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Abstract. Intracranial hemorrhage (ICH) is a life-threatening condi-
tion that requires rapid and accurate diagnosis to improve treatment 
outcomes and patient survival rates. Recent advancements in supervised 
deep learning have greatly improved the analysis of medical images, but 
often rely on extensive datasets with high-quality annotations, which 
are costly, time-consuming, and require medical expertise to prepare. 
To mitigate the need for large amounts of expert-prepared segmenta-
tion data, we have developed a novel weakly supervised ICH segmen-
tation method that utilizes the YOLO object detection model and an 
uncertainty-rectified Segment Anything Model (SAM). In addition, we 
have proposed a novel point prompt generator for this model to fur-
ther improve segmentation results with YOLO-predicted bounding box 
prompts. Our approach achieved a high accuracy of 0.933 and an AUC 
of 0.796 in ICH detection, along with a mean Dice score of 0.629 for 
ICH segmentation, outperforming existing weakly supervised and popu-
lar supervised (UNet and Swin-UNETR) approaches. Overall, the pro-
posed method provides a robust and accurate alternative to the more 
commonly used supervised techniques for ICH quantification without 
requiring refined segmentation ground truths during model training. 

Keywords: Weak supervision · Image segmentation · Object 
detection · Medical imaging · Intracranial hemorrhage · YOLO · SAM 

1 Introduction 

Intracranial hemorrhage (ICH) accounts for 10–15% of all stroke cases and carries 
a significant risk of mortality [ 9]. Hemorrhage volume, which can rapidly expand 
within the first few hours, is a key predictor of treatment outcomes and potential 
complications [ 17]. Precise localization and quantification of the five ICH sub-
types, including intraventricular (IVH), intraparenchymal (IPH), subarachnoid 
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(SAH), epidural (EDH), and subdural (SDH), are therefore essential for tailor-
ing treatment strategies and minimizing adverse events [ 1]. While supervised 
deep learning (DL) models have demonstrated excellent potential in automating 
ICH assessment [ 7], their success heavily relies on large datasets with pixel-level 
annotations (ground-truth masks) and poor segmentation accuracy is observed 
with smaller training datasets [ 8]. However, large training datasets containing 
high-quality ground-truth masks are difficult to obtain due to high demands in 
time, labor, and domain expertise. Together with scarce public ICH segmen-
tation datasets, this bottleneck poses great challenges in developing automatic 
ICH quantification algorithms to better facilitate the care and management of 
the condition. 

To overcome the aforementioned issue, weakly supervised learning approaches 
[ 18, 19] have emerged as a promising alternative. These methods leverage more 
economic ground truths, such as categorical labels, bounding boxes, or coarse 
masks to train segmentation models, bypassing the requirement of refined masks 
for fully supervised and semi-supervised approaches. While most existing lit-
erature is dedicated to ICH detection, ICH segmentation using weakly super-
vised methods remains under-explored. However, limited prior explorations exist 
leveraging explainable AI methods for weakly-supervised stroke segmentation, 
including class-activation maps (CAM) [ 25] and self-attention maps [ 19], pro-
viding encouraging results. Recent developments in foundation models, such as 
the Segment Anything Model (SAM) [ 10] have shown great potential to miti-
gate the segmentation ground truth bottleneck, but have not been explored for 
improving weakly supervised ICH segmentation. Therefore, we propose a novel 
weakly supervised ICH segmentation technique that incorporates automatic box 
and point prompt generation with SAM to allow for ICH detection and seg-
mentation on CT scans. We have three main contributions. First, we leveraged 
a finetuned YOLOv8 model and a novel morphology-based method to auto-
matically generate box and point prompts, respectively, for SAM. Second, to  
enhance segmentation accuracy with SAM, we employed an uncertainty recti-
fication approach to account for uncertainty in prompt generation. Lastly, we  
explored the impacts of different prompt types for our proposed framework in 
ICH segmentation and compared it against state-of-the-art (SOTA) supervised 
and weakly supervised techniques. 

2 Related Works 

ICH segmentation methods still primarily rely on fully supervised approaches 
[ 2, 3, 11, 12] and often with in-house datasets. More recently, semi-supervised 
techniques [ 24] have also been proposed for ICH quantification. However, refined 
segmentation ground truths are still crucial for their success, and more practi-
cal weakly supervised methods are gaining interest. In the limited prior works 
in this direction, most have relied on categorical labels as weak ground truths. 
For example, Wu et al. [ 25] proposed to use refined CAM results and repre-
sentation learning to achieve ischemic stroke lesion segmentation, achieving a
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0.3827 mean Dice score on multi-spectral MRIs. Later, from a binary classifica-
tion CNN, Nemcek et al. [ 16] detected the location of ICH as bounding boxes in 
axial brain CT slices using the local extrema of derived attention maps, with a 
mean Dice of 0.58 for the lesion bounding boxes. Recently, Rasoulian et al. [ 19] 
utilized Head-Wise Gradient-Infused Self-Attention Maps from a Swin Trans-
former (Swin-HGI-SAM) trained on binary labels (ICH vs. no ICH) to obtain 
ICH segmentation, which obtained a mean Dice score of 0.438 on CT scans. 
The recent introduction of SAM [ 10], which allows interactive prompting in the 
forms of bounding boxes and/or points for zero-shot segmentation has attracted 
significant attention. However, its performance on CT-based ICH quantification 
and as an integrated solution allowing full automation in weakly supervised seg-
mentation is yet to be explored. Furthermore, YOLO models [ 23] have been 
employed for ICH detection [ 4], but no reports have investigated their potential 
to facilitate the automation of SAM in ICH segmentation thus far. 

3 Methods and Materials 

3.1 Dataset and Preprocessing 

For our study, we used the public Brain Hemorrhage Extended (BHX) dataset 
[ 20], which includes bounding box annotations for ICH along with their cor-
responding lesion subtypes, and the manually labeled PhysioNet CT dataset 
[ 8], which includes manual ICH segmentations. While 4607 CT slices and 5543 
bounding boxes from the BHX dataset (containing the ICH subtypes and healthy 
scans) were employed to train and validate the YOLO model for lesion bound-
ing box detection, the PhysioNet ICH segmentation dataset, which has 2814 CT 
slices with 318 mask-annotated ICH slices, was reserved as an independent test 
set to evaluate ICH segmentation with SAM. In addition, for our selected fully 
supervised baseline methods (more details in Sect. 3.3), subject-wise five-fold 
cross-validation was used on the manually segmented PhysioNet dataset to pro-
vide segmentation results for all cases and ensure that no slices from the same 
subject exist across different folds. As CT scans typically have a high dynamic 
range, for each CT slice, brain, subdural, and bone windows were created based 
on previous guidelines [ 5] and stacked together to form a composite RGB image, 
which was normalized to the range of [0,1] in each channel to facilitate training. 

3.2 Uncertainty-Rectified YOLO-SAM Models 

We propose YOLO-SAM, a novel weakly supervised framework for ICH seg-
mentation, where the YOLOv8 model [ 23] provides several prompts for SAM to 
perform ICH segmentation. Here, we built three YOLO-SAM variants, includ-
ing YOLO-SAM-BBox, YOLO-SAM-Point, and YOLO-SAM-PointBBox, which 
perform ICH segmentation using bounding box prompts, point prompts, and 
combinations of bounding boxes and point prompts, respectively. These models 
each employ an uncertainty rectification strategy that combines 10 SAM outputs
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Fig. 1. Workflow of the proposed weakly supervised ICH segmentation method. 

based on their 10 respective perturbed prompts. The detailed procedure of our 
methods is described below and shown in Fig. 1. 

YOLO Detection: The preprocessed CT slices are passed to YOLOv8, which 
outputs the bounding boxes and associated lesion types for detected ICH. Then, 
the corner coordinates of the predicted bounding boxes are recorded to serve as 
the basis for automatic point prompt generation. 

Bounding Box Perturbations: To enhance segmentation robustness and facil-
itate downstream uncertainty rectification in SAM’s outputs, we introduce a 
method involving bounding box perturbation. Specifically, each YOLO-predicted 
bounding box is perturbed 10 times by randomly increasing its size by 1–4 pixels 
on each side. These perturbed boxes are recorded for the next step. 

Clustering and Point Prompt Generation: Next, to strengthen the 
prompts’ efficacy for SAM, leveraging the predicted ICH bounding box from 
YOLO, we introduce a novel point prompt generation method for the lesion 
and background based on a tailored tissue clustering solution and morphological 
analysis. To delineate lesions in proximity to the skull (e.g. SDH hemorrhage) 
for SAM, BET [ 22] skull-stripping is first applied to the entire CT image. Then, 
within the ICH bounding box for the skull-stripped RGB composite CT slice, 
K-means clustering is applied for tissue classification. Here, we use four clusters 
(.K = 4) regardless of hemorrhage sub-types. If any residual skull is present, 
in decreasing order of the Hounsfield unit (HU) value, we must account for 1) 
residual skull tissue 2) ICH 3) healthy brain tissue and 4) dark background; if 
not, we can expect the brightest cluster to be assigned to the lesion and the 
remaining 3 clusters to be assigned to the rest. Then, an algorithm is devised 
to automatically identify the lesion cluster out of the four (YOLO-Clustering). 
The resulting simple tissue clustering is obtained by first inspecting whether the 
cluster with the highest average HU value corresponds to the brightest signals
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in the bone window channel, which represents the residual bone. If not, the clus-
ter is selected as the lesion cluster. Otherwise, the algorithm picks the cluster 
with the second-highest average HU value. Finally, on the K-means-based lesion 
clusters, skeletonization is performed to extract the skeleton of the shapes. From 
these skeletons, positive ICH point prompts are sampled. Then, from each of the 
three other clusters, negative points are sampled for SAM segmentation. 

SAM Segmentation with Uncertainty Rectification: For each of the 10 
perturbed bounding boxes, each combination of generated prompts (bounding 
box, points, and point-box) are passed to SAM’s prompt encoder along with the 
input image to produce a segmentation sample (Fig. 1). For each YOLO-SAM 
variant, their final segmentation is obtained via majority voting based on 10 
segmentation samples from the associated prompt type. This voting mechanism 
ensures the robustness of ICH segmentation against network-related prompt 
instability and SAM’s potential sensitivity to these variations, further improving 
segmentation quality. 

3.3 Baseline Models and Ablation Study 

To validate our proposed method, we compared its performance against the 
SOTA weakly supervised and fully supervised segmentation techniques for ICH 
segmentation. With an open-source repository and good performance, we chose 
the recent Swin-HGI-SAM [ 19] as our weakly supervised baseline. In terms of 
baseline methods with full supervision, we selected the popular UNet [ 21] and  
Swin-UNETR models [ 6], which have demonstrated strong performance in a wide 
range of medical image segmentation tasks. For the UNet model, we implemented 
the architecture from the manually segmented PhysioNet CT data paper [ 8], 
with four hierarchical layers in the encoding and decoding paths. For the Swin-
UNETR model [ 6], we also adopted four hierarchical levels to be consistent with 
the UNet model. 

While the SAM model [ 10] allows both bounding boxes and/or points as 
interactive prompts to generate segmentation results, the robustness and accu-
racy of individual prompt types and their combined usage still require further 
investigation. Therefore, besides comparison with the baseline models, we also 
performed an ablation study on the impact of prompt types for the target task 
(YOLO-SAM-Point, YOLO-SAM-BBox, YOLO-SAM-PointBBox). 

3.4 Model Training and Evaluation Metrics 

The YOLOv8-m model pretrained on the MS COCO dataset [ 13] in our YOLO-
SAM variants was finetuned on the BHX dataset [ 20], with 3685 CT-slice images 
and 4479 bounding box labels for the training set, as well as 922 CT-slice images 
with 1064 labels for the validation set. We used the default YOLOv8 configu-
ration (batch size=16, patience=100) during training. For the first 10,000 iter-
ations, the AdamW optimizer was used with a learning rate of 0.00111 (calcu-
lated by a fitting equation using the number of bbox classes, which was 5 for
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each ICH subtype) and a momentum of 0.9. For the remaining iterations (after 
epoch 44), the SGD optimizer with an initial learning rate of 0.01 and momen-
tum of 0.9 was used. We trained the weakly supervised Swin-HGI-SAM model 
[ 19] with the RSNA 2019 Brain CT hemorrhage dataset [ 5] (90%:10% data split 
for training vs. validation) following the details from the original publication. 
As for the supervised baselines (UNet and Swin-UNETR), subject-wise five-fold 
cross-validation was employed exclusively on the manually segmented PhysioNet 
dataset, using the AdamW optimizer with an initial learning rate of 0.001 as well 
as a loss function based on Dice coefficient and cross-entropy. We conducted all 
model training on a desktop computer with an Intel Core i9 CPU and an NVIDIA 
GeForce RTX 3090 GPU. After model training, all evaluations were based on the 
manually segmented PhysioNet dataset in a slice-wise manner using the default 
YOLO confidence threshold of 0.25. As ICH detection is a crucial component of 
our method, besides segmentation, we also evaluated the binary ICH detection 
performance (ICH vs. no ICH) for all DL models with accuracy, precision, recall, 
AUC, F1-score, and specificity. Note that a YOLO prediction was considered a 
true positive if it correctly identified a slice containing ICH, irrespective of the 
predicted subtype. For UNet and Swin-UNETR, a true-positive detection was 
defined as a slice with ICH segmentation that contains more than 10 pixels. In 
terms of segmentation, we computed the Dice coefficient and Intersection over 
Union (IoU) for all proposed and baseline models. Paired two-sample t-tests were 
then used to compare the Dice and IoU scores between the proposed method and 
the baselines, with .p < 0.05 indicating a statistically significant difference. 

4 Results 

4.1 Detection Performance 

Table 1. Detection Performance of Different Methods 

Metric Swin-HGI-SAM U-Net Swin-UNETR YOLOv8-m 
Accuracy 0.950 0.647 0.655 0.933 
Precision 0.765 0.239 0.253 0.665 
Recall 0.791 0.901 0.907 0.626 
AUC 0.880 0.757 0.764 0.796 
F1-score 0.767 0.373 0.374 0.645 
Specificity 0.969 0.612 0.622 0.966 

The ICH detection performance for all models is listed in Table 1. Similar 
to Swin-HGI-SAM, the YOLOv8-m model demonstrated superior detection per-
formance for most metrics compared to the U-Net and Swin-UNETR models, 
particularly in precision (0.665 vs. 0.239 and 0.253), AUC (0.796 vs. 0.757 and 
0.764), F1-score (0.645 vs. 0.373 and 0.374), and specificity (0.966 vs. 0.612 and 
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0.622). This highlights the potential of using bounding box localization mod-
els such as YOLO to achieve superior performance compared to mask-trained 
approaches on limited data (UNet, Swin-UNETR) and competitive performance 
with models trained on substantially more binary labels (Swin-HGI-SAM). How-
ever, a weakness of the YOLOv8-m model is its lower slice-wise recall compared 
to Swin-HGI-SAM (0.626 vs. 0.791), indicating that Swin-HGI-SAM will more 
reliably detect true positives. For all other detection metrics, YOLOv8-m demon-
strated comparable but marginally weaker detection performance, likely due to 
the smaller number of training samples (4607 bounding box annotated CT slices 
for YOLO versus 677523 binary-labelled CT slices for Swin-HGI-SAM). 

4.2 Segmentation Performance 

The ICH segmentation results are shown in Table 2, with qualitative outcomes 
demonstrated in Fig. 2. Table  2 shows that point prompts, hybrid point and 
bounding box prompts, as well as simple tissue clustering within the YOLO 
bounding box (YOLO-Clustering) yielded significantly higher segmentation per-
formance than Swin-HGI-SAM, UNet, Swin-UNETR and using bounding box 
prompts alone (.p <  0.005). It is also shown that hybrid prompts have improved 
performance over point prompts and YOLO-Clustering on average, though not 
statistically significant (.p >  0.05). While YOLO-Clustering had good segmen-
tation quality, it also had higher standard error than SAM with hybrid and 
point prompts, highlighting the point prompt’s better precision and reliability. 
Finally, while YOLO-SAM-BBox does not show significantly higher Dice and 
IoU scores than UNet (.p = 0.0853) or Swin-UNETR (.p = 0.768), it significantly 
outperforms Swin-HGI-SAM (.p <  0.005). 

Table 2. Segmentation Performance of Different Models (mean .± standard error) 

Model Dice IoU 
Swin-HGI-SAM .0.403 ± 0.014 . 0.283 ± 0.011 
Fully supervised U-Net .0.388 ± 0.019 . 0.297 ± 0.016 
Fully supervised Swin-UNETR.0.428 ± 0.018 . 0.330 ± 0.011 
YOLO-Clustering .0.625 ± 0.020 . 0.506 ± 0.019 
YOLO-SAM-BBox .0.562 ± 0.020 . 0.445 ± 0.018 
YOLO-SAM-Point .0.627 ± 0.018. 0.506 ± 0.017 
YOLO-SAM-PointBBox .0.629 ± 0.018. 0.508 ± 0.017 

5 Discussion 

Our YOLO-SAM framework that integrates YOLOv8-m, a novel point-prompt 
generator, and SAM with uncertainty rectification has demonstrated great per-
formance in weakly supervised ICH segmentation, particularly with the hybrid 
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Fig. 2. Qualitative segmentation results on different ICH subtypes 

prompts. The superior performance over existing weakly supervised and fully 
supervised methods can be explained by the incorporation of the power of the 
foundation models and spatial information represented by the bounding box 
ground truths. It is important to acknowledge that the poor performance of 
fully supervised DL models, such as UNet and Swin-UNETR can also be par-
tially due to the low number of ground-truth mask labels. Despite this success, 
the slice-wise recall metric for our YOLO model lagged behind the Swin-HGI-
SAM, suggesting a potential compromise in the model’s ability to detect all ICH 
slices. However, after investigating this further on a patient-wise basis, the recall 
metric was calculated at 0.9714, with 34 out of 35 patients with hemorrhage 
having had at least one slice detected. In a clinical setting, the proportion of 
true positive ICH cases would therefore be much higher than the reported slice-
wise recall metric. Our ablation study showed that hybrid prompts offered better 
performance than points or bounding boxes. This observation echoes previous 
reports [ 15] and could be explained by the lack of robustness when capturing 
thin, elongated, and curved structures (e.g., IPH subtype) with bounding boxes 
by SAM. Finally, while MedSAM [ 15] has gained great popularity in the com-
munity, its adoption in our YOLO-MedSAM-BBox model resulted in inferior 
segmentation outcomes (Dice = 0.412 .. ±0.018, IoU = 0.298.. ±015). This is con-
sistent with other reports of SAM outperforming MedSAM on certain medical 
image segmentation tasks [ 14] and may be due to a lack of public datasets for 
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training MedSAM on ICH tasks, as Dice loss was used in training the model 
[ 15]. 

6 Conclusion 

In conclusion, we have proposed a novel weakly supervised ICH segmentation 
technique that uses YOLO and an uncertainty-rectified SAM. In addition to 
bounding boxes provided via YOLO, our morphology-based point prompt gener-
ation was proven to offer enhanced segmentation performance. Thorough assess-
ments have revealed its superior performance over SOTA weakly supervised and 
fully supervised baselines while maintaining strong ICH detection capabilities. 
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