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ABSTRACT

We propose an instruction-aligned multimodal agent for autonomous web navi-
gation – i.e., sequential decision making tasks employing a computer interface.
Our approach is based on supervised finetuning of vision and language founda-
tion models on a large corpus of web data consisting of webpage screenshots
and HTML. Specifically, we use vision transformers on sequences of web page
screenshots to extract patch-level image features. These features are concatenated
with embedding of tokens in HTML documents. Using an instruction-finetuned
large language model, we jointly encode both vision and HTML modalities and
decode web actions such as click and type. We show that our method outperforms
previous approaches by a significant margin, even in handling out-of-distribution
HTML and compositional tasks. On the MiniWoB benchmark, we improve pre-
vious approaches using only HTML input by more than 17.7%, even surpassing
the performance of RL-finetuned models. On the recent WebShop benchmark, our
3-billion-parameter model achieves superior performance to the existing state-of-
the-art PaLM-540B. We also collect 347K gold demonstrations using our trained
models, 29 times larger than prior work, and make them available to promote future
research in this area. We believe that our work is a step towards building capable
and generalist decision making agents for computer interface.

1 INTRODUCTION

Foundation models (Bommasani et al., 2021), especially large language models (LLM) (Brown
et al., 2020; Chowdhery et al., 2022), have demonstrated incredible performance in commonsense,
symbolic, arithmetic, and multi-step logical reasoning (Wei et al., 2022b;c; Kojima et al., 2022). Many
prior works have shown that these models are capable of solving wide ranges of interactive decision
making problems in the wild, much like generalist agents, including task planning in robotics (Huang
et al., 2022a;b; Shah et al., 2022; Ahn et al., 2022), board game (Meta Fundamental AI Research
Diplomacy Team et al., 2022), web-based retrieval and browser crawling (Nakano et al., 2021; Gur
et al., 2022; Yao et al., 2022b; Zaheer et al., 2022).

Despite significant successes, existing LLM-based agents are only able to perceive their environments
via text inputs (Nakano et al., 2021; Gur et al., 2022; Yao et al., 2022b). Even in robotics where visual
perception is essential for decision making, scene perceptions are entrusted to object recognition mod-
ules (Gu et al., 2021b; Kamath et al., 2021) and described in a text format with fixed prompts (Zeng
et al., 2022; Ahn et al., 2022; Huang et al., 2022b). The need to encode environment observations
exclusively as text can limit the capability of spatial understanding for multi-step reasoning problems.
For instance, in our daily lives, we humans use computers or crawl browsers by not only reading the
contents of webpages, but also by recognizing the visual elements on the screen and their arrangement.
In order to handle complex decision making tasks, it is necessary to ground text understanding and
visual perception.

In this paper, we propose Web navigation via Grounded Understanding Models (WebGUM), a
foundation model finetuned with a large corpus of multimodal web data to obtain a grounded vision-
and-HTML understanding for autonomous web navigation (Shi et al., 2017; Liu et al., 2018; Gur
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Figure 1: Example episode on MiniWoB++ (Shi et al., 2017; Liu et al., 2018) (email-inbox-forward-nl).
The agent clicks the email from the proper sender, and types the correct receiver to forward that email, to satisfy
the given instruction (e.g. Find Gisele’s email and forward it to Siana, please). WebGUM makes use of both
HTML and image screenshot information to adapt a pretrained instruction-finetuned foundation model to solve
challenging web-based tasks such as this one.

et al., 2019). As shown in Figure 1, our model takes in a command for a web-based task via a natural
language instruction (e.g., in an email client, Find Gisele’s email and forward it to Siana, please.)
and uses multimodal observations of the computer interface to complete the task via a sequence of
computer actions such as click and type. We embed HTML and screenshot of the websites into shared
multimodal tokens for spatial and semantic understanding of the scene. Moreover, to enhance the
alignment with the user’s intention for task accomplishment, we leverage an instruction-finetuned
LLM (Wei et al., 2022a; Chung et al., 2022; Ouyang et al., 2022; Iyer et al., 2022) instead of
unsupervised text-to-text pre-trained LLMs (Raffel et al., 2020; Brown et al., 2020) advocated by
previous work (Gur et al., 2022). Through evaluation on MiniWoB++ (Shi et al., 2017; Liu et al.,
2018), a representative web navigation benchmark with simulated websites, our multimodal model
outperforms previous finetuned-LLM approaches trained with HTML inputs (Gur et al., 2022) by
17.7%. Our proposed WebGUM also surpasses existing approaches using reinforcement learning
(RL) (Liu et al., 2018). We find that our models are especially adept at handling unknown composition
of the tasks or out-of-distribution HTML inputs, synthesized with realistic perturbations.

Our extensive and precise ablations reveal the benefit of each of our contributions towards WebGUM’s
final performance; namely, the use of (1) multimodal vision-and-HTML observations, (2) instruction-
finetuned language models, and (3) massive expert demonstrations. WebGUM could leverage
multimodal tokens to ground vision and HTML understanding on the computer interface, especially
to solve the multi-step reasoning tasks or the tasks that require global contexts, such as browser-
crawling or dropdown calendar. Besides, we find that instruction-finetuned language models (Chung
et al., 2022) remarkably boost the web navigation performance; compared to unsupervised pre-trained
models (Raffel et al., 2020), it improves the success rate on MiniWoB++ by over 10%. On the
recent WebShop (Yao et al., 2022a) benchmark, WebGUM also achieve superior performance to the
existing state-of-the-art PaLM-540B (Yao et al., 2022b; Chowdhery et al., 2022), while our model
only has 3 billion parameters. To be best of our knowledge, we are the first to demonstrate that
instruction-finetuned LLM plays a critical role even in interactive decision making as well as common
NLP tasks, and can transfer their notable performances to multimodal settings. Finally, we collect
347K multimodal expert demonstrations on MiniWoB++ with finetuned-LLM and scripted policy, 29
times larger than existing unimodal dataset (Liu et al., 2018), and make these publicly available for
future research 1. Our results also imply the scaling effects in web navigation; the model performance
gradually increases as the dataset or model size does.

2 RELATED WORK

Web Navigation Autonomous web navigation is a sequential decision making problem where the
agent controls computers or crawls the Internet on the browser to satisfy given instructions (Shi et al.,
2017), such as form-filling (Diaz et al., 2013), information retrieval, or question answering (Nogueira

1https://github.com/google-research/google-research/tree/master/mm_
webnav
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Figure 2: Overview of WebGUM, our multimodal encoder-decoder transformer model. It takes recent H-step
screenshots (H = 2), action history, instruction, and HTML as inputs. Image observations are embedded to
tokens per 16× 16-size patch via pre-trained vision transformer (ViT) (Dosovitskiy et al., 2020)). Multimodal
language-image tokens are fed into pre-trained T5 encoder-decoder transformer (Raffel et al., 2020), and then
predict executable actions in text formats.

& Cho, 2016; Adolphs et al., 2022), which seems to be an important application for artificial
intelligence to assist our daily lives (Mazumder & Riva, 2020; Li et al., 2020; Shvo et al., 2021).

While many kinds of benchmarks have been proposed (Toyama et al., 2021; Burns et al., 2022; Yao
et al., 2022a), the most inclusive and representative benchmark to test the capability of autonomous
agents is MiniWoB++ (Shi et al., 2017; Liu et al., 2018) because it consists of a set of simulated
websites with various user instructions from primitive tasks to complex multi-step decision making
tasks, such as sending emails or booking flights. Prior works have tried to solve this benchmark using
a variety of techniques, including (1) RL with high-level workflow guidance (Liu et al., 2018) or
with curriculum learning (Gur et al., 2019; 2021), (2) behavioral cloning and RL-finetuning with a
large million-scale unreleased dataset (Humphreys et al., 2022), and (3) finetuned-LLM (Gur et al.,
2022). Many of these approaches depend on specific structural bias based on the document object
model (DOM) (Jia et al., 2019; He et al., 2020), or result in relatively lower performance if lacking
tremendous labeled online (i.e., RL) interaction (Humphreys et al., 2022), which is difficult to collect
from real websites as there is typically no reward signal and interactions are costly. In contrast, we
ground the understanding of vision and HTML to solve canonical web-based tasks, and leverage
the capability of instruction-finetuned LLM for strong inductive bias on multi-step reasoning and
alignment with user intentions, while eschewing any online web interactions.

Document Understanding Several works have tackled document understanding with (multimodal)
transformer models (Xu et al., 2019; Li et al., 2021a;c; Appalaraju et al., 2021; Tang et al., 2022;
Wang et al., 2022a;b), including markup languages such as HTML (Aghajanyan et al., 2021; 2022;
Li et al., 2021b; Lee et al., 2022a) for summarization of the documents or question answering on
the contents. Despite the great efforts on document understanding, these works are less connected
to interactive decision making problems. Our model obtains not only a grounded understanding of
websites in a multimodal manner but also the ability to decide the optimal actions to achieve given
instructions in web navigation, helping multi-step reasoning and global context perception.

Multimodal Large-scale Models Large language models have shown us incredible emergent abilities
on a variety of NLP tasks, such as commonsense question answering, arithmetics, logical reasoning,
open-ended text generation (Radford et al., 2019; Brown et al., 2020; Chowdhery et al., 2022; Wei
et al., 2022b; Tay et al., 2022), or code completion (Chen et al., 2021b; Austin et al., 2021; Li et al.,
2022b). In addition, some works have investigated vision-and-language understanding to improve
the accuracy of common vision-based tasks such as open-ended image/object classification (Radford
et al., 2021; Gu et al., 2021b; Kamath et al., 2021), image captioning, or visual question answering (Lu
et al., 2022; Alayrac et al., 2022; Chen et al., 2022; Reed et al., 2022). Meanwhile, we focus on
grounding the contents of visual and HTML inputs in instruction-finetuned LLM with a posteriori
finetuning for autonomous web navigation.

Foundation Models for Decision Making In sequential decision making problems, such as task
planning in robotics (Ahn et al., 2022; Huang et al., 2022a;b; Zeng et al., 2022), information
retrieval (Yao et al., 2022b), or board game (Meta Fundamental AI Research Diplomacy Team et al.,
2022), the ability of multi-step reasoning and strong inductive bias in foundation models are leveraged
to solve complex tasks with few-shot in-context examples. Even in continuous control (Chen et al.,
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Methods Training Modality Pre-trained Models Dataset Success Rate

CC-Net (Humphreys et al., 2022) SL DOM+Image ResNet 2.4M 32.0%
WebN-T5 (Gur et al., 2022) SL HTML T5-XL 12K 48.4%
WGE (Liu et al., 2018) SL+RL DOM – 12K+ 64.6%
CC-Net (Humphreys et al., 2022) SL+RL DOM+Image ResNet 2.4M+ 96.4%

WebGUM (Ours) SL HTML Flan-T5-XL 347K 61.5%
WebGUM (Ours) SL HTML+Image Flan-T5-XL,ViT-B16 347K 66.1%

Table 1: Average success rate on MiniWoB++ among 56 tasks. We recalculate the baseline performances referring
Humphreys et al. (2022) and Gur et al. (2022). See Appendix D for the detailed scores per task. WebGUM
significantly outperforms previous finetuned-LLM approach (Gur et al., 2022) which is state-of-the-art among
methods trained with supervised learning (SL). When comparing to existing methods that leverage online
reinforcement learning (SL+RL), our proposed WebGUM exceeds the baseline from Liu et al. (2018). Despite
the superior performance, our SL model is still behind SL+RL state-of-the-art (Humphreys et al., 2022) due to
the data coverage in the training dataset and lack of exploration during RL-finetuning. “+” in Dataset column
means that the number of episodes, required during RL training steps, is not included because no details were
described in their works. Videos are available at https://sites.google.com/view/mm-webnav/.

2021a; Janner et al., 2021; Furuta et al., 2022b; Brohan et al., 2022) or computer games (Reed et al.,
2022; Lee et al., 2022b; Fan et al., 2022), high-capacity transformer models are trained with a large
amount of diverse dataset via multi-task behavioral distillation (Chen et al., 2021c; Gu et al., 2021a;
DeepMind Interactive Agents Team et al., 2021; Furuta et al., 2022a; Shridhar et al., 2022; Jiang
et al., 2022). To build autonomous web navigation agents, we also leverage pre-trained LLM (Raffel
et al., 2020; Chung et al., 2022), finetuned with massively-curated multimodal demonstrations, and
to be best of our knowledge, we are the first to demonstrate that instruction-finetuned LLM (Chung
et al., 2022) is essential for the notable performance on interactive decision making in addition to
common NLP tasks.

3 PRELIMINARIES

We formulate autonomous web navigation as a deterministic sequential decision making problem;
composed of a state space S, action space A, deterministic transition function T : S × A −→ S,
instruction space G, reward function (or episodic success criteria) r : S × G × A −→ {0, 1}. At
each time step t, the agent follows a parameterized policy conditioned on previous states and actions
π : S × · · · × S︸ ︷︷ ︸

×t

×A× · · · × A︸ ︷︷ ︸
×t

×G → A, and transits to the next state: st+1 = T (st, at). This

process continues until the agent reaches the terminal state (e.g. Submit button is clicked) or the
max time step is exceeded. The episode is treated as a success if given instruction g is satisfied (i.e.
r(st, g, at) = 1), and as a failure if the agent takes a invalid action or reaches a wrong terminal state.

In autonomous web navigation, the state st ∈ S is a web page consisting of the raw HTML as a text
sequence and a screenshot as an image. Following prior works (Shi et al., 2017; Liu et al., 2018;
Gur et al., 2019; 2021), we assume the constraint action space: function(selector, text).
function is either click or type, selector is an integer index that can uniquely specify the
element, and text is a text input for type function.

Figure 1 presents one of the example episodes on MiniWoB++ (Shi et al., 2017; Liu et al., 2018).
To meet the given instruction, the agent clicks an email from the proper sender and types the
correct receiver to forward that email. MiniWoB++ includes such multi-step decision making tasks,
as well as primitive behavioral tasks; for instance, clicking buttons or entering texts. Past work
has proposed to solve MiniWoB++ tasks using supervised-learned (SL) agents trained with expert
demonstrations (Humphreys et al., 2022; Gur et al., 2022), reinforcement-learned (RL) agents with
specialized neural network architectures (Jia et al., 2019; Gur et al., 2019), as well as agents trained
with SL plus RL-finetuning (Liu et al., 2018; Humphreys et al., 2022).

4
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4 WEBGUM

4.1 MULTIMODAL TRANSFORMER MODELS

We extend the encoder-decoder transformer (Vaswani et al., 2017), proposed in Raffel et al. (2020) to
the multimodal model as shown in Figure 2. The model is fed with visual tokens embedded from
historical image observations (H = 2), and text tokens from action history, user instruction, and
raw HTML. Encoder transformer handles both visual and text tokens in a unified manner and then,
decoder predicts text-format actions. Similar to Gur et al. (2022), we focus on encoder-decoder
architectures to solve HTML-based web navigation tasks, because their bi-directional nature could
leverage the tree structure of HTML and they scale better than other models. See Appendix A for
further details.

Image Encoder for Visual Tokens We adopt vision transformer (ViT) (Dosovitskiy et al., 2020),
pre-trained on the image classification task with ImageNet-21K (Deng et al., 2009), as an encoder
to embed images into the visual tokens. To better extract spatial and semantic information from the
screenshots of websites, we use the tokens per patch rather than the token per image (i.e. CLS-token).
We divide an input image into 16 × 16 patches – giving a total of 14 × 14 (number of patches) ×
2 (context window) = 392 visual tokens. We crop the screenshots of MiniWoB++ to remove the
yellow instruction part (as shown in Figure 1), and the image size becomes 160 × 160. We pad
cropped images with white pixels to fit them into 224 × 224; the input size for ViT.

4.2 INSTRUCTION-FINETUNED LARGE LANGUAGE MODELS

Since pre-trained LLM has strong reasoning abilities and inductive bias that should be applicable
to any kind of NLP task (Raffel et al., 2020; Brown et al., 2020; Chowdhery et al., 2022; Wei et al.,
2022b) and even to understanding HTML (Gur et al., 2022), we finetune pre-trained LLMs with
a massive behavioral dataset on web navigation. Furthermore, we leverage Flan-T5 (Chung et al.,
2022), an instruction-finetuned LLM, finetuned with large-scale instructions and few/zero-shot chain-
of-thought examples, to enhance the alignment with the user’s intention for task accomplishment,
rather than unsupervised text-to-text pre-trained LLM (Raffel et al., 2020) used in relevant work (Gur
et al., 2022). Note that the training dataset for Flan-T5 contains programming language corpus and
code completion tasks (in Muffin), while one for original T5 does not.

Since instruction-finetuned LLM presents drastic improvements on many common NLP tasks (Ouyang
et al., 2022; Chung et al., 2022; Iyer et al., 2022), we could expect the performance improvements
even in interactive decision making problems. We mainly adopt the XL-size model, which shows
enough and great capability for reasoning with about 3 billion parameters.

4.3 MASSIVE DATASET COLLECTION WITH FINETUNED LLM

Recent successes of foundation models are largely powered by internet-scale data (Brown et al., 2020;
Radford et al., 2021; Chen et al., 2022; Wang et al., 2023). While large amount of data is critical,
for web navigation domain, there is only a small public dataset for MiniWoB++, consisting of 12K
episodes of human demonstration (Liu et al., 2018). Moreover, the dataset only consists of DOM
observations and lacks any visual features, which might limit the spatial perception of the elements
on the page. A large-scale multimodal dataset, including screenshots of websites, is required to build
a better navigation policy at scale.

To collect a huge amount of multimodal behavioral dataset on MiniWoB++, we leverage a public
finetuned-LLM policy (Gur et al., 2022) trained with multi-task human demonstration dataset (Liu
et al., 2018) for data collection instead of hiring human demonstrators, which significantly reduces the
cost to construct a new dataset by leveraging the prior success of autonomous agents. We gradually
increase the dataset size; we first rollout a LLM policy with 100 episodes per task, and only keep the
successful trajectories, which results in a 2.8K-episode dataset. Then, we train other models with
this dataset and use them for data collection again. We run those models with 10,000 episodes per
task and discard failure cases. In addition, to collect expert demonstrations on a harder task that
finetuned-LLM struggles to solve, we write a scripted policy for book-flight task. Such efforts
result in a multi-task 347K-episode dataset with HTML and screenshots at each time step, generated
by proficient autonomous agents. See Appendix B for further details.
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Methods Modality Success Rate

WebGUM HTML 61.5%
WebGUM (white) HTML+Image 61.5%
WebGUM (random) HTML+Image 62.2%
WebGUM HTML+Image 66.1%

WebGUM (single, H = 2) HTML+Image 63.6%
WebGUM (multiple, H = 1) HTML+Image 64.8%
WebGUM (multiple, H = 2) HTML+Image 66.1%

Table 2: Average success rate with white/random image inputs, single/multiple visual tokens, and context length
(H = 1, 2). All models are initialized with Flan-T5-XL and ViT-B16, and trained with our 347K-episode dataset.
The results imply that WebGUM successfully leverages semantic and spatial information from image modality,
and multiple visual tokens from patches could extract much richer features than a single visual token per image.

5 RESULTS

We test our method on the MiniWoB++ benchmark (Shi et al., 2017; Liu et al., 2018) with 100
evaluation episodes per task, taking the average success rate over 56 tasks taken from Gur et al.
(2022). Due to the huge computational requirements, we run one seed to train each model throughout
the paper. Table 1 shows that our proposed WebGUM, especially multimodal model, significantly
outperforms the previous best SL model (Gur et al., 2022) over 17.7% and exceeds WGE (Liu et al.,
2018), an RL-finetuned baseline (average of single-task models), over 1.7%2. Despite the superior
performance of our SL model, we are still behind SL+RL-finetuned state-of-the-art (Humphreys et al.,
2022) due to the data coverage in the training dataset and lack of exploration during RL-finetuning.
However, compared to its SL-only model, our method achieves double the performance even with a 7
times smaller dataset, which may reduce the required episodes for RL-finetuning and can bridge the
gap between SL and RL as better behavioral priors. We believe improving SL models is a valuable
contribution as a scalable and deployable approach towards real-world web automation where online
interactions are costly.

In the following sections, we do extensive and precise ablations of our design choices for WebGUM
presented in Section 4: image modality (Section 5.1), instruction-finetuned LLM (Section 5.2)
and its application in the recent WebShop (Yao et al., 2022a) benchmark (Section 5.3). We also
investigate the effect of dataset and model size on task success (Section 5.4). Furthermore, we
examine the robustness and generalization of WebGUM with realistic input corruptions and unknown
compositions of the tasks (Section 5.5).
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Figure 3: Top-10 performance improvement by adding image modality to HTML on 56 tasks from
MiniWoB++. We subtract the success rates to compute absolute improvement: (Success Rate of
WebGUM(HTML+Image)) - (Success Rate of WebGUM(HTML)). Image modality seems to be
leveraged for multi-step reasoning tasks with page transitions or tasks that require global contexts (e.g.
tic-tac-toe or grid-coordinate) See Appendix D and G for the details.

2Videos are available at https://sites.google.com/view/mm-webnav/
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Pre-Trained Models Modality Success Rate

T5-XL (Gur et al., 2022) HTML 48.4%
T5-XL, ViT-B16 HTML+Image 55.6%

Flan-T5-XL HTML 61.5%
Flan-T5-XL, ViT-B16 HTML+Image 66.1%

Table 3: Average success rate with different pre-trained models. We refer Gur et al. (2022) for T5-XL result
and other models are trained with our 347K-episode dataset. In both modalities, instruction-finetuned LLM
checkpoints (Flan-T5) outperform unsupervised LLM checkpoints (T5) by a large margin (over 10%).

5.1 DOES IMAGE MODALITY HELP FOR TASK SUCCESS?

To examine if the models actually leverage image modality for a grounded understanding of websites,
we design two ablations: replacing image observations with completely white images, and with
randomly sampled MiniWoB++ screenshots taken in the initial states. In addition, we also investi-
gate whether our design choices for image observations (multiple tokens from patches, historical
observations with H = 2) are suitable ones or not.

Table 2 reveals that the performance of the model with white images, is comparable to the unimodal
HTML model. Because the model with randomly-taken images may accidentally contain the images
from the same task to solve, WebGUM (random) slightly surpasses WebGUM (white). These results
prove WebGUM successfully obtains grounded vision and HTML understanding for web navigation
by leveraging semantic and spatial information from image modality. Multiple visual tokens from
patches outperform a single visual token per image, which means they extract much richer task-
relevant features. Besides, we find that historical image observations (H = 2) contribute to the
improvement more than single-step observation (H = 1).

We also compare per-task performance gaps caused by adding image modality to instruction-
finetuned LLM. Figure 3 presents the top-10 absolute performance improvement, which sug-
gests WebGUM leverages visual inputs for multi-step reasoning tasks with page transitions (e.g.
choose-date-easy or -medium) or the tasks that require global context perception of the page
(e.g. tic-tac-toe or grid-coordinate). See Appendix D and G for further details.

Methods Training Models Score Success Rate

Rule – – 45.6 9.6%
IL SL BART, BERT 59.9 29.1%
IL+RL SL+RL BART, BERT 62.4 28.7%
Act In-context PaLM-540B 62.3 30.1%
ReAct In-context PaLM-540B 66.6 40.0%

WebGUM SL Flan-T5-XL 67.5 45.0%

Table 4: Average score and success rate on WebShop. WebGUM achieves 45.0% success, outperforming baseline
approaches including ReAct, a prompted PaLM-540B. We refer Yao et al. (2022b) for the baselines.

5.2 DO INSTRUCTION-FINETUNED LANGUAGE MODELS HELP FOR TASK SUCCESS?

Because web navigation problem is at the intersection of RL, NLP, and vision-and-language domains,
one natural question is whether we could leverage the progress in other domains for sequential
decision making. Following the success in many NLP tasks (Ouyang et al., 2022; Iyer et al., 2022),
we test instruction-finetuned LLM (Chung et al., 2022) as a pre-trained model for web navigation
policy, compared to unsupervised LLM (Raffel et al., 2020) used in prior work (Gur et al., 2022).

Table 3 first shows that image modality also improves the performance of T5-initialized multimodal
models (+7.2%) as the same as Flan-T5-initialized models. Despite such performance gain, Table 3
proves that instruction-finetuned LLM checkpoints, Flan-T5, improves the success rate compared to
unsupervised LLM checkpoints, original T5, by a large margin (+13.1% in HTML and +10.5% in
HTML+image model). To be best of our knowledge, these results are the first to demonstrate that
instruction-finetuned LLMs are beneficial even for interactive decision making as well as common
NLP tasks, and can transfer their notable performances to multimodal settings. These facts must be
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Figure 4: Average success rate of WebGUM with different dataset (left) and model sizes (right). X-axis is a
logarithmic scale. As for both HTML and multimodal models, we could observe the scaling effect: the larger the
dataset and model size are, the higher the success rates are. Surprisingly, our approach outperforms previous SL
state-of-the-art (48.4% by Gur et al. (2022)) more than 9.9% even with 2.8K-episode dataset (about 25% of the
previous dataset curated by Liu et al. (2018)). See Appendix C for further details.

preferable, because we could expect to leverage the innovations on NLP to tackle complex decision
making problems.

5.3 DO INSTRUCTION-FINETUNED LANGUAGE MODELS ALSO WORK ON WEBSHOP?

We extensively evaluate our WebGUM on WebShop (Yao et al., 2022a), an online-shopping website
simulator with a large amount of real-world product data. Because it requires complex multi-step
reasoning considering previous contexts for comparison, WebShop is suitable for investigating the
capability of instruction-finetuned LLM in decision making tasks in depth. WebShop provides a
user instruction that describes the features of item (e.g. I need a long clip-in hair extension which
is natural looking, and price lower than 20.00 dollars). The agents should search, compare and
choose a proper product that matches the given instruction. The performance score is evaluated by
the percentage of required attributes covered by the chosen product, and if the product meets all the
requirements, that episode is labeled a success. See Appendix F for further details.

Table 4 shows that WebGUM achieves 45.0% success, significantly outperforming not only simple
baselines, such as supervised imitation learning (IL) and IL plus RL-finetuing (by more than 15%), but
also recent prompt-based LLM agents, including ReAct (Yao et al., 2022b) (i.e. PaLM-540B (Chowd-
hery et al., 2022) with one-shot prompt and reasoning annotations), while our model only has 3
billion parameters. Due to the consistent reasoning and enhanced alignment with user’s intentions in
instruction-finetuned LLMs, WebGUM could compare the products with backtracking, and choose
proper options (see Appendix G).

5.4 SCALING EFFECT IN DATASET AND MODEL SIZE

Large-scale models often show their incredible capability by scaling tremendous data size and high-
capacity model size (Shoeybi et al., 2019; Brown et al., 2020; Kaplan et al., 2020; Rae et al., 2021;
Radford et al., 2021; Wei et al., 2022b; Chowdhery et al., 2022). We investigate whether similar
scaling effects might be observed in web navigation by increasing the number of episodes for training,
and the number of parameters for the transformer architectures.

To investigate the scalability to the dataset size, we prepare three dataset: minimal 2.8K demon-
strations, 347K demonstrations, and its 20%-size demonstrations (68K). Figure 4 (left) proves that
increasing dataset size leads to the improvement of the average success rate. Notably, WebGUM
with only 2.8K HTML episodes already achieves 58.3%, outperforming previous SL state-of-the-art
(48.4% by Gur et al. (2022)) more than 9.9%; that dataset size is about 25% of the previous dataset
released by Liu et al. (2018). This surprising data-efficiency might come from the sufficient inductive
bias and alignment with the user intentions in instruction-finetuned LLMs, and our approach could
fully leverage them for sequential web automation problems.

In addition to dataset size, Figure 4 (right) shows that the performance of WebGUM improves as the
number of parameters in T5 model increases from Base (220M) to XXL (11B). These results would
encourage the community to pay more attention to the enlargement of the dataset and model capacity
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click-link click-button click-link_click-button

<body ref="1"><div id="wrap" ref="2"><div 
id="area" ref="3"><div id="search-bar" 
ref="4"><input type="text" id="search-text" 
ref="5"></input><button id="search" 
ref="6">Search</button></div></div></div><div 
id="wrap" ref="2"><div id="area" 
ref="3"><button ref="4">No</button><span 
ref="5">id viverra et:</span><input type="text" 
ref="6"></input><input type="text" 
ref="7"></input><input type="text" 
ref="8"></input><button 
ref="9">previous</button><button 
ref="10">no</button></div></div></body>

<body ref="1"><div id="wrap" ref="2"><div 
id="area" ref="3"><button 
ref="4">No</button><span ref="5">id viverra 
et:</span><input type="text" 
ref="6"></input><input type="text" 
ref="7"></input><input type="text" 
ref="8"></input><button 
ref="9">previous</button><button 
ref="10">no</button></div></div><body 
ref="5"><div id="wrap" ref="6"><div id="area" 
ref="7"><div class="color" ref="1"></div><div 
class="color" ref="2"></div><div class="color" 
ref="3"></div><div class="color" 
ref="4"></div></div></div></body></body>

<body ref="1" left="0" right="800" top="0" 
bottom="210"><div id="wrap" ref="2" left="0" 
right="160" top="0" bottom="210"><div 
id="area" ref="3" left="0" right="160" top="50" 
bottom="199"><button ref="4" left="2" 
right="34" top="52" 
bottom="74">No</button><span ref="5" left="2" 
right="58" top="74" bottom="87">id viverra 
et:</span><input type="text" ref="6" left="2" 
right="139" top="87" 
bottom="109"></input><input type="text" 
ref="7" left="2" right="153" top="109" 
bottom="131"></input><input type="text" 
ref="8" left="2" right="69" top="131" 
bottom="153"></input><button ref="9" left="2" 
right="67" top="153" 
bottom="175">previous</button><button 
ref="10" left="2" right="32" top="175" 
bottom="197">no</button></div></div></body>

Add CoordinatesAdd extra HTML at the bottomAdd extra HTML at the top

Figure 5: (Left) Example of compositional evaluation on MiniWoB++. We combine two different tasks
(click-link and click-button) into a single-page sequential task (click-link click-button).
See Appendix E for the details of combinations. (Right) Example of input perturbation for MiniWoB++
evaluation. We prepare three different types of perturbations at test time: adding extra HTML at the top of the
original input HTML (left) or at the bottom of HTML (middle), and adding task-irrelevant attributes such as
coordinate information (right). We randomly sample extra HTML from the human-collected 12K dataset (Liu
et al., 2018). This example HTML is taken from click-button.

for decision making agents as implied in data-driven prior works (Lee et al., 2022b; Brohan et al.,
2022; Furuta et al., 2022a; Fan et al., 2022; Reed et al., 2022; Jiang et al., 2022). See Appendix C for
further details.

5.5 DOES WEBGUM GENERALIZE TO REALISTIC COMPOSITIONAL TASKS OR INPUT
PERTURBATIONS?

Generalization to the out-of-distribution inputs or unseen combination of known tasks are important
challenges for the web navigation agents to be deployed on the real-world Internet, but have often
been missed in previous works. To investigate the generalization capability of our proposed methods,
we test (1) generalization to the compositional tasks, and (2) robustness to the input perturbations.

For the compositional tasks, we pick up 4 click-“something” (link, button, checkboxes, dialog)
tasks and make 6 combinations of these by naively stitching with 2 or 3 tasks (e.g. Figure 5). These
tasks should be resolved in order. See Appendix E for further details. Table 5 shows that WebGUM
with HTML and image inputs outperforms prior finetuned-LLM by over 12.5%, which implies
WebGUM has obtained better primitive skills to control computers and could transfer them to resolve
unseen tasks.

To check the robustness against input corruptions, we test three different realistic perturbations;
adding extra HTML at the top or bottom of the original HTML, and adding attributes of coordinates
(left, right, top, bottom) in each element of HTML at test time. These perturbations often happen in
the real world due to the renewal or API changes, not to mention unknown websites, and rule-based
pre-processing may not fully cover them. Table 6 shows that while all the methods are affected by
the input corruptions to some extent, WebGUM, with both HTML and HTML plus image modalities,
achieves significantly better performances than Gur et al. (2022). Notably, our multimodal WebGUM
significantly outperforms prior finetuned-LLM (+ 33.9%) and unimodal HTML model (+11.7%)
when extra attributes of coordinate to HTML are added, which also supports the fact that WebGUM
leverages semantic information extracted from visual tokens.

Methods Modality Success Rate

WebN-T5 (Gur et al., 2022) HTML 51.0%

WebGUM HTML 61.7%
WebGUM HTML+Image 63.5%

Table 5: Average success rate on 6 compositional MiniWoB tasks. WebGUM generalizes combinational tasks
better than Gur et al. (2022), achieving better success rate by over 12.5% (HTML+Image) or 10.7% (HTML).

6 DISCUSSION AND LIMITATION

Throughout the paper, we present an effective and practical methodology to distill the multi-task,
multimodal behavioral data into instruction-finetuned LLMs via supervised finetuning. We leave
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Methods Modality Perturbation Success Rate

WebN-T5 HTML Top 24.7%
(Gur et al., 2022) Bottom 42.8%

Coordinates 6.4%

WebGUM HTML Top 34.8%
Bottom 46.4%
Coordinates 28.6%

WebGUM HTML+Image Top 37.7%
Bottom 49.1%
Coordinates 40.3%

Table 6: Average success rate of perturbation evaluation on MiniWoB++, 56 tasks. We test three different
perturbation evaluations; adding extra HTML at the top/bottom of the original HTML, and adding attributes of
coordinates (left, right, top, bottom) in each element of HTML at test time. The results show that while all the
methods are affected by input corruptions to some extent, our WebGUM, especially multimodal model, achieves
significantly better performances than previous finetuned-LLM.

finetuning large-scale multimodal transformers with RL (Liu et al., 2018; Jaques et al., 2019; Ziegler
et al., 2019; Stiennon et al., 2020; Nakano et al., 2021; Ouyang et al., 2022; Humphreys et al.,
2022) in a scalable manner as future work, which is a powerful tool for output alignment with user
intentions or preferences. We collect and release a multimodal expert dataset with 347K episodes
on MiniWoB++. However, this is still far from internet-scale dataset that is necessary for generalist
models. Collecting behavioral data at scale by iterative data-collection and deployment (Ghosh et al.,
2021; Matsushima et al., 2021; Li et al., 2022a) might be a key for practical interactive agents.

Since our approach – taking raw HTML and screenshots as inputs and predicting executable actions
directly – has minimal assumptions that constraint model architectures, it might be applicable to a
wide range of computer tasks. More flexible action space, such as pixel-level clicking, scrolling page,
or dragging elements would lead to much better generalization. While we show that WebGUM could
deal with compositional and perturbed tasks in a robust way, human-level broader generalization to
the diverse real-world websites is still a hard problem to be resolved.

7 CONCLUSION

To ground vision-and-HTML understanding for web-based sequential decision making problems,
we develop Web navigation via Grounded Understanding Models (WebGUM) by finetuning an
instruction-finetuned foundation model with multimodal and proficient demonstrations in web nav-
igation. WebGUM significantly improves the success rate on MiniWoB, compared to previous
finetuned-LLM baseline from 48.4% to 66.1%, deals with out-of-distribution HTML and unseen
compositional tasks much better, and achieves better performance than PaLM-540B in WebShop. Our
detailed ablations reveal that (1) multiple visual tokens extract spatial and semantic information to aid
the multi-step reasoning and global context perception, and (2) instruction-finetuned language models
remarkably boost web navigation performance due to the better alignment with user instructions and
the transferability to multimodal settings. Furthermore, we publicly release 347K multimodal expert
demonstrations on MiniWoB++, which is about 29 times larger than the existing dataset. We hope
our work would inspire the community to build more capable and general decision making models
for autonomous web navigation.
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APPENDIX

A IMPLEMENTATION DETAILS

We adopt the encoder-decoder models proposed by Raffel et al. (2020) as multimodal transformers,
and vision transformer (Dosovitskiy et al., 2020) pre-trained with ImageNet-21K (Deng et al., 2009)
as an image encoder for the visual tokens3. We especially use ViT-B16, a small-size transformer
with 86 million parameters, which divides an input image into 16× 16-size patches. We use publicly
available checkpoints of T5 (Raffel et al., 2020)4, Flan-T5 (Chung et al., 2022)5, and T5-XL finetuned
with MiniWoB++ demonstrations (Gur et al., 2022)6 for the experiments. As suggested in Gur
et al. (2022), we focus on encoder-decoder architectures to solve HTML-based web navigation tasks.
Applying our method to other architectures, such as auto-regressive decoder-only models (Radford
et al., 2019; Brown et al., 2020; Chowdhery et al., 2022) remains as future work. To construct the
training pipeline, we leverage SeqIO (Roberts et al., 2022) library, and use SentencePiece (Kudo
& Richardson, 2018) vocabulary with 32K tokens from C4 dataset (Raffel et al., 2020) for text
tokenization. The batch size for training is 128 (256 for XXL-size model), and input sequence length
is set to 512.

A.1 SHORTEN HTML INPUT WHILE PRESERVING STRUCTURAL BIAS

As a markup language, HTML strongly holds the structural information, but it often contains
task-irrelevant, seemingly redundant parts as inputs for language models, which may affect the
performance. If we effectively shorten HTML while still keeping the structural properties of markup
programming language to some extent, that would be beneficial to solve the task. Motivated by this
intuition, we remove closing tags (e.g. </body>) from the inputs of language models (Figure 6) at
inference time.

We find this technique slightly improves the success rate on MiniWoB++; we test WebGUM and
finetuned-LLM baseline, and use T5-XL checkpoint released by Gur et al. (2022) for comparison.
Table 7 reveals that WebGUM consistently improves the performance in both HTML (+4.1%) and
HTML+image modalities (+1.3%), while T5-XL, trained with human-collected 12K dataset (Liu
et al., 2018), decreases performance (-4.6%). The results suggest that our WebGUM is robust to the
changes in input format and can benefit from removing redundant parts of HTML. This might also
be because Flan-T5 is finetuned with code completion tasks during an instruction-finetuning phase,
while T5 training corpus does not include programming code.

3https://github.com/google-research/scenic
4https://github.com/google-research/t5x/blob/main/docs/models.md#

t5-11-checkpoints
5https://github.com/google-research/t5x/blob/main/docs/models.md#

flan-t5-checkpoints
6https://console.cloud.google.com/storage/browser/gresearch/webllm/

webn_t5_3b

19

https://github.com/google-research/scenic
https://github.com/google-research/t5x/blob/main/docs/models.md#t5-11-checkpoints
https://github.com/google-research/t5x/blob/main/docs/models.md#t5-11-checkpoints
https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints
https://github.com/google-research/t5x/blob/main/docs/models.md#flan-t5-checkpoints
https://console.cloud.google.com/storage/browser/gresearch/webllm/webn_t5_3b
https://console.cloud.google.com/storage/browser/gresearch/webllm/webn_t5_3b


Published at Reincarnating Reinforcement Learning Workshop at ICLR 2023

<body ref="1"><div id="wrap" 
ref="2"><div id="area" ref="3"><div 
id="form" ref="4"><input type="text" 
id="tt" ref="5"></input><button 
id="subbtn" class="secondary-action" 
ref="6">Submit</button></div></div></
div></body>

<body ref="1"><div id="wrap" 
ref="2"><div id="area" ref="3"><div 
id="form" ref="4"><input type="text" 
id="tt" ref="5"><button id="subbtn" 
class="secondary-action" 
ref="6">Submit

Remove
closing tags

Figure 6: Example of shortening input HTML by removing closing tags (e.g. </div>). Red part seems to be
redundant to solve the tasks. HTML is taken from enter-text.

Methods Modality Dataset Success Rate

WebN-T5 (Gur et al., 2022) HTML 12K 48.4%
WebN-T5 (w/o tags) HTML 12K 43.8%

WebGUM (w/ tags) HTML 347K 57.4%
WebGUM (w/o tags) HTML 347K 61.5%
WebGUM (w/ tags) HTML+Image 347K 64.8%
WebGUM (w/o tags) HTML+Image 347K 66.1%

Table 7: Average success rate with removing closing tags from HTML. The models are initialized with T5-XL or
Flan-T5-XL (+ViT-B16) and trained with our 347K-episode dataset. While T5-XL, trained with human-collected
12K dataset (Liu et al., 2018), decreases performance, WebGUM consistently improves the performance in both
HTML and HTML+image inputs. We also observed removing closing tags in HTML from the training dataset
has a similar performance gain, but is slightly lower than only removing them at test time.

B DATASET DETAILS

To construct a large-scale multimodal behavioral dataset on MiniWoB++, we leverage a public
finetuned-LLM policy (Gur et al., 2022) trained with multi-task human demonstration dataset (Liu
et al., 2018)7 as a demonstrator. We run LLM policies with 10,000 episodes per task and discard
failure episodes. We also use a scripted policy for book-flight task, a harder task that finetuned-
LLM policy cannot solve. Table 10 shows the details of our multimodal dataset, consisting of HTML,
screenshots, actions, and instructions at each time step.

C DETAILS ON DATASET AND MODEL SIZE

We here test the different dataset and model sizes to reveal whether similar trends to NLP holds
or not. As for both HTML and multimodal models, we could observe the scaling effects in web
navigation: the larger the dataset (Table 8) and model (Table 9) size are, the higher the success rates
are. Surprisingly, our approach with only 2.8K HTML episodes (about 25% of the previous dataset
size curated by Liu et al. (2018)) already achieves 58.3%, outperforming previous SL state-of-the-art
(48.4% by Gur et al. (2022)) more than 9.9%. Besides, instruction-finetuned models help Base-
size to perform on par (46.7%) or outperform (57.9%) previous XL-size state-of-the-art (48.4%).
This surprising efficiency might come from the sufficient inductive bias and alignment with the
user intentions in instruction-finetuned LLMs, and our approach could fully leverage them for web
automation problems. The margin of improvement might be smaller than expected due to the limited
coverage of data collected by finetuned-LLM policies.

Table 8 also implies the quality of behaviors might be important, because WebGUM, initialized with
Flan-T5-XL and trained with human-collected 12K dataset, is not so good as one trained with our
2.8K one. Since NLP tasks often only use correctly-annotated datasets for training, the dataset that
contains hesitant or redundant behaviors might slightly hurt the performance of LLM-driven policies.

7https://github.com/stanfordnlp/miniwob-plusplus-demos
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Pre-Trained Models Modality Dataset Success Rate

T5-XL (Gur et al., 2022) HTML 12K 48.4%
Flan-T5-XL HTML 12K 48.6%

Flan-T5-XL HTML 2.8K 58.3%
Flan-T5-XL HTML 68K 59.6%
Flan-T5-XL HTML 347K 61.5%

Flan-T5-XL, ViT-B16 HTML+Image 2.8K 61.7%
Flan-T5-XL, ViT-B16 HTML+Image 68K 63.1%
Flan-T5-XL, ViT-B16 HTML+Image 347K 66.1%

Table 8: Average success rate of WebGUM with different dataset sizes. We observe the larger the dataset size is,
the higher the success rate is. Surprisingly, our approach outperforms previous state-of-the-art by over 9.9%
even with 2.8K-episode dataset (about 25% of the previous dataset curated by Liu et al. (2018)).

Pre-Trained Models # of Params Modality Success Rate

Flan-T5-Base 220M HTML 46.7%
Flan-T5-Large 770M HTML 58.3%
Flan-T5-XL 3B HTML 61.5%
Flan-T5-XXL 11B HTML 62.3%

Flan-T5-Base, ViT-B16 310M HTML+Image 57.9%
Flan-T5-Large, ViT-B16 860M HTML+Image 63.5%
Flan-T5-XL, ViT-B16 3B HTML+Image 66.1%

Table 9: Average success rate of WebGUM with different model sizes. As for both HTML-only and multimodal
models, we could observe the performance increases as the model size does.
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Task # of episodes # of steps Ratio (episode)

book-flight 9999 90177 2.88%
choose-date 383 1508 0.11%
choose-date-easy 3353 12946 0.97%
choose-date-medium 2222 8733 0.64%
choose-list 1861 3724 0.54%
click-button 9782 9909 2.82%
click-button-sequence 10000 20000 2.88%
click-checkboxes 9761 28904 2.81%
click-checkboxes-large 1962 19072 0.57%
click-checkboxes-soft 9228 36384 2.66%
click-checkboxes-transfer 10000 59793 2.88%
click-collapsible 5947 13077 1.71%
click-collapsible-2 2199 5627 0.63%
click-color 2554 2554 0.74%
click-dialog 10000 10000 2.88%
click-dialog-2 3285 3285 0.95%
click-link 9961 9961 2.87%
click-menu 3238 3243 0.93%
click-option 9998 20000 2.88%
click-pie 3724 8548 1.07%
click-scroll-list 0 0 0.00%
click-shades 0 0 0.00%
click-shape 6116 6117 1.76%
click-tab 9978 13177 2.88%
click-tab-2 1844 2109 0.53%
click-tab-2-hard 1574 1916 0.45%
click-test 10000 10000 2.88%
click-test-2 10000 10000 2.88%
click-widget 9963 9963 2.87%
count-shape 5849 5893 1.69%
email-inbox 5159 14258 1.49%
email-inbox-forward-nl 9995 39980 2.88%
email-inbox-forward-nl-turk 4900 20165 1.41%
email-inbox-nl-turk 4346 11416 1.25%
enter-date 10000 20000 2.88%
enter-password 9980 29940 2.88%
enter-text 10000 20000 2.88%
enter-text-dynamic 9983 19966 2.88%
enter-time 0 0 0.00%
focus-text 10000 10000 2.88%
focus-text-2 10000 10000 2.88%
grid-coordinate 8353 8353 2.41%
guess-number 1021 2042 0.29%
identify-shape 9007 9010 2.60%
login-user 9793 29379 2.82%
login-user-popup 9786 39170 2.82%
multi-layouts 10000 40000 2.88%
multi-orderings 10000 40000 2.88%
navigate-tree 9864 15140 2.84%
search-engine 8872 35095 2.56%
social-media 2631 4407 0.76&
social-media-all 95 208 0.03%
social-media-some 319 893 0.09&
tic-tac-toe 3947 13773 1.14%
use-autocomplete 3465 6930 1.00%
use-spinner 530 532 0.15%

Total 346827 867277 100%

Table 10: Details of our multimodal dataset. It contains about 347K episodes in total.
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D PER-TASK PERFORMANCE OF MINIWOB++

In this section, we present per-task success rate on MiniWoB++, 56 tasks (Table 12) and absolute
performance improvement by adding image modality to HTML input for WebGUM (Figure 7).

As for Table 12, we refer to Gur et al. (2022) and Humphreys et al. (2022) for the baseline performance.
We use 56 tasks as benchmark, while removing some duplicated tasks (e.g. “-nodelay” tasks) from
62 tasks adopted in Gur et al. (2022), which might cause slight difference between the performance
presented in this paper and one reported in prior works. During the evaluation on MiniWoB++, we
ignore the time limit due to the computational constraints.

Figure 7 presents full results of the absolute performance improvement, subtracting the
success rates: (Success Rate of WebGUM(HTML+Image)) - (Success Rate of
WebGUM(HTML)). The results suggest WebGUM leverages visual inputs for multi-step reason-
ing tasks with page transitions (e.g. choose-date-easy or -medium) or the tasks that require
global contexts of the page (e.g. tic-tac-toe or grid-coordinate). See Appendix G for
the visualization.
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Figure 7: Performance improvement by adding image modality to HTML on 56 tasks from MiniWoB++. We
subtract the success rates: (Success Rate of WebGUM(HTML+Image)) - (Success Rate of
WebGUM(HTML)).
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Task WebGUM (HTML) WebGUM (HTML+Image) WebN-T5 WGE CC-Net (SL) CC-Net (SL&RL)

book-flight 0.00 0.00 0.00 0.00 0.00 0.87
choose-date 0.00 0.09 0.00 0.00 0.12 0.97
choose-date-easy 0.08 0.64 0.03 – 0.42 0.99
choose-date-medium 0.04 0.34 0.00 – 0.26 0.99
choose-list 0.16 0.21 0.26 0.16 0.19 0.99
click-button 0.96 1.00 1.00 1.00 0.78 1.00
click-button-sequence 1.00 0.99 1.00 0.99 0.47 1.00
click-checkboxes 1.00 0.99 0.96 0.98 0.32 0.98
click-checkboxes-large 0.00 0.10 0.22 0.68 0.00 0.71
click-checkboxes-soft 1.00 0.98 0.54 0.51 0.04 0.95
click-checkboxes-transfer 1.00 0.99 0.63 0.64 0.36 0.99
click-collapsible 1.00 0.97 0.00 1.00 0.81 1.00
click-collapsible-2 0.44 0.46 0.00 0.65 0.17 0.98
click-color 0.29 0.37 0.27 1.00 0.82 1.00
click-dialog 1.00 1.00 1.00 1.00 0.95 1.00
click-dialog-2 0.32 0.33 0.24 1.00 0.88 1.00
click-link 0.98 1.00 1.00 1.00 0.59 0.99
click-menu 0.23 0.38 0.37 – 0.22 0.94
click-option 1.00 0.99 0.37 1.00 0.21 0.99
click-pie 0.53 0.87 0.51 0.32 0.15 0.97
click-scroll-list 0.00 0.00 0.00 – 0.01 0.60
click-shades 0.00 0.00 0.00 0.22 0.04 1.00
click-shape 0.60 0.64 0.53 0.64 0.11 0.95
click-tab 1.00 0.93 0.74 0.55 0.95 1.00
click-tab-2 0.20 0.24 0.18 0.64 0.27 0.98
click-tab-2-hard 0.21 0.20 0.12 – 0.19 0.98
click-test 1.00 1.00 1.00 1.00 1.00 1.00
click-test-2 1.00 1.00 1.00 1.00 0.95 1.00
click-widget 0.99 1.00 1.00 0.93 0.56 1.00
count-shape 0.64 0.69 0.41 0.59 0.21 0.85
email-inbox 0.63 0.57 0.38 0.43 0.09 1.00
email-inbox-forward-nl 1.00 1.00 0.60 – 0.00 1.00
email-inbox-forward-nl-turk 0.69 0.54 0.33 – 0.00 1.00
email-inbox-nl-turk 0.46 0.54 0.23 0.77 0.05 1.00
enter-date 1.00 1.00 0.00 0.00 0.02 1.00
enter-password 1.00 0.99 0.97 0.99 0.02 1.00
enter-text 1.00 0.99 0.89 1.00 0.35 1.00
enter-text-dynamic 1.00 0.99 0.98 1.00 0.39 1.00
enter-time 0.00 0.00 0.00 0.52 0.04 0.97
focus-text 1.00 1.00 1.00 1.00 0.99 1.00
focus-text-2 1.00 1.00 1.00 1.00 0.96 1.00
grid-coordinate 0.85 1.00 0.49 1.00 0.66 1.00
guess-number 0.10 0.12 0.00 0.00 0.21 1.00
identify-shape 0.94 1.00 0.88 0.90 0.68 1.00
login-user 0.98 0.98 0.82 0.99 0.00 1.00
login-user-popup 0.99 0.98 0.72 – 0.02 1.00
multi-layouts 1.00 0.99 0.83 0.99 0.00 1.00
multi-orderings 1.00 0.99 0.88 0.99 0.00 1.00
navigate-tree 0.98 1.00 0.91 0.99 0.32 0.99
search-engine 0.69 0.95 0.34 0.26 0.15 1.00
social-media 0.13 0.36 0.21 0.39 0.03 0.90
social-media-all 0.00 0.02 0.00 0.01 0.00 0.75
social-media-some 0.00 0.09 0.02 0.01 0.01 0.85
tic-tac-toe 0.25 0.48 0.48 0.37 0.32 0.83
use-autocomplete 0.99 0.96 0.22 0.78 0.07 1.00
use-spinner 0.08 0.05 0.07 0.04 0.47 1.00

Ave. 0.615 0.661 0.484 0.646 0.343 0.964
# of Tasks 56 56 56 48 56 56

Table 11: Per-task average success rate on 56 tasks from MiniWoB++. Because we omit some duplicated tasks
(e.g. “-nodelay” tasks) from 62 tasks adopted in Gur et al. (2022), we recalculate the baseline performances
referring Humphreys et al. (2022) and Gur et al. (2022).
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E COMPOSITIONAL EVALUATION ON MINIWOB++

For the compositional evaluation, we pick up 4 click-“something” (link, button, checkboxes,
dialog) tasks and make some combinations of those by naively stitching with 2 or 3 tasks. Then, we
prepare the following 6 combinational tasks,

• click-button click-checkboxes
• click-button click-dialog
• click-button click-link
• click-link click-button
• click-link click-button click-dialog
• click-link click-dialog

These tasks should be resolved in order of the name: for instance, in
click-link click-button click-dialog task, the agent should click the proper
link, click the proper button, click the proper dialog, and then the task results in successc. In
click-button click-link task, the agent should click the proper button, and then click the
proper link. The instructions for compositional tasks are also simply combined among original task
instructions in order of the name. This evaluation could test the ability to transfer primitive skills to
control computers to solve unseen tasks.

Table 12 shows the per-task average success rate among 6 combinations above. Interestingly, our
multimodal WebGUM achieves significantly better performance (44.0%) on the combination of 3
tasks, i.e. click-link click-button click-dialog, compared to WebN-T5 (8.0%) and
WebGUM with HTML inputs (4.0%).

Compositional Task WebN-T5 (Gur et al., 2022) WebGUM (HTML) WebGUM (HTML+Image)

click-button click-checkboxes 0.26 0.46 0.89
click-button click-dialog 0.95 0.85 0.41
click-button click-link 0.87 0.64 0.31
click-link click-button 0.35 0.91 0.96
click-link click-button click-dialog 0.08 0.04 0.44
click-link click-dialog 0.55 0.80 0.80

Ave. 0.510 0.617 0.635

Table 12: Per-task average success rate on 6 tasks from compositional MiniWoB++.
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F EVALUATION ON WEBSHOP

In addition to MiniWoB++, we extensively evaluate our WebGUM on WebShop (Yao et al., 2022a)
benchmark, an online-shopping websites simulator with a large amount of real-world product data.
WebShop provides user instruction that describes the feature of items (e.g. I need a long clip-in hair
extension which is natural looking, and price lower than 20.00 dollars). The agents should search,
compare and choose a proper product that matches the given instruction. Since this requires complex
multi-step reasoning considering previous contexts for comparison, we can test the capability of
instruction-finetuned LLM in decision making tasks in depth. The performance score is evaluated
by the percentage of required attributes covered by the chosen product (from 0 to 100), and if the
product meets all the requirements, that episode is labeled a success.

Because WebShop does not have API to get the screenshot of rendered websites, we focus on
WebGUM with text inputs, parsed from noisy HTML in the real world.8 We convert the actions from
raw texts (e.g. search[a long clip-in hair extension] or click[<item id>])
to dictionary-like format (e.g. {"action": "search", "ref": "a long clip-in
hair extension"} or {"action": "click", "ref": "<item id>"}), as we use
in MiniWoB++, to improve the prediction accuracy. We finetune Flan-T5-XL with about 1K human
demonstrations curated by Yao et al. (2022a)9, using only high-score demonstrations. The score
threshold is score ≥ 50 and we have 840 episodes in total (Table 14). We construct the model
input with action history, instruction, and text observation, the same as MiniWoB++ experiments. We
evaluate our method with 500 user instructions in the test set.

Table 13 shows that WebGUM achieves 45.0% success, significantly outperforming not only simple
baselines, such as supervised imitation learning (IL) and IL plus RL-finetuing (by more than 15%), but
also recent prompt-based LLM agents, including ReAct (Yao et al., 2022b) (i.e. PaLM-540B (Chowd-
hery et al., 2022) with one-shot prompt and reasoning annotations), while our model only has 3
billion parameters. IL and IL plus RL-finetuning baselines use BART (Lewis et al., 2019) model for
the search policy, and BERT (Devlin et al., 2019) model for the click policy. The better performance
of WebGUM strengthens the observations that instruction-finetuned language models are beneficial
even for decision making problems as well as common NLP tasks.

Methods Training Model Modality Score Success Rate

Rule – – Text 45.6 9.6%
IL SL BART, BERT Text+Image 59.9 29.1%
IL+RL SL+RL BART, BERT Text+Image 62.4 28.7%
Act In-context PaLM-540B Text 62.3 30.1%
ReAct In-context PaLM-540B Text 66.6 40.0%
WebN-T5 SL T5-XL Text 61.0 29.8%

WebGUM SL Flan-T5-XL Text 67.5 45.0%

Human – – Text+Image 82.1 59.6%

Table 13: Average score and success rate on WebShop (Yao et al., 2022a) benchmark. WebGUM based on
Flan-T5-XL achieves 45.0% success, outperforming most baseline approaches including ReAct, a prompted
PaLM-540B with reasoning annotations. We refer Yao et al. (2022b) for the baselines.

Threshold # of Episodes Score Success Rate

score ≥ 0 1026 67.2 44.4%
score ≥ 50 840 67.5 45.0%
score = 100 497 65.3 44.4%

Table 14: Average score and success rate on WebShop with different score thresholds. Because we should
balance the dataset size and proficiency, we choose 50 as a threshold.

8WebShop just provides visual features of item pictures when the agents reach the product page. These
features are extracted by ResNet-50 (He et al., 2016), rather than raw images or screenshots of the website.
Some baseline agents (IL and IL+RL) incorporate such embeddings.

9https://github.com/princeton-nlp/WebShop/tree/master/baseline_models/
data
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G EXAMPLE EPISODES OF WEBGUM

click-pie tic-tac-toe

click-date-easy grid-coordinate

click-checkboxes-large

search-engine

Figure 8: Example of successful episodes demonstrated by multimodal WebGUM on MiniWoB++ (Shi et al.,
2017; Liu et al., 2018). The time step goes from left to right. We pick up the tasks which performance is
improved by adding image modality. As discussed in Section 5.1, image modality seems to be leveraged for multi-
step reasoning tasks with some page transitions (e.g. click-date-easy, click-checkboxes-large,
search-engine) or tasks that require global visual contexts (e.g. click-pie, tic-tac-toe,
grid-coordinate).
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Instruction: i am looking for dark denim color ethylene Instruction: i would like a xlarge plus red camellia fleece
vinyl ultra train of size 10, 3rd generation for men, jacket that can be machine washed, and price lower
and price lower than 160.00 dollars than 130.00 dollars

Action: search
[
dark denim color ethylene vinyl ultra Action: search

[
xlarge plus red camellia fleece jacket that

train of size 10, 3rd generation for men
]

can be machine washed
]

Observation: Observation:[
back to search

]
page 1 (total results: 50)

[
next

] [
back to search

]
page 1 (total results: 50)

[
next

]
[
b08b1mcfkl

] [
b09h2qsj5p

]
salewa ultra train 3 - men’s men’s thermal underwear pants usb heated warm cotton
$104.0 to $182.99 with zone 3 heating long trousers leggings bottoms[
b07j5mc2x1

]
$56.77

skechers men’s low-top trainers, us men
[
b09hcddf1x

]
$53.39 to $140.35 men’s thermal underwear pants usb heated warm cotton[
b07x5hr3tz

]
long trousers leggings bottoms for winter washable baselayer

bruno marc men’s linen canvas stretch loafer shoes $56.77 to $56.99
$39.99

[
b09jgmr43j

]
premium soft and smooth faux fur loose plush vest jackets

Action: click
[
b08b1mcfkl

]
fashion sexy fuzzy sleeveless outwear

Observation: $9.47 to $12.47[
back to search

] [
prev

]
size

[
7
][

7.5
][

8
][

8.5
][

9
][

9.5
][

10
][

10.5
][

11
][

11.5
]

Action: click
[
next

][
12
][

12.5
][

13
]

Observation:
color

[
ombre blue | red orange

][
raw green | black out

] [
back to search

]
page 2 (total results: 50)

[
prev

] [
next

][
dark denim | red orange

]
salewa ultra train 3 - men’s

[
b07cqt8rbl

]
price: $104.0 to $182.99 king and queen write hoodie couple matching sweater
rating: n.a. pullover hooded sweatshirt jacket[
description

] [
features

] [
reviews

] [
buy now

]
$26.99 to $29.99[
b09jmvfpzg

]
Action: click

[
dark denim | red orange

]
mens sherpa quilted lined flannel jacket plus size plaid

Observation: you have clicked dark denim | red orange. button down fleece shirts coats thicken warm
cotton outwear

Action: click
[
10
]

$36.79 to $55.99
Observation: you have clicked 10.

[
b09kxfgbn2

]
mankalvxy womens jacket cardigan flannel cowl neck

Action: click
[
buy now

]
asymmetric loose outerwear plus size xs-xxl 0-22

Termination: Your score (min 0.0, max 1.0): 1.0 $20.3 to $26.85

Action: click
[
b07cqt8rbl

]
Observation:[
back to search

] [
prev

]
size

[
king-small

][
queen-small

][
king-medium

][
queen-medium

][
king-large

][
queen-large

][
king-xxl

][
king-xlarge

][
queen-xlarge

][
queen-xxlarge

]
king and queen write hoodie couple matching sweater
pullover hooded sweatshirt jacket
price: $26.99 to $29.99
rating: n.a.[
description

] [
features

] [
reviews

] [
buy now

]
Action: click

[
prev

]
Observation:[
back to search

]
page 2 (total results: 50)

[
prev

] [
next

]
[
b07cqt8rbl

]
king and ...[
b09jmvfpzg

]
mens sherpa ...[
b09kxfgbn2

]
mankalvxy womens...

Action: click
[
b09jmvfpzg

]
Observation:[
back to search

] [
prev

]
color

[
army green

][
black

][
coffee

][
gray

][
green

][
red

][
a-army green

][
a-red

]
size

[
small

][
medium

][
large

][
x-large

][
xx-large

][
3x-large

]
mens sherpa quilted lined flannel jacket plus size plaid button
down fleece shirts coats thicken warm cotton outwear
price: $36.79 to $55.99
rating: n.a.[
description

] [
features

] [
reviews

] [
buy now

]
Action: click

[
red

]
Observation: you have clicked red.

Action: click
[
x-large

]
Observation: you have clicked x-large.

Action: click
[
buy now

]
Termination: Your score (min 0.0, max 1.0): 1.0

Table 15: Example of successful episodes demonstrated by WebGUM on WebShop (Yao et al., 2022a). WebGUM
could search and choose the required product and choose proper options (left). In addition, WebGUM could
also compare the products with browsing and backtracking (i.e. clicking “next” or “prev” buttons) during the
episodes (right).
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