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Abstract

Generalizing to unseen graph tasks without
task-specific supervision remains challenging.
Graph Neural Networks (GNNs) are limited
by fixed label spaces, while Large Language
Models (LLMs) lack structural inductive bi-
ases. Recent advances in Large Reason-
ing Models (LRMs) provide a zero-shot al-
ternative via explicit, long chain-of-thought
reasoning. Inspired by this, we propose a
GNN-free approach that reformulates graph
tasks—node classification, link prediction, and
graph classification—as textual reasoning prob-
lems solved by LRMs. We introduce the
first datasets with detailed reasoning traces for
these tasks and develop GRAPH-R1, a rein-
forcement learning framework that leverages
task-specific rethink templates to guide rea-
soning over linearized graphs. Experiments
demonstrate that GRAPH-R 1 outperforms state-
of-the-art baselines in zero-shot settings, pro-
ducing interpretable and effective predictions.
Our work highlights the promise of explicit
reasoning for graph learning and provides
new resources for future research. Codes
are available at https://anonymous.4open.
science/r/emnlp_submission-FDFo.

1 Introduction

Zero-shot learning in graph machine learning aims
to solve tasks in unseen label spaces or domains
without any task-specific supervision. While graph
neural networks (GNNs) perform well when ample
labeled data are available, their generalization abil-
ity sharply deteriorates under distribution shifts or
in new label spaces—unless expensive fine-tuning
is applied (Ju et al., 2023). Prompt-based GNN
variants (Liu et al., 2023; Sun et al., 2023), in-
spired by advances in natural language processing
(NLP), offer partial mitigation; however, their fixed,
task-specific output heads still hinder true zero-shot
generalization.

Large language models (LLMs) offer a comple-
mentary and promising alternative. A straightfor-
ward approach flattens the graph into a textual se-
quence and feeds it to an LLM (Chen et al., 2024c;
Guo et al., 2023; Wang et al., 2023; Liu and Wu,
2023). However, this often yields suboptimal re-
sults due to the lack of structural inductive bias es-
sential for effective graph reasoning (Huang et al.,
2024). Recent efforts have sought to more tightly
integrate GNNs with LLMs. One line of work re-
tains the GNN as the predictor while using the LLM
to generate auxiliary signals, such as synthetic la-
bels or node descriptions (Ye et al., 2024; Yu et al.,
2025; Xia et al., 2024; Chen et al., 2024d). Yet,
these methods still rely on rigid GNN heads and
require retraining for each task. Another approach
delegates prediction to the LLM while incorporat-
ing structural signals from a frozen GNN via cross-
modal projection (Tang et al., 2024; He et al., 2025;
Wang et al., 2024a). Unfortunately, the separation
of training between components results in weak
task conditioning and limited transferability. More
tightly coupled methods—such as GOFA (Kong
et al., 2024)—inject GNN features directly into the
LLM token stream at inference time. While this
improves zero-shot accuracy, it introduces substan-
tial computational overhead and still struggles with
generalization across tasks and domains.

From graph structure to text-based reason-then-
predict. Recent advances in Large Reasoning
Models (LRMs) (e.g., DEEPSEEK-R1 (DeepSeek-
Al et al., 2025)) renew our interest in the graph-
to-text paradigm, driven by their ability to gener-
ate explicit reasoning processes. These models
can potentially compensate for the lack of hand-
crafted structural priors and offer an interpretable,
zero-shot-capable alternative for graph learning.
Crucially, many canonical graph tasks—such as
link prediction, edge classification and node or
graph-level classification—can be naturally refor-
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mulated as short sequences of relational reason-
ing steps, once the graph is linearized into text.
Prompting a reasoning-capable LLM to generate
such chains of deduction effectively replaces the
opaque feedforward process of a GNN with a trans-
parent reason-then-predict pipeline. This shift of-
fers two key advantages: improved generalization
under distribution shift (since the model must jus-
tify each step rather than memorize patterns), and
human-interpretable rationales for every prediction.
Progress in this direction, however, is currently
bottle-necked by the lack of (i) a benchmark that
evaluates both reasoning and prediction across a
wide range of graph tasks, and (ii) a model that
fully commits to this pure, GNN-free paradigm.

Our solution. To tackle the above challenges,
we present the first dataset that simultaneously
spans node classification, link prediction, and
graph classification—each annotated with explicit
chains of thought. Leveraging this resource, we
develop GRAPH-R1—a reinforcement-learning-
based, purely graph-to-text framework that pro-
motes LLM reasoning for cross-task, cross-domain
zero-shot prediction without any GNN component.
We further design a rethink reasoning template spe-
cialized for graph prediction. Comprehensive ex-
periments show that GRAPH-R1 matches or ex-
ceeds strong baselines, particularly in challenging
transfer scenarios, highlighting the value of explicit
reasoning for graph learning. Our contributions are
threefold:

* We construct the first reasoning dataset tai-
lored for graph machine learning tasks, with
detailed reasoning traces.

* We propose GRAPH-R1, a reasoning-
augmented LLM that improves generalization
and transferability via reinforcement learning
with task-specific rethink templates.

* Extensive experiments show state-of-the-art
zero-shot performance across diverse graph
tasks, demonstrating the impact of explicit
reasoning in LLM-based graph prediction.

2 Methods

We present GRAPH-R 1, a graph-to-text framework
for cross-domain and cross-task graph reasoning.
The method is built on three principal modules: (i)
reasoning-centric graph dataset construction, (ii)
reasoning knowledge acquisition via full-parameter

DeepSeek-R1 node classification reasoning

Reasoning Traces:

Okay, Let’s try to figure out how to classify node3. So,
the task is to determine the correct category for the essay
represented by. . .

First, I need to look at node3’s own description. It says:
“Practical lattice-coded PNC. ..

Second, the connections suggest that node3 is part of
a network of papers related to physical-layer network
coding. ..

‘Wait, but the connections listed are node3-node4, node3-
nodes. ..

Therefore, based on the above reasoning, the primary
category for node3 is likely cs.NL

Answer: ¢s.NI

Brief_reasoning: node3 is best categorized under
¢s.NI due to its focus on practical lattice-coded physical-
layer network coding, with no meaningful structural or
semantic connections to other domains.

Figure 1: An illustration of explicit reasoning traces
produced by DEEPSEEK-R1 for node classification.

fine-tuning, and (iii) reinforcement learning—based
reasoning enhancement.

2.1 Notations

Let 7 €7 denote a graph-learning task type (e.g.,
node classification, link prediction). A graph
is written as G = (V,&,A,X), where V =
{v1,.. vy and € = {e1, ..., eg } are the node
and edge sets, respectively. The adjacency matrix
A% {0, 1}V satisfies Ag = 1iff (v;,v;) €€.
Textual attributes are stored in X: x(v;) denotes the
textual description of node v;, and x(e;;) denotes
that of edge ¢;;, which connects nodes v; and v;.
For a graph—task pair (G, 7) we design a prompt
template P , that linearises G' and specifies the
task requirements.

2.2 Graph-Reasoning Data Curation

To investigate reason-then-predict graph learning,
we construct the first dataset featuring explicit, de-
tailed reasoning traces across multiple graph tasks.

Dataset and task selection. We sample 11 rep-
resentative datasets from five domains—citation
networks, e-commerce, social media, molecular
graphs, and knowledge graphs. Together they
cover node, edge, and graph-level tasks (node
classification, link prediction, graph classification,
edge classification), ensuring broad coverage for
evaluating graph reasoning.



Graph-to-text augmentation. Unlike prior work
that tokenizes structural features using GNN en-
coders, we revisit the pure graph-to-text paradigm.
Taking node-level tasks as an example, for a target
node v;, we extract its h-hop subgraph and describe
all node features T; = {x(v;) | j € N(¢) U {i}},
and edge relations F; {x(ejr) | vj,v €
N (i) U {i}} within the subgraph using natural lan-
guage, where N (i) is the neighborhood of v;. To
maintain input tractability for large graphs with
verbose node texts (e.g., citation networks with ti-
tles and abstracts), we apply DEEPSEEK-V 3 for
automatic summarization. Prompt templates are
provided in Appendix B.

Reasoning-trace extraction. A distinctive fea-
ture of our dataset construction is the inclusion of
explicit reasoning traces for each answer. Specif-
ically, each subgraph query (J; consists of node
features 7;, edge relations E;, and a prompt tem-
plate Pg . tailored to the graph structure G' and
task type 7, serving as input to the LLM. We then
input @); into DEEPSEEK-R1 to generate an ex-
plicit reasoning trace R; and a final prediction Y,
as illustrated in Figure 1. Formally, this process
can be represented as:

Qi — (Yi, Ry).

Quality control.
process:

We apply a three-stage filtering

1. Information sufficiency: remove isolated

nodes and trivial subgraphs.

2. Answer validity: discard samples where the
predicted answer Y; mismatches the gold label
or contains sensitive content.

3. Rationale coherence: retain only rationales
that exhibit reasonable length and logical con-
sistency.

The final corpus contains 10,000 graph reasoning
examples across multiple domains and tasks, each
paired with an explicit chain-of-thought explana-
tion.

2.3 Graph-R1

Building on the graph-reasoning corpus described
above, we develop GRAPH-R1, an LLM-based
framework for solving graph machine learning
tasks through explicit reasoning. Training pro-
ceeds in two stages: (1) joint instruction tuning
across multiple tasks and domains, and (2) rein-
forcement learning to refine reasoning quality. To
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Figure 2: GRAPH-R1 framework. Graphs are linearized
into a graph description language, and a task-aware
prompt guides the LL.M to produce explicit reasoning
and the final answer.

support smaller LL.M backbones, we introduce a
rethink template that encourages deeper semantic
and structural analysis, leading to more robust and
interpretable multi-step deductions. This pipeline
enables GRAPH-R1 to advance zero-shot graph
reasoning with large language models.

2.3.1 Reasoning Knowledge Learning via
Full-Parameter Fine-Tuning

In Phase 1, we perform joint instruction tuning
across node-, edge-, and graph-level tasks from
diverse domains, transferring the general reasoning
capabilities of DEEPSEEK-R1 to the graph setting
and leveraging multi-task synergies.

We adopt full-parameter supervised fine-tuning
using the standard language modeling loss. Given a
graph query ();—comprising textual node and edge
features {7, E; } and a prompt P .—the model is
trained to generate both the reasoning trace R; and
the final answer Y;:

1 N
L£(0) =~ > logpo(Ri.Yi | Qi) (1)
i=1

where NV is the number of training examples and
0 denotes the model parameters. The model thus
learns to map graph-structured prompts to coherent
reasoning traces and accurate solutions. Exposure
to a broad range of tasks enhances generalization
and promotes transferable reasoning abilities. De-
tailed training configurations are provided in Ap-
pendix C.



Rethink Prompt Template

Question: (will be dynamically filled)

- Re-evaluate each candidate in <rethink>...</rethink>

Your response must follow this format:

<think>

<structure>Structure analysis here</structure>
<semantic>Semantic analysis here</semantic>

<rethink>Re-evaluate each candidate in depth</rethink>
Final reasoning and answer

</think>

Answer: your_answer

Brief_reasoning: your_brief reasoning

You must conduct reasoning inside <think>...</think>. Inside it, you should include:
- Include topological analysis in <structure>...</structure>

- Include semantic interpretation in <semantic>...</semantic>

- Provide three candidate answers in <comprehensive>...</comprehensive>

<comprehensive>List candidate answers and brief reasoning</comprehensive>

Figure 3: Rethink Prompt Template. This structure-aware reasoning format is used during both training and

inference.

2.3.2 Reinforcement-Learning-Based
Reasoning Enhancement

In Phase 2, we refine the instruction-tuned
model using Group Relative Policy Optimization
(GRPO) (Shao et al., 2024), a reinforcement learn-
ing method that jointly incentivizes answer cor-
rectness and the logical coherence of the reason-
ing trace—thereby enhancing generalization across
graph tasks.

GRPO fine-tunes the supervised model using a
reward signal that balances reasoning quality and
prediction accuracy. Its training objective is:

1. .
T(0) = Eqria g D[ min(pidi,clip(oi, 1 2,14 2)4s)

=1

— BKL(me \|mef)] .

(2a)
_ mla) ob)
T Oo1a (Oi | q)
_ Wrcf(oi | Q) _ Wrcf(oi | Q) _
KL (7o ||mref) = o(os | ) lo (01| 9) 1. 20

Here, g and 7y, denote the current and previous
policies, respectively; ¢ and o; represent the sam-
pled question and its i-th response; and g is the
group size. The hyperparameters € and 5 control
the clipping threshold and KL divergence penalty,
respectively. The group-wise advantage is com-
puted as:

ri — mean({rj}gzl)
std({r;}j_1)

where {r;} are the rewards for the g responses to
the same question.

A =

Rethink Template. Conventional prompting typ-
ically restricts reasoning to a single <think>
block—effective for mathematical problems, but
suboptimal for graph tasks where both structural
and semantic information are critical, and labels
can be ambiguous. To address this, we propose
a rethink reasoning template specifically designed
for graph prediction tasks (see Figure 3).
Our revised template introduces a structured,
multi-phase reasoning process:
* <structure>: encourages explicit topologi-
cal analysis;
* <semantic>: focuses on the interpretation of
node/edge attributes;
» <comprehensive>: elicits multiple candidate
answers to expose alternative hypotheses;
* <rethink>: revisits each candidate to encour-
age comparative and bidirectional evaluation.
This structure-aware prompting scheme enables
tighter integration of topology and semantics, sig-
nificantly improving RL performance on node clas-
sification, link prediction tasks and etc.

Reward Modeling. The reward function serves
as the core training signal in reinforcement learning.
Under the standard <think> template, we adopt a
simple reward scheme:

1 if the answer is correct,
R = ¢ 0.01 if the output is merely well-formatted, (3)
0 otherwise.

While sufficient for toy mathematical tasks, this
coarse-grained feedback overlooks the rich interme-



diate reasoning required for graph-based problems.
To address this, we design a more fine-grained re-
ward for the rethink template, which evaluates both
the reasoning trace and the final answer. During
the initial reasoning phase, the model lists multiple
candidate answers; partial credit is assigned if the
gold label appears among them:

1 if the final answer is correct,

0.3  if the correct answer appears in <rethink>,
0.01 if only the format is correct,

0 otherwise.

R=

“)

Coupled with GRPO, this refined reward enables

the model to learn richer and more reliable rea-

soning paths, leading to state-of-the-art zero-shot

performance across all evaluated graph domains
and tasks.

3 Experiments

We begin by introducing the datasets used to train
and evaluate GRAPH-R1 (§3.1), followed by the
baselines and experimental setup (§3.2). We then
present a comprehensive suite of experiments to
assess the effectiveness and generalization of our
method, focusing on the following questions: RQ1:
Does GRAPH-R1 enable critical applications of
general graph models, such as zero-shot learning?
RQ2: Can it generalize to unseen tasks and do-
mains, including cross-task transfer? RQ3: How
do instruction tuning and the rethink template con-
tribute to generalization? RQ4: How does GRAPH-
R1 compare to large reasoning models on graph
tasks?

3.1 Datasets
We evaluate GRAPH-R1 on five benchmark
datasets:
* Cora — citation network with node and link
prediction tasks (Wen and Fang, 2023).
* Products — e-commerce graph for node classi-
fication (He et al., 2024a).
* WikiCS — Wikipedia graph with node classifi-
cation (Mernyei and Cangea, 2020).
* FB15K237 — knowledge graph for link predic-
tion (Liu et al., 2024).
* Expla-Graph — synthetic graph reasoning
benchmark (He et al., 2024b).
All tasks are aligned with the evaluation proto-
col of GOFA (Kong et al., 2024). To test cross-
domain and cross-task generalization, we addi-
tionally evaluate on three unseen graph regression

datasets—ESOL (Withnall et al., 2018), Lipo (Wu
et al.,, 2017), and Freesolv (Casasnovas et al.,
2014)—which are not seen during either fine-
tuning or reinforcement learning. This ensures a
strict zero-shot cross-task setting. Dataset statistics
and task details are provided in Appendix A.

3.2 Experimental Setup

Baselines.
baselines:

* General-purpose LLMs: LLaMA 2-7B (Tou-
vron et al., 2023), Mistral-7B (Jiang et al.,
2023), and DeepSeek-R1-distilled-Qwen2.5-
14B (DeepSeek-Al et al., 2025);

* Graph models leveraging LLMs: OFA (Liu
et al., 2024), GraphGPT (Tang et al., 2024),
UniGraph (He et al., 2025), ZeroG (Li et al.,
2024a), LLaGA (Chen et al., 2024b), and
GOFA (Kong et al., 2024).

These baselines represent the current state-of-the-
art in both general LLLM and graph-specific LLM
paradigms, providing a rigorous comparison for
our proposed approach.

We compare against two groups of

Implementation. We instantiate GRAPH-R1
with DeepSeek-R1-distilled-Qwen2.5 models
(14B). The model is first instruction-tuned and then
further optimized with GRPO-based reinforcement
learning on our graph reasoning dataset. All
methods, including baselines, are evaluated under
consistent zero-shot conditions and identical
hardware. Hyperparameters are tuned based on
validation performance. Full training details, data
splits, and evaluation metrics are available in
Appendix C.

3.3 Cross-Dataset Zero-Shot Generalization

RQI)

To address RQ1, we run strict zero-shot evalua-
tions on the GOFA-aligned benchmarks listed in
§3.1. Table 1 yields the following observations.
Generic LLMs such as Llama2-7B and Mistral-7B
rely mainly on textual cues. They are competi-
tive on node-classification datasets, where seman-
tics dominate, but drop sharply on link-prediction
tasks that require relational reasoning. LLM-as-
predictor models (GOFA, UniGraph) consistently
surpass GNN-based hybrids (OFA, ZeroG). Encod-
ing graph structure into the LLM token stream or
feature space markedly improves cross-domain ro-
bustness.



Task ‘ Cora-Node WikiCS Products Expla-Graph Cora-Link FB15K237
Way / Type | 7 2 10 5 47 10 5 2 2 10
Llama2-7B | 47.92 73.45 40.10 58.77 27.65 58.71 64.33 57.76 48.15 48.32
Mistral-7B | 60.54 88.39 63.63 71.90 43.99 70.16 74.94 68.77 49.43 62.48

OFA 28.65 56.92 21.20 35.15 19.37 30.43 39.31 51.36 52.22 -
GraphGPT | 44.65 - - - 1884 - - - 50.74 -
UniGraph | 69.53 89.74 43.45 60.23 38.45 66.07 75.73 - - -

ZeroG 64.21 87.83 31.26 4825 31.24 51.24 71.29 - — -

LLaGA |51.85 62.73 - - 23.10 34.15 39.72 - 88.09 -
GOFA-T |70.81 85.73 71.17 80.93 54.60 79.33 87.13 79.49 85.10 73.59
GOFA-F |69.41 87.52 68.84 80.52 56.13 80.03 88.34 71.34 86.31 80.69
Graph-R1 | 71.53 89.08 78.68 86.89 66.59 85.72 91.78 89.71 86.31 75.17

Table 1: Zero-shot accuracy (%) across datasets. Best in bold; second best underlined.
MAE | performing all baselines without any task-specific
Model : tuning. These results highlight its strong cross-task
ESOL Lipo FreeSolv generalization—crucial for real-world deployment
LLaGA 739 1555 51.72 where labeled data are often scarce or unavailable.
FA 4. 1. 14. .
o 493 136 14.98 3.5 Ablation Study (RQ3)
GRAPH-R1 1.72 1.55 11.59

Table 2: Zero-shot graph regression results (lower MAE
is better). Best in bold; second best underlined.

GRAPH-RI1 attains the best accuracy on eight of
ten settings and the second best on the rest, without
any GNN encoder. Its graph-to-text reformulation
plus reinforcement-learned reasoning allows the
model to fuse topology and semantics purely in
natural-language form, setting a new state of the
art for zero-shot graph prediction.

3.4 Cross-Task Zero-Shot Generalization
(RQ2)

To evaluate the model’s generalization ability in the
zero-shot cross-task setting, we conduct a test in
which the model is trained solely on classification-
style tasks—node, edge, graph classification or link
prediction—and is evaluated on unseen graph re-
gression tasks. We compare GRAPH-R1 with two
representative LL.M-based baselines, LLaGA and
GOFA, both evaluated under the same zero-shot
setting without access to regression training data.
Results are shown in Table 2.

GRAPH-R1 achieves the best performance on
ESOL and FreeSolv and ranks second on Lipo, out-

To address RQ3, we ablate two key components of
GRAPH-R1: instruction tuning and reinforcement
learning (RL) with the rethink template. Specifi-
cally, we compare four variants: (i) inif (the initial
model without task-specific training), (ii) w/o RL
(instruction-tuned without RL), (ii1) normal (RL
with the standard template), and (iv) the full Graph-
RI (RL with the rethink template).

Effect of Instruction Tuning. As shown in Fig-
ure 4, instruction tuning alone consistently outper-
forms the initial model across all datasets. This
demonstrates effective knowledge transfer and the
distillation of graph reasoning capabilities from
DeepSeek-R1 to our model, significantly enhanc-
ing its graph-specific inference performance.

Effect of RL with the Rethink Template. To
better illustrate the effect of reinforcement learn-
ing, we compare the normal and Graph-R1 variants
using the w/o RL variant as the baseline. Results
are presented in Figure 5, where the y-axis denotes
normalized performance (i.e., the ratio of the per-
formance to the w/o RL baseline). Applying RL
with the standard template improves performance
primarily on text- and logic-oriented tasks (e.g.,
Cora—Node, Expla-Graph), but leads to degrada-
tion on structure-heavy tasks such as Cora—Link
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Figure 5: Comparison of RL performance with the stan-
dard template ("normal") and the rethink template ("re-
think"), using the w/o RL result as the baseline (indi-
cated by the blue dashed line at 1.0). All values are
normalized with respect to the w/o RL baseline for each
dataset.

and FB15K237, suggesting limited gains in struc-
tural reasoning. In contrast, RL with the rethink
template yields consistent improvements across all
tasks, underscoring its importance in enhancing
both semantic and structural understanding, and
thereby significantly boosting generalization.

3.6 Comparison with Large Reasoning
Models (RQ4)

Answering RQ4 is crucial for understanding both
the necessity of our two-phase training strategy
and the effectiveness of GRAPH-R1 as a general-
purpose graph model. We compare GRAPH-R1
with Large Reasoning Models (LRMs), including
DeepSeek-R1 (671B) and its 14B distilled variant.
All models are evaluated using identical input for-
mats to ensure a fair comparison. Due to the high
computational cost of DeepSeek-R1, we randomly

sample 1,000 examples from the evaluation dataset
introduced in Section 3.1 for testing. The results
on these samples are presented in Table 3.
GRAPH-R1 achieves substantial improvements
over the 14B distilled model across all evaluated
tasks. Moreover, in several cases, it matches or
even surpasses the performance of DeepSeek-R1
(671B). These results provide strong evidence that
our two-phase training strategy significantly en-
hances reasoning capabilities on graph tasks.

3.7 Case Studies of GRAPH-R1 Reasoning

To demonstrate the interpretability and reasoning
capabilities of GRAPH-R1, we present two illustra-
tive examples from its inference process on distinct
graph tasks: node classification and link predic-
tion. Due to space constraints, the full case details
are provided in Table 10 in Appendix D. These
examples highlight key aspects of the model’s rea-
soning process, including its ability to integrate
structural and semantic information, comprehen-
sively evaluate candidate options, and effectively
verify hypotheses.

In node classification, the model showcased its
ability to comprehensively evaluate multiple can-
didate categories by combining structural and se-
mantic analyses, prioritizing the most relevant cat-
egory, and systematically re-evaluating each candi-
date to confirm its conclusion. For link prediction,
GRAPH-RI1 excelled in hypothesis testing during
the rethink phase, where it formulated and rigor-
ously tested assumptions about potential connec-
tions, ultimately rejecting unsupported hypotheses
with clear reasoning.

4 Related Work

4.1 Pre-training and Fine-tuning for Graphs

The success of foundation models has inspired
graph researchers to adopt a pre-train—then-fine-
tune paradigm. Early efforts focused on self-
supervised learning for graphs, where models
such as GraphMAE (Hou et al., 2022, 2023),
GraphCL (Ying et al., 2021), DGI (Velickovic et al.,
2019), GCC (Qiu et al., 2020), and GCA (Zhu et al.,
2020) are pre-trained on large-scale graph corpora
and then fine-tuned for downstream tasks. More
recent approaches explore graph prompting, where
general-purpose pre-trained GNNs are adapted via
textual or task-oriented prompts—for example, All-
in-One (Sun et al., 2023) and GraphPrompt (Liu
et al., 2023). However, these methods remain con-



Task

| Cora-Node WikiCS Products ExplaGraphs Cora-Link FB15K237

Way/Type |7 10 47 2 2 10
DeepSeek-R1-Distil-Qwen-14B |  60.67 6933 57.33 81.33 72.00 34.00
DeepSeek-R1-671B 68.67 7600  69.33 92.00 68.00 84.67
Graph-R1 72.67  78.67  65.33 88.67 86.67 72.00

Table 3: Comparison between Graph-R1 and Large Reasoning Models (LRMs). Best in bold; second best

underlined.

strained by the inherent architectural limitations
of GNNs. As a result, their transferability is often
limited to in-domain tasks and typically requires
task-specific fine-tuning or additional parameters
for optimal performance.

4.2 LLMs for Graph Learning

Graph-to-Text. Several studies transform
subgraphs into natural-language prompts for
LLMs (Chen et al., 2024c; Liu and Wu, 2023;
Wang et al., 2023). However, subsequent analyses
have found that ignoring structural information
significantly degrades performance (Huang et al.,
2024).

LLMs as Feature Enhancers. A common strat-
egy is to leverage LLMs to embed heterogeneous
node and edge attributes into a unified semantic
space (Ye et al., 2024; Yu et al., 2025; Chen et al.,
2024d). For instance, OFA (Liu et al., 2024) ver-
balises graph metadata and encodes it into dense
language embeddings that augment the graph with
enriched features. ZeroG (Li et al., 2024a) and
OpenGraph (Xia et al., 2024) adopt similar ap-
proaches. Nonetheless, these methods often de-
pend on downstream predictors—typically graph
neural networks (GNNs)—and are thus limited in
the range of tasks they can effectively support.

LLM as Unified Predictor. An emerging line of
research treats the LLM itself as the task head,
bypassing traditional graph-specific predictors.
GraphGPT (Tang et al., 2024) and GOFA (Kong
et al., 2024) align graph embeddings with the LLM
embedding space and apply instruction tuning for
downstream adaptation. UniGraph (He et al., 2025)
and TEA-GLM (Wang et al., 2024a) introduce
lightweight projection modules to enable zero-shot
generalisation, while LLaGA (Chen et al., 2024b)
tokenises entire graphs directly for LLM-based in-
ference. While these approaches are promising,
embedding alignment can incur information loss,

and relying solely on answer-only decoding of-
ten under-utilises the full reasoning capabilities
of LLMs.

4.3 Reasoning on Graphs

Recent work has begun to assess the reasoning
ability of LLMs on graph-structured problem:s.
GPT4Graph (Guo et al., 2023) evaluates GPT-4
on algorithmic tasks such as connectivity and max-
flow, revealing encouraging results but limited scal-
ability. NLGraph (Wang et al., 2023) proposes a
broad benchmark, showing that while LLMs man-
age simple instances, they struggle with structural
complexity; instruction tuning offers only marginal
improvements. GraphWiz (Chen et al., 2024a)
focuses on algorithmic reasoning (e.g., shortest
paths), but omits standard learning tasks. Instruct-
Graph (Wang et al., 2024b) enhances supervised
learning with natural-language instructions, yet
falls short on cross-task generalisation. We intro-
duce the first LLM-based framework to jointly inte-
grate reinforcement learning and explicit reasoning,
aiming to generalise across diverse graph tasks.

5 Conclusion

We presented GRAPH-R 1, a GNN-free paradigm
that formulates graph learning tasks—such as node
classification, link prediction, and graph classi-
fication—as textual reasoning problems solvable
by Large Reasoning Models (LRMs). To support
this, we introduced the first reasoning dataset for
graph machine learning, featuring detailed reason-
ing traces. Guided by task-specific rethink tem-
plates, GRAPH-R1 enables LRMs to reason over
linearized graph structures. Extensive experiments
show that GRAPH-R1 outperforms strong baselines
in zero-shot settings while producing interpretable
predictions that expose its reasoning process. Our
results highlight the promise of explicit reasoning
for graph learning and open new directions at the
intersection of graph learning and LRMs.



Limitations

While GRAPH-R1 shows strong zero-shot general-
ization and produces inherently interpretable rea-
soning across diverse graph tasks, it faces chal-
lenges when scaling to very large graphs. Cur-
rent Large Reasoning Models (LRMs) have input
length constraints, and linearizing large or complex
graphs may exceed their context window. Future
work may explore more efficient encoding methods
to improve scalability.
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A Details of Datasets

All of the public datasets used in our paper were
previously published, covering a multitude of do-
mains. We report the detailed statistics for each
dataset in Table 4. The detailed descriptions of
these datasets are listed in the following:

Arxiv Arxiv (Hu et al., 2020) is a large-scale
citation graph derived from arXiv Computer Sci-
ence papers. Each node corresponds to a paper and
edges represent citation links between papers. The
task is to classify each paper into one of 40 arXiv
subcategories, such as "cs.LG" or "cs.Al". This
dataset serves as a representative benchmark for
large-scale node classification.

Citeseer The Citeseer (Yang et al., 2016) dataset
is a citation network comprising research papers
and their citation relationships within the computer
science domain. Each node represents a research
paper, and each edge signifies a citation relation-
ship between two papers.

Cora The Cora (Wen and Fang, 2023) dataset
is a citation graph where each node corresponds
to a research paper, and each edge represents a
citation link between papers. The dataset focuses
on papers within the machine learning domain and
includes 70 fine-grained categories, making the
classification task particularly difficult.

Pubmed Pubmed (He et al., 2024a) is a citation
network of biomedical research papers from the
PubMed database. Each node is a paper and edges
correspond to citation links. The classification
task involves assigning each paper to one of three
disease-related categories.

Children The Children (Yan et al., 2023) dataset
is a co-purchased or co-viewed product graph fo-
cused on children’s books. Nodes correspond to
individual books, and edges connect books that
were frequently browsed or bought together. Each
node is associated with textual information includ-
ing the book’s title and descriptive metadata.

Computer The Computer (Yan et al., 2023)
dataset is co-purchased or co-viewed product graph,
where each node represents a product in the com-
puter category, and edges indicate that two prod-
ucts were frequently co-purchased or co-viewed
by users. The textual content associated with each
node consists of user-generated reviews for the cor-
responding product.
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Photo The Photo (Yan et al., 2023) dataset is an
e-commerce product graph where nodes represent
photographic products, and edges indicate that two
items were either co-purchased or co-viewed by
users. The textual content of each node consists
of user reviews associated with the corresponding
product.

Products The Photo (He et al., 2024a) dataset
is an e-commerce product graph where nodes rep-
resent Amazon products, and edges indicate that
two items were either co-purchased or co-viewed
by users. The textual content of each node consists
of user reviews associated with the corresponding
product.

Sports The Sports (Yan et al., 2023) dataset is
a co-purchased or co-viewed product graph in the
sports domain. Nodes represent sports-related prod-
ucts, and edges indicate that two items were often
purchased or viewed together. The associated text
for each node consists of the product’s title.

FB15K237 FB15K237 (Liu et al., 2024) is a
large-scale knowledge graph where each node rep-
resents an entity (e.g., a person, location, or object)
and each edge corresponds to a relational triple
connecting two entities. Textual content for nodes
is constructed from entity names and relation de-
scriptions.

WNI18RR WNI8RR (Liu et al., 2024) is another
knowledge graph extracted from WordNet. It con-
tains 40,943 nodes and 93,003 relations where each
node is an English word and each edge represents
the relation between two words.

WikiCS WikiCS (Mernyei and Cangea, 2020)
is a web link network constructed from English
Wikipedia articles related to computer science.
Nodes are individual articles, and directed edges
represent hyperlinks between them. The node text
is the full content of each article.

CHEMBL ChEMBL (Gaulton et al., 2012) is a
molecular graph dataset where each graph corre-
sponds to a chemical compound. Nodes represent
atoms, and edges denote chemical bonds. The tex-
tual information for each molecule is given by its
SMILES (Simplified Molecular Input Line Entry
System) representation.

BBBP The BBBP (Wu et al., 2017) dataset
comes from a study focused on modeling and pre-
dicting the permeability of the blood-brain barrier.



Domain Dataset  Avg.#Nodes AVG.#Edges #Classes #Graphs
Social Network Instagram 11339 155349 2 1
Web Link WikiCS 11701 216123 10 1
Logical Graph ~ Expla_Graph 5.17 4.25 - 2766
Knowledge Graph FB15K237 14541 310116 237 1
WNI18RR 40943 93003 11 1
Arxiv 169343 1166243 40 1
Citation Citeseer 3186 8554 1
Cora 2708 10556 1
Pubmed 19717 88648 3 1
Children 76875 1554578 24 1
Computer 87229 721081 10 1
E-commerce Photo 48362 500939 12 1
Products 54025 144638 47 1
Sports 173055 1773500 13 1
CHEMBL 25.87 55.92 1048 23874346
BBBP 24.06 51.91 2 2039
ESOL 13.29 27.35 - 1128
Molecular Freesolv 8.72 16.76 - 642
HIV 25.51 54.94 2 41127
Lipo 27.04 59 - 4200
PCBA 25.97 56.20 128 34017170

Table 4: Datasets Statistics (the "-" means that it is not appropriate to use the number of classes description. This is
because Esol, Freesolv, Lipo is regression tasks, Expla_graph is a Q-A task).
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The BBBP dataset contains binary labels indicating
whether a compound can penetrate the blood-brain
barrier (BBB) or not.

ESOL The ESOL (Withnall et al., 2018) dataset
contains water-solubility data for chemical com-
pounds. Each molecule is modeled as a graph, with
node and edge structures corresponding to atoms
and bonds. SMILES strings serve as the textual
representation.

Freesolv Freesolv (Casasnovas et al., 2014) con-
sists of molecular graphs used for estimating hy-
dration free energy. Each molecule is modeled
by a graph of atoms and bonds. The SMILES
representation is used as the text-based molecular
description.

HIV The HIV (Wu et al., 2017) dataset consists
of molecular graphs representing candidate com-
pounds for HIV treatment. Nodes denote atoms
and edges are chemical bonds. Each molecule is
described by its SMILES string.

Lipo Lipo(Wuetal.,2017) is a molecular dataset
focused on lipophilicity prediction. Each molecule
is represented 524 as a graph with atoms as nodes
and bonds as edges. The SMILES string encodes
each molecule’s 525 structure in text form.

PCBA PCBA (Wu et al., 2017) is a large-scale
molecular dataset for virtual screening. Each graph
is a molecule, modeled by atoms and bonds, with
SMILES strings representing the underlying chem-
ical structure.

Expla_Graph Expla_Graphs (He et al., 2024b)
is a graph question answering dataset on common-
sense concepts. Each graph in Expla_Graphs con-
tains commonsense concepts connected by its rela-
tion.

Instagram Instagram (Li et al., 2024b) is a so-
cial graph in which each node represents a user,
and edges denote social connections such as fol-
lowing relationships. The textual content associ-
ated with each node is extracted from users’ self-
introductions or profile descriptions.

B Prompt Template

For each specific task type 7, we design an ap-
propriate prompt template to guide the model in
understanding and solving the corresponding graph
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reasoning task. Our prompt templates are systemat-
ically constructed and consist of three main compo-
nents: task-specific and dataset-related prompt pre-
fix and question template, and a format-constrained
instruction template. The instruction template is
further categorized into two variants: normal and
rethink.

The prompt prefix provides necessary back-
ground information, context, and relevant details
about the graph structure and node attributes. The
question template then formulates the concrete pre-
diction or reasoning objective for the current in-
stance. The instruction template standardizes the
output format, ensuring consistency and clarity in
model responses.

A comprehensive overview of all prompt tem-
plates used for different task types is provided
as follows: Table 6 shows prompt templates of
node/link classification, Table 7 shows prompt tem-
plates of graph classification, Table 8 shows prompt
templates of link prediction, and Table 9 shows
prompt templates of graph regression.

In addition, we present a dedicated prompt tem-
plate for summarizing node descriptions within
graph reasoning tasks. This template is designed
to effectively capture and condense the essential
attributes and contextual information of individual
nodes, facilitating more accurate and interpretable
reasoning by the model. The detailed design of
the node summary prompt template is provided in
Table 5.

C Details of Implementation

Datasets For the construction of our graph rea-
soning dataset, we initially collected 348,000 in-
stances from 11 diverse graph datasets: Arxiv,
Citeseer, Pubmed, Instagram, Children, Computer,
Photo, Sports, Chemblpre, Chempcba, and WnliS8rr.
Following the data filtering procedures described
in Section 2.2, we curated a high-quality subset
comprising 10,000 instances, which serves as the
training datasets for instruction fine-tuning and re-
inforcement learning. For evaluation, we adopt the
datasets reported in the GOFA paper, and construct
evaluation datasets by inserting into our prompt
templates to ensure consistency and comparability.

Baselines Details For all baseline methods, we
report the results as provided in the GOFA paper.
Since our evaluation datasets are constructed to
be consistent with those reported in GOFA, the
results are directly comparable and ensure a fair



Template Name

Content

Summary

summary each node’s content in no more than 25 words.

Your response should strictly be in forms as follows:

nodex:<your summary>

eg:

node1:optimality of myopic sensing in multi channel opportunistic access
{node descriptions}

Table 5: Prompt Templates in summarizing node descriptions

Template Name

Content

Prompt Prefix

Classify the <target: essay / book / electronic product / user / product / fitness-related item / wikipedia page> represented
by node <node_id> using its subgraph data (text attributes and connections) as follows:

Node description: <node description>

Connection relationship among the nodes: <connection>

Question Format

Consider both semantic and structural information. Select strictly from: {labels}. Respond only with the category name
and briefly summarize the reasoning process.

Normal Instruction

Your reasoning and response should be streamlined and restricted to within 2048 tokens.
Your response should be in forms as follows:

Answer: your_answer (e.g., { sample_answer})

Brief_reasoning: your_brief_reasoning

Rethink Instruction

You must conduct reasoning inside <think>...</think>.

Inside <think>...</think>, you should include:

- Structure information: <structure>...</structure>

- Semantic similarities: <semantic>...</semantic>

After structure and semantic analysis, you msut provide {candidate} candidate answers with brief reasoning inside
<comprehensive>...</comprehensive>.

Then, you must conduct re-reasoning inside <rethink>...</rethink>. In this section, you should detailed consider each of
your candidate answers as if they were the correct answer and evaluate their feasibility.

After re-reasoning, you must conduct your final answer based on your above analysis.

Finally, besides your reasoning, give your final response.

Your full response must follow this format:

<think>

<structure>Here show your structure analysis</structure>

<semantic>Here show your semantic analysis</semantic>

<comprehensive>Here show your comprehensive reasoning and list your candidate answers</comprehensive>
<rethink>Here ongoing re-reasoning with each of your candidate answers inversely</rethink>

Here show your final reasoning and answers

</think>

Answer: your_answer (e.g., {sample_answer})

Brief_reasoning: your_brief_reasoning

Table 6: Prompt Templates of Node/Link Classification

Template Name

Content

Prompt Prefix

Determine whether the chemical compound represented by the following molecular graph (nodes with atomic features and
bond relationships) is predicted to exhibit activity (effectiveness) in each of the provided bioassays.

Bioassays descriptions: <bioassays_descriptions>

Node description: <node description>

Connection relationship among the nodes: <connection>

Question Format

Your response must include: A sequence of strict “Yes” or ‘No’ answers for each property in order, separated by spaces
(e.g., {sample_answer}), and a concise explanation for your choices, referencing important structural features and the
biological assay context.

Normal Instruction

Your reasoning and response should be streamlined and restricted to within 2048 tokens.
Your response should be in forms as follows:

Answer: your_answer (e.g., {sample_answer})

Brief_reasoning: your_brief_reasoning

Rethink Instruction

- Same reasoning and output format as Node/Link Classification.
- Only the task context differs; follow the steps and output structure above.

Table 7: Prompt Templates of Graph Classification

15



Template Name

Content

Prompt Prefix

Classify the relationship between two <target: essays / books / electronic products / products / fitness-related items
/ wikipedia pages/entities> denoted as node <node_id> and node <node_id>, using the union of their corresponding
subgraph (text attributes and connections) as follows:

Node description: <node description>

Connection relationship among the nodes: <connection>

Question Format

Consider: semantic and structural information. In your reasoning process provide the predicted connection bond value
of the two target nodes between 0 and 1, set the threshold to 0.5. Based on your predicted connection bond value select
strictly from: ~ “Yes, they have {target: citation/co-purchased or co-viewed} relationships’ or ‘No, they do not have
{target: citation/co-purchased or co-viewed} relationships’. Respond only with the choice content and briefly summarize
the reasoning process.

Normal Instruction

Provide an estimated connection bond value (ranging from O to 1). A higher value indicates a stronger likelihood of a
relationship. Consider multiple factors, such as:

- Structural information: Evaluate the direct and indirect connections between the two target nodes through their neighbors.
- Semantic similarities: Analyze the relevance or similarity in meaning between the two target nodes.

- Comprehensive information: If there exist two nodes that are semantically similar to each other, and these two nodes are
respectively connected to the two target nodes, this can indirectly indicate the strength of the connection between the
target nodes.

Your reasoning and response should be streamlined and restricted to within 2048 tokens.

Your response should follow this format:

Answer: your_answer

Brief_reasoning: your_brief_reasoning

Bond_value: your_predicted_bond_value

Rethink Instruction

Provide an estimated connection bond value (ranging from O to 1). A higher value indicates a stronger likelihood of a
relationship. Consider multiple factors, such as:

- Structural information: Evaluate the direct and indirect connections between the two target nodes through their neighbors.
- Semantic similarities: Analyze the relevance or similarity in meaning between the two target nodes.

- Comprehensive information: If there exist two nodes that are semantically similar to each other, and these two nodes are
respectively connected to the two target nodes, this can indirectly indicate the strength of the connection between the
target nodes.

If you can identify direct or indirect connections based on structural information, set the bond strength to 1 and specify the
path(s) of connection in your reasoning.

If no such connections can be identified, evaluate the bond strength based on the semantic similarity between the target
node and its neighboring nodes semantics.

You must conduct reasoning inside <think>...</think>.

Inside <think>...</think>, you should include:

- Structure information within <structure>...</structure>

- Semantic similarities within <semantic>...</semantic>

After structure and semantic analysis, provide comprehensive information inside <comprehensive>...</comprehensive>
Then, you must conduct re-reasoning inside <rethink>...</rethink> . In this section, you should detailed consider each of
the two given answers as if they were the correct answer and evaluate their feasibility.

After re-reasoning, you must conduct your final answer based on your above analysis.

Finally, besides your reasoning, give your final response.

Your full response must follow this format:

<think>

<structure>Here show your structure analysis</structure>

<semantic>Here show your semantic analysis</semantic>

<comprehensive>Here show your comprehensive reasoning</comprehensive>

<rethink>Here ongoing re-reasoning with each of the two candidate answers inversely</rethink>

Here show your final reasoning and answers

</think>

Answer: your_answer

Brief_reasoning: your_brief_reasoning

Bond_value: your_predicted_bond_value

Table 8: Prompt Templates of Link Prediction
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Template Name

Content

Prompt Prefix

Calculate the chemical relevant properties using the given molecular graph (nodes with atomic features and bond
relationships) as the following calculation requirements.

Calculation requirements:

{description}

Calculate the {target} of this molecule.

Node description: <node description>

Connection relationship among the nodes: <connection>

Question Format

Your Response Must Include: A numerical answer, and the mathematical solution process, referencing important structural
features and the biological assay context.

Normal Instruction

You are a chemistry expert assistant specialized in molecular graph regression tasks.

Given a molecular graph with atomic features and bond relationships, you are asked to approximate the target value using
the formula mentioned in calculation requirement

Your task is to:

- Analyze the molecular structure based on the provided nodes and edges.

- Identify key chemical features that influence the target value (e.g., number and position of CI atoms, ring systems,
stereochemistry, hydrogen bonding capability).

- Estimate the target value based on the formula.

- Provide a final numeric prediction rounded to two decimal places.

Please adjust the units of your final result so that the numerical value falls within the range of -30 to 30.

Round the result to two decimal places.

Respond strictly in the following format:

Answer: your_answer (keep two decimal places, e.g., {sample_answer})

Brief_reasoning: your_brief_reasoning

Rethink Instruction

You are a chemistry expert assistant specialized in molecular graph regression tasks.

Given a molecular graph with atomic features and bond relationships, you are asked to approximate the target value using
the formula mentioned in calculation requirements.

Your task is to:

- Analyze the molecular structure based on the provided nodes and edges.

- Identify key chemical features that influence the target value (e.g., number and position of Cl atoms, ring systems,
stereochemistry, hydrogen bonding capability).

- Estimate the target value based on the formula.

- Provide a final numeric prediction rounded to two decimal places.

You must conduct reasoning inside <think>...</think>.

Inside<think>...</think>, you should include:

- Structure information within <structure>...</structure>

- Semantic similarities within <semantic>...</semantic>

After structure and semantic analysis, you must provide the range of target with brief reasoning inside <comprehen-
sive>...</comprehensive>

Then, you must conduct re-reasoning inside <rethink>...</rethink>. In this section, you should detailed consider your
target range as if it were the correct range and evaluate its feasibility.

After re-reasoning, you must conduct your final answer based on your above analysis.

Finally, besides your reasoning, give your final response.

Please adjust the units of your final result so that the numerical value falls within the range of -30 to 30.

Round the result to two decimal places.

Your full response must follow this format:

<think>

<structure>Here show your structure analysis</structure>

<semantic>Here show your semantic analysis</semantic>

<comprehensive>Here show your comprehensive reasoning</comprehensive>

<rethink>Here ongoing re-reasoning with each of the two candidate answers inversely</rethink>

Here show your final reasoning and answers

</think>

Answer: your_answer (keep two decimal places, e.g., {sample_answer})

Brief_reasoning: your_brief_reasoning

Table 9: Prompt Templates of Graph Regression
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evaluation.

Details of GRAPH-R1 Graph-R1 is developed
based on DeepSeek-R1-distilled-Qwen2.5-14B.
We employ a two-stage training pipeline: super-
vised instruction fine-tuning followed by reinforce-
ment learning with the rethink template. In su-
pervised instruction fine-tuning, We utilize the
LLaMA-Factory toolkit(Zheng et al., 2024) to per-
form full-parameter supervised fine-tuning. The
learning rate is set to le-5, and all other hyper-
parameters follow their default settings. For the
reinforcement learning stage, we adopt the GRPO
training strategy implemented via the Tiny-Zero
toolkit(Pan et al., 2025). For GRPO, wo use a
batch size of 64, set learning rate to 1e-6, and apply
the number of sampled outputs per question of 5.
All other parameters are set to their default values.
For inference, we utilize the VLLM (Kwon et al.,
2023) framework to enable efficient batched decod-
ing. All experiments are conducted on a cluster
equipped with 8 NVIDIA A100 GPUs.

D some Cases from Graph-R1

We provide some interesting cases from GRAPH-
R1’s responses to illustrate the interpretability and
principles behind its reasoning, as shown in Ta-
ble 10.
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Task Type Structure Semantic Comprehensive Rethink

Node Classification Central node (node0) connects  Focuses on distributed systems, Identifies three candidates Evaluates the feasibility of
to multiple nodes in a dis- load balancing, and consensus based on structure and seman- each candidate.
tributed system context. algorithms. tics. Details:
Details: NodeO connects to Details: Keywords like "dis- Details: cs.DC: Most fitting due to fo-
nodel, node3, node6, and tributed load balancing," "plu- 1. cs.DC (Distributed Comput- cus on distributed systems and
node7. Node7 links to rality consensus,” "majority dy- ing): Core focus on distributed algorithms.
node2, node3, node4, and namics,” and "multi-agent sys- algorithms, load balancing, cs.MA: Relevant but secondary
node0.  Other connections tems" dominate. Node4 men- and protocols. to distributed systems.

include node5 to node6 and
node4 to node7.

tions distributed learning dy-
namics, linking to machine
learning.

2. c¢s.MA (Multiagent Sys-
tems): Multi-agent dynamics
mentioned in node2 and node7.
3. ¢s.LG (Machine Learning):
Distributed learning dynamics
in node4.

cs.LG: Specific to node4, less
central than distributed com-
puting

Link Prediction

Evaluates direct and indirect
connections between Node(Q

and Nodel.
Details Node0 connects to
nodes related to hashing

methods (node2, node3) and
genome processing (node7).
Nodel connects to nodes
focused on backscatter com-
munication systems (node4,
node8, node9). No direct or
indirect links between the two
target nodes.

Analyzes the thematic rele-
vance between NodeO and
Nodel.

Details: NodeO focuses on
OLAP for text analysis in hu-
manities research, while Nodel
is about MIMO SWIPT power
optimization in wireless com-
munication. No overlapping
keywords or shared technical
domains.

Considers intermediary nodes
and shared themes to predict
connection strength.

Details: NodeQ’s connections
(node2, node3) focus on hash-
ing methods and algorithms.
Nodel’s connections (node4,
node8) focus on communica-
tion systems and throughput
optimization. No shared inter-
mediary nodes or overlapping
application areas.

Tests hypotheses assuming ci-
tation relationships exist.
Details: If OLAP techniques
were used in MIMO systems
optimization, it would bridge
the gap, but no evidence sup-
ports this. Alternatively, if
MIMO SWIPT used OLAP
for data analysis, the con-
nection would still require
shared terminology, which is
absent. The domains remain
distinct—humanities research
vs. wireless communication en-
gineering.

Table 10: Case studies for different graph tasks analyzed from structural, semantic, comprehensive, and rethink

perspectives.
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