < θ} and Ωl2 = Ωl − Ωl1 (19)

For each sample (x, y), we will determine which child domain it belongs to according to 19. When
the number of samples in the child node satisfied the required αl+1, the adaptive RBF exploration
and splitting procedure will take place again. And finally OSRT will reach the leaf node which stop
the splitting phase. With the arrival of new samples, we can conduct the node structure optimization
mentioned in Sect. 2.2 in the leaf node.

2.4 TRAINING ALGORITHM OF OSRT

Here we describe the training method of OSRT as Algorithm 1. The stability properties of OSRT
can be seen in Appendix A;

Algorithm 1 Training of OSRT
Input: Sequential training example (x, f(x)); the OSRT parameters θ, β, dmax and ∆1

Output: OSRT
1: Generate the root node, and set r0(x) = f(x)
2: for (xt, f(xt)), t = 1, 2, ... do
3: j = Findleaf(xt)
4: Calculate rj(x) by (12);
5: Add (xt, rj(xt)) to leaf node j;
6: if Nj ≥ βj and j is not trained then
7: Obtain sj(x, αj) on Ωj according to adaptive RBF exploration;
8: Update rj+1(Xj) on Xj

9: if depth of j ≥ dmax or rj+1(Xj)) reaches the requied accuracy then
10: split Xj and Ωj into two part;
11: end if
12: else if j is trained then
13: if ē2 > ∆1 then
14: Add xt to χ;
15: if Nχ > Nmax then
16: Calculate Ek, 1 ≤ k ≤ Nmax and find k∗;
17: Delete neuron k∗ and update α ;
18: end if
19: end if
20: end if
21: end for
22: Finally, for all x ∈ Ω, the OSRT prediction of the target function f(x) is obtained based on (4).

3 EXPERIMENTAL RESULTS

In this section, computer simulations are given to compare the proposed OSRT algorithm with
some typical online modeling approaches including GGAP RBF,,MRAN, RAN, MRLS-QPSO and
APSO-SORBF algorithms. All approaches apply Gaussian nodes. In this study, we use the root
mean square error(RMSE) and the mean absolute error(MAE) as a measure of accuracy:

RMSE =

√√√√ 1

N

N∑
i=1

(s(xi)− f(xi))2
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MAE =
1

N

N∑
i=1

∥s(xi)− f(xi)∥

3.1 CHAOTIC TIME SERIES (MACKEY–GLASS) PREDICTION

The chaotic Mackey–Glass differential delay equation is recognized as one of the benchmark time
series problems, which is generated from the following delay differential equation:

dx(t)

dt
=

ax(t− τ)

1 + x10(t− τ)
− bx(t)

And we can generate the time series by the following discrete equation:

x(t+ 1) = (1− b)x(t) +
ax(t− τ)

1 + x10(t− τ)

Here we let a = 0.2, b = 0.1, and τ = 17, the time series is generated under the condition
x(t − τ) = 0.3 for 0 ≤ t ≤ τ (τ = 17 in our case). And we take the past four observations
[xt−v, xt−v−6, xt−v−12, xt− v − 18] as the input vector to predict xt, here we set v = 50. For
4500 data samples generated from x(t), the first 4000 samples were taken as training data, and the
last 500 samples were used to check the proposed model.

(a) Prediction results (b) Prediction errors

Figure 1: Mackey–Glass (fixed parameters)

Algorithms Training RMSE Training MAE
OSRT 0.0044 0.0019
GGAP 0.0312 0.0297
MRAN 0.0337 0.0403
MRLS-QPSO 0.0168 0.0053
APSO-SORBF 0.0135 ——

Table 1: Mackey-Glass: Final prediction performance

Figures 1 shows the prediction results and prediction errors on the testing data, respectively. And it
demonstrates that the proposed OSRT algorithm can handle this time series prediction problem very
well. Table 1 shows that, compared with the other algorithms the OSRT neural network achieves
the best prediction performance. Though the model size of OSRT is large than these models, but it
requires the least training time because of its recursive QR decomposition tricks.
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Algorithms Training RMSE Training MAE
OSRT 0.1071 0.0564
GGAP 2.3294 1.4829
RAN 2.7486 2.2543
MRLS-QPSO 0.1822 0.0858
APSO-SORBF 0.1726 ——

Table 2: Lorenz: Final prediction performance

3.2 LORENZ TIME SERIES PREDICTION

In this section, OSRT algorithm is applied to predict the Lorenz chaotic time series. As a 3-D and
strongly nonlinear system, this time series system is governed by three differential equations as:

dx

dt
= ay − ax

dy

dt
= cx− xz − y

dz

dt
= xy − bz

(20)

where parameters a, b, c control the behavior of the Lorenz system. In this simulation, the fourth-
order Runge–Kutta approach with a step size of 0.01 was used to generate the system, and the
parameters were set to a = 10; b = 28; c = 8

3 . The task in this experiment is to predict the Y-
dimension samples. And we take the past four observations [yt, yt−5, yt−10, yt− 15] as the input
vector to predict yt+5. For 5000 data samples generated from y(t), the first 2000 samples were taken
as training data, and the last 3000 samples were used to check the proposed model. The results are
displayed is figure 2 and table 2, and we can see that the OSRT neural network achieves the best
prediction performance.

(a) Prediction results (b) Prediction errors

Figure 2: Lorenz (fixed parameters)

4 CONCLUSION

An OSRT algorithm neural network for dealing with large and evolving datasets is presented in
this paper. The proposed algorithm is technically built based on both online tree decomposition
and online adaptive RBF explorations, which performs favorably in terms of both accuracy and
efficiency. It enables the proposed OSRT algorithm to increase the tree depth and optimize the
parameters of the RBF network simultaneously during the learning processes. Experimental results
on the benchmark time series simulations demonstrate the efficiency and feasibility of our method.
And We can also apply this method to other streaming data scenarios.
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A STABILITY PROPERTIES

From Sect. 2, we have a SRT prediction of f(x) on any leaf node ΩL ⊂ Ω

sOSRTL
(x) =

L∑
l=0

sl(x), ∀x ∈ ΩL,

with the final residual
rL+1(x) = f(x)− sOSRTL

(x), ∀x ∈ ΩL.

Since rl+1 = rl − sl with r0 = f , then for any 1 ≤ l ≤ L. Suppose that we are using a sparse
and quasi-uniform subset XI ⊂ Xl to conduct the adaptive RBF exploration, then it follows from
Algorithm 1 that

αl = R−1QT rl(XI) = R−1QT sl(XI),

where QR is the QR decomposition of the current matrix Φ generated by the kernel φδl and the
sparse subset XI . If τl is the smallest singular value of R,then

∥αl∥2 ≤ τ−1
l ∥sl(XI)∥2 ≤ τ−1

l ∥sl(Xl) (21)

In addition, we have
(sl(XI), rl+1(XI))l2 = 0
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so it holds from the randomness of XI that, in expectation,

(sl(Xl), rl+1(Xl))l2 = 0

According to the inclusion relationship X0 ⊃ Xl ⊃ XL and the orthogonality of sl(Xl) and
rl+1(Xl), we can obtain the following recurrence relations

∥rl(Xl)∥22 = ∥rl+1(Xl)∥22 + ∥sl(Xl)∥22, 0 ≤ l ≤ L,

and
∥rl(Xl−1)∥22 > ∥rl(Xl)∥22, 1 ≤ l ≤ L.

Thus, in expectation, it follows that

∥fX∥22 = ∥s0(X0)∥22 + ∥r1(X0)∥22 > ∥sl(Xl)∥22 + ∥rL+1(XL)∥22.

Together with (21), we proved the following theorem.

Theorem 1 Suppose sSRTL is a SRT prediction of a function f on a leaf node ΩL ⊂ Ω with
respect to the data (X, fX), as defined in (3). Let αl be the coefficients of the lth level least square
approximation sl, then in expectation,

L∑
l=0

∥αl∥2 ≤ τ−1 · ∥fX∥2,

where L is the depth of leaf node ΩL and τ = min1≤l≤L τl and the constants τl comes from (21).

Note that this theorem obviously holds for our OSRT with sparsification processes introduced in
Sect. 2. We shall consider functions from certain Sobolev spaces W k,p(Ω) with k ∈ N0, 1 ≤ p <
∞and native spaces of Gaussians Nφ(Ω),respectively. The Sobolev space W k,p(Ω) consists of all
functions f with distributional derivatives Dγf ∈ Lp(Ω) for all |γ| ≤ k, γ ∈ Nd

0. And now we can
prove the following theorem.

Theorem 2 Under the supposition of Theorem 1. For all 1 ≤ p < ∞, k ∈ N0, δ ≥ δL and any leaf
node ΩL of the predictions OSRT, it holds that,in expectation,

|sOSRT |Wk,p(ΩL) ≤ CW · τ−1 · ∥fX∥2 and ∥sOSRT ∥Nφ(ΩL) ≤ CN · τ−1 · ∥fX∥2,

where the constant τ comes from Theorem 1, the constant CW depends on δ0, δL, d, p and k, and
the constant CN depends only on δL and d.

Proof To prove the first inequality, observe that

|sl|Wk,p(ΩL) ≤
( ∑

|r|=k

∑
j

|αl,j |p∥Drφl∥pLp(ΩL)

) 1
p

≤ Mk,p
δl

∥αl∥p ≤ C1M
k,p
δl

∥αl∥2

whereMk,p
δl

=
(∑

|r|=k ∥Drφδl∥
p
Lp(Rd)

) 1
p , and for any 0 ≤ l ≤ L, Mk,p

δl
< Mk,p

δL
when k > 1;

or Mk,p
δl

< Mk,p
δ0

when k < 1; or Mk,p
δl

= Mk,p is independent of δl when k = 1. Together with
Theorem 1, we have

|sOSRT |Wk,p(ΩL) ≤
L∑

l=0

|sl|Wk,p(ΩL) ≤ CW · τ−1 · ∥fX∥2,

where CW = C1M
k,p
δL

when k > 1; or CW = C1M
k,p
δ0

when k < 1; or CW = C1M
k,p when

k = 1.

To prove the second inequality, observe that for any sl ∈ Nφδl
(Ωl), there is a natural extension εsl ∈

Nφδl
(Rd) with ∥εsl∥Nφδl

(Rd) = ∥sl∥Nφδl
(Ωl). From the definition of native spaces of Gaussians,

we see that εsl ∈ Nφδl
(Rd) with

∥εsl∥Nφ(Rd) ≤ ∥εsl∥Nφδl
(Rd) (22)

12
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where δ ≥ δL > · · · > δ0; and further, the restriction εsl |ΩL = sl|ΩL of εsl to ΩL ⊆ Ωl is
contained in Nφ(ΩL) with

∥sl|ΩL∥Nφ(ΩL) ≤ ∥εsl∥Nφ(Rd),

hence, we have ∥sl|ΩL∥Nφ(ΩL) ≤ ∥εsl∥Nφδl
(Rd), and then

∥sOSRT ∥Nφ(ΩL) ≤
L∑

l=0

∥sl|ΩD∥Nφ(ΩL) ≤
L∑

l=0

∥εsl∥Nφδl
(Rd)

Together with Theorem 1 and

∥εsl∥2Nφδl
(Rd)

=

∫
Rd

|ŝl(ω)|2e
∥ω∥22
4δ2

l dω ≤ ∥αl∥21
∫
Rd

e
− ∥ω∥22

4δ2
l dω ≤ C2

2 (2δL)
dπd/2∥αl∥22

we finally have ∥sOSRT ∥Nφ(ΩL) ≤ CN · τ−1 · ∥fX∥2, whereCN = C2(2δL)
dπd/2.
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