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Abstract001

Generalizing to unseen graph tasks without002
task-specific supervision remains challenging.003
Graph Neural Networks (GNNs) are limited004
by fixed label spaces, while Large Language005
Models (LLMs) lack structural inductive bi-006
ases. Recent advances in Large Reason-007
ing Models (LRMs) provide a zero-shot al-008
ternative via explicit, long chain-of-thought009
reasoning. Inspired by this, we propose a010
GNN-free approach that reformulates graph011
tasks—node classification, link prediction, and012
graph classification—as textual reasoning prob-013
lems solved by LRMs. We introduce the014
first datasets with detailed reasoning traces for015
these tasks and develop GRAPH-R1, a rein-016
forcement learning framework that leverages017
task-specific rethink templates to guide rea-018
soning over linearized graphs. Experiments019
demonstrate that GRAPH-R1 outperforms state-020
of-the-art baselines in zero-shot settings, pro-021
ducing interpretable and effective predictions.022
Our work highlights the promise of explicit023
reasoning for graph learning and provides024
new resources for future research. Codes025
are available at https://anonymous.4open.026
science/r/emnlp_submission-FDF0.027

1 Introduction028

Zero-shot learning in graph machine learning aims029

to solve tasks in unseen label spaces or domains030

without any task-specific supervision. While graph031

neural networks (GNNs) perform well when ample032

labeled data are available, their generalization abil-033

ity sharply deteriorates under distribution shifts or034

in new label spaces—unless expensive fine-tuning035

is applied (Ju et al., 2023). Prompt-based GNN036

variants (Liu et al., 2023; Sun et al., 2023), in-037

spired by advances in natural language processing038

(NLP), offer partial mitigation; however, their fixed,039

task-specific output heads still hinder true zero-shot040

generalization.041

Large language models (LLMs) offer a comple- 042

mentary and promising alternative. A straightfor- 043

ward approach flattens the graph into a textual se- 044

quence and feeds it to an LLM (Chen et al., 2024c; 045

Guo et al., 2023; Wang et al., 2023; Liu and Wu, 046

2023). However, this often yields suboptimal re- 047

sults due to the lack of structural inductive bias es- 048

sential for effective graph reasoning (Huang et al., 049

2024). Recent efforts have sought to more tightly 050

integrate GNNs with LLMs. One line of work re- 051

tains the GNN as the predictor while using the LLM 052

to generate auxiliary signals, such as synthetic la- 053

bels or node descriptions (Ye et al., 2024; Yu et al., 054

2025; Xia et al., 2024; Chen et al., 2024d). Yet, 055

these methods still rely on rigid GNN heads and 056

require retraining for each task. Another approach 057

delegates prediction to the LLM while incorporat- 058

ing structural signals from a frozen GNN via cross- 059

modal projection (Tang et al., 2024; He et al., 2025; 060

Wang et al., 2024a). Unfortunately, the separation 061

of training between components results in weak 062

task conditioning and limited transferability. More 063

tightly coupled methods—such as GOFA (Kong 064

et al., 2024)—inject GNN features directly into the 065

LLM token stream at inference time. While this 066

improves zero-shot accuracy, it introduces substan- 067

tial computational overhead and still struggles with 068

generalization across tasks and domains. 069

From graph structure to text-based reason-then- 070

predict. Recent advances in Large Reasoning 071

Models (LRMs) (e.g., DEEPSEEK-R1 (DeepSeek- 072

AI et al., 2025)) renew our interest in the graph- 073

to-text paradigm, driven by their ability to gener- 074

ate explicit reasoning processes. These models 075

can potentially compensate for the lack of hand- 076

crafted structural priors and offer an interpretable, 077

zero-shot-capable alternative for graph learning. 078

Crucially, many canonical graph tasks—such as 079

link prediction, edge classification and node or 080

graph-level classification—can be naturally refor- 081
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mulated as short sequences of relational reason-082

ing steps, once the graph is linearized into text.083

Prompting a reasoning-capable LLM to generate084

such chains of deduction effectively replaces the085

opaque feedforward process of a GNN with a trans-086

parent reason-then-predict pipeline. This shift of-087

fers two key advantages: improved generalization088

under distribution shift (since the model must jus-089

tify each step rather than memorize patterns), and090

human-interpretable rationales for every prediction.091

Progress in this direction, however, is currently092

bottle-necked by the lack of (i) a benchmark that093

evaluates both reasoning and prediction across a094

wide range of graph tasks, and (ii) a model that095

fully commits to this pure, GNN-free paradigm.096

Our solution. To tackle the above challenges,097

we present the first dataset that simultaneously098

spans node classification, link prediction, and099

graph classification—each annotated with explicit100

chains of thought. Leveraging this resource, we101

develop GRAPH-R1—a reinforcement-learning-102

based, purely graph-to-text framework that pro-103

motes LLM reasoning for cross-task, cross-domain104

zero-shot prediction without any GNN component.105

We further design a rethink reasoning template spe-106

cialized for graph prediction. Comprehensive ex-107

periments show that GRAPH-R1 matches or ex-108

ceeds strong baselines, particularly in challenging109

transfer scenarios, highlighting the value of explicit110

reasoning for graph learning. Our contributions are111

threefold:112

• We construct the first reasoning dataset tai-113

lored for graph machine learning tasks, with114

detailed reasoning traces.115

• We propose GRAPH-R1, a reasoning-116

augmented LLM that improves generalization117

and transferability via reinforcement learning118

with task-specific rethink templates.119

• Extensive experiments show state-of-the-art120

zero-shot performance across diverse graph121

tasks, demonstrating the impact of explicit122

reasoning in LLM-based graph prediction.123

2 Methods124

We present GRAPH-R1, a graph-to-text framework125

for cross-domain and cross-task graph reasoning.126

The method is built on three principal modules: (i)127

reasoning-centric graph dataset construction, (ii)128

reasoning knowledge acquisition via full-parameter129

DeepSeek-R1 node classification reasoning

Reasoning Traces:
Okay, Let’s try to figure out how to classify node3. So,
the task is to determine the correct category for the essay
represented by. . .

First, I need to look at node3’s own description. It says:
“Practical lattice-coded PNC. . .

Second, the connections suggest that node3 is part of
a network of papers related to physical-layer network
coding. . .

Wait, but the connections listed are node3-node4, node3-
node5. . .

Therefore, based on the above reasoning, the primary
category for node3 is likely cs.NI.

Answer: cs.NI
Brief_reasoning: node3 is best categorized under
cs.NI due to its focus on practical lattice-coded physical-
layer network coding, with no meaningful structural or
semantic connections to other domains.

Figure 1: An illustration of explicit reasoning traces
produced by DEEPSEEK-R1 for node classification.

fine-tuning, and (iii) reinforcement learning–based 130

reasoning enhancement. 131

2.1 Notations 132

Let τ ∈T denote a graph-learning task type (e.g., 133

node classification, link prediction). A graph 134

is written as G = (V, E ,A,X), where V = 135

{v1, . . . , v|V|} and E = {e1, . . . , e|E|} are the node 136

and edge sets, respectively. The adjacency matrix 137

AG∈{0, 1}|V|×|V| satisfies AG
ij = 1 iff (vi, vj)∈E . 138

Textual attributes are stored in X: x(vi) denotes the 139

textual description of node vi, and x(eij) denotes 140

that of edge eij , which connects nodes vi and vj . 141

For a graph–task pair (G, τ) we design a prompt 142

template PG,τ that linearises G and specifies the 143

task requirements. 144

2.2 Graph-Reasoning Data Curation 145

To investigate reason-then-predict graph learning, 146

we construct the first dataset featuring explicit, de- 147

tailed reasoning traces across multiple graph tasks. 148

Dataset and task selection. We sample 11 rep- 149

resentative datasets from five domains—citation 150

networks, e-commerce, social media, molecular 151

graphs, and knowledge graphs. Together they 152

cover node, edge, and graph-level tasks (node 153

classification, link prediction, graph classification, 154

edge classification), ensuring broad coverage for 155

evaluating graph reasoning. 156

2



Graph-to-text augmentation. Unlike prior work157

that tokenizes structural features using GNN en-158

coders, we revisit the pure graph-to-text paradigm.159

Taking node-level tasks as an example, for a target160

node vi, we extract its h-hop subgraph and describe161

all node features Ti = {x(vj) | j ∈ N (i) ∪ {i}},162

and edge relations Ei = {x(ejk) | vj , vk ∈163

N (i) ∪ {i}} within the subgraph using natural lan-164

guage, where N (i) is the neighborhood of vi. To165

maintain input tractability for large graphs with166

verbose node texts (e.g., citation networks with ti-167

tles and abstracts), we apply DEEPSEEK-V3 for168

automatic summarization. Prompt templates are169

provided in Appendix B.170

Reasoning-trace extraction. A distinctive fea-171

ture of our dataset construction is the inclusion of172

explicit reasoning traces for each answer. Specif-173

ically, each subgraph query Qi consists of node174

features Ti, edge relations Ei, and a prompt tem-175

plate PG,τ tailored to the graph structure G and176

task type τ , serving as input to the LLM. We then177

input Qi into DEEPSEEK-R1 to generate an ex-178

plicit reasoning trace Ri and a final prediction Yi,179

as illustrated in Figure 1. Formally, this process180

can be represented as:181

Qi → (Yi, Ri).182

Quality control. We apply a three-stage filtering183

process:184

1. Information sufficiency: remove isolated185

nodes and trivial subgraphs.186

2. Answer validity: discard samples where the187

predicted answer Yi mismatches the gold label188

or contains sensitive content.189

3. Rationale coherence: retain only rationales190

that exhibit reasonable length and logical con-191

sistency.192

The final corpus contains 10,000 graph reasoning193

examples across multiple domains and tasks, each194

paired with an explicit chain-of-thought explana-195

tion.196

2.3 Graph-R1197

Building on the graph–reasoning corpus described198

above, we develop GRAPH-R1, an LLM-based199

framework for solving graph machine learning200

tasks through explicit reasoning. Training pro-201

ceeds in two stages: (1) joint instruction tuning202

across multiple tasks and domains, and (2) rein-203

forcement learning to refine reasoning quality. To204

Knowledge GraphMolecular DiagramCitation Network

Node 
Description

Edges
(Node pairs)

Subgraph to Text Graph-R1

Prompt 
Construction

Reasoning
+ 

Answer

Task
Description

Graph Structured Data

Subgraph extraction

…

Figure 2: GRAPH-R1 framework. Graphs are linearized
into a graph description language, and a task-aware
prompt guides the LLM to produce explicit reasoning
and the final answer.

support smaller LLM backbones, we introduce a 205

rethink template that encourages deeper semantic 206

and structural analysis, leading to more robust and 207

interpretable multi-step deductions. This pipeline 208

enables GRAPH-R1 to advance zero-shot graph 209

reasoning with large language models. 210

2.3.1 Reasoning Knowledge Learning via 211

Full-Parameter Fine-Tuning 212

In Phase 1, we perform joint instruction tuning 213

across node-, edge-, and graph-level tasks from 214

diverse domains, transferring the general reasoning 215

capabilities of DEEPSEEK-R1 to the graph setting 216

and leveraging multi-task synergies. 217

We adopt full-parameter supervised fine-tuning 218

using the standard language modeling loss. Given a 219

graph query Qi—comprising textual node and edge 220

features {Ti, Ei} and a prompt PG,τ—the model is 221

trained to generate both the reasoning trace Ri and 222

the final answer Yi: 223

L(θ) = − 1

N

N∑
i=1

log pθ
(
Ri, Yi | Qi

)
, (1) 224

where N is the number of training examples and 225

θ denotes the model parameters. The model thus 226

learns to map graph-structured prompts to coherent 227

reasoning traces and accurate solutions. Exposure 228

to a broad range of tasks enhances generalization 229

and promotes transferable reasoning abilities. De- 230

tailed training configurations are provided in Ap- 231

pendix C. 232

3



Rethink Prompt Template

Question: (will be dynamically filled)
You must conduct reasoning inside <think>...</think>. Inside it, you should include:
- Include topological analysis in <structure>...</structure>
- Include semantic interpretation in <semantic>...</semantic>
- Provide three candidate answers in <comprehensive>...</comprehensive>
- Re-evaluate each candidate in <rethink>...</rethink>

Your response must follow this format:
<think>
<structure>Structure analysis here</structure>
<semantic>Semantic analysis here</semantic>
<comprehensive>List candidate answers and brief reasoning</comprehensive>
<rethink>Re-evaluate each candidate in depth</rethink>
Final reasoning and answer
</think>
Answer: your_answer
Brief_reasoning: your_brief_reasoning

Figure 3: Rethink Prompt Template. This structure-aware reasoning format is used during both training and
inference.

2.3.2 Reinforcement-Learning-Based233

Reasoning Enhancement234

In Phase 2, we refine the instruction-tuned235

model using Group Relative Policy Optimization236

(GRPO) (Shao et al., 2024), a reinforcement learn-237

ing method that jointly incentivizes answer cor-238

rectness and the logical coherence of the reason-239

ing trace—thereby enhancing generalization across240

graph tasks.241

GRPO fine-tunes the supervised model using a242

reward signal that balances reasoning quality and243

prediction accuracy. Its training objective is:244

J (θ) = Eq∼P (Q)
1

g

g∑
i=1

[
min(ρiAi, clip(ρi, 1− ε, 1 + ε)Ai)

− βKL(πθ∥πref)
]
.

(2a)245246

ρi =
πθ(oi | q)
πθold(oi | q)

. (2b)247

248

KL(πθ∥πref) =
πref(oi | q)
πθ(oi | q)

− log
πref(oi | q)
πθ(oi | q)

− 1. (2c)249

Here, πθ and πθold denote the current and previous250

policies, respectively; q and oi represent the sam-251

pled question and its i-th response; and g is the252

group size. The hyperparameters ϵ and β control253

the clipping threshold and KL divergence penalty,254

respectively. The group-wise advantage is com-255

puted as:256

Ai =
ri −mean({rj}gj=1)

std({rj}gj=1)
,257

where {rj} are the rewards for the g responses to258

the same question.259

Rethink Template. Conventional prompting typ- 260

ically restricts reasoning to a single <think> 261

block—effective for mathematical problems, but 262

suboptimal for graph tasks where both structural 263

and semantic information are critical, and labels 264

can be ambiguous. To address this, we propose 265

a rethink reasoning template specifically designed 266

for graph prediction tasks (see Figure 3). 267

Our revised template introduces a structured, 268

multi-phase reasoning process: 269

• <structure>: encourages explicit topologi- 270

cal analysis; 271

• <semantic>: focuses on the interpretation of 272

node/edge attributes; 273

• <comprehensive>: elicits multiple candidate 274

answers to expose alternative hypotheses; 275

• <rethink>: revisits each candidate to encour- 276

age comparative and bidirectional evaluation. 277

This structure-aware prompting scheme enables 278

tighter integration of topology and semantics, sig- 279

nificantly improving RL performance on node clas- 280

sification, link prediction tasks and etc. 281

Reward Modeling. The reward function serves 282

as the core training signal in reinforcement learning. 283

Under the standard <think> template, we adopt a 284

simple reward scheme: 285

R =


1 if the answer is correct,
0.01 if the output is merely well-formatted,
0 otherwise.

(3) 286

While sufficient for toy mathematical tasks, this 287

coarse-grained feedback overlooks the rich interme- 288
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diate reasoning required for graph-based problems.289

To address this, we design a more fine-grained re-290

ward for the rethink template, which evaluates both291

the reasoning trace and the final answer. During292

the initial reasoning phase, the model lists multiple293

candidate answers; partial credit is assigned if the294

gold label appears among them:295

R =


1 if the final answer is correct,
0.3 if the correct answer appears in <rethink>,

0.01 if only the format is correct,
0 otherwise.

(4)296

Coupled with GRPO, this refined reward enables297

the model to learn richer and more reliable rea-298

soning paths, leading to state-of-the-art zero-shot299

performance across all evaluated graph domains300

and tasks.301

3 Experiments302

We begin by introducing the datasets used to train303

and evaluate GRAPH-R1 (§3.1), followed by the304

baselines and experimental setup (§3.2). We then305

present a comprehensive suite of experiments to306

assess the effectiveness and generalization of our307

method, focusing on the following questions: RQ1:308

Does GRAPH-R1 enable critical applications of309

general graph models, such as zero-shot learning?310

RQ2: Can it generalize to unseen tasks and do-311

mains, including cross-task transfer? RQ3: How312

do instruction tuning and the rethink template con-313

tribute to generalization? RQ4: How does GRAPH-314

R1 compare to large reasoning models on graph315

tasks?316

3.1 Datasets317

We evaluate GRAPH-R1 on five benchmark318

datasets:319

• Cora — citation network with node and link320

prediction tasks (Wen and Fang, 2023).321

• Products — e-commerce graph for node classi-322

fication (He et al., 2024a).323

• WikiCS — Wikipedia graph with node classifi-324

cation (Mernyei and Cangea, 2020).325

• FB15K237 — knowledge graph for link predic-326

tion (Liu et al., 2024).327

• Expla-Graph — synthetic graph reasoning328

benchmark (He et al., 2024b).329

All tasks are aligned with the evaluation proto-330

col of GOFA (Kong et al., 2024). To test cross-331

domain and cross-task generalization, we addi-332

tionally evaluate on three unseen graph regression333

datasets—ESOL (Withnall et al., 2018), Lipo (Wu 334

et al., 2017), and Freesolv (Casasnovas et al., 335

2014)—which are not seen during either fine- 336

tuning or reinforcement learning. This ensures a 337

strict zero-shot cross-task setting. Dataset statistics 338

and task details are provided in Appendix A. 339

3.2 Experimental Setup 340

Baselines. We compare against two groups of 341

baselines: 342

• General-purpose LLMs: LLaMA 2-7B (Tou- 343

vron et al., 2023), Mistral-7B (Jiang et al., 344

2023), and DeepSeek-R1-distilled-Qwen2.5- 345

14B (DeepSeek-AI et al., 2025); 346

• Graph models leveraging LLMs: OFA (Liu 347

et al., 2024), GraphGPT (Tang et al., 2024), 348

UniGraph (He et al., 2025), ZeroG (Li et al., 349

2024a), LLaGA (Chen et al., 2024b), and 350

GOFA (Kong et al., 2024). 351

These baselines represent the current state-of-the- 352

art in both general LLM and graph-specific LLM 353

paradigms, providing a rigorous comparison for 354

our proposed approach. 355

Implementation. We instantiate GRAPH-R1 356

with DeepSeek-R1-distilled-Qwen2.5 models 357

(14B). The model is first instruction-tuned and then 358

further optimized with GRPO-based reinforcement 359

learning on our graph reasoning dataset. All 360

methods, including baselines, are evaluated under 361

consistent zero-shot conditions and identical 362

hardware. Hyperparameters are tuned based on 363

validation performance. Full training details, data 364

splits, and evaluation metrics are available in 365

Appendix C. 366

3.3 Cross-Dataset Zero-Shot Generalization 367

(RQ1) 368

To address RQ1, we run strict zero-shot evalua- 369

tions on the GOFA-aligned benchmarks listed in 370

§3.1. Table 1 yields the following observations. 371

Generic LLMs such as Llama2-7B and Mistral-7B 372

rely mainly on textual cues. They are competi- 373

tive on node-classification datasets, where seman- 374

tics dominate, but drop sharply on link-prediction 375

tasks that require relational reasoning. LLM-as- 376

predictor models (GOFA, UniGraph) consistently 377

surpass GNN-based hybrids (OFA, ZeroG). Encod- 378

ing graph structure into the LLM token stream or 379

feature space markedly improves cross-domain ro- 380

bustness. 381
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Task Cora–Node WikiCS Products Expla-Graph Cora–Link FB15K237

Way / Type 7 2 10 5 47 10 5 2 2 10

Llama2-7B 47.92 73.45 40.10 58.77 27.65 58.71 64.33 57.76 48.15 48.32
Mistral-7B 60.54 88.39 63.63 71.90 43.99 70.16 74.94 68.77 49.43 62.48

OFA 28.65 56.92 21.20 35.15 19.37 30.43 39.31 51.36 52.22 –
GraphGPT 44.65 – – – 18.84 – – – 50.74 –
UniGraph 69.53 89.74 43.45 60.23 38.45 66.07 75.73 – – –

ZeroG 64.21 87.83 31.26 48.25 31.24 51.24 71.29 – – –
LLaGA 51.85 62.73 – – 23.10 34.15 39.72 – 88.09 –
GOFA-T 70.81 85.73 71.17 80.93 54.60 79.33 87.13 79.49 85.10 73.59
GOFA-F 69.41 87.52 68.84 80.52 56.13 80.03 88.34 71.34 86.31 80.69

Graph-R1 71.53 89.08 78.68 86.89 66.59 85.72 91.78 89.71 86.31 75.17

Table 1: Zero-shot accuracy (%) across datasets. Best in bold; second best underlined.

Model
MAE ↓

ESOL Lipo FreeSolv

LLaGA 7.39 15.55 51.72
GOFA 4.93 1.36 14.98
GRAPH-R1 1.72 1.55 11.59

Table 2: Zero-shot graph regression results (lower MAE
is better). Best in bold; second best underlined.

GRAPH-R1 attains the best accuracy on eight of382

ten settings and the second best on the rest, without383

any GNN encoder. Its graph-to-text reformulation384

plus reinforcement-learned reasoning allows the385

model to fuse topology and semantics purely in386

natural-language form, setting a new state of the387

art for zero-shot graph prediction.388

3.4 Cross-Task Zero-Shot Generalization389

(RQ2)390

To evaluate the model’s generalization ability in the391

zero-shot cross-task setting, we conduct a test in392

which the model is trained solely on classification-393

style tasks—node, edge, graph classification or link394

prediction—and is evaluated on unseen graph re-395

gression tasks. We compare GRAPH-R1 with two396

representative LLM-based baselines, LLaGA and397

GOFA, both evaluated under the same zero-shot398

setting without access to regression training data.399

Results are shown in Table 2.400

GRAPH-R1 achieves the best performance on401

ESOL and FreeSolv and ranks second on Lipo, out-402

performing all baselines without any task-specific 403

tuning. These results highlight its strong cross-task 404

generalization—crucial for real-world deployment 405

where labeled data are often scarce or unavailable. 406

3.5 Ablation Study (RQ3) 407

To address RQ3, we ablate two key components of 408

GRAPH-R1: instruction tuning and reinforcement 409

learning (RL) with the rethink template. Specifi- 410

cally, we compare four variants: (i) init (the initial 411

model without task-specific training), (ii) w/o RL 412

(instruction-tuned without RL), (iii) normal (RL 413

with the standard template), and (iv) the full Graph- 414

R1 (RL with the rethink template). 415

Effect of Instruction Tuning. As shown in Fig- 416

ure 4, instruction tuning alone consistently outper- 417

forms the initial model across all datasets. This 418

demonstrates effective knowledge transfer and the 419

distillation of graph reasoning capabilities from 420

DeepSeek-R1 to our model, significantly enhanc- 421

ing its graph-specific inference performance. 422

Effect of RL with the Rethink Template. To 423

better illustrate the effect of reinforcement learn- 424

ing, we compare the normal and Graph-R1 variants 425

using the w/o RL variant as the baseline. Results 426

are presented in Figure 5, where the y-axis denotes 427

normalized performance (i.e., the ratio of the per- 428

formance to the w/o RL baseline). Applying RL 429

with the standard template improves performance 430

primarily on text- and logic-oriented tasks (e.g., 431

Cora–Node, Expla-Graph), but leads to degrada- 432

tion on structure-heavy tasks such as Cora–Link 433
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and FB15K237, suggesting limited gains in struc-434

tural reasoning. In contrast, RL with the rethink435

template yields consistent improvements across all436

tasks, underscoring its importance in enhancing437

both semantic and structural understanding, and438

thereby significantly boosting generalization.439

3.6 Comparison with Large Reasoning440

Models (RQ4)441

Answering RQ4 is crucial for understanding both442

the necessity of our two-phase training strategy443

and the effectiveness of GRAPH-R1 as a general-444

purpose graph model. We compare GRAPH-R1445

with Large Reasoning Models (LRMs), including446

DeepSeek-R1 (671B) and its 14B distilled variant.447

All models are evaluated using identical input for-448

mats to ensure a fair comparison. Due to the high449

computational cost of DeepSeek-R1, we randomly450

sample 1,000 examples from the evaluation dataset 451

introduced in Section 3.1 for testing. The results 452

on these samples are presented in Table 3. 453

GRAPH-R1 achieves substantial improvements 454

over the 14B distilled model across all evaluated 455

tasks. Moreover, in several cases, it matches or 456

even surpasses the performance of DeepSeek-R1 457

(671B). These results provide strong evidence that 458

our two-phase training strategy significantly en- 459

hances reasoning capabilities on graph tasks. 460

3.7 Case Studies of GRAPH-R1 Reasoning 461

To demonstrate the interpretability and reasoning 462

capabilities of GRAPH-R1, we present two illustra- 463

tive examples from its inference process on distinct 464

graph tasks: node classification and link predic- 465

tion. Due to space constraints, the full case details 466

are provided in Table 10 in Appendix D. These 467

examples highlight key aspects of the model’s rea- 468

soning process, including its ability to integrate 469

structural and semantic information, comprehen- 470

sively evaluate candidate options, and effectively 471

verify hypotheses. 472

In node classification, the model showcased its 473

ability to comprehensively evaluate multiple can- 474

didate categories by combining structural and se- 475

mantic analyses, prioritizing the most relevant cat- 476

egory, and systematically re-evaluating each candi- 477

date to confirm its conclusion. For link prediction, 478

GRAPH-R1 excelled in hypothesis testing during 479

the rethink phase, where it formulated and rigor- 480

ously tested assumptions about potential connec- 481

tions, ultimately rejecting unsupported hypotheses 482

with clear reasoning. 483

4 Related Work 484

4.1 Pre-training and Fine-tuning for Graphs 485

The success of foundation models has inspired 486

graph researchers to adopt a pre-train–then-fine- 487

tune paradigm. Early efforts focused on self- 488

supervised learning for graphs, where models 489

such as GraphMAE (Hou et al., 2022, 2023), 490

GraphCL (Ying et al., 2021), DGI (Velickovic et al., 491

2019), GCC (Qiu et al., 2020), and GCA (Zhu et al., 492

2020) are pre-trained on large-scale graph corpora 493

and then fine-tuned for downstream tasks. More 494

recent approaches explore graph prompting, where 495

general-purpose pre-trained GNNs are adapted via 496

textual or task-oriented prompts—for example, All- 497

in-One (Sun et al., 2023) and GraphPrompt (Liu 498

et al., 2023). However, these methods remain con- 499
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Task Cora-Node WikiCS Products ExplaGraphs Cora-Link FB15K237

Way/Type 7 10 47 2 2 10

DeepSeek-R1-Distill-Qwen-14B 60.67 69.33 57.33 81.33 72.00 34.00
DeepSeek-R1-671B 68.67 76.00 69.33 92.00 68.00 84.67

Graph-R1 72.67 78.67 65.33 88.67 86.67 72.00

Table 3: Comparison between Graph-R1 and Large Reasoning Models (LRMs). Best in bold; second best
underlined.

strained by the inherent architectural limitations500

of GNNs. As a result, their transferability is often501

limited to in-domain tasks and typically requires502

task-specific fine-tuning or additional parameters503

for optimal performance.504

4.2 LLMs for Graph Learning505

Graph-to-Text. Several studies transform506

subgraphs into natural-language prompts for507

LLMs (Chen et al., 2024c; Liu and Wu, 2023;508

Wang et al., 2023). However, subsequent analyses509

have found that ignoring structural information510

significantly degrades performance (Huang et al.,511

2024).512

LLMs as Feature Enhancers. A common strat-513

egy is to leverage LLMs to embed heterogeneous514

node and edge attributes into a unified semantic515

space (Ye et al., 2024; Yu et al., 2025; Chen et al.,516

2024d). For instance, OFA (Liu et al., 2024) ver-517

balises graph metadata and encodes it into dense518

language embeddings that augment the graph with519

enriched features. ZeroG (Li et al., 2024a) and520

OpenGraph (Xia et al., 2024) adopt similar ap-521

proaches. Nonetheless, these methods often de-522

pend on downstream predictors—typically graph523

neural networks (GNNs)—and are thus limited in524

the range of tasks they can effectively support.525

LLM as Unified Predictor. An emerging line of526

research treats the LLM itself as the task head,527

bypassing traditional graph-specific predictors.528

GraphGPT (Tang et al., 2024) and GOFA (Kong529

et al., 2024) align graph embeddings with the LLM530

embedding space and apply instruction tuning for531

downstream adaptation. UniGraph (He et al., 2025)532

and TEA-GLM (Wang et al., 2024a) introduce533

lightweight projection modules to enable zero-shot534

generalisation, while LLaGA (Chen et al., 2024b)535

tokenises entire graphs directly for LLM-based in-536

ference. While these approaches are promising,537

embedding alignment can incur information loss,538

and relying solely on answer-only decoding of- 539

ten under-utilises the full reasoning capabilities 540

of LLMs. 541

4.3 Reasoning on Graphs 542

Recent work has begun to assess the reasoning 543

ability of LLMs on graph-structured problems. 544

GPT4Graph (Guo et al., 2023) evaluates GPT-4 545

on algorithmic tasks such as connectivity and max- 546

flow, revealing encouraging results but limited scal- 547

ability. NLGraph (Wang et al., 2023) proposes a 548

broad benchmark, showing that while LLMs man- 549

age simple instances, they struggle with structural 550

complexity; instruction tuning offers only marginal 551

improvements. GraphWiz (Chen et al., 2024a) 552

focuses on algorithmic reasoning (e.g., shortest 553

paths), but omits standard learning tasks. Instruct- 554

Graph (Wang et al., 2024b) enhances supervised 555

learning with natural-language instructions, yet 556

falls short on cross-task generalisation. We intro- 557

duce the first LLM-based framework to jointly inte- 558

grate reinforcement learning and explicit reasoning, 559

aiming to generalise across diverse graph tasks. 560

5 Conclusion 561

We presented GRAPH-R1, a GNN-free paradigm 562

that formulates graph learning tasks—such as node 563

classification, link prediction, and graph classi- 564

fication—as textual reasoning problems solvable 565

by Large Reasoning Models (LRMs). To support 566

this, we introduced the first reasoning dataset for 567

graph machine learning, featuring detailed reason- 568

ing traces. Guided by task-specific rethink tem- 569

plates, GRAPH-R1 enables LRMs to reason over 570

linearized graph structures. Extensive experiments 571

show that GRAPH-R1 outperforms strong baselines 572

in zero-shot settings while producing interpretable 573

predictions that expose its reasoning process. Our 574

results highlight the promise of explicit reasoning 575

for graph learning and open new directions at the 576

intersection of graph learning and LRMs. 577
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Limitations578

While GRAPH-R1 shows strong zero-shot general-579

ization and produces inherently interpretable rea-580

soning across diverse graph tasks, it faces chal-581

lenges when scaling to very large graphs. Cur-582

rent Large Reasoning Models (LRMs) have input583

length constraints, and linearizing large or complex584

graphs may exceed their context window. Future585

work may explore more efficient encoding methods586

to improve scalability.587
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A Details of Datasets873

All of the public datasets used in our paper were874

previously published, covering a multitude of do-875

mains. We report the detailed statistics for each876

dataset in Table 4. The detailed descriptions of877

these datasets are listed in the following:878

Arxiv Arxiv (Hu et al., 2020) is a large-scale879

citation graph derived from arXiv Computer Sci-880

ence papers. Each node corresponds to a paper and881

edges represent citation links between papers. The882

task is to classify each paper into one of 40 arXiv883

subcategories, such as "cs.LG" or "cs.AI". This884

dataset serves as a representative benchmark for885

large-scale node classification.886

Citeseer The Citeseer (Yang et al., 2016) dataset887

is a citation network comprising research papers888

and their citation relationships within the computer889

science domain. Each node represents a research890

paper, and each edge signifies a citation relation-891

ship between two papers.892

Cora The Cora (Wen and Fang, 2023) dataset893

is a citation graph where each node corresponds894

to a research paper, and each edge represents a895

citation link between papers. The dataset focuses896

on papers within the machine learning domain and897

includes 70 fine-grained categories, making the898

classification task particularly difficult.899

Pubmed Pubmed (He et al., 2024a) is a citation900

network of biomedical research papers from the901

PubMed database. Each node is a paper and edges902

correspond to citation links. The classification903

task involves assigning each paper to one of three904

disease-related categories.905

Children The Children (Yan et al., 2023) dataset906

is a co-purchased or co-viewed product graph fo-907

cused on children’s books. Nodes correspond to908

individual books, and edges connect books that909

were frequently browsed or bought together. Each910

node is associated with textual information includ-911

ing the book’s title and descriptive metadata.912

Computer The Computer (Yan et al., 2023)913

dataset is co-purchased or co-viewed product graph,914

where each node represents a product in the com-915

puter category, and edges indicate that two prod-916

ucts were frequently co-purchased or co-viewed917

by users. The textual content associated with each918

node consists of user-generated reviews for the cor-919

responding product.920

Photo The Photo (Yan et al., 2023) dataset is an 921

e-commerce product graph where nodes represent 922

photographic products, and edges indicate that two 923

items were either co-purchased or co-viewed by 924

users. The textual content of each node consists 925

of user reviews associated with the corresponding 926

product. 927

Products The Photo (He et al., 2024a) dataset 928

is an e-commerce product graph where nodes rep- 929

resent Amazon products, and edges indicate that 930

two items were either co-purchased or co-viewed 931

by users. The textual content of each node consists 932

of user reviews associated with the corresponding 933

product. 934

Sports The Sports (Yan et al., 2023) dataset is 935

a co-purchased or co-viewed product graph in the 936

sports domain. Nodes represent sports-related prod- 937

ucts, and edges indicate that two items were often 938

purchased or viewed together. The associated text 939

for each node consists of the product’s title. 940

FB15K237 FB15K237 (Liu et al., 2024) is a 941

large-scale knowledge graph where each node rep- 942

resents an entity (e.g., a person, location, or object) 943

and each edge corresponds to a relational triple 944

connecting two entities. Textual content for nodes 945

is constructed from entity names and relation de- 946

scriptions. 947

WN18RR WN18RR (Liu et al., 2024) is another 948

knowledge graph extracted from WordNet. It con- 949

tains 40,943 nodes and 93,003 relations where each 950

node is an English word and each edge represents 951

the relation between two words. 952

WikiCS WikiCS (Mernyei and Cangea, 2020) 953

is a web link network constructed from English 954

Wikipedia articles related to computer science. 955

Nodes are individual articles, and directed edges 956

represent hyperlinks between them. The node text 957

is the full content of each article. 958

CHEMBL ChEMBL (Gaulton et al., 2012) is a 959

molecular graph dataset where each graph corre- 960

sponds to a chemical compound. Nodes represent 961

atoms, and edges denote chemical bonds. The tex- 962

tual information for each molecule is given by its 963

SMILES (Simplified Molecular Input Line Entry 964

System) representation. 965

BBBP The BBBP (Wu et al., 2017) dataset 966

comes from a study focused on modeling and pre- 967

dicting the permeability of the blood-brain barrier. 968
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Domain Dataset Avg.#Nodes AVG.#Edges #Classes #Graphs
Social Network Instagram 11339 155349 2 1

Web Link WikiCS 11701 216123 10 1

Logical Graph Expla_Graph 5.17 4.25 - 2766

Knowledge Graph
FB15K237 14541 310116 237 1
WN18RR 40943 93003 11 1

Citation

Arxiv 169343 1166243 40 1
Citeseer 3186 8554 6 1

Cora 2708 10556 7 1
Pubmed 19717 88648 3 1

E-commerce

Children 76875 1554578 24 1
Computer 87229 721081 10 1

Photo 48362 500939 12 1
Products 54025 144638 47 1
Sports 173055 1773500 13 1

Molecular

CHEMBL 25.87 55.92 1048 23874346
BBBP 24.06 51.91 2 2039
ESOL 13.29 27.35 - 1128

Freesolv 8.72 16.76 - 642
HIV 25.51 54.94 2 41127
Lipo 27.04 59 - 4200

PCBA 25.97 56.20 128 34017170

Table 4: Datasets Statistics (the "-" means that it is not appropriate to use the number of classes description. This is
because Esol, Freesolv, Lipo is regression tasks, Expla_graph is a Q-A task).
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The BBBP dataset contains binary labels indicating969

whether a compound can penetrate the blood-brain970

barrier (BBB) or not.971

ESOL The ESOL (Withnall et al., 2018) dataset972

contains water-solubility data for chemical com-973

pounds. Each molecule is modeled as a graph, with974

node and edge structures corresponding to atoms975

and bonds. SMILES strings serve as the textual976

representation.977

Freesolv Freesolv (Casasnovas et al., 2014) con-978

sists of molecular graphs used for estimating hy-979

dration free energy. Each molecule is modeled980

by a graph of atoms and bonds. The SMILES981

representation is used as the text-based molecular982

description.983

HIV The HIV (Wu et al., 2017) dataset consists984

of molecular graphs representing candidate com-985

pounds for HIV treatment. Nodes denote atoms986

and edges are chemical bonds. Each molecule is987

described by its SMILES string.988

Lipo Lipo (Wu et al., 2017) is a molecular dataset989

focused on lipophilicity prediction. Each molecule990

is represented 524 as a graph with atoms as nodes991

and bonds as edges. The SMILES string encodes992

each molecule’s 525 structure in text form.993

PCBA PCBA (Wu et al., 2017) is a large-scale994

molecular dataset for virtual screening. Each graph995

is a molecule, modeled by atoms and bonds, with996

SMILES strings representing the underlying chem-997

ical structure.998

Expla_Graph Expla_Graphs (He et al., 2024b)999

is a graph question answering dataset on common-1000

sense concepts. Each graph in Expla_Graphs con-1001

tains commonsense concepts connected by its rela-1002

tion.1003

Instagram Instagram (Li et al., 2024b) is a so-1004

cial graph in which each node represents a user,1005

and edges denote social connections such as fol-1006

lowing relationships. The textual content associ-1007

ated with each node is extracted from users’ self-1008

introductions or profile descriptions.1009

B Prompt Template1010

For each specific task type τ , we design an ap-1011

propriate prompt template to guide the model in1012

understanding and solving the corresponding graph1013

reasoning task. Our prompt templates are systemat- 1014

ically constructed and consist of three main compo- 1015

nents: task-specific and dataset-related prompt pre- 1016

fix and question template, and a format-constrained 1017

instruction template. The instruction template is 1018

further categorized into two variants: normal and 1019

rethink. 1020

The prompt prefix provides necessary back- 1021

ground information, context, and relevant details 1022

about the graph structure and node attributes. The 1023

question template then formulates the concrete pre- 1024

diction or reasoning objective for the current in- 1025

stance. The instruction template standardizes the 1026

output format, ensuring consistency and clarity in 1027

model responses. 1028

A comprehensive overview of all prompt tem- 1029

plates used for different task types is provided 1030

as follows: Table 6 shows prompt templates of 1031

node/link classification, Table 7 shows prompt tem- 1032

plates of graph classification, Table 8 shows prompt 1033

templates of link prediction, and Table 9 shows 1034

prompt templates of graph regression. 1035

In addition, we present a dedicated prompt tem- 1036

plate for summarizing node descriptions within 1037

graph reasoning tasks. This template is designed 1038

to effectively capture and condense the essential 1039

attributes and contextual information of individual 1040

nodes, facilitating more accurate and interpretable 1041

reasoning by the model. The detailed design of 1042

the node summary prompt template is provided in 1043

Table 5. 1044

C Details of Implementation 1045

Datasets For the construction of our graph rea- 1046

soning dataset, we initially collected 348,000 in- 1047

stances from 11 diverse graph datasets: Arxiv, 1048

Citeseer, Pubmed, Instagram, Children, Computer, 1049

Photo, Sports, Chemblpre, Chempcba, and Wn18rr. 1050

Following the data filtering procedures described 1051

in Section 2.2, we curated a high-quality subset 1052

comprising 10,000 instances, which serves as the 1053

training datasets for instruction fine-tuning and re- 1054

inforcement learning. For evaluation, we adopt the 1055

datasets reported in the GOFA paper, and construct 1056

evaluation datasets by inserting into our prompt 1057

templates to ensure consistency and comparability. 1058

Baselines Details For all baseline methods, we 1059

report the results as provided in the GOFA paper. 1060

Since our evaluation datasets are constructed to 1061

be consistent with those reported in GOFA, the 1062

results are directly comparable and ensure a fair 1063
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Template Name Content

Summary summary each node’s content in no more than 25 words.
Your response should strictly be in forms as follows:
nodex:<your summary>
eg:
node1:optimality of myopic sensing in multi channel opportunistic access
{node descriptions}

Table 5: Prompt Templates in summarizing node descriptions

Template Name Content

Prompt Prefix Classify the <target: essay / book / electronic product / user / product / fitness-related item / wikipedia page> represented
by node <node_id> using its subgraph data (text attributes and connections) as follows:
Node description: <node description>
Connection relationship among the nodes: <connection>

Question Format Consider both semantic and structural information. Select strictly from: {labels}. Respond only with the category name
and briefly summarize the reasoning process.

Normal Instruction Your reasoning and response should be streamlined and restricted to within 2048 tokens.
Your response should be in forms as follows:
Answer: your_answer (e.g., {sample_answer})
Brief_reasoning: your_brief_reasoning

Rethink Instruction You must conduct reasoning inside <think>...</think>.
Inside <think>...</think>, you should include:
- Structure information: <structure>...</structure>
- Semantic similarities: <semantic>...</semantic>
After structure and semantic analysis, you msut provide {candidate} candidate answers with brief reasoning inside
<comprehensive>...</comprehensive>.
Then, you must conduct re-reasoning inside <rethink>...</rethink>. In this section, you should detailed consider each of
your candidate answers as if they were the correct answer and evaluate their feasibility.
After re-reasoning, you must conduct your final answer based on your above analysis.
Finally, besides your reasoning, give your final response.
Your full response must follow this format:
<think>
<structure>Here show your structure analysis</structure>
<semantic>Here show your semantic analysis</semantic>
<comprehensive>Here show your comprehensive reasoning and list your candidate answers</comprehensive>
<rethink>Here ongoing re-reasoning with each of your candidate answers inversely</rethink>
Here show your final reasoning and answers
</think>
Answer: your_answer (e.g., {sample_answer})
Brief_reasoning: your_brief_reasoning

Table 6: Prompt Templates of Node/Link Classification

Template Name Content

Prompt Prefix Determine whether the chemical compound represented by the following molecular graph (nodes with atomic features and
bond relationships) is predicted to exhibit activity (effectiveness) in each of the provided bioassays.
Bioassays descriptions: <bioassays_descriptions>
Node description: <node description>
Connection relationship among the nodes: <connection>

Question Format Your response must include: A sequence of strict ‘Yes’ or ‘No’ answers for each property in order, separated by spaces
(e.g., {sample_answer}), and a concise explanation for your choices, referencing important structural features and the
biological assay context.

Normal Instruction Your reasoning and response should be streamlined and restricted to within 2048 tokens.
Your response should be in forms as follows:
Answer: your_answer (e.g., {sample_answer})
Brief_reasoning: your_brief_reasoning

Rethink Instruction - Same reasoning and output format as Node/Link Classification.
- Only the task context differs; follow the steps and output structure above.

Table 7: Prompt Templates of Graph Classification
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Template Name Content

Prompt Prefix Classify the relationship between two <target: essays / books / electronic products / products / fitness-related items
/ wikipedia pages/entities> denoted as node <node_id> and node <node_id>, using the union of their corresponding
subgraph (text attributes and connections) as follows:
Node description: <node description>
Connection relationship among the nodes: <connection>

Question Format Consider: semantic and structural information. In your reasoning process provide the predicted connection bond value
of the two target nodes between 0 and 1, set the threshold to 0.5. Based on your predicted connection bond value select
strictly from: ‘Yes, they have {target: citation/co-purchased or co-viewed} relationships’ or ‘No, they do not have
{target: citation/co-purchased or co-viewed} relationships’. Respond only with the choice content and briefly summarize
the reasoning process.

Normal Instruction Provide an estimated connection bond value (ranging from 0 to 1). A higher value indicates a stronger likelihood of a
relationship. Consider multiple factors, such as:
- Structural information: Evaluate the direct and indirect connections between the two target nodes through their neighbors.
- Semantic similarities: Analyze the relevance or similarity in meaning between the two target nodes.
- Comprehensive information: If there exist two nodes that are semantically similar to each other, and these two nodes are
respectively connected to the two target nodes, this can indirectly indicate the strength of the connection between the
target nodes.
Your reasoning and response should be streamlined and restricted to within 2048 tokens.
Your response should follow this format:
Answer: your_answer
Brief_reasoning: your_brief_reasoning
Bond_value: your_predicted_bond_value

Rethink Instruction Provide an estimated connection bond value (ranging from 0 to 1). A higher value indicates a stronger likelihood of a
relationship. Consider multiple factors, such as:
- Structural information: Evaluate the direct and indirect connections between the two target nodes through their neighbors.
- Semantic similarities: Analyze the relevance or similarity in meaning between the two target nodes.
- Comprehensive information: If there exist two nodes that are semantically similar to each other, and these two nodes are
respectively connected to the two target nodes, this can indirectly indicate the strength of the connection between the
target nodes.
If you can identify direct or indirect connections based on structural information, set the bond strength to 1 and specify the
path(s) of connection in your reasoning.
If no such connections can be identified, evaluate the bond strength based on the semantic similarity between the target
node and its neighboring nodes semantics.
You must conduct reasoning inside <think>...</think>.
Inside <think>...</think>, you should include:
- Structure information within <structure>...</structure>
- Semantic similarities within <semantic>...</semantic>
After structure and semantic analysis, provide comprehensive information inside <comprehensive>...</comprehensive>
Then, you must conduct re-reasoning inside <rethink>...</rethink> . In this section, you should detailed consider each of
the two given answers as if they were the correct answer and evaluate their feasibility.
After re-reasoning, you must conduct your final answer based on your above analysis.
Finally, besides your reasoning, give your final response.
Your full response must follow this format:
<think>
<structure>Here show your structure analysis</structure>
<semantic>Here show your semantic analysis</semantic>
<comprehensive>Here show your comprehensive reasoning</comprehensive>
<rethink>Here ongoing re-reasoning with each of the two candidate answers inversely</rethink>
Here show your final reasoning and answers
</think>
Answer: your_answer
Brief_reasoning: your_brief_reasoning
Bond_value: your_predicted_bond_value

Table 8: Prompt Templates of Link Prediction
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Template Name Content

Prompt Prefix Calculate the chemical relevant properties using the given molecular graph (nodes with atomic features and bond
relationships) as the following calculation requirements.
Calculation requirements:
{description}
Calculate the {target} of this molecule.
Node description: <node description>
Connection relationship among the nodes: <connection>

Question Format Your Response Must Include: A numerical answer, and the mathematical solution process, referencing important structural
features and the biological assay context.

Normal Instruction You are a chemistry expert assistant specialized in molecular graph regression tasks.
Given a molecular graph with atomic features and bond relationships, you are asked to approximate the target value using
the formula mentioned in calculation requirement
Your task is to:
- Analyze the molecular structure based on the provided nodes and edges.
- Identify key chemical features that influence the target value (e.g., number and position of Cl atoms, ring systems,
stereochemistry, hydrogen bonding capability).
- Estimate the target value based on the formula.
- Provide a final numeric prediction rounded to two decimal places.
Please adjust the units of your final result so that the numerical value falls within the range of -30 to 30.
Round the result to two decimal places.
Respond strictly in the following format:
Answer: your_answer (keep two decimal places, e.g., {sample_answer})
Brief_reasoning: your_brief_reasoning

Rethink Instruction You are a chemistry expert assistant specialized in molecular graph regression tasks.
Given a molecular graph with atomic features and bond relationships, you are asked to approximate the target value using
the formula mentioned in calculation requirements.
Your task is to:
- Analyze the molecular structure based on the provided nodes and edges.
- Identify key chemical features that influence the target value (e.g., number and position of Cl atoms, ring systems,
stereochemistry, hydrogen bonding capability).
- Estimate the target value based on the formula.
- Provide a final numeric prediction rounded to two decimal places.
You must conduct reasoning inside <think>...</think>.
Inside<think>...</think>, you should include:
- Structure information within <structure>...</structure>
- Semantic similarities within <semantic>...</semantic>
After structure and semantic analysis, you must provide the range of target with brief reasoning inside <comprehen-
sive>...</comprehensive>
Then, you must conduct re-reasoning inside <rethink>...</rethink>. In this section, you should detailed consider your
target range as if it were the correct range and evaluate its feasibility.
After re-reasoning, you must conduct your final answer based on your above analysis.
Finally, besides your reasoning, give your final response.
Please adjust the units of your final result so that the numerical value falls within the range of -30 to 30.
Round the result to two decimal places.
Your full response must follow this format:
<think>
<structure>Here show your structure analysis</structure>
<semantic>Here show your semantic analysis</semantic>
<comprehensive>Here show your comprehensive reasoning</comprehensive>
<rethink>Here ongoing re-reasoning with each of the two candidate answers inversely</rethink>
Here show your final reasoning and answers
</think>
Answer: your_answer (keep two decimal places, e.g., {sample_answer})
Brief_reasoning: your_brief_reasoning

Table 9: Prompt Templates of Graph Regression
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evaluation.1064

Details of GRAPH-R1 Graph-R1 is developed1065

based on DeepSeek-R1-distilled-Qwen2.5-14B.1066

We employ a two-stage training pipeline: super-1067

vised instruction fine-tuning followed by reinforce-1068

ment learning with the rethink template. In su-1069

pervised instruction fine-tuning, We utilize the1070

LLaMA-Factory toolkit(Zheng et al., 2024) to per-1071

form full-parameter supervised fine-tuning. The1072

learning rate is set to 1e-5, and all other hyper-1073

parameters follow their default settings. For the1074

reinforcement learning stage, we adopt the GRPO1075

training strategy implemented via the Tiny-Zero1076

toolkit(Pan et al., 2025). For GRPO, wo use a1077

batch size of 64, set learning rate to 1e-6, and apply1078

the number of sampled outputs per question of 5.1079

All other parameters are set to their default values.1080

For inference, we utilize the VLLM (Kwon et al.,1081

2023) framework to enable efficient batched decod-1082

ing. All experiments are conducted on a cluster1083

equipped with 8 NVIDIA A100 GPUs.1084

D some Cases from Graph-R11085

We provide some interesting cases from GRAPH-1086

R1’s responses to illustrate the interpretability and1087

principles behind its reasoning, as shown in Ta-1088

ble 10.1089
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Task Type Structure Semantic Comprehensive Rethink

Node Classification Central node (node0) connects
to multiple nodes in a dis-
tributed system context.
Details: Node0 connects to
node1, node3, node6, and
node7. Node7 links to
node2, node3, node4, and
node0. Other connections
include node5 to node6 and
node4 to node7.

Focuses on distributed systems,
load balancing, and consensus
algorithms.
Details: Keywords like "dis-
tributed load balancing," "plu-
rality consensus," "majority dy-
namics," and "multi-agent sys-
tems" dominate. Node4 men-
tions distributed learning dy-
namics, linking to machine
learning.

Identifies three candidates
based on structure and seman-
tics.
Details:
1. cs.DC (Distributed Comput-
ing): Core focus on distributed
algorithms, load balancing,
and protocols.
2. cs.MA (Multiagent Sys-
tems): Multi-agent dynamics
mentioned in node2 and node7.
3. cs.LG (Machine Learning):
Distributed learning dynamics
in node4.

Evaluates the feasibility of
each candidate.
Details:
cs.DC: Most fitting due to fo-
cus on distributed systems and
algorithms.
cs.MA: Relevant but secondary
to distributed systems.
cs.LG: Specific to node4, less
central than distributed com-
puting

Link Prediction Evaluates direct and indirect
connections between Node0
and Node1.
Details Node0 connects to
nodes related to hashing
methods (node2, node3) and
genome processing (node7).
Node1 connects to nodes
focused on backscatter com-
munication systems (node4,
node8, node9). No direct or
indirect links between the two
target nodes.

Analyzes the thematic rele-
vance between Node0 and
Node1.
Details: Node0 focuses on
OLAP for text analysis in hu-
manities research, while Node1
is about MIMO SWIPT power
optimization in wireless com-
munication. No overlapping
keywords or shared technical
domains.

Considers intermediary nodes
and shared themes to predict
connection strength.
Details: Node0’s connections
(node2, node3) focus on hash-
ing methods and algorithms.
Node1’s connections (node4,
node8) focus on communica-
tion systems and throughput
optimization. No shared inter-
mediary nodes or overlapping
application areas.

Tests hypotheses assuming ci-
tation relationships exist.
Details: If OLAP techniques
were used in MIMO systems
optimization, it would bridge
the gap, but no evidence sup-
ports this. Alternatively, if
MIMO SWIPT used OLAP
for data analysis, the con-
nection would still require
shared terminology, which is
absent. The domains remain
distinct—humanities research
vs. wireless communication en-
gineering.

Table 10: Case studies for different graph tasks analyzed from structural, semantic, comprehensive, and rethink
perspectives.
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