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Abstract

We study the problem of robustly estimating the edge density of Erdős-
Rényi random graphs 𝔾(𝑛, 𝑑◦/𝑛) when an adversary can arbitrarily add
or remove edges incident to an 𝜂-fraction of the nodes. We develop the
first polynomial-time algorithm for this problem that estimates 𝑑◦ up to an
additive error 𝑂

(
[
√

log(𝑛)/𝑛 + 𝜂
√

log(1/𝜂)] ·
√
𝑑◦ + 𝜂 log(1/𝜂)

)
. Our error

guarantee matches information-theoretic lower bounds up to factors of
log(1/𝜂). Moreover, our estimator works for all 𝑑◦ ⩾ Ω(1) and achieves
optimal breakdown point 𝜂 = 1/2.
Previous algorithms [AJK+22, CDHS24], including inefficient ones, incur
significantly suboptimal errors. Furthermore, even admitting suboptimal
error guarantees, only inefficient algorithms achieve optimal breakdown
point. Our algorithm is based on the sum-of-squares (SoS) hierarchy. A key
ingredient is to construct constant-degree SoS certificates for concentration of
the number of edges incident to small sets in 𝔾(𝑛, 𝑑◦/𝑛). Crucially, we show
that these certificates also exist in the sparse regime, when 𝑑◦ = 𝑜(log 𝑛), a
regime in which the performance of previous algorithms was significantly
suboptimal.

1 Introduction

We study the problem of estimating the expected average degree of Erdős-Rényi random
graphs under node corruptions. The Erdős-Rényi random graph model [Gil59, ER59] is a
fundamental statistical model for graphs that has been extensively studied for decades. This
model has two parameters: the number of nodes (𝑛) and the degree parameter (𝑑◦) and
is denoted by 𝔾(𝑛, 𝑑◦/𝑛). It is a distribution over graphs with 𝑛 nodes where each edge is
sampled independently with probability 𝑑◦/𝑛. Note that every node in 𝔾(𝑛, 𝑑◦/𝑛) has the
same expected degree (1 − 1/𝑛) 𝑑◦. The most fundamental statistical task in Erdős-Rényi
random graphs is the following: given a graph sampled from 𝔾(𝑛, 𝑑◦/𝑛), find an estimate
𝑑̂ for the ground truth parameter 𝑑◦. It is well known that the empirical average degree
achieves the information-theoretically optimal error rate |𝑑̂ − 𝑑◦| ⩽ Θ

(√
log(𝑛)/𝑛 ·

√
𝑑◦

)
.1

1Throughout this paper, the statistical utility guarantees we state hold with probability 1−1/poly(𝑛)
over the randomness of both the input graph and the algorithm, if not otherwise specified.
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Although many phenomena in network analysis are captured by Erdős-Rényi random
graphs, the distributions of real-world networks can deviate significantly from such a basic
model. This may tremendously impact the performance of algorithms that are tailored too
much towards the Erdős-Rényi model. In particular, this already occurs for the very basic
task of estimating the expected average degree, which is also the task we focus on in this
work. Simple estimators such as the mean or the median of all degrees, or variations thereof,
are known to fail drastically even when perturbing edges incident to few of the nodes
[AJK+22]. This motivates the study of robust estimation algorithms for random graphs.
Following [AJK+22, CDHS24] we study robust estimation for Erdős-Rényi random graphs
under node corruptions, defined as follows.
Definition 1.1 (𝜂-corrupted Erdős-Rényi random graphs). For 𝜂 ∈ [0, 1], an 𝜂-corrupted
Erdős-Rényi random graph is generated by first sampling a graph from 𝔾(𝑛, 𝑑◦/𝑛), and then
adversarially picking an 𝜂-fraction of the nodes and arbitrarily adding and removing edges
incident to them.

Given the corruption rate 𝜂 and observation of an 𝜂-corrupted Erdős-Rényi random graph,
the goal is to estimate the edge parameter 𝑑◦.
Previous work. While this is a seemingly simple one-dimensional robust estimation problem,
in the work that initiated this line of research, [AJK+22] showed that many standard robust
estimators, such as the median estimator, and their natural variants, such as the truncated
median estimator, provably incur very suboptimal errors. On a high level, this occurs
because the degrees of the uncorrupted graphs are not independent and further, because
the adversary can change all of them by just corrupting a single node. On the other hand, if
we do not consider any structural properties of the node corruptions and treat the problem
as that of robustly estimating the parameter of a Bernoulli distribution, this can at best get
error 𝜂𝑛2. In [AJK+22], they gave a polynomial-time algorithm that achieves an error rate of
𝑂

(
[
√

log(𝑛)/𝑛+𝜂
√

log(1/𝜂)]·
√
𝑑◦+𝜂 log 𝑛

)
when 𝜂 < 1/60.3 Note that the term

√
log 𝑛/𝑛

√
𝑑◦

is information-theoretically necessary even in the non-robust case. Additionally, [AJK+22]
gave a companion lower bound, showing that information-theoretically no algorithm can
achieve an error rate better than Ω

(
max{𝜂

√
𝑑◦ , 𝜂}

)
.

Sparse regime. It might seem that the error rate of [AJK+22] is only worse than the optimal by
logarithmic factors. However, because of this, it fails to provide any non-trivial statistical
guarantees in the sparse regime. For example, when 𝑑◦ ≪ log 𝑛 and 𝜂 = Ω(1), their error
bound is 𝑂(𝜂 log 𝑛) which is much larger than the ground truth parameter 𝑑◦.
Notice that, for statistical estimation problems on random graphs, it is often the case
that sparse graphs are more difficult than dense graphs, such as community detection in
stochastic block models [FO05, GV16, LM22, DdHS23]. When 𝑑◦ = 𝑜(log 𝑛), Erdős-Rényi
random graphs behave fundamentally different than when 𝑑◦ ⩾ Ω(log 𝑛), and usually new
algorithmic and proof ideas are required. When 𝑑◦ ⩾ Ω(log 𝑛), the graph is rather regular
in the sense that every vertex has degree (1 ± 𝜀)𝑑 for a small constant 𝜀, and the spectrum of
the adjacency matrix concentrates nicely around its expectation: ∥𝐴 −𝔼𝐴∥ = 𝑂(

√
𝑑◦ ). (See

e.g. [FO05].) However, when 𝑑 = 𝑜(log 𝑛), significant number of vertices have degree 𝜔(𝑑).
In particular, when 𝑑 is a constant, there are vertices of degree Ω(log 𝑛/log log 𝑛) [KS03]. As
a result, the spectral norm of the centered adjacency matrix is Ω(log 𝑛/log log 𝑛).
The first step towards robust edge density estimation for sparse random graphs was made in
[CDHS24]. They proposed a polynomial-time algorithm that estimates 𝑑◦ up to an additive
error of 𝑑◦/10 when 𝜂 is at most some sufficiently small constant that is much smaller
than 1/2. However, their statistical guarantees are suboptimal when 𝑑◦ grows with 𝑛, e.g.
𝑑◦ = log log 𝑛, since the estimator does not achieve 1±𝑜(1) approximation ratio for estimating
𝑑◦.

2Even in the easier corruption model in which each sample is drawn from Ber( 𝑑𝑛 ) with probability
1 − 𝜂 and some error distribution with probability 𝜂, it is not possible to get error better than 𝜂𝑛 (note
that the adversary can simulate this model up to constant shifts in 𝜂).

3Previous works [AJK+22, CDHS24] use a different parametrization 𝔾(𝑛, 𝑝◦) and consider the task
of estimating the edge density parameter 𝑝◦. Since 𝑝◦ and 𝑑◦ differ by a known factor of 𝑛, these two
parameterizations are equivalent.

2



Optimal breakdown point. Besides optimal error rates, another desirable feature of robust
estimation algorithms is a high breakdown point. In the node corruption model, the
breakdown point of an estimator is defined to be the minimum fraction of nodes to corrupt
such that the estimator cannot give any non-trivial guarantees. For the robust edge density
estimation problem, it is easy to see that any estimator has breakdown point at most 1/2,
as an adversary can make 𝔾(𝑛, 0) and 𝔾(𝑛, 1) indistinguishable if it is allowed to corrupt
half the nodes. In [AJK+22], they provide an exponential-time algorithm achieving the
optimal breakdown point 1/2 with error rate 𝑂(

√
𝑑◦ +

√
log 𝑛).4 Note that this error rate is

quite suboptimal, as it does not recover the non-robust case when there are no corruptions,
and does not provide any non-trivial guarantee in the sparse regime. On the other hand,
previous polynomial-time algorithms [AJK+22, CDHS24] can provably work only when the
corruption rate is at most some sufficiently small constant bounded away from 1/2.
To summarize, current algorithms, including inefficient ones are far from the information-
theoretic lower bound. This holds, even when allowing suboptimal breakdown points.
Furthermore, all known efficient algorithms are both far from known lower bounds and
have suboptimal breakdown points. This leads us to the following question:

Can polynomial-time algorithms achieve error rates matching the
information-theoretic lower bound? If so, can polynomial-time algorithms
simultaneously achieve optimal breakdown point 1/2?

We answer both questions affirmatively in this paper, up to factors of log(1/𝜂) in the error
rate.

1.1 Results

We give the first polynomial-time algorithm for node-robust edge density estimation in
Erdős-Rényi random graphs that achieves near-optimal error rate and reaches the optimal
breakdown point 1/2.
Theorem 1.2 (Informal restatement of Theorem C.1). For any 0 ⩽ 𝜂 < 1/2 and 𝑑◦ ⩾ 1,
there exists a polynomial-time algorithm which, given 𝜂 and a graph that is an 𝜂-corruption of an
Erdős-Rényi random graph sampled from 𝔾(𝑛, 𝑑◦/𝑛), outputs an estimator 𝑑̂ satisfying��𝑑̂ − 𝑑◦

�� ≲ (√
log(𝑛)

𝑛
+ 𝜂

√
log

(
1/𝜂

))
·
√
𝑑◦ + 𝜂 log

(
1/𝜂

)
,

with probability at least 1 − 1/poly(𝑛).

We make a few comments on the statistical guarantee of our algorithm. Our error rate is
optimal up to the log(1/𝜂) factor, as any algorithm must incur an error of Ω(max{𝜂

√
𝑑◦ , 𝜂})

[AJK+22]. In comparison, the error rate achieved by [AJK+22] is 𝑂
(
[
√

log(𝑛)/𝑛+𝜂
√

log(1/𝜂)]·√
𝑑◦ + 𝜂 log 𝑛

)
, which is worse than ours in every parameter regime. The error rate achieved

by [CDHS24] is 𝑂(𝑑◦), which is worse when 𝜂 is small; in particular, it does not recover the
non-robust case when 𝜂 = 0.
The condition on 𝑑◦ can be relaxed to 𝑑◦ ⩾ 𝑐 for arbitrary positive constant 𝑐. We remark
that the condition 𝑑◦ ⩾ Ω(1) is information-theoretically necessary if we want non-trivial
guarantees for constant 𝜂, as when 𝑑◦ = 𝑜(1)most nodes will be isolated with high probability
and the adversary can erase all edges, removing all information about 𝑑◦.
We leave it as an open question whether the factor of log(1/𝜂) is inherently necessary, at
least for polynomial-time algorithms. We remark that the lower bound in [AJK+22] is for
oblivious adversaries, that are not allowed to see the uncorrupted graph before choosing
their corruptions. Whereas we consider adaptive adversaries, that have full knowledge of the
underlying graph. For other robust statistical inference problems, there are known separations
between these models. In particular, for robustly estimating the mean of a high-dimensional

4This result does not state the dependence on 𝜂 when 𝜂 is small.
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Gaussian, there are polynomial-time algorithms that achieve error 𝑂(𝜂) against oblivious
adversaries [DKK+18].5 But against adaptive adversaries, there are statistical query lower
bound suggesting that obtaining error better than Ω(𝜂

√
log(1/𝜂)) takes super-polynomial

time [DKS17].
As observed in [AJK+22] the key property that makes the edge density estimation problem
challenging is the dependencies among the degrees of vertices. Indeed, consider the related,
but much simpler, problem, in which we are given 𝑛 points that are an 𝜂-corruption of
i.i.d. samples from a Binomial distribution with parameters 𝑛 and 𝑑◦/𝑛. In this setting, the
marginal distribution of each uncorrupted sample is the same as in our setting, but there are
no dependencies between samples. It is not too hard to show that in this setting, the median
estimator obtains error 𝑂(𝜂

√
𝑑◦) with probability at last 1 − exp(−𝜂2𝑛) (for completeness,

we give a proof of this fact in Appendix D). Our main theorem shows that we can obtain
the same guarantees up to a factor of

√
log(1/𝜂) in the graph setting (in most parameter

regimes).

1.2 Notation

We introduce some notations used throughout this paper. We write 𝑓 ≲ 𝑔 to denote the
inequality 𝑓 ⩽ 𝐶 · 𝑔 for some absolute constant 𝐶 > 0. We also use the standard asymptotic
notations 𝑂( 𝑓 ) and Ω( 𝑓 ) for upper and lower bounds, respectively. Random variables are
denoted using boldface symbols, e.g., 𝑿 ,𝒀 , 𝒁. For a matrix 𝑀, we use ∥𝑀∥op for its spectral
norm and ∥𝑀∥𝐹 for its Frobenius norm, and let 𝑑(𝑀) denote its average row/column sum,
i.e. 𝑑(𝑀) :=

∑
𝑖 , 𝑗 𝑀𝑖 𝑗/𝑛. Let 𝟙 and 𝟘 denote the all-one and all-zero vectors, respectively.

Their dimensions will be clear from the context. We use ∥·∥2 for the 2-norm of vectors. For
any matrices (or vectors) 𝑀, 𝑁 of the same shape, we use 𝑀 ⊙ 𝑁 to denote the element-wise
product (aka Hadamard product) of 𝑀 and 𝑁 . We use 𝐺 to denote a graph and 𝐴 = 𝐴(𝐺)
for its adjacency matrix, interchangeably, when the context is clear. Given a graph 𝐺 and a
subset 𝑆 of nodes, let 𝑒𝐺(𝑆) denote the number of edges in the subgraph induced by 𝑆 and
let 𝑒𝐺(𝑆, 𝑆̄) denote the number of edges in the cut (𝑆, 𝑆̄). When the graph 𝐺 is clear from the
context, we might drop the subscript and write 𝑒(𝑆) and 𝑒(𝑆, 𝑆̄).

1.3 Organization

The rest of the paper is organized as follows. In Section 2, we give a technical overview
of our results. In Appendix C, we present our main algorithm and the detailed proofs. In
Appendix A, we provide some sum-of-squares background, including basic sum-of-squares
proofs used in our paper. In Appendix B, we prove concentration inequalities that are used
in our proofs. In Appendix D, we prove statistical guarantees of median for robust binomial
mean estimation.

2 Techniques

Our algorithm follows the so-called proofs-to-algorithms framework based on the sum-of-
squares (SoS) hierarchy of semidefinite programs. This framework has successfully been
applied to a wide range of robust estimation tasks such as robustly estimating the mean
and higher-order moments, robust linear regression, learning mixture models, and many
more [KSS18, HL18, KKM18, BP21]. We refer to [RSS18] for an overview. In this framework,
one first constructs a proof of identifiability of the model parameters. This already leads to
an inefficient algorithm. If additionally, this proof is captured by the SoS framework, we
directly obtain an efficient algorithm with the same error guarantees.
Our work thus consists of two parts: First, constructing a “simple” proof of identifiabilty
and second, showing that it can be made efficient using the sum-of-squares hierarchy. We
discuss the proof of identifiability in Section 2.1 and then construct the necessary SoS proof
in Section 2.2 . In Section 2.3 we discuss how our approach relates to prior works. Compared

5Formally, they work for the so-called Huber contamination model.
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to previous works, our proof is surprisingly simple, and we will be able to discuss it almost
entirely in this section. We also view this as a strength of our work.

2.1 An inefficient algorithm via identifiability

The first part of our results is to find a proof of identifiability that lends itself to the “proofs-
to-algorithms” paradigm. This approach is different from previous works and a key part of
our work. In particular, it requires to identify a certain “goodness” condition that captures
the essence of the problem. The inefficient algorithm based on this identifiability argument
already surpasses the state-of-the-art among inefficient algorithms.
Denote by 𝐺◦ the uncorrupted graph and denote by 𝑑(𝐺◦) its empirical average degree.
For brevity, denote 𝛿err B 𝜂

√
log(1/𝜂)

√
𝑑◦ + 𝜂 log(1/𝜂). Since with probability 1 − 1/poly(𝑛),

it holds that |𝑑(𝐺◦) − 𝑑◦| ⩽ 𝑂(
√

log(𝑛)/𝑛 ·
√
𝑑◦), it is enough to estimate 𝑑(𝐺◦) up to error

𝑂(𝛿err). For the rest of this section we will focus on this task.
Our proof of identifiability follows the same line of reasoning as in many recent works
on (algorithmic) robust statistics: If two datasets from some parametric distribution have
first, large overlap and second, both satisfy an appropriate “goodness” condition, their
underlying parameters must be close. The “goodness” condition also needs to hold for the
uncorrupted dataset with high probability. This approach underlies algorithms for robust
mean estimation, clustering mixture models, robust linear regression, and more.6 This
immediately yields an inefficient algorithm: Enumerate over all possible alterations of the
data that still have large overlap with the input and check if they satisfy the condition. If
yes, output an empirical estimator for the parameter we wish to estimate, e.g., the empirical
mean.
In our setting, the datasets are graphs on 𝑛 nodes and large overlap refers to one graph can
be obtained by arbitrarily modifying the edges incident to at most 𝜂𝑛 nodes. We refer to two
such graphs as 𝜂-close.

Concentration of edges incident to small sets as goodness condition. We next describe
our goodness condition and how it leads to a proof of identifiability, and thus an inefficient
algorithm. The idea behind our goodness condition is strikingly simple: Let 𝐺 and 𝐺′ be two
graphs that are 𝜂-close and let 𝑆 be the set of node on which they disagree. We denote by
𝑒𝐺(𝑆), 𝑒𝐺(𝑆, 𝑆̄) the number of edges of the subgraph induced by 𝑆 and the number of edges
in the cut induced by 𝑆 (i.e., between 𝑆 and 𝑆̄), respectively. When the graph 𝐺 is clear from
context, we omit the subscript. Consider the difference in their empirical average degree,

1
2 (𝑑(𝐺) − 𝑑(𝐺′)) = 1

𝑛

(
𝑒𝐺(𝑆) + 𝑒𝐺(𝑆, 𝑆̄) − 𝑒𝐺′(𝑆) − 𝑒𝐺′(𝑆, 𝑆̄)

)
.

Note that the difference only depends on edges incident to the set 𝑆. Now, for 𝐺 coming from
𝔾(𝑛, 𝑑◦/𝑛), we know that this number is tightly concentrated around 𝑑◦

𝑛

(|𝑆|
2
)
+ 𝑑◦

𝑛 |𝑆|(𝑛 − |𝑆|).
In particular, this holds for any set 𝑆 of this size. If the same were true also for both 𝐺′,
the expectation terms would cancel out and only the fluctuation remains, which would
indeed be small enough. Thus, our goodness condition is exactly requiring this concentration
property, replacing 𝑑◦ by the empirical average degree of the graph.7

Formally, denote by 𝑁(𝑆) =
(|𝑆|

2
)
+ |𝑆|(𝑛 − |𝑆|), the maximum number of possible edges in

the subgraph and cut induced by 𝑆. We require the following.
Definition 2.1 (𝛿-good graphs). Let 𝐺 be a graph on 𝑛 nodes. We say that 𝐺 is 𝛿-good, if for
every subset 𝑆 ⊆ [𝑛] of size at most 𝜂𝑛, it holds that���𝑒𝐺(𝑆) + 𝑒𝐺(𝑆, 𝑆̄) − 𝑑(𝐺)

𝑛 · 𝑁(𝑆)
��� ⩽ 𝛿 · 𝜂𝑛 . (2.1)

The parameter 𝛿 may depend on 𝐺.
6In many of these cases the goodness condition is bounded moments, or related conditions.
7This is reminiscent of the notion of resilience, which is the goodness condition underlying robust

mean estimation for distributions with bounded moments.
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Denote by 𝛿(𝐺) = 𝑂(
√

log(1/𝜂)
√
𝑑(𝐺) + log(1/𝜂)).8 By a Chernoff bound and a union bound

over all sets of size at most 𝜂𝑛, it can be shown that if 𝑮 ∼ 𝔾(𝑛, 𝑑◦/𝑛) then 𝑮 is 𝛿(𝑮)-good
with probability at least 1− 1/poly(𝑛) (cf. Lemma B.4). Further, 𝜂𝛿(𝑮) = 𝑂(𝛿err) with at least
the same probability (in the latter 𝑑(𝑮) is replaced by 𝑑◦).

Identifiability. We next claim that this leads to identifiability: In particular, if 𝐺 and 𝐺′ are
2𝜂-close and 𝛿(𝐺) and 𝛿(𝐺′) good then |𝑑(𝐺) − 𝑑(𝐺′)| ⩽ 𝑂(𝛿err). Note that this immediately
gives an inefficient algorithm with error rate 𝑂(𝛿err): Simply enumerate over all graphs 𝐺
that are 𝜂-close to the input and if one of them is good, output the empirical average degree.
Since this search includes the uncorrupted graph, this is successful with probability at least
1 − 1/poly(𝑛). Further, any “good” graph that we find is 2𝜂-close to the uncorrupted graph.
It then follows that

1
2 |𝑑(𝐺) − 𝑑(𝐺′)| = 1

𝑛

��𝑒𝐺(𝑆) + 𝑒𝐺(𝑆, 𝑆̄) − 𝑒𝐺′(𝑆) − 𝑒𝐺′(𝑆, 𝑆̄)
��

⩽ 1
𝑛

���𝑒𝐺(𝑆) + 𝑒𝐺(𝑆, 𝑆̄) − 𝑑(𝐺′)
𝑛 · 𝑁(𝑆)

��� + 1
𝑛

���𝑒𝐺(𝑆) + 𝑒𝐺(𝑆, 𝑆̄) − 𝑑(𝐺)
𝑛 · 𝑁(𝑆)

���
+ |𝑑(𝐺) − 𝑑(𝐺′)| · 𝑁(𝑆)

𝑛2 . (2.2)

Since 𝑆 has size at most 2𝜂, it follows that 1
2 − 𝑁(𝑆)

𝑛2 ⩾ 1
2 (1 − 2𝜂)2. Rearranging and applying

our goodness condition yields that

(1 − 2𝜂)2 |𝑑(𝐺) − 𝑑(𝐺′)| ⩽ 2𝜂𝛿(𝐺) + 2𝜂𝛿(𝐺′)

= 𝑂
(
𝜂
√

log(1/𝜂)
)
·
[√

𝑑(𝐺) +
√
𝑑(𝐺′)

]
+ 𝑂

(
𝜂 log(1/𝜂)

)
,

which is the guarantee we aimed for up to the
√
𝑑(𝐺′) term. Let 𝛾 = 100

(1−2𝜂)4 . Using the
AM-GM inequality and 𝑑(𝐺) ⩾ 19, it follows that

𝑑(𝐺′) = 𝑑(𝐺′) − 𝑑(𝐺)√
𝛾𝑑(𝐺)

·
√
𝛾𝑑(𝐺) + 𝑑(𝐺) ⩽ (𝑑(𝐺′) − 𝑑(𝐺))2

𝛾
+ (1 + 𝛾)𝑑(𝐺) .

Taking square roots and using that √𝑥 + 𝑦 ⩽
√
𝑥 + √

𝑦, it follows that√
𝑑(𝐺′) ⩽ (1 − 2𝜂)2

10 |𝑑(𝐺) − 𝑑(𝐺′)| + 20
(1 − 2𝜂)2

√
𝑑(𝐺) .

Plugging this back into Eq. (2.2) yields

|𝑑(𝐺) − 𝑑(𝐺′)| ≲
𝜂
√

log(1/𝜂) ·
√
𝑑(𝐺)

(1 − 2𝜂)4 +
𝜂 log(1/𝜂)
(1 − 2𝜂)2 .

For any 𝜂 strictly bounded away from 1/2, this is indeed 𝑂(𝛿err), also showing that our
breakdown point is 1/2.

2.2 An efficient algorithm via sum-of-squares

We next describe how to design an efficient algorithm using the sum-of-squares framework.
This algorithm will inherit the error rate and optimal breakdown point of the inefficient
algorithm, proving Theorem 1.2.
A key part of the analysis of the inefficient algorithm was to show that the goodness condition
holds with high probability for the uncorrupted graph, such that we can guarantee the
exhaustive search over all 𝜂-close graphs to our input is successful. On a high level, if we
additionally require that there is a certificate of goodness in the uncorrupted case, we can
replace the exhaustive search of the inefficient algorithm by an SDP that we can solve in

8For simplicity, the reader may ignore the second part on a first read.
9Any other constant, potentially smaller than 1, also works.
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polynomial time. Existence of the certificate then implies that this SDP is feasible. More
formally, we will require that there is a constant-degree SoS proof of this fact.
It turns out that, given this certificate, we can reuse the identifiability proof above in an
almost black-box way to obtain an algorithm with the same error rate. For this section, we
will thus focus mainly on showing existence of this certificate. Towards the end, we will
briefly explain how to use this to construct a sum-of-squares recovery algorithm. This section
does not assume in-depth knowledge of the SoS proof system. We refer to Appendix A for a
formal treatment.
In order to describe the certificate, we will first present an algebraic formulation of the
goodness condition. Let 𝑮 ∼ 𝔾(𝑛, 𝑑◦/𝑛) be a graph with node set [𝑛] and 𝑨 be its adjacency
matrix. For a set 𝑆, let 𝑤(𝑆) ∈ {0, 1}𝑛 be its indicator vector. Since it will be important later on,
we will slightly switch notation and denote the empirical average degree by 𝑑(𝑨), instead of
𝑑(𝑮), to make clear that it is a function of 𝑨 as well. We also denote by 𝑑𝑣(𝑨) the degree of
node 𝑣. Note that

𝑒𝑮(𝑆) + 𝑒𝑮(𝑆, 𝑆̄) =
∑
𝑣∈𝑆

𝑑𝑮(𝑣) − 𝑒𝐺(𝑆) =
∑
𝑣∈[𝑛]

𝑤
(𝑆)
𝑣 𝑑𝑣(𝑨) − 1

2 (𝑤(𝑆))⊤𝑨𝑤(𝑆) .

Let 𝑝1(𝑤) = ∑
𝑣∈[𝑛] 𝑤𝑣(𝑑𝑣(𝑨) − 𝑑(𝑨)) and 𝑝2(𝑤) = 𝑤⊤(𝑨 − 𝑑(𝑨)

𝑛 𝟙𝟙⊤)𝑤. Then, the goodness
condition holds if and only if for all 𝑆 of size at most 𝜂𝑛,(

𝑝1(𝑤(𝑆)) − 1
2𝑝2(𝑤(𝑆))

)2
≲ 𝛿(𝑨)2 · (𝜂𝑛)2 , (2.3)

where we defined 𝛿(𝑨) = 𝑂(
√

log(1/𝜂)
√
𝑑(𝑨) + log(1/𝜂)) as before.10

The certificate is a strengthening of this fact. In particular, consider the following set of
polynomial equations in variables 𝑤1 , . . . , 𝑤𝑛 : 𝒜label(𝑤;𝜂) B {∀𝑣 : 𝑤2

𝑣 = 𝑤𝑣 ,
∑

𝑣 𝑤𝑣 ⩽ 𝜂𝑛}
which contains all the 𝑤(𝑆). We require that there is a so-called SoS proof of Eq. (2.3), in
variables 𝑤. In particular, we require that the difference between right-hand side and
left-hand side can be expressed as a polynomial of the form∑

𝑟

𝑠𝑟(𝑤)2 +
∑
𝑖 ,𝑟′

𝑝𝑖 ,𝑟′(𝑤2
𝑖 − 𝑤𝑖) +

∑
𝑟′′

𝑠𝑟′′(𝑤)2
(
𝜂𝑛 −

𝑛∑
𝑖=1

𝑤𝑖

)
,

where 𝑠𝑟 , 𝑝𝑖 ,𝑟′ , 𝑠𝑟′′ are constant-degree polynomials in 𝑤. We denote this by 𝒜label 𝑂(1)
𝑤

(𝑝1(𝑤(𝑆)) − 1
2 𝑝2(𝑤(𝑆)))2 ≲ 𝛿(𝑨)2 · (𝜂𝑛)2. All of the proofs in this section will be of constant-

degree, so we will drop the 𝑂(1) subscript.
We will construct this in two parts. Since the SoS proof system captures the fact that
(𝑎 + 𝑏)2 ⩽ 2𝑎2 + 2𝑏2, it follows that 𝒜label

𝑤 (𝑝1(𝑤) − 1
2 𝑝2(𝑤))2 ⩽ 2𝑝1(𝑤)2 + 𝑝2(𝑤)2. Since

SoS proofs obey composition, it is enough to certify that both 𝑝2
1(𝑤) and 𝑝2(𝑤)2 are at most

𝑂(1) · 𝛿(𝑨)2 · (𝜂𝑛)2.

Upper bounding 𝑝1 via concentration of degrees on small sets. We start by bounding 𝑝1
in SoS. Note that if 𝑤 would correspond to a fixed point in 𝒜label(𝑤 𝜂), i.e., the indicator of a
set of size at most 𝜂𝑛, this would immediately follow from the standard goodness condition.
We construct the necessary SoS proof case by showing that something more general is true:
Given 𝑛 numbers 𝑎1 , . . . , 𝑎𝑛 ∈ ℝ such that for all 𝑆 ⊆ [𝑛] of size at most 𝜂𝑛 it holds that
(∑𝑣∈𝑆 𝑎𝑣)2 ⩽ 𝐵, there exist a constant-degree SoS proof of this fact. I.e.,

𝒜label(𝑤, 𝜂)
𝑂(1)
𝑤

(
𝑛∑

𝑣=1
𝑤𝑣𝑎𝑣

)2

⩽ 𝐵 .

On a high level, this follows by comparing the set indicated by the 𝑤𝑣 variables to the set
of the 𝜂𝑛 largest 𝑎𝑣 ’s. The proof only uses elementary arguments inside SoS, such as that

10Again, since it will be useful later on, we switched notation from 𝛿(𝑮) to 𝛿(𝑨).

7



𝑤2
𝑣 = 𝑤𝑣 implies that 0 ⩽ 𝑤𝑣 ⩽ 1. We give the proof in Lemma A.9. The bound on 𝑝1 follows

as a direct corollary by picking 𝑎𝑣 = (𝑑𝑣(𝑨) − 𝑑(𝑨)) for 𝑣 ∈ 𝑉 (where we identify 𝑉 with [𝑛]).

Upper bounding 𝑝2 via spectral certificates. We next turn to upper bounding 𝑝2. A
common strategy to show SoS upper bounds on quadratic forms is using the operator norm.
Indeed, for a matrix 𝑀, the polynomial ∥𝑥∥2∥𝑀∥ − 𝑥⊤𝑀𝑥 is a sum-of-squares in 𝑥 since
the matrix ∥𝑀∥ · 𝐼 − 𝑀 is positive semidefinite and can hence be written as 𝐿𝐿⊤. Thus,
∥𝑥∥2∥𝑀∥ − 𝑥⊤𝑀𝑥 = ∥𝐿𝑥∥2.
Unfortunately, applying this naively to bound 𝑝2 does not work. Indeed, using that

∑𝑛
𝑖=1 𝑤𝑖 ⩽

𝜂𝑛 implies ∥𝑤∥2 ⩽ 𝜂𝑛, we can bound

𝑝2(𝑤) = 𝑤⊤
(
𝑨 − 𝑑(𝑨)

𝑛 𝟙𝟙⊤
)
𝑤 ⩽




𝑨 − 𝑑(𝑨)
𝑛 𝟙𝟙⊤




 · 𝜂𝑛 .

So we would need the operator norm to be on the order of 𝑂(
√

log(1/𝜂)
√
𝑑(𝑨) + log(1/𝜂)).

While this is true in the dense case, when 𝑑◦ ⩾ Ω(log 𝑛) [FO05], this completely fails in the

sparse case: In particular when 𝑑 = 𝑂(1), the operator norm is scales as
√

log 𝑛

log log 𝑛 ≫
√
𝑑(𝑨)

[KS03]. As a consequence, the error guarantees we would obtain would (roughly) be of the

form |𝑑̂ − 𝑑◦| ≲
√

log 𝑛

log log 𝑛 which is very far from optimal when 𝑑◦ = 𝑂(1).

The reason for this failure is that the spectral norm is dominated by outlier nodes that have
much higher degrees than 𝑑◦. Yet, there is reason for hope: The associated eigenvectors are
very localized and have small correlation with the vectors of the form 𝑤 that we care about.
Indeed, we can apply a diagonal rescaling to the centered adjacency matrix that downweighs
the effect of such outlier nodes to obtain a more benign spectrum. Concretely, variants of
the results in [Le16] (see also Lemma B.6 on how we need to adapt their results), show the
following: Let 𝑫 ∈ ℝ𝑛×𝑛 be the diagonal matrix, such that 𝑫𝑣𝑣 = max{1, 𝑑𝑣(𝑨)/(2𝑑◦)}. Then,
with probability at least 1 − 1/poly(𝑛), it holds that ∥𝑫−1/2(𝑨 − 𝑑(𝑨)

𝑛 𝟙𝟙⊤)𝑫−1/2∥ ≲
√
𝑑(𝑨).11

While promising, this does not come for free and we still have to ensure, that the resulting
reweighing of our 𝑤 variables does not increase ∥𝑤∥2 too much. In particular, so far we can
show

𝒜label(𝑤;𝜂) 𝑤
𝑝2(𝑤) = 𝑤⊤

(
𝑨 − 𝑑(𝑨)

𝑛 𝟙𝟙⊤
)
𝑤

=

(
𝑫1/2𝑤

)⊤ (
𝑫−1/2

(
𝑨 − 𝑑(𝑨)

𝑛 𝟙𝟙⊤
)
𝑫−1/2

) (
𝑫1/2𝑤

)
⩽ ∥𝑫−1/2(𝑨 − 𝑑(𝑨)

𝑛 𝟙𝟙⊤)𝑫−1/2∥ · ∥𝑫1/2𝑤∥2 ≲
√
𝑑(𝑨) · ∥𝑫1/2𝑤∥2 . (2.4)

It remains to bound ∥𝑫1/2𝑤∥2. For this, we will use similar techniques as in the upper bound
of 𝑝1. Indeed, expanding the squared-norm and using that 𝑤2

𝑣 = 𝑤𝑣 , we obtain

𝒜label(𝑤;𝜂) 𝑤 ∥𝑫1/2𝑤∥2 =

∑
𝑣∈𝑉

𝑤𝑣𝑫𝑣𝑣 =

∑
𝑣∈𝑉

𝑤𝑣 max
{
1, 𝑑𝑣(𝑨)2𝑑◦

}
⩽

∑
𝑣∈𝑉

𝑤𝑣 +
1

2𝑑◦
∑
𝑣∈𝑉

𝑤𝑣𝑑𝑣(𝑨)

⩽ 2𝜂𝑛 + 1
2𝑑◦

∑
𝑣∈𝑉

(𝑑𝑣(𝑨) − 𝑑◦) .

Note that the last sum is exactly the same as in 𝑝1, except that 𝑑(𝑨) is replaced by 𝑑◦. This is
a minor difference and we can still apply the same techniques and conclude that the above
is upper bounded as

𝜂𝑛

(
log(1/𝜂)

𝑑◦
+

√
log(1/𝜂)
√
𝑑◦

)
≲ 𝜂𝑛

(
log(1/𝜂)
√
𝑑◦

+
√

log(1/𝜂)
)
.

11Instead of rescaling, an alternative approach to ensure better spectral behavior is to delete
high-degree nodes [FO05]. We believe that this approach would likely yield an alternative certificate.
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Plugging this back into Eq. (2.4) and using that 𝑑◦ ≈ 𝑑(𝑨), it follows that

𝒜label(𝑤;𝜂) 𝑤
𝑝2(𝑤) ≲ 𝛿(𝐺) · 𝜂𝑛 .

Formally, we require an SoS bound on 𝑝2(𝑤)2 instead. This can be obtained by using that
similarly to the upper bound, we also have that 𝑥

𝑥⊤𝑀𝑥 ⩾ −∥𝑀∥∥𝑥∥2. Finally, we can use
that {−𝐶 ⩽ 𝑥 ⩽ 𝐶} 𝑥

𝑥2 ⩽ 𝐶2 (cf. Lemma A.8).

Short certificates lead to efficient algorithms. We briefly describe how to turn this into
an efficient algorithm. See Appendix C for full details. In particular, consider the following
constraint system in scalar-valued variables 𝑧𝑣 and matrix valued variable 𝑌. 𝐴 is the
adjacency matrix of the (corrupted) input graph. 𝑌 is the “guess” of SoS for the uncorrupted
graph. All but the last constraint (∃ ...) ensure that 𝑌 is 𝜂-close to the input graph (by ⊙ we
denote entrywise multiplication). The last constraint ensures that it satisfies the goodness
condition.

𝒜(𝑌, 𝑧;𝐴, 𝜂) :=



𝑧 ⊙ 𝑧 = 𝑧

⟨𝑧, 𝟙⟩ ⩽ 𝜂𝑛
0 ⩽ 𝑌 ⩽ 𝟙𝟙⊤ , 𝑌 = 𝑌⊤

𝑌 ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤ = 𝐴 ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤
∃ SoS proof,
𝒜label(𝑤; 2𝜂) 4

𝑤 ⟨𝑌 − 𝑑(𝑌)
𝑛 𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩2 ≲ 𝛿(𝑌)2(𝜂𝑛)2


. (2.5)

The constraint 0 ⩽ 𝑌 ⩽ 𝟙𝟙⊤ is meant entry-wise. We remark that the last constraint is
formally not a polynomial inequality but can be written as such using auxiliary variables.
Writing this formally would very much obfuscate what is happening and we omit the details
for clarity. This technique is by now standard and we refer to, e.g., [FKP+19] for more detail.
On a high level, one uses auxiliary variables to search for the coefficients of the SoS proof.
The arguments in the previous section show that the uncorrupted graph corresponds to a
feasible solution (cf. Lemma C.3). Further, an SoS version of the proof of identifiability we
have given before shows that (cf. Lemma C.4 for the full version)

𝒜(𝑌, 𝑧;𝐴, 𝜂) 𝑌,𝑧 (𝑑(𝑌) − 𝑑◦)2 ≲ 𝜂2 log
(
1/𝜂

)
𝑑◦ + 𝜂2 log2 (1/𝜂) .

It then follows by known results (see, e.g., [RSS18, Theorem 2.1]) that in time 𝑛𝑂(1) we can
compute an estimator 𝑑̂ such that��𝑑̂ − 𝑑◦

�� ≲ 𝜂
√

log(1/𝜂)
√
𝑑◦ + 𝜂 log(1/𝜂) .

2.3 Relation to previous works

While previous works do not exactly follow the general strategy to show identifiability here,
they can be interpreted as implicitly trying to exploit the existence of such certificates. The
crucial difference is how they try to upper bound the deviation of degrees over small subsets.
In particular, they establish this by requiring that all degrees are tightly concentrated around
𝑑◦. This only holds when 𝑑◦ ≳ log 𝑛 and fails in the sparse regime. In this work, we showed
that this strong concentration is not necessary. Intuitively, it is not necessary since the outlier
degrees in the sparse case are washed out when averaging over the set 𝑆.
Besides the efficient algorithm, we also view the fact that you can apply the proofs-to-
algorithms framework to this problem as a contribution of the paper. As we established, this
leads to a very clean analysis and improved guarantees, that in particular also work in the
sparse case and achieve optimal breakdown point.
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A Sum-of-squares background

In this paper, we use the sum-of-squares (SoS) semidefinite programming hierarchy
[BS14, BS16, RSS18] for both algorithm design and analysis. The sum-of-squares proofs-to-
algorithms framework has been proven useful in many optimal or state-of-the-art results in
algorithmic statistics [HL18, KSS18, PS17, Hop20]. We provide here a brief introduction to
pseudo-distributions, sum-of-squares proofs, and sum-of-squares algorithms.

A.1 Sum-of-squares proofs and algorithms

Pseudo-distribution. We can represent a finitely supported probability distribution over
ℝ𝑛 by its probability mass function 𝜇 : ℝ𝑛 → ℝ such that 𝜇 ⩾ 0 and

∑
𝑥∈supp(𝜇) 𝜇(𝑥) = 1. We

define pseudo-distributions as generalizations of such probability mass distributions by
relaxing the constraint 𝜇 ⩾ 0 to only require that 𝜇 passes certain low-degree non-negativity
tests.
Definition A.1 (Pseudo-distribution). A level-ℓ pseudo-distribution 𝜇 over ℝ𝑛 is a finitely
supported function 𝜇 : ℝ𝑛 → ℝ such that

∑
𝑥∈supp(𝜇) 𝜇(𝑥) = 1 and

∑
𝑥∈supp(𝜇) 𝜇(𝑥) 𝑓 (𝑥)2 ⩾ 0

for every polynomial 𝑓 of degree at most ℓ/2.

We can define the expectation of a pseudo-distribution in the same way as the expectation
of a finitely supported probability distribution.
Definition A.2 (Pseudo-expectation). Given a pseudo-distribution 𝜇 over ℝ𝑛 , we define the
pseudo-expectation of a function 𝑓 : ℝ𝑛 → ℝ by

𝔼̃
𝜇
𝑓 :=

∑
𝑥∈supp(𝜇)

𝜇(𝑥) 𝑓 (𝑥) . (A.1)

The following definition formalizes what it means for a pseudo-distribution to satisfy a
system of polynomial constraints.
Definition A.3 (Constrained pseudo-distributions). Let 𝜇 : ℝ𝑛 → ℝ be a level-ℓ pseudo-
distribution over ℝ𝑛 . Let 𝒜 = { 𝑓1 ⩾ 0, . . . , 𝑓𝑚 ⩾ 0} be a system of polynomial constraints.
We say that 𝜇 satisfies 𝒜 at level 𝑟, denoted by 𝜇 𝑟 𝒜, if for every multiset 𝑆 ⊆ [𝑚] and every
sum-of-squares polynomial ℎ such that deg(ℎ) +∑

𝑖∈𝑆 max{deg( 𝑓𝑖), 𝑟} ⩽ ℓ ,

𝔼̃
𝜇
ℎ ·

∏
𝑖∈𝑆

𝑓𝑖 ⩾ 0 . (A.2)

We say 𝜇 satisfies 𝒜 and write 𝜇 𝒜 (without further specifying the degree) if 𝜇 0 𝒜.

We remark that if 𝜇 is an actual finitely supported probability distribution, then we have
𝜇 𝒜 if and only if 𝜇 is supported on solutions to 𝒜.

Sum-of-squares proof. We introduce sum-of-squares proofs as the dual objects of pseudo-
distributions, which can be used to reason about properties of pseudo-distributions. We
say a polynomial 𝑝 is a sum-of-squares polynomial if there exist polynomials (𝑞𝑖) such that
𝑝 =

∑
𝑖 𝑞

2
𝑖
.

Definition A.4 (Sum-of-squares proof). A sum-of-squares proof that a system of polynomial
constraints 𝒜 = { 𝑓1 ⩾ 0, . . . , 𝑓𝑚 ⩾ 0} implies 𝑞 ⩾ 0 consists of sum-of-squares polynomials
(𝑝𝑆)𝑆⊆[𝑚] such that12

𝑞 =

∑
multiset 𝑆⊆[𝑚]

𝑝𝑆 ·
∏
𝑖∈𝑆

𝑓𝑖 .

If such a proof exists, we say that 𝒜 (sos-)proves 𝑞 ⩾ 0 within degree ℓ , denoted by 𝒜 ℓ 𝑞 ⩾ 0.
In order to clarify the variables quantified by the proof, we often write 𝒜(𝑥) ℓ

𝑥
𝑞(𝑥) ⩾ 0.

12Here we follow the convention that
∏

𝑖∈𝑆 𝑓𝑖 = 1 for 𝑆 = ∅.

12



We say that the system 𝒜 sos-refuted within degree ℓ if 𝒜 ℓ −1 ⩾ 0. Otherwise, we say
that the system is sos-consistent up to degree ℓ , which also means that there exists a level-ℓ
pseudo-distribution satisfying the system.

The following lemma shows that sum-of-squares proofs allow us to deduce properties of
pseudo-distributions that satisfy some constraints.
Lemma A.5. Let 𝜇 be a pseudo-distribution, and let 𝒜,ℬ be systems of polynomial constraints.
Suppose there exists a sum-of-squares proof 𝒜 𝑟′ ℬ. If 𝜇 𝑟 𝒜, then 𝜇

𝑟·𝑟′+𝑟′ ℬ.

Sum-of-squares algorithm. Given a system of polynomial constraints, the sum-of-squares
algorithm searches through the space of pseudo-distributions that satisfy this polynomial
system by semidefinite programming.
Since semidefinite programing can only be solved approximately, we can only find pseudo-
distributions that approximately satisfy a given polynomial system. We say that a level-ℓ
pseudo-distribution approximately satisfies a polynomial system, if the inequalities in Eq. (A.2)
are satisfied up to an additive error of 2−𝑛ℓ · ∥ℎ∥ ·∏𝑖∈𝑆∥ 𝑓𝑖∥, where ∥·∥ denotes the Euclidean
norm13 of the coefficients of a polynomial in the monomial basis.

Theorem A.6 (Sum-of-squares algorithm). There exists an (𝑛 + 𝑚)𝑂(ℓ )-time algorithm that,
given any explicitly bounded14 and satisfiable system15 𝒜 of 𝑚 polynomial constraints in 𝑛 variables,
outputs a level-ℓ pseudo-distribution that satisfies 𝒜 approximately.
Remark A.7 (Approximation error and bit complexity). For a pseudo-distribution that only
approximately satisfies a polynomial system, we can still use sum-of-squares proofs to
reason about it in the same way as Lemma A.5. In order for approximation errors not to
amplify throughout reasoning, we need to ensure that the bit complexity of the coefficients
in the sum-of-squares proof are polynomially bounded.

A.2 Sum-of-squares toolkit

In this part, we provide some basic SoS proofs that are useful in our paper.
Lemma A.8. Given constant 𝐶 ⩾ 0, we have{

− 𝐶 ⩽ 𝑥 ⩽ 𝐶
}

2
𝑥
𝑥2 ⩽ 𝐶2 .

Proof. {
− 𝐶 ⩽ 𝑥 ⩽ 𝐶

}
2
𝑥 (𝐶 − 𝑥)(𝐶 + 𝑥) ⩾ 0

2
𝑥
𝐶2 − 𝑥2 ⩾ 0

2
𝑥
𝐶2 ⩾ 𝑥2 .

□

Lemma A.9 (SoS subset sum). Let 𝑎1 , . . . , 𝑎𝑛 ∈ ℝ and 𝐵 ∈ ℝ. Suppose for any subset 𝑆 ⊆ [𝑛]
with |𝑆| ⩽ 𝑘, we have |∑𝑖∈𝑆 𝑎𝑖| ⩽ 𝐵. Then{

0 ⩽ 𝑥1 , . . . , 𝑥𝑛 ⩽ 1,
∑
𝑖

𝑥𝑖 ⩽ 𝑘
}

1
𝑥1 ,...,𝑥𝑛

��� 𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖

��� ⩽ 𝐵 .

13The choice of norm is not important here because the factor 2−𝑛ℓ swamps the effects of choosing
another norm.

14A system of polynomial constraints is explicitly bounded if it contains a constraint of the form
∥𝑥∥2 ⩽ 𝑀.

15Here we assume that the bit complexity of the constraints in 𝒜 is (𝑛 + 𝑚)𝑂(1).
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Proof. We first show
∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 ⩽ 𝐵. Without loss of generality, assume 𝑎1 ⩾ . . . ⩾ 𝑎𝑛 .
Case 1: 𝑎𝑘 ⩾ 0. It is straightforward to see {0 ⩽ 𝑥1 , . . . , 𝑥𝑛 ⩽ 1,

∑
𝑖 𝑥𝑖 ⩽ 𝑘} ⊢1

𝐵 −
𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 ⩾
𝑘∑

𝑖=1
𝑎𝑖 −

𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 (
∑𝑘

𝑖=1 𝑎𝑖 ⩽ 𝐵)

=

𝑘∑
𝑖=1

𝑎𝑖(1 − 𝑥𝑖) −
𝑛∑

𝑖=𝑘+1
𝑎𝑖𝑥𝑖

⩾
𝑘∑

𝑖=1
𝑎𝑘(1 − 𝑥𝑖) −

𝑛∑
𝑖=𝑘+1

𝑎𝑘𝑥𝑖 (0 ⩽ 𝑥𝑖 ⩽ 1)

= 𝑎𝑘 ·
(
𝑘 −

𝑛∑
𝑖=1

𝑥𝑖

)
⩾ 0 . (

∑
𝑖 𝑥𝑖 ⩽ 𝑘)

Case 2: 𝑎𝑘 < 0. Let ℓ be the largest index such that 𝑎ℓ ⩾ 0. (Note ℓ ∈ {0, 1, . . . , 𝑘 − 1}.) Then

𝐵 −
𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 ⩾
ℓ∑
𝑖=1

𝑎𝑖 −
𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 (
∑ℓ

𝑖=1 𝑎𝑖 ⩽ 𝐵)

=

ℓ∑
𝑖=1

𝑎𝑖(1 − 𝑥𝑖) +
𝑛∑

𝑖=ℓ+1
(−𝑎𝑖)𝑥𝑖

⩾ 0 ,

where in the last inequality we used 𝑎1 , . . . , 𝑎ℓ ⩾ 0 and 𝑎ℓ+1 , . . . , 𝑎𝑛 < 0, as well as 0 ⩽ 𝑥𝑖 ⩽ 1
for all 𝑖.
Observe that we can apply the same argument above to −𝑎1 , . . . ,−𝑎𝑛 and conclude∑𝑛

𝑖=1(−𝑎𝑖)𝑥𝑖 ⩽ 𝐵, or equivalently,
∑𝑛

𝑖=1 𝑎𝑖𝑥𝑖 ⩾ −𝐵.
Therefore, {

0 ⩽ 𝑥1 , . . . , 𝑥𝑛 ⩽ 1,
∑
𝑖

𝑥𝑖 ⩽ 𝑘
}

1

{
− 𝐵 ⩽

𝑛∑
𝑖=1

𝑎𝑖𝑥𝑖 ⩽ 𝐵
}
.

□

B Concentration inequalities

In this section, we prove several concentration inequalities for Erdős-Rényi random graphs
that are crucially used to derive our main results. We first introduce two classical concentration
bounds.
Lemma B.1 (Chernoff bound). Let 𝑿1 ,𝑿2 , . . . ,𝑿𝑁 be independent random variables taking values
in {0, 1}. Let 𝑿 :=

∑𝑁
𝑖=1 𝑿𝑖 . Then for any 𝑡 > 0,

ℙ(𝑿 ⩾ 𝔼𝑿 + 𝑡) ⩽ exp
(
− 𝑡2

𝑡 + 2𝔼𝑿

)
,

ℙ(𝑿 ⩽ 𝔼𝑿 − 𝑡) ⩽ exp
(
− 𝑡2

2𝔼𝑿

)
.

Lemma B.2 (McDiarmid’s inequality). Let 𝑿1 ,𝑿2 , . . . ,𝑿𝑁 be independent random variables.
Let 𝑓 : ℝ𝑁 → ℝ be a measurable function such that the value of 𝑓 (𝑥) can change by at most 𝑐𝑖 > 0
under an arbitrary change of the 𝑖-th coordinate of 𝑥 ∈ ℝ𝑁 . That is, for all 𝑥, 𝑥′ ∈ ℝ𝑁 differing only
in the 𝑖-th coordinate, we have | 𝑓 (𝑥) − 𝑓 (𝑥′)| ⩽ 𝑐𝑖 . Then for any 𝑡 > 0,

ℙ

(�� 𝑓 (𝑋) −𝔼[ 𝑓 (𝑋)]
�� ⩾ 𝑡

)
⩽ 2 exp

(
− 2𝑡2∑𝑁

𝑖=1 𝑐
2
𝑖

)
.
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Lemma B.3 (Average degree concentration). Let 𝑨 ∼ 𝔾(𝑛, 𝑑◦/𝑛). Let 𝑑(𝑨) := 1
𝑛

∑
𝑖 , 𝑗 𝑨𝑖 𝑗 . Then

for every constant 𝐶 > 0, there exists another constant 𝐶′ which only depends on 𝐶 such that

ℙ

(��𝑑(𝑨) −𝔼 𝑑(𝑨)
�� ⩽ 𝐶′ · max

{
log 𝑛

𝑛
,

√
log 𝑛

𝑛
·
√
𝑑◦

})
⩾ 1 − 𝑛−𝐶 .

Proof. Note 𝑑(𝑨) = 2
𝑛

∑
𝑖< 𝑗 𝑨𝑖 𝑗 and {𝑨𝑖 𝑗}𝑖< 𝑗 ∼ Ber(𝑝◦) independently. Also note 𝔼 𝑑(𝑨) =

(1 − 1/𝑛) 𝑑◦. Then by Chernoff bound Lemma B.1, for any 𝑡 > 0,

ℙ

(��𝑑(𝑨) −𝔼 𝑑(𝑨)
�� ⩾ 2𝑡

𝑛

)
⩽ 2 exp

(
− 𝑡2

2𝑡 + (𝑛 − 1) 𝑑◦/2

)
⩽ 2 exp

(
− 𝑡2

2 · max{2𝑡 , (𝑛 − 1) 𝑑◦/2}

)
= 2 exp

(
−min

{
𝑡

4 ,
𝑡2

(𝑛 − 1) 𝑑◦
})

= 2 max
{
exp

(
− 𝑡

4

)
, exp

(
− 𝑡2

(𝑛 − 1) 𝑑◦
)}

.

□

Lemma B.4 (Degrees subset sum). Let 𝑨 ∼ 𝔾(𝑛, 𝑑◦/𝑛). For 𝑆 ⊆ [𝑛], let 𝒆(𝑆) :=
∑

𝑖 , 𝑗∈𝑆, 𝑖< 𝑗 𝑨𝑖 𝑗

and let 𝒆(𝑆, 𝑆̄) :=
∑

𝑖∈𝑆, 𝑗∉𝑆 𝑨𝑖 𝑗 . Then for every constant 𝐶 > 0, there exists another constant 𝐶′

which only depends on 𝐶 such that with probability 1 − 𝑛−𝐶 , we have for every 𝑆 ⊆ [𝑛],��𝒆(𝑆, 𝑆̄) −𝔼 𝒆(𝑆, 𝑆̄)
�� ⩽ 𝐶′ ·

(
|𝑆| log(𝑒𝑛/|𝑆|) + |𝑆|

√
𝑑◦ log(𝑒𝑛/|𝑆|)

)
,

and
|𝒆(𝑆) −𝔼 𝒆(𝑆)| ⩽ 𝐶′ ·

(
|𝑆| log(𝑒𝑛/|𝑆|) + |𝑆|

√
𝑑◦(|𝑆|/𝑛) log(𝑒𝑛/|𝑆|)

)
.

Proof. Let𝑁 ∈ ℕ and let𝑿1 , . . . ,𝑿𝑁 ∼ Ber(𝑝◦) independently. Consider their sum𝑿 :=
∑

𝑖 𝑿𝑖 .
By Chernoff bound Lemma B.1, for any 𝛿 > 0,

ℙ(|𝑿 −𝔼𝑿 | ⩾ 𝛿) ⩽ 2 exp
(
− 𝛿2

𝛿 + 2𝔼𝑿

)
.

Fix a 𝑘 ∈ [𝑛]. By union bound, the probability that there exists a 𝑘-sized subset 𝑆 ⊆ [𝑛] such
that

��𝒆(𝑆, 𝑆̄) −𝔼 𝒆(𝑆, 𝑆̄)
�� ⩾ 𝛿 is at most(

𝑛

𝑘

)
· 2 exp

(
𝛿2

𝛿 + 2𝔼 𝒆(𝑆, 𝑆̄)

)
⩽ 2 exp

(
− 𝛿2

𝛿 + 2𝔼 𝒆(𝑆, 𝑆̄)
+ 𝑘 log 𝑒𝑛

𝑘

)
.

We want to set 𝛿 such that
𝛿2

𝛿 + 2𝔼 𝒆(𝑆, 𝑆̄)
⩾ 𝐶 · 𝑘 log 𝑒𝑛

𝑘

for some sufficiently large positive constant 𝐶. Then it will imply the above probability is at
most

2 exp
(
−(𝐶 − 1) · 𝑘 log 𝑒𝑛

𝑘

)
⩽ 2 exp(−(𝐶 − 1) log(𝑒𝑛)) ⩽ 𝑛−(𝐶−1) ,

where we used the fact that 𝑥 ↦→ 𝑥 log 𝑒
𝑥 is an increasing function for 𝑥 ⩽ 1. Since

𝛿2

𝛿 + 2𝔼 𝒆(𝑆, 𝑆̄)
⩾

1
2 min

{
𝛿2

𝛿
,

𝛿2

2𝔼 𝒆(𝑆, 𝑆̄)

}
= min

{
𝛿
2 ,

𝛿2

4𝔼 𝒆(𝑆, 𝑆̄)

}
,

it suffices to ask for

𝛿 ⩾ max
{
2𝐶 · 𝑘 log 𝑒𝑛

𝑘
,

√
4𝐶 · 𝔼 𝒆(𝑆, 𝑆̄) · 𝑘 log 𝑒𝑛

𝑘

}
.
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Then we can apply union bound to all 𝑘 = 1, . . . , 𝑛 and conclude that with probability at
least 1 − 𝑛−(𝐶−2), every subset 𝑆 ⊆ [𝑛] satisfies��𝒆(𝑆, 𝑆̄) −𝔼 𝒆(𝑆, 𝑆̄)

�� ≲ |𝑆| log(𝑒𝑛/|𝑆|) + |𝑆|
√
𝑑◦ log(𝑒𝑛/|𝑆|) .

Similarly, we can replace all 𝒆(𝑆, 𝑆̄) by 𝒆(𝑆) in the above argument and conclude that with
probability at least 1 − 𝑛−(𝐶−2), every subset 𝑆 ⊆ [𝑛] satisfies

|𝒆(𝑆) −𝔼 𝒆(𝑆)| ≲ |𝑆| log(𝑒𝑛/|𝑆|) + |𝑆|
√
𝑑◦(|𝑆|/𝑛) log(𝑒𝑛/|𝑆|) .

□

Lemma B.5. Let 𝑨 ∼ 𝔾(𝑛, 𝑑◦/𝑛). Then for every constant 𝐶 > 0, there exists another constant 𝐶′

which only depends on 𝐶 such that with probability 1 − 𝑛−𝐶 , the number of vertices with degree
larger than 2𝔼 𝑑(𝑨) is at most 𝐶′𝑛/𝑑◦.

Proof. Fix some 𝜀 > 0. (We will set 𝜀 = 1 in the end.) For 𝑖 ∈ [𝑛], let 𝑩𝑖 be the {0, 1}-
valued indicator random variable of the event that the degree of node 𝑖 in 𝑨 is larger than
(1 + 𝜀)𝔼 𝑑(𝑨). Let 𝑝𝑖 := ℙ(𝑩𝑖 = 1). By Chernoff bound Lemma B.1,

𝑝𝑖 = ℙ(𝑩𝑖 = 1) ⩽ exp
(
− 𝜀2 𝔼 𝑑(𝑨)

𝜀 + 2

)
. (B.1)

Fix some deviation 𝛿 > 0. We are going to upper bound ℙ(∑𝑖 𝑩𝑖 −𝔼
∑

𝑖 𝑩𝑖 ⩾ 𝛿). To this end,
consider the 𝑛-stage vertex exposure martingale (note 𝑩𝑖 ’s are not independent) where at
the 𝑖th stage we reveal all edges incident to the first 𝑖 nodes. Formally, let 𝑺𝑖 := {𝑨𝑖 𝑗}𝑗>𝑖 (note
𝑺𝑖 ’s are independent) and define 𝑓 (𝑺1 , . . . , 𝑺𝑛) :=

∑
𝑖 𝑩𝑖 . However, the Lipschitz constant

of 𝑓 is Ω(𝑛) which is too large for us to apply McDiarmid’s inequality. To reduce the
Lipschitz constant, we introduce a truncation function 𝑡 as follows. Fix a bound Δ ⩾ 1.
For 𝑖 ∈ [𝑛], let 𝑡(𝑺𝑖) = 𝑺𝑖 if there are at most Δ ones in 𝑺𝑖 ; otherwise, set 𝑡(𝑺𝑖) = 0. Let
𝑔(𝑺1 , . . . , 𝑺𝑛) := 𝑓 (𝑡(𝑺1), . . . , 𝑡(𝑺𝑛)). Then it is straightforward to see the Lipschitz constant
of 𝑔 is at most 3Δ. Then by McDiarmid’s inequality Lemma B.2,

ℙ
(
𝑔 −𝔼 𝑔 ⩾ 𝛿

)
⩽ exp

(
− 2𝛿2

9𝑛Δ2

)
.

To make this probability at most 𝑛−𝐶 , it suffices to set 𝛿 ⩾
√

9𝐶/2Δ
√
𝑛 log 𝑛.

Then we relate 𝑓 and 𝑔. By the definition of 𝑔, we have 𝑓 (𝑺1 , . . . , 𝑺𝑛) ⩾ 𝑔(𝑺1 , . . . , 𝑺𝑛) with
probability 1, which implies 𝔼 𝑓 ⩾ 𝔼 𝑔. By Chernoff bound and union bound, there exists a
constant 𝐶′ > 0 which only depends on 𝐶 such that the maximum degree of 𝑨 is at most
𝑑◦+𝐶′·(

√
𝑑◦ log 𝑛+log 𝑛)with probability 1−𝑛−𝐶 . Thus, we setΔ = 𝑑◦+𝐶′·(

√
𝑑◦ log 𝑛+log 𝑛).

Then we have 𝑓 (𝑺1 , . . . , 𝑺𝑛) = 𝑔(𝑺1 , . . . , 𝑺𝑛) with probability 1 − 𝑛−𝐶 .
Putting things together, by union bound, 𝑓 = 𝑔 and 𝑔 − 𝔼 𝑔 ⩽ 𝛿 happen simultaneously
with probability 1 − 2𝑛−𝐶 . Together with 𝔼 𝑓 ⩾ 𝔼 𝑔, they imply

𝑓 −𝔼 𝑓 ⩽
√

9𝐶/2 ·
√
𝑛 log 𝑛

(
𝑑◦ + 𝐶′√𝑑◦ log 𝑛 + 𝐶′ log 𝑛

)
with probability 1 − 2𝑛−𝐶 .
Finally, plugging in 𝜀 = 1 to Eq. (B.1), we have the expectation of the number of nodes with
degree larger than 2𝔼 𝑑(𝑨) is upper bounded by

𝑛𝑒−𝔼 𝑑(𝑨)/3 ⩽ 2𝑛/𝔼 𝑑(𝑨),
where we used 𝑒−𝑥/3 ⩽ 2/𝑥 for all 𝑥 > 0. To ensure the deviation at most 𝑂(𝑛/𝑑◦), it suffices
to require √

𝑛 log 𝑛
(
𝑑◦ +

√
𝑑◦ log 𝑛 + log 𝑛

)
≲

𝑛

𝑑◦
⇐⇒ 𝑑◦ ≲ (𝑛/log 𝑛)1/4 .

Note when 𝑑◦ ≳ (𝑛/log 𝑛)1/4, it is easy to see the maximum degree of 𝑨 is (1 + 𝑜(1))𝑑◦ with
probability 1 − 1/poly(𝑛). □
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Lemma B.6. Let 𝑨 ∼ 𝔾(𝑛, 𝑑◦/𝑛). Let 𝑫̃ be the 𝑛-by-𝑛 diagonal matrix whose 𝑖-th diagonal entry
is max{1, 𝒅𝑖

/
2𝔼 𝑑(𝑨)} where 𝒅𝑖 is the degree of node 𝑖. Then with probability 1 − 1/poly(𝑛),

𝑫̃−1/2(𝑨 −𝔼𝑨)𝑫̃−1/2



op ≲
√
𝑑◦ .

Proof. First, let 𝑻 ⊆ [𝑛] be the index set corresponding to vertices of degree larger than
2𝔼 𝑑(𝑨). By Lemma B.5, we know that |𝑻 | ≲ 𝑛/𝑑◦ with probability at least 1 − 1/poly(𝑛).
We condition on this event. Note that this implies that the rescaling by 𝑫̃−1/2 affects
at most 𝑂(𝑛/𝑑◦) vertices. By [Le16, Theorem 2.2.1] (see also Point 4 in Section 2.1.4), it
follows that



𝑫̃−1/2𝑨𝑫̃−1/2 −𝔼𝑨




op ≲
√
𝑑◦ with probability at least 1 − 1/poly(𝑛).It is thus

enough to show that with the same probability


𝔼𝑨 − 𝑫̃−1/2 𝔼[𝑨] 𝑫̃−1/2




op ≲

√
𝑑◦. Note

that 𝔼𝑨 = 𝑑◦
𝑛 (𝟙𝟙⊤ − I𝑛). Throughout the proof we will pretend it is equal to 𝑑◦

𝑛 𝟙𝟙
⊤, it can be

easily checked that the difference is a lower order term. Let 𝒄 = 𝑫̃−1/2𝟙. We will show that
∥𝒄𝒄⊤ − 𝟙𝟙⊤∥op ≲ 𝑛√

𝑑◦
with probability at least 1 − 1/poly(𝑛), which implies the claim.

Note that for 𝑖 ∉ 𝑻 it holds that 𝒄𝑖 = 1. Further, for all 𝑖, we have 0 ⩽ 𝒄𝑖 ⩽ 1. Thus,

𝒄𝒄⊤ − 𝟙𝟙⊤


2

op ⩽


𝒄𝒄⊤ − 𝟙𝟙⊤



2
F ⩽ 2

∑
𝑖∈𝑻 , 𝑗∈[𝑛]

(
1 + 𝒄2

𝑖 𝒄
2
𝑗

)
⩽ 4𝑛|𝑻 | ≲ 𝑛2

𝑑◦
.

□

C Robust edge density estimation algorithm

In this section, we show that there exists an algorithm that achieves the following guarantee.
Theorem C.1. Given corruption rate 𝜂 ∈ [0, 1

2 ) and the 𝜂-corrupted adjacency matrix 𝐴 of an
Erdős-Rényi random graph 𝑨◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛) where 𝑑◦ ⩾ 𝑐 for any constant 𝑐 > 0, there exists a
polynomial-time algorithm that outputs estimator 𝑑̂ that satisfies

��𝑑̂ − 𝑑◦
�� ≲ √

log(𝑛) · 𝑑◦
𝑛

+
𝜂
√

log
(
1/𝜂

)
· 𝑑◦

(1 − 2𝜂)4 +
𝜂 log

(
1/𝜂

)
(1 − 2𝜂)2 ,

with probability 1 − 1/poly(𝑛).
Remark C.2. When 𝜂 ⩽ 1

2 − 𝜀 for any constant 𝜀 ∈ (0, 1/2], the error bound becomes��𝑑̂ − 𝑑◦
�� ≲ √

log(𝑛) · 𝑑◦
𝑛

+ 𝜂
√

log
(
1/𝜂

)
· 𝑑◦ + 𝜂 log

(
1/𝜂

)
.

The main idea of the algorithm follows the general paradigm of robust statistics via sum-of-
squares: given observation of the 𝜂-corrupted graph 𝐴, find a graph 𝑌 that differs from 𝐴 by
at most 𝜂𝑛 vertices and satisfies a set of properties 𝒫 of the uncorrupted Erdős-Rényi graph
𝑨◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛), then output the average degree 𝑑(𝑌) as the estimator.
The crux of the algorithm is to determine the properties 𝒫 that 𝑌 satisfies such that:

• 𝒫 is sufficient to show that 𝑑(𝑌) is provably close to the 𝑑◦.
• 𝒫 is efficiently certifiable in SoS.

In our algorithm, this paradigm is implemented by the following three polynomial systems
with variables 𝑌 = (𝑌𝑖 𝑗)𝑖 , 𝑗∈[𝑛] and 𝑧 = (𝑧𝑖)𝑖∈[𝑛] and with inputs the corruption rate 𝜂 and
𝜂-corrupted adjacency matrix 𝐴.

Integrality and size constraint of labeling. The first polynomial system guarantees that 𝑧
is integral and sums up to at most 𝜂𝑛.

𝒜label(𝑧;𝜂) :=
{
𝑧 ⊙ 𝑧 = 𝑧, ⟨𝟙, 𝑧⟩ ⩽ 𝜂𝑛

}
. (C.1)
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Graph agreement constraint. The second polynomial system is to certify that 𝑌 differs
from the observed 𝜂-corrupted graph 𝐴 by at most 𝜂𝑛 vertices.

𝒜graph(𝑌, 𝑧;𝐴, 𝜂) :=
{
0 ⩽ 𝑌 ⩽ 𝟙𝟙⊤ , 𝑌 = 𝑌⊤

𝑌 ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤ = 𝐴 ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤
}
. (C.2)

Sum-of-squares certification of degree concentration. The third polynomial system is the
property 𝒫 that is efficiently certifiable and guarantees that 𝑑(𝑌) will be provably close to 𝑑◦.

𝒜degree(𝑌;𝜂) :=
{∃ SoS proof in 𝑤 that,
𝒜label(𝑤; 2𝜂) 4

𝑤 ⟨𝑌 − 𝑑(𝑌)
𝑛 𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩2 ⩽ 𝐶1(𝜂) · 𝑛2 · 𝑑(𝑌) + 𝐶2(𝜂) · 𝑛2

}
,

(C.3)

where 𝐶1(𝜂) = 𝐶deg𝜂2 log
(
1/𝜂

)
, 𝐶2(𝜂) = 𝐶deg𝜂2 log2 (1/𝜂) , and 𝐶deg is a universal constant.

Note that the SoS certificate constraint 𝒜degree(𝑌;𝜂) can be formally modeled using poly-
nomial inequalities by introducing auxiliary variables for the SoS proof coefficients. This
is a standard technique and we refer the reader to [KSS18, FKP+19] for more detailed
discussions.
For the convenience of notation, we will consider the following combined polynomial system
in remaining of the section

𝒜(𝑌, 𝑧;𝐴, 𝜂) := 𝒜label(𝑧;𝜂) ∪ 𝒜graph(𝑌, 𝑧;𝐴, 𝜂) ∪ 𝒜degree(𝑌, 𝑅;𝜂) . (C.4)

We will show that 𝒜(𝑌, 𝑧;𝐴, 𝜂) is both feasible and provides meaningful guarantees.

Feasibility. It can be shown that 𝒜(𝑌, 𝑧;𝐴, 𝜂) is satisfied by uncorrupted Erdős-Rényi
random graphs with high probability. More concretely, we will prove the following feasibility
lemma in Appendix C.1.
Lemma C.3 (Feasibility). Let 𝑨◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛)with 𝑑◦ ⩾ 𝑐 for any constant 𝑐 > 0. Let 𝜂 ∈ [0, 1/2)
and 𝑨 be an 𝜂-corrupted version of 𝑨◦. With probability 1 − 1/poly(𝑛), there exists 𝒛◦ ∈ {0, 1}𝑛
such that (𝑌, 𝑧) = (𝑨◦ , 𝒛◦) is a feasible solution to 𝒜(𝑌, 𝑧;𝑨, 𝜂).

Utility. It can be shown that any pairs of feasible solutions (𝑌∗ , 𝑧∗) and (𝑌, 𝑧) to low-degree
SoS relaxation of 𝒜(𝑌, 𝑧;𝐴, 𝜂) satisfy that |𝑑(𝑌)− 𝑑(𝑌∗)| is sufficiently small. More concretely,
we will prove the following utility lemma in Appendix C.2.
Lemma C.4 (Utility). Given 𝐴 ∈ {0, 1}𝑛×𝑛 and constant 𝜂 such that 𝜂 ∈ [0, 1/2), if (𝑌∗ , 𝑧∗) is a
feasible solution to 𝒜(𝑌, 𝑧;𝐴, 𝜂) and 𝑑(𝑌∗) ⩾ 𝐶𝑌∗ for any constant 𝐶𝑌∗ > 0, then

𝒜 8
𝑌,𝑧

(𝑑(𝑌) − 𝑑(𝑌∗))2 ≲
𝜂2 log

(
1/𝜂

)
(1 − 2𝜂)8 𝑑(𝑌∗) +

𝜂2 log2 (1/𝜂)
(1 − 2𝜂)4 .

Now, we are ready to describe our algorithm that satisfy Theorem C.1. The algorithm
computes the degree-8 pseudo-expectation 𝔼̃ of 𝒜(𝑌, 𝑧;𝑨, 𝜂) by solving the level-8 SoS
relaxation of the integer program in Eq. (C.4), then it outputs 𝔼̃[𝑑(𝑌)] as the estimator 𝑑̂.

Algorithm C.5 (Robust edge density estimation).
Input: 𝜂-corrupted adjacency matrix 𝐴 and corruption fraction 𝜂.

Algorithm: Obtain degree-8 pseudo-expectation 𝔼̃ by solving level-8 sum-of-squares
relaxation of program 𝒜(𝑌, 𝑧;𝐴, 𝜂) (defined in Eq. (C.4)) with input 𝐴 and 𝜂.

Output: 𝔼̃[𝑑(𝑌)].

Proof of Theorem C.1. We will show that Algorithm C.5 satisfies the guarantees of Theo-
rem C.1.
By Lemma C.3, we know that, with probability 1 − 1/poly(𝑛), 𝒜(𝑌, 𝑧;𝐴, 𝜂) is satisfied
by (𝑌, 𝑧) = (𝑨◦ , 𝒛◦) where 𝑨◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛) is the uncorrupted graph and 𝒛◦ is the set of
corrupted vertices.
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By Lemma B.3, the average degree of 𝑨◦ ∼ 𝔾(𝑛, 𝑑◦/𝑛) satisfies, with probability 1−1/poly(𝑛),

|𝑑(𝑨◦) − 𝑑◦| ≲
√

𝑑◦ log(𝑛)
𝑛

. (C.5)

Therefore, 𝑑(𝑨◦) ⩾ 𝑑◦ −
√

𝑑◦ log(𝑛)
𝑛 ⩾ 𝑐 − 𝑜(1) ⩾ 𝐶𝑨◦ .

Now, we can apply Lemma C.4 with (𝑌∗ , 𝑧∗) = (𝑨◦ , 𝒛◦) and 𝐶𝑌∗ = 𝐶𝑨◦ . This implies that the
degree-8 pseudo-expectation 𝔼̃ obtained in Algorithm C.5 satisfies

𝔼̃[(𝑑(𝑌) − 𝑑(𝑨◦))2] ≲
𝜂2 log

(
1/𝜂

)
(1 − 2𝜂)8 𝑑(𝑨◦) +

𝜂2 log2 (1/𝜂)
(1 − 2𝜂)4 .

By Jensen’s inequality for pseudo-expectations, it follows that(
𝔼̃[𝑑(𝑌)] − 𝑑(𝑨◦)

)2
≲

𝜂2 log
(
1/𝜂

)
(1 − 2𝜂)8 𝑑(𝑨◦) +

𝜂2 log2 (1/𝜂)
(1 − 2𝜂)4 .

Since the estimator output by Algorithm C.5 is 𝑑̂ = 𝔼̃[𝑑(𝑌)], it follows that

��𝑑̂ − 𝑑(𝑨◦)
�� ≲√

𝜂2 log
(
1/𝜂

)
(1 − 2𝜂)8 𝑑(𝑨◦) +

𝜂2 log2 (1/𝜂)
(1 − 2𝜂)4

⩽
𝜂
√

log
(
1/𝜂

)
(1 − 2𝜂)4

√
𝑑(𝑨◦) +

𝜂 log
(
1/𝜂

)
(1 − 2𝜂)2 .

By Eq. (C.5), we have 𝑑(𝑨◦) ⩽
√

𝑑◦ log(𝑛)
𝑛 + 𝑑◦ ⩽ 2𝑑◦ with probability 1− 1/poly(𝑛). Therefore,

��𝑑̂ − 𝑑(𝑨◦)
�� ≲ 𝜂

√
log

(
1/𝜂

)
(1 − 2𝜂)4

√
𝑑◦ +

𝜂 log
(
1/𝜂

)
(1 − 2𝜂)2 .

By triangle inequality and Eq. (C.5), we have

|𝑑̂ − 𝑑◦| ⩽ |𝑑̂ − 𝑑(𝑨◦)| + |𝑑(𝑨◦) − 𝑑◦| ≲
√

log(𝑛) · 𝑑◦
𝑛

+
𝜂
√

log
(
1/𝜂

)
· 𝑑◦

(1 − 2𝜂)4 +
𝜂 log

(
1/𝜂

)
(1 − 2𝜂)2 .

By union bound on failure probability of Lemma C.3 and Lemma B.3, Algorithm C.5 succeeds
with probability 1 − 1/poly(𝑛). This finishes the proof for the error guarantee.
For time complexity of Algorithm C.5, since Eq. (C.4) has polynomial bit complexity, solving
the level-8 SoS relaxation of Eq. (C.4) and evaluating 𝔼̃[𝑑(𝑌)] can be done in polynomial
time. Therefore, Theorem C.1 has polynomial runtime, which finishes the proof. □

C.1 SoS feasibility

In this section, we prove Lemma C.3, which is a direct corollary of the following lemma.
Lemma C.6. For any constants 𝑐, 𝐶 > 0, the following holds. Let 𝑨 ∼ 𝔾(𝑛, 𝑑◦/𝑛) with 𝑑◦ ⩾ 𝑐.
Let 𝑑(𝑨) = 1

𝑛

∑
𝑖 , 𝑗 𝑨𝑖 𝑗 and 𝛾 ∈ [0, 1]. Then with probability at least 1 − 𝑛−𝐶 , we have {𝑤 ⊙ 𝑤 =

𝑤, ⟨𝟙, 𝑤⟩ ⩽ 𝛾𝑛} 4
𝑤〈

𝑨 − 𝑑(𝑨)
𝑛

𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤
〉2

⩽ 𝐶′ ·
(
𝛾2 log(𝑒/𝛾) 𝑛2 · 𝑑(𝑨) + 𝛾2 log2(𝑒/𝛾)𝑛2

)
,

where 𝐶′ only depends on 𝑐 and 𝐶.
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Proof. Note〈
𝑨 − 𝑑(𝑨)

𝑛
𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤

〉
= 2 ·

〈
𝑤,𝑨𝟙 − 𝑑(𝑨) · 𝟙

〉
− 𝑤⊤

(
𝑨 − 𝑑(𝑨)

𝑛
𝟙𝟙⊤

)
𝑤 .

We will bound ⟨𝑤,𝑨𝟙− 𝑑(𝑨) · 𝟙⟩ and 𝑤⊤(𝑨 − 𝑑(𝑨)
𝑛 𝟙𝟙⊤)𝑤 separately. By Lemma B.3, we have��𝑑(𝑨) −𝔼 𝑑(𝑨)

�� ≲ max

{
log 𝑛

𝑛
,

√
log 𝑛

𝑛
·
√
𝑑◦

}
with probability 1 − 1/poly(𝑛). (Since 𝑑◦ ⩾ Ω(1), this bound can be simplified to |𝑑(𝑨) −
𝔼 𝑑(𝑨)| ≲

√
log(𝑛)/𝑛 ·

√
𝑑◦.) We will condition our following analysis on this event.

Bounding ⟨𝑤,𝑨𝟙 − 𝑑(𝑨) · 𝟙⟩. Note

⟨𝑤,𝑨𝟙 − 𝑑(𝑨) · 𝟙⟩ = ⟨𝑤,𝑨𝟙 −𝔼 𝑑(𝑨) · 𝟙⟩ +
(
𝔼 𝑑(𝑨) − 𝑑(𝑨)

)
· ⟨𝟙, 𝑤⟩ , (C.6)

where the second term on the right side can be easily bounded as follows, {𝟘 ⩽ ⟨𝟙, 𝑤⟩ ⩽
𝛾𝑛} 1��(𝔼 𝑑(𝑨) − 𝑑(𝑨)) · ⟨𝟙, 𝑤⟩

�� ⩽ ��𝔼 𝑑(𝑨) − 𝑑(𝑨)
�� · 𝛾𝑛 ≲ 𝛾 · max

{
log 𝑛,

√
𝑛 log(𝑛) 𝑑◦

}
. (C.7)

Now we bound the first term on the right side of Eq. (C.6). For 𝑖 ∈ [𝑛], let 𝒅𝑖 be the degree of
node 𝑖 in 𝑨. Then

⟨𝑤,𝑨𝟙 −𝔼 𝑑(𝑨) · 𝟙⟩ =
∑
𝑖

𝑤𝑖(𝒅𝑖 −𝔼 𝑑(𝑨)) .

For a subset 𝑆 ⊆ [𝑛], we have
∑

𝑖∈𝑆 𝒅𝑖 = 𝒆(𝑆, 𝑆̄) + 2𝒆(𝑆), which implies∑
𝑖∈𝑆

(𝒅𝑖 −𝔼 𝑑(𝑨)) = 𝒆(𝑆, 𝑆̄) + 2𝒆(𝑆) −𝔼 𝒆(𝑆, 𝑆̄) − 2𝔼 𝒆(𝑆) .

Hence, by Lemma B.4, the following holds with probability 1 − 1/poly(𝑛): For every subset
𝑆 ⊆ [𝑛] with |𝑆| ⩽ 𝛾𝑛,���∑

𝑖∈𝑆
(𝒅𝑖 −𝔼 𝑑(𝑨))

��� ⩽ ���𝒆(𝑆, 𝑆̄) −𝔼 𝒆(𝑆, 𝑆̄)
��� + 2

���𝒆(𝑆) −𝔼 𝒆(𝑆)
���

≲ 𝛾 log(𝑒/𝛾) 𝑛 + 𝛾
√

log(𝑒/𝛾) 𝑛
√
𝑑◦ .

By Lemma A.9, the above is also true in SoS, i.e., {𝟘 ⩽ 𝑤 ⩽ 𝟙, ⟨𝟙, 𝑤⟩ ⩽ 𝛾𝑛} 1���∑
𝑖

𝑤𝑖(𝒅𝑖 −𝔼 𝑑(𝑨))
��� ≲ 𝛾 log(𝑒/𝛾) 𝑛 + 𝛾

√
log(𝑒/𝛾) 𝑛

√
𝑑◦ . (C.8)

Therefore, putting Eq. (C.7) and Eq. (C.8) together, we have {𝟘 ⩽ 𝑤 ⩽ 𝟙, ⟨𝟙, 𝑤⟩ ⩽ 𝛾𝑛} 1��⟨𝑤,𝑨𝟙 − 𝑑(𝑨) · 𝟙⟩
�� ≲ 𝛾 log(𝑒/𝛾) 𝑛 + 𝛾

√
log(𝑒/𝛾) 𝑛

√
𝑑◦ (C.9)

with probability 1 − 1/poly(𝑛).

Bounding 𝑤⊤(𝑨 − 𝑑(𝑨)
𝑛 𝟙𝟙⊤)𝑤. Note

𝑤⊤
(
𝑨 − 𝑑(𝑨)

𝑛
𝟙𝟙⊤

)
𝑤 = 𝑤⊤

(
𝑨 −𝔼𝑨

)
𝑤 + 𝑤⊤

(
𝔼𝑨 − 𝑑(𝑨)

𝑛
𝟙𝟙⊤

)
𝑤 . (C.10)

We bound the first term on the right hand side of Eq. (C.10). Let 𝑫̃ be the 𝑛-by-𝑛 diagonal
matrix whose 𝑖-th diagonal entry is max{1, 𝒅𝑖

/
2𝔼 𝑑(𝑨)}. As

𝑤⊤(𝑨 −𝔼𝑨)𝑤 = (𝑫̃1/2𝑤)⊤ 𝑫̃−1/2(𝑨 −𝔼𝑨)𝑫̃−1/2 (𝑫̃1/2𝑤) ,
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then ��𝑤⊤(𝑨 −𝔼𝑨)𝑤
�� ⩽ 

𝑫̃−1/2(𝑨 −𝔼𝑨)𝑫̃−1/2



op



𝑫̃1/2𝑤


2

2 .

By Lemma B.6, the following holds with probability 1 − 1/poly(𝑛):

𝑫̃−1/2(𝑨 −𝔼𝑨)𝑫̃−1/2


op ≲

√
𝑑◦ .

Since

{𝟘 ⩽ 𝑤 ⩽ 𝟙} 2


𝑫̃1/2𝑤



2
2 =

∑
𝑖

max
{
1, 𝒅𝑖

2𝔼 𝑑(𝑨)

}
𝑤2

𝑖

⩽
∑
𝑖

𝑤𝑖 +
∑
𝑖

𝒅𝑖

2𝔼 𝑑(𝑨)𝑤𝑖

=
3
2

∑
𝑖

𝑤𝑖 +
1

2𝔼 𝑑(𝑨)
∑
𝑖

𝑤𝑖(𝒅𝑖 −𝔼 𝑑(𝑨)) ,

then by Eq. (C.8),

{𝟘 ⩽ 𝑤 ⩽ 𝟙, ⟨𝟙, 𝑤⟩ ⩽ 𝛾𝑛} 2


𝑫̃1/2𝑤



2
2 ≲ 𝛾𝑛 +

𝛾 log(𝑒/𝛾) 𝑛
𝑑◦

+
𝛾
√

log(𝑒/𝛾) 𝑛
√
𝑑◦

.

Therefore, the following holds with probability 1 − 1/poly(𝑛): {𝟘 ⩽ 𝑤 ⩽ 𝟙, ⟨𝟙, 𝑤⟩ ⩽ 𝛾𝑛} 2��𝑤⊤(𝑨 −𝔼𝑨)𝑤
�� ≲ 𝛾𝑛

√
𝑑◦ +

𝛾 log(𝑒/𝛾) 𝑛
√
𝑑◦

+ 𝛾
√

log(𝑒/𝛾) 𝑛 . (C.11)

Now we bound the second term on the right hand side of Eq. (C.10). Since

𝔼𝑨 − 𝑑(𝑨)
𝑛

𝟙𝟙⊤ =
𝑑◦

𝑛

(
𝟙𝟙⊤ − I

)
− 𝑑(𝑨)

𝑛
𝟙𝟙⊤

=
𝑑◦ − 𝑑(𝑨)

𝑛
𝟙𝟙⊤ − 𝑑◦

𝑛
I ,

then

𝑤⊤
(
𝔼𝑨 − 𝑑(𝑨)

𝑛
𝟙𝟙⊤

)
𝑤 =

𝑑◦ − 𝑑(𝑨)
𝑛

⟨𝟙, 𝑤⟩2 − 𝑑◦

𝑛
∥𝑤∥2

2 .

Thus, {𝟘 ⩽ 𝑤 ⩽ 𝟙, ⟨𝟙, 𝑤⟩ ⩽ 𝛾𝑛} 2����𝑤⊤
(
𝔼𝑨 − 𝑑(𝑨)

𝑛
𝟙𝟙⊤

)
𝑤

���� ⩽ 𝛾2𝑛
��𝑑◦ − 𝑑(𝑨)

�� + 𝛾𝑑◦

≲ 𝛾2 log 𝑛 + 𝛾2
√
𝑛 log(𝑛) 𝑑◦ + 𝛾𝑑◦ . (C.12)

Therefore, putting Eq. (C.11) and Eq. (C.12) together, and assuming 𝑑◦ ⩾ Ω(1), we have

{𝟘 ⩽ 𝑤 ⩽ 𝟙, ⟨𝟙, 𝑤⟩ ⩽ 𝛾𝑛} 2

����𝑤⊤
(
𝑨 − 𝑑(𝑨)

𝑛
𝟙𝟙⊤

)
𝑤

���� ≲ 𝛾 log(𝑒/𝛾) 𝑛 + 𝛾
√

log(𝑒/𝛾) 𝑛
√
𝑑◦

(C.13)
with probability 1 − 1/poly(𝑛).

Putting things together. Using two simple SoS facts
𝑥,𝑦

{(𝑥 + 𝑦)2 ⩽ 2𝑥2 + 2𝑦2} and
{|𝑥| ⩽ 𝐵} 𝑥 {𝑥2 ⩽ 𝐵2}, together with Eq. (C.9) and Eq. (C.13), we have〈

𝑨 − 𝑑(𝑨)
𝑛

𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤
〉2

=

(
2
〈
𝑤,𝑨𝟙 − 𝑑(𝑨) · 𝟙

〉
− 𝑤⊤

(
𝑨 − 𝑑(𝑨)

𝑛
𝟙𝟙⊤

)
𝑤

)2

⩽ 8
〈
𝑤,𝑨𝟙 − 𝑑(𝑨) · 𝟙

〉2 + 2
(
𝑤⊤

(
𝑨 − 𝑑(𝑨)

𝑛
𝟙𝟙⊤

)
𝑤

)2

≲ 𝛾2 log(𝑒/𝛾)𝑛2𝑑◦ + 𝛾2 log2(𝑒/𝛾)𝑛2

≲ 𝛾2 log(𝑒/𝛾)𝑛2𝑑(𝑨) + 𝛾2 log2(𝑒/𝛾)𝑛2 ,

where in the last step we used 𝑑(𝑨) = (1 + 𝑜(1))𝑑◦. □
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C.2 SoS utility

In this section, we prove Lemma C.4. The key observation is that 𝑌 and 𝑌∗ will have large
agreement because they both agree with 𝐴 on (1−𝜂)𝑛 vertices. Therefore, |𝑑(𝑌) − 𝑑(𝑌∗)| only
depends the set of vertices of size at most 2𝜂𝑛 that 𝑌 and 𝑌∗ differ, which can be bounded by
the SoS certificate in 𝒜degree(𝑌;𝜂).

Proof of Lemma C.4. Let 𝑤 = 𝟙 − (𝟙 − 𝑧) ⊙ (𝟙 − 𝑧∗). By constraints 𝑌 ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤ =

𝐴 ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤ and 𝑌∗ ⊙ (𝟙 − 𝑧∗)(𝟙 − 𝑧∗)⊤ = 𝐴 ⊙ (𝟙 − 𝑧∗)(𝟙 − 𝑧∗)⊤, we have

𝒜 4
𝑌,𝑧

𝑌 ⊙ (𝟙 − 𝑤)(𝟙 − 𝑤)⊤ = 𝑌 ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤ ⊙ (𝟙 − 𝑧∗)(𝟙 − 𝑧∗)⊤

= 𝐴 ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤ ⊙ (𝟙 − 𝑧∗)(𝟙 − 𝑧∗)⊤

= 𝐴 ⊙ (𝟙 − 𝑧∗)(𝟙 − 𝑧∗)⊤ ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤

= 𝑌∗ ⊙ (𝟙 − 𝑧∗)(𝟙 − 𝑧∗)⊤ ⊙ (𝟙 − 𝑧)(𝟙 − 𝑧)⊤

= 𝑌∗ ⊙ (𝟙 − 𝑤)(𝟙 − 𝑤)⊤ .

Therefore, it follows that

𝒜 8
𝑌,𝑧

𝑛
(
𝑑(𝑌) − 𝑑(𝑌∗)

)
=⟨𝑌 − 𝑌∗ , 𝟙𝟙⊤⟩

=⟨𝑌 − 𝑌∗ , 𝟙𝟙⊤ − (𝟙 − 𝑤)(𝟙 − 𝑤)⊤⟩
=⟨𝑌 − 𝑌∗ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩

=⟨𝑌 − 𝑑(𝑌)
𝑛

𝟙𝟙⊤ + 𝑑(𝑌)
𝑛

𝟙𝟙⊤ − 𝑑(𝑌∗)
𝑛

𝟙𝟙⊤ + 𝑑(𝑌∗)
𝑛

𝟙𝟙⊤ − 𝑌∗ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩

=⟨𝑌 − 𝑑(𝑌)
𝑛

𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩ + ⟨ 𝑑(𝑌
∗)

𝑛
𝟙𝟙⊤ − 𝑌∗ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩

+ ⟨ 𝑑(𝑌)
𝑛

𝟙𝟙⊤ − 𝑑(𝑌∗)
𝑛

𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩ .

Notice that

⟨𝑑(𝑌)
𝑛

𝟙𝟙⊤ − 𝑑(𝑌∗)
𝑛

𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩ = 𝑛
(
2⟨𝑤, 𝟙⟩

𝑛
−

(
⟨𝑤, 𝟙⟩

𝑛

)2) (
𝑑(𝑌) − 𝑑(𝑌∗)

)
.

By re-arranging terms, we can get

𝒜 8
𝑌,𝑧

𝑛
(
1 − ⟨𝑤, 𝟙⟩

𝑛

)2 (
𝑑(𝑌) − 𝑑(𝑌∗)

)
=⟨𝑌 − 𝑑(𝑌)

𝑛
𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩ + ⟨ 𝑑(𝑌

∗)
𝑛

𝟙𝟙⊤ − 𝑌∗ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩

Squaring both sides, we get

𝒜 8
𝑌,𝑧

𝑛2
(
1 − ⟨𝑤, 𝟙⟩

𝑛

)4 (
𝑑(𝑌) − 𝑑(𝑌∗)

)2

=

(
⟨𝑌 − 𝑑(𝑌)

𝑛
𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩ + ⟨ 𝑑(𝑌

∗)
𝑛

𝟙𝟙⊤ − 𝑌∗ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩
)2

⩽2⟨𝑌 − 𝑑(𝑌)
𝑛

𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩2 + 2⟨𝑑(𝑌
∗)

𝑛
𝟙𝟙⊤ − 𝑌∗ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩2

(C.14)

By definition of 𝑤, it follows that 𝒜 2
𝑧
𝑤 ⊙ 𝑤 = 𝑤 and

𝒜 2
𝑧 ⟨𝟙, 𝑤⟩ =⟨𝟙, 𝟙 − (𝟙 − 𝑧) ⊙ (𝟙 − 𝑧∗)⟩

=𝑛 −
∑
𝑖∈[𝑛]

(1 − 𝑧𝑖)(1 − 𝑧∗𝑖 )

=

∑
𝑖∈[𝑛]

𝑧𝑖 +
∑
𝑖∈[𝑛]

𝑧∗𝑖 −
∑
𝑖∈[𝑛]

𝑧𝑖𝑧
∗
𝑖

⩽2𝜂𝑛 .

(C.15)

22



Therefore, 𝑤 satisfies 𝒜label(𝑤; 2𝜂), and, by the SOS certificate in 𝒜degree, it follows that

𝒜 8
𝑌,𝑧 ⟨𝑌 − 𝑑(𝑌)

𝑛
𝟙𝟙⊤ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩2 ⩽ 𝐶1(𝜂) · 𝑛2 · 𝑑(𝑌) + 𝐶2(𝜂) · 𝑛2 . (C.16)

and by Lemma C.3,

𝒜 8
𝑌,𝑧 ⟨ 𝑑(𝑌

∗)
𝑛

𝟙𝟙⊤ − 𝑌∗ , 2𝑤𝟙⊤ − 𝑤𝑤⊤⟩2 ⩽ 𝐶1(𝜂) · 𝑛2 · 𝑑(𝑌∗) + 𝐶2(𝜂) · 𝑛2 . (C.17)

Plugging Eq. (C.16) and Eq. (C.17) into Eq. (C.14), we get

𝒜 8
𝑌,𝑧

𝑛2
(
1 − ⟨𝑤, 𝟙⟩

𝑛

)4 (
𝑑(𝑌) − 𝑑(𝑌∗)

)2
⩽ 𝐶1(𝜂) · 𝑛2 · 𝑑(𝑌) + 𝐶1(𝜂) · 𝑛2 · 𝑑(𝑌∗) + 2𝐶2(𝜂) · 𝑛2 .

Dividing both sides by 𝑛2, we get

𝒜 8
𝑌,𝑧

(
1 − ⟨𝑤, 𝟙⟩

𝑛

)4 (
𝑑(𝑌) − 𝑑(𝑌∗)

)2
⩽ 𝐶1(𝜂) · 𝑑(𝑌) + 𝐶1(𝜂) · 𝑑(𝑌∗) + 2𝐶2(𝜂) .

Plugging in 𝒜 2
𝑧 ⟨𝟙, 𝑤⟩ ⩽ 2𝜂𝑛 from Eq. (C.15), we get

𝒜 8
𝑌,𝑧 (1 − 2𝜂)4

(
𝑑(𝑌) − 𝑑(𝑌∗)

)2
⩽ 𝐶1(𝜂) · 𝑑(𝑌) + 𝐶1(𝜂) · 𝑑(𝑌∗) + 2𝐶2(𝜂) . (C.18)

Notice that, the following holds for any 𝐶𝜂 > 0,

𝑑(𝑌) =𝑑(𝑌) − 𝑑(𝑌∗)√
𝐶𝜂 · 𝑑(𝑌∗)

·
√
𝐶𝜂 · 𝑑(𝑌∗) + 𝑑(𝑌∗)

⩽
1
2
©­­«
(
𝑑(𝑌) − 𝑑(𝑌∗)

)2

𝐶𝜂 · 𝑑(𝑌∗) + 𝐶𝜂 · 𝑑(𝑌∗)
ª®®¬ + 𝑑(𝑌∗)

=

(
𝑑(𝑌) − 𝑑(𝑌∗)

)2

2𝐶𝜂 · 𝑑(𝑌∗) +
(𝐶𝜂

2 + 1
)
𝑑(𝑌∗)

⩽

(
𝑑(𝑌) − 𝑑(𝑌∗)

)2

2𝐶𝜂𝐶𝑌∗
+

(𝐶𝜂

2 + 1
)
𝑑(𝑌∗) ,

Plugging this into Eq. (C.18), it follows that

𝒜 8
𝑌,𝑧 (1−2𝜂)4

(
𝑑(𝑌)−𝑑(𝑌∗)

)2
⩽ 𝐶1(𝜂)

(
𝑑(𝑌) − 𝑑(𝑌∗)

)2

2𝐶𝜂𝐶𝑌∗
+𝐶1(𝜂)

(𝐶𝜂

2 +2
)
𝑑(𝑌∗)+2𝐶2(𝜂) . (C.19)

Let 𝐶𝜂 =
50𝐶1(𝜂)

𝐶𝑌∗ (1−2𝜂)4 . Since 𝜂2 log(1/𝜂) < 1 for 𝜂 ∈ [0, 1
2 ), we have 𝐶1(𝜂) = 𝐶deg𝜂2 log

(
1/𝜂

)
<

𝐶deg and 𝐶𝜂 <
50𝐶deg

𝐶𝑌∗ (1−2𝜂)4 . Plugging these into Eq. (C.19), it follows that

𝒜 8
𝑌,𝑧 (1 − 2𝜂)4

(
𝑑(𝑌) − 𝑑(𝑌∗)

)2

⩽
(1 − 2𝜂)4

100

(
𝑑(𝑌) − 𝑑(𝑌∗)

)2
+ 𝐶1(𝜂)

( 25𝐶deg

𝐶𝑌∗(1 − 2𝜂)4 + 2
)
𝑑(𝑌∗) + 2𝐶2(𝜂)

⩽
(1 − 2𝜂)4

100

(
𝑑(𝑌) − 𝑑(𝑌∗)

)2
+

𝐶1(𝜂)(25𝐶deg/𝐶𝑌∗ + 2)
(1 − 2𝜂)4 𝑑(𝑌∗) + 2𝐶2(𝜂) .

Rearranging the terms, it follows that

𝒜 8
𝑌,𝑧

0.99(1 − 2𝜂)4
(
𝑑(𝑌) − 𝑑(𝑌∗)

)2
⩽
𝐶1(𝜂)(25𝐶deg/𝐶𝑌∗ + 2)

(1 − 2𝜂)4 𝑑(𝑌∗) + 2𝐶2(𝜂)
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(
𝑑(𝑌) − 𝑑(𝑌∗)

)2
⩽
𝐶1(𝜂)(50𝐶deg/𝐶𝑌∗ + 4)

(1 − 2𝜂)8 𝑑(𝑌∗) + 4𝐶2(𝜂)
(1 − 2𝜂)4(

𝑑(𝑌) − 𝑑(𝑌∗)
)2

≲
𝐶1(𝜂)

(1 − 2𝜂)8 𝑑(𝑌
∗) + 𝐶2(𝜂)

(1 − 2𝜂)4 .

Plugging in 𝐶1(𝜂) = 𝐶deg𝜂2 log
(
1/𝜂

)
and 𝐶2(𝜂) = 𝐶deg𝜂2 log2 (1/𝜂) , it follows that

𝒜 8
𝑌,𝑧

(
𝑑(𝑌) − 𝑑(𝑌∗)

)2
≲
𝐶deg𝜂2 log

(
1/𝜂

)
(1 − 2𝜂)8 𝑑(𝑌∗) +

𝐶deg𝜂2 log2 (1/𝜂)
(1 − 2𝜂)4

≲
𝜂2 log

(
1/𝜂

)
(1 − 2𝜂)8 𝑑(𝑌∗) +

𝜂2 log2 (1/𝜂)
(1 − 2𝜂)4 .

□

D Robust binomial mean estimation

In this section, we show that the sample median can robustly estimate the mean of a binomial
distribution. For simplicity, we prove the result for a smaller but rich enough parameter
regime than our main theorem Theorem 1.2. We also make basic integrality assumptions
to avoid having to deal with floors and ceilings throughout the proof. To compare it with
Theorem 1.2, we set 𝑚 = 𝑛 in the arguments below.
The corrupted binomial model that we consider is defined as follows.
Definition D.1 (𝜂-corrupted (𝑚, 𝑛, 𝑑)-binomial model). Let 𝜂 ∈ [0, 1], the 𝜂-corrupted (𝑚,
𝑛, 𝑑)-binomial model is generated by first sampling 𝑚 i.i.d samples 𝑿◦

1 ,𝑿
◦
2 , . . . ,𝑿

◦
𝑚 from

Bin(𝑛, 𝑑
𝑛 ), then adversarially picking an 𝜂-fraction of the samples and arbitrarily modifying

them to get 𝑋1 , 𝑋2 , . . . , 𝑋𝑚 .

The goal of robust binomial mean estimation is to estimate the mean 𝑑 given observation
of corrupted samples 𝑋1 , 𝑋2 , . . . , 𝑋𝑚 that are generated according to the 𝜂-corrupted (𝑚,
𝑛, 𝑑)-binomial model from Definition D.1. We will show that the median of the corrupted
samples satisfy the following error guarantee.
Theorem D.2. Given 𝜂-corrupted (𝑚, 𝑛, 𝑑)-binomial samples 𝑋1 , 𝑋2 , . . . , 𝑋𝑚 , when 10000 ⩽ 𝑑 ⩽
0.0001𝑛 is an integer and 1000√

𝑚
⩽ 𝜂 ⩽ 0.01, the median 𝑑̂ satisfies, with probability 1−4 exp(−𝜂2𝑚/4),��𝑑̂ − 𝑑

�� ⩽ 𝑂(𝜂
√
𝑑) .

To prove Theorem D.2, we need the following two lemmas.
Lemma D.3. When 10000 ⩽ 𝑑 ⩽ 0.0001𝑛 is an integer and 𝜂 ⩽ 0.01, let 𝑿 ∼ Bin(𝑛, 𝑑

𝑛 ) be a
binomial random variable, it follows that

ℙ(𝑑 − 100𝜂
√
𝑑 ⩽ 𝑿 ⩽ 𝑑 − 1) ⩾ 4𝜂 , (D.1)

and,
ℙ(𝑑 + 1 ⩽ 𝑿 ⩽ 𝑑 + 100𝜂

√
𝑑) ⩾ 4𝜂 . (D.2)

Proof. Consider an arbitrary integer 𝑡 ∈ [𝑑 − 100𝜂
√
𝑑, 𝑑 + 100𝜂

√
𝑑], it follows that

log(ℙ(𝑿 = 𝑡)) = log

((
𝑛

𝑡

) (
𝑑

𝑛

) 𝑡 (
𝑛 − 𝑑

𝑛

)𝑛−𝑡)
= log

(
𝑛!

𝑡!(𝑛 − 𝑡)!

(
𝑑

𝑛

) 𝑡 (
𝑛 − 𝑑

𝑛

)𝑛−𝑡)
= log

(
𝑛!

𝑡!(𝑛 − 𝑡)!

)
+ 𝑡 log

(
𝑑

𝑛

)
+ (𝑛 − 𝑡) log

(
𝑛 − 𝑑

𝑛

)
.

(D.3)
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By Stirling’s approximation, it follows that

𝑛!
𝑡!(𝑛 − 𝑡)! =

√
2𝜋𝑛(𝑛/𝑒)𝑛(1 + 𝑂(1/𝑛))

√
2𝜋𝑡(𝑡/𝑒)𝑡(1 + 𝑂(1/𝑡)) ·

√
2𝜋(𝑛 − 𝑡)((𝑛 − 𝑡)/𝑒)𝑛−𝑡(1 + 𝑂(1/(𝑛 − 𝑡)))

=

√
𝑛

2𝜋𝑡(𝑛 − 𝑡) ·
1 + 𝑂(1/𝑛)

(1 + 𝑂(1/𝑡))(1 + 𝑂(1/(𝑛 − 𝑡)) ·
(
𝑛

𝑡

) 𝑡 ( 𝑛

𝑛 − 𝑡

)𝑛−𝑡
⩾

√
1

10𝑡

(
𝑛

𝑡

) 𝑡 ( 𝑛

𝑛 − 𝑡

)𝑛−𝑡
.

(D.4)

Plugging Eq. (D.4) into Eq. (D.3), we get

log(ℙ(𝑿 = 𝑡)) ⩾ 1
2 log

(
1

10𝑡

)
+ 𝑡 log

(
𝑑

𝑡

)
+ (𝑛 − 𝑡) log

(
𝑛 − 𝑑

𝑛 − 𝑡

)
. (D.5)

For the second term 𝑡 log
(
𝑑
𝑡

)
, we use the Maclaurin series of natural logarithm and get

𝑡 log
(
𝑑

𝑡

)
= 𝑡 log

(
1 + 𝑑 − 𝑡

𝑡

)
⩾ 𝑡

(
𝑑 − 𝑡

𝑡
− (𝑑 − 𝑡)2

2𝑡2 + (𝑑 − 𝑡)3
3𝑡3

)
= 𝑑 − 𝑡 − (𝑑 − 𝑡)2

2𝑡 + (𝑑 − 𝑡)3
3𝑡2 .

Since (𝑑 − 𝑡)2 ⩽ 10000𝜂2𝑑 ⩽ 𝑑 and 𝑡 ⩾ 𝑑 − 100𝜂
√
𝑑 ⩾ 0.99𝑑, it follows that

𝑡 log
(
𝑑

𝑡

)
⩾ 𝑑 − 𝑡 − 0.9 . (D.6)

For the last term (𝑛 − 𝑡) log
(
𝑛−𝑑
𝑛−𝑡

)
, we can also use the Maclaurin series of natural logarithm

and get

(𝑛 − 𝑡) log
(
𝑛 − 𝑑

𝑛 − 𝑡

)
= (𝑛 − 𝑡) log

(
1 + 𝑡 − 𝑑

𝑛 − 𝑡

)
⩾ (𝑛 − 𝑡)

(
𝑡 − 𝑑

𝑛 − 𝑡
− (𝑡 − 𝑑)2

2(𝑛 − 𝑡)2 + (𝑡 − 𝑑)3
3(𝑛 − 𝑡)3

)
= 𝑡 − 𝑑 − (𝑡 − 𝑑)2

2(𝑛 − 𝑡) +
(𝑡 − 𝑑)3

3(𝑛 − 𝑡)2 .

Since (𝑡 − 𝑑)2 ⩽ 10000𝜂2𝑑 ⩽ 0.0001𝑛, it follows that

(𝑛 − 𝑡) log
(
𝑛 − 𝑑

𝑛 − 𝑡

)
⩾ 𝑡 − 𝑑 − 0.1 . (D.7)

Plugging Eq. (D.6) and Eq. (D.7) into Eq. (D.5), we get

log(ℙ(𝑿 = 𝑡)) ⩾ 1
2 log

(
1

10𝑡

)
− 1 ⩾

1
2 log

(
1
𝑡

)
− 3 . (D.8)

Now, we are ready to prove Eq. (D.1) and Eq. (D.2). We first consider the regime 𝑡 ∈
[𝑑 − 100𝜂

√
𝑑, 𝑑 − 1], it follows that

log
(
ℙ(𝑑 − 100𝜂

√
𝑑 ⩽ 𝑿 ⩽ 𝑑 − 1)

)
= log©­«

𝑑−1∑
𝑡=𝑑−100𝜂

√
𝑑

ℙ(𝑿 = 𝑡)ª®¬
⩾ log

(
100𝜂

√
𝑑ℙ(𝑿 = 𝑑 − 100𝜂

√
𝑑)

)
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= log
(
100𝜂

)
+ 1

2 log(𝑑) + log
(
ℙ(𝑿 = 𝑑 − 100𝜂

√
𝑑)

)
⩾ log

(
100𝜂

)
+ 1

2 log(𝑑) + 1
2 log

(
1

𝑑 − 100𝜂
√
𝑑

)
− 3

= log
(
4𝜂

)
+ 1

2 log

(
𝑑

𝑑 − 100𝜂
√
𝑑

)
⩾ log

(
4𝜂

)
,

which implies that
ℙ(𝑑 − 100𝜂

√
𝑑 ⩽ 𝑿 ⩽ 𝑑 − 1) ⩾ 4𝜂 .

The regime 𝑡 ∈ [𝑑 + 1, 𝑑 + 100𝜂
√
𝑑] can be proved in a similar way

log
(
ℙ(𝑑 + 1 ⩽ 𝑿 ⩽ 𝑑 + 100𝜂

√
𝑑)

)
= log©­«

𝑑+100𝜂
√
𝑑∑

𝑡=𝑑+1
ℙ(𝑿 = 𝑡)ª®¬

⩾ log
(
100𝜂

√
𝑑ℙ(𝑿 = 𝑑 + 100𝜂

√
𝑑)

)
= log

(
100𝜂

)
+ 1

2 log(𝑑) + log
(
ℙ(𝑿 = 𝑑 + 100𝜂

√
𝑑)

)
⩾ log

(
100𝜂

)
+ 1

2 log(𝑑) + 1
2 log

(
1

𝑑 + 100𝜂
√
𝑑

)
− 3

= log
(
4.1𝜂

)
+ 1

2 log

(
𝑑

𝑑 + 100𝜂
√
𝑑

)
⩾ log

(
4.1𝜂

)
+ 1

2 log
(

1
1.01

)
⩾ log

(
4𝜂

)
.

which implies that
ℙ(𝑑 + 1 ⩽ 𝑿 ⩽ 𝑑 + 100𝜂

√
𝑑) ⩾ 4𝜂 .

□

Lemma D.4. When 10000 ⩽ 𝑑 ⩽ 0.0001𝑛 is an integer and 1000
𝑚 ⩽ 𝜂 ⩽ 0.01, let 𝑿◦

1 ,𝑿
◦
2 , . . . ,𝑿

◦
𝑚

be 𝑚 i.i.d. binomial random variables from Bin(𝑛, 𝑑
𝑛 ), with probability 1 − 2 exp

(
−𝜂𝑚

2
)
, there are at

least 2𝜂𝑚 samples in range [𝑑−100𝜂
√
𝑑, 𝑑−1] and at least 2𝜂𝑚 samples in range [𝑑+1, 𝑑+100𝜂

√
𝑑].

Proof. By Lemma D.3, we know that for each 𝑿 ∈ {𝑿◦
1 ,𝑿

◦
2 , . . . ,𝑿

◦
𝑚}, we have

ℙ(𝑑 − 100𝜂
√
𝑑 ⩽ 𝑿 ⩽ 𝑑 − 1) ⩾ 4𝜂 , (D.9)

and,
ℙ(𝑑 + 1 ⩽ 𝑿 ⩽ 𝑑 + 100𝜂

√
𝑑) ⩾ 4𝜂 . (D.10)

Let us denote by 𝒁𝑖 the event that 𝑿◦
𝑖

is in range [𝑑 − 100𝜂
√
𝑑, 𝑑 − 1]. By Eq. (D.9), we

have 𝔼[𝒁𝑖] ⩾ 4𝜂. Since 𝑿◦
1 ,𝑿

◦
2 , . . . ,𝑿

◦
𝑚 are i.i.d., the events 𝒁𝑖 ’s are i.i.d. Bernoulli random

variables. Therefore, by Chernoff bound, it follows that

ℙ

(∑
𝑖

𝒁𝑖 ⩽ 2𝜂𝑚

)
⩽ ℙ

(∑
𝑖

𝒁𝑖 ⩽ (1 − 1
2 )𝔼

[∑
𝑖

𝒁𝑖

])
⩽ exp

(
−𝔼[∑𝑖 𝒁𝑖]

8

)
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⩽ exp
(
−𝜂𝑚

2

)
.

Therefore, with probability at least 1 − exp
(
−𝜂𝑚

2
)
, at least 2𝜂𝑚 samples are in range [𝑑 −

100𝜂
√
𝑑, 𝑑 − 1]. Using the same argument, it can also be shown that, with probability at least

1 − exp
(
−𝜂𝑚

2
)
, at least 2𝜂𝑚 samples are in range [𝑑 + 1, 𝑑 + 100𝜂

√
𝑑]. The lemma follows by

union bound. □

Now, we are ready to prove Theorem D.2 for the error guarantee of median for corrupted
binomial samples.

Proof of Theorem D.2. Consider the uncorrupted samples 𝑿◦
1 ,𝑿

◦
2 , . . . ,𝑿

◦
𝑚 . Notice that the

median of Bin(𝑛, 𝑑
𝑛 ) is 𝑑 when 𝑑 is an integer, that is ℙ(𝑿◦

𝑖
⩾ 𝑑) ⩾ 1

2 and ℙ(𝑿◦
𝑖
⩽ 𝑑) ⩾ 1

2
for each 𝑖 ∈ [𝑚]. Using similar arguments via Chernoff bound as Lemma D.4, it is easy to
check that with probability at least 1 − 2 exp(−𝜂2𝑚/4), there are at least (1−𝜂)𝑚

2 uncorrupted
samples that are at least 𝑑 and at least (1−𝜂)𝑚

2 uncorrupted samples that are at most 𝑑.

By Lemma D.4, with probability 1 − 2 exp(−𝜂𝑚/2) ⩾ 1 − 2 exp(−𝜂2𝑚/4), there are at least
2𝜂𝑚 uncorrupted samples in range [𝑑−100𝜂

√
𝑑, 𝑑−1] and at least 2𝜂𝑚 uncorrupted samples

in range [𝑑 + 1, 𝑑 + 100𝜂
√
𝑑].

Therefore, combining the two bounds, with probability 1 − 4 exp(−𝜂2𝑚/4), there are at least
𝑚
2 + 3𝜂𝑚

2 uncorrupted samples in range [𝑑 − 100𝜂
√
𝑑, 𝑛] and at least 𝑚

2 + 3𝜂𝑚
2 uncorrupted

samples in range [0, 𝑑 + 100𝜂
√
𝑑].

After corrupting 𝜂𝑚 samples, there are still at least 𝑚
2 + 𝜂𝑚

2 samples in range [𝑑 − 100𝜂
√
𝑑, 𝑛]

and at least 𝑚
2 + 𝜂𝑚

2 samples in range [0, 𝑑 + 100𝜂
√
𝑑]. Thus, the median 𝑑̂ satisfies, with

probability 1 − 4 exp(−𝜂2𝑚/4), ��𝑑̂ − 𝑑
�� ⩽ 𝑂(𝜂

√
𝑑) .

□
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately
reflect the paper’s contributions and scope?
Answer: [Yes]
Justification: We have formal proofs for what we claim in the abstract and introduc-
tion.
Guidelines:

• The answer NA means that the abstract and introduction do not include the
claims made in the paper.

• The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect
how much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that
these goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the
authors?
Answer: [Yes]
Justification: We discuss the gap between our result and the best known lower
bound, and we propose it as a open problem for whether the gap is inherent.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No
means that the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their
paper.

• The paper should point out any strong assumptions and how robust the
results are to violations of these assumptions (e.g., independence assumptions,
noiseless settings, model well-specification, asymptotic approximations only
holding locally). The authors should reflect on how these assumptions might
be violated in practice and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical
results often depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithm may perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
system might not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed
algorithms and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach
to address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might
be used by reviewers as grounds for rejection, a worse outcome might be
that reviewers discover limitations that aren’t acknowledged in the paper. The
authors should use their best judgment and recognize that individual actions in
favor of transparency play an important role in developing norms that preserve
the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assump-
tions and a complete (and correct) proof?
Answer: [Yes]
Justification: We state everything formally and provide full proofs. When we say
something intuitive and informal, we always have formal counterparts in the
appendices.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and

cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any

theorems.
• The proofs can either appear in the main paper or the supplemental material,

but if they appear in the supplemental material, the authors are encouraged to
provide a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be com-
plemented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce
the main experimental results of the paper to the extent that it affects the main
claims and/or conclusions of the paper (regardless of whether the code and data
are provided or not)?
Answer: [NA]
Justification: Our paper does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be

perceived well by the reviewers: Making the paper reproducible is important,
regardless of whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the
steps taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the
architecture fully might suffice, or if the contribution is a specific model and
empirical evaluation, it may be necessary to either make it possible for others
to replicate the model with the same dataset, or provide access to the model.
In general. releasing code and data is often one good way to accomplish this,
but reproducibility can also be provided via detailed instructions for how
to replicate the results, access to a hosted model (e.g., in the case of a large
language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it

clear how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should

describe the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results
or a way to reproduce the model (e.g., with an open-source dataset or
instructions for how to construct the dataset).
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(d) We recognize that reproducibility may be tricky in some cases, in which
case authors are welcome to describe the particular way they provide for
reproducibility. In the case of closed-source models, it may be that access to
the model is limited in some way (e.g., to registered users), but it should be
possible for other researchers to have some path to reproducing or verifying
the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [NA]
Justification: This paper does not include experiments requiring code.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected
simply for not including code, unless this is central to the contribution (e.g., for
a new open-source benchmark).

• The instructions should contain the exact command and environment needed
to run to reproduce the results. See the NeurIPS code and data submis-
sion guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy)
for more details.

• The authors should provide instructions on data access and preparation,
including how to access the raw data, preprocessed data, intermediate data,
and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for
the new proposed method and baselines. If only a subset of experiments are
reproducible, they should state which ones are omitted from the script and
why.

• At submission time, to preserve anonymity, the authors should release
anonymized versions (if applicable).

• Providing as much information as possible in supplemental material (appended
to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits,
hyperparameters, how they were chosen, type of optimizer, etc.) necessary to
understand the results?
Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level

of detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as

supplemental material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.
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Guidelines:
• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,

confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly
stated (for example, train/test split, initialization, random drawing of some
parameter, or overall run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form
formula, call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard

error of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in
tables or figures symmetric error bars that would yield results that are out of
range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the
text how they were calculated and reference the corresponding figures or tables
in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed
to reproduce the experiments?
Answer: [NA]
Justification: This is a theoretical paper that does not include experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal

cluster, or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the

individual experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more

compute than the experiments reported in the paper (e.g., preliminary or failed
experiments that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with
the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The authors conform, in every respect, with the NeurIPS Code of Ethics
while writing this paper.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of
Ethics.

• If the authors answer No, they should explain the special circumstances that
require a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
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Question: Does the paper discuss both potential positive societal impacts and
negative societal impacts of the work performed?
Answer: [NA]
Justification: This is a theoretical paper on random graph estimation that does not
have societal impact.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no

societal impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended

uses (e.g., disinformation, generating fake profiles, surveillance), fairness con-
siderations (e.g., deployment of technologies that could make decisions that
unfairly impact specific groups), privacy considerations, and security consider-
ations.

• The conference expects that many papers will be foundational research and
not tied to particular applications, let alone deployments. However, if there
is a direct path to any negative applications, the authors should point it out.
For example, it is legitimate to point out that an improvement in the quality
of generative models could be used to generate deepfakes for disinformation.
On the other hand, it is not needed to point out that a generic algorithm for
optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technol-
ogy is being used as intended and functioning correctly, harms that could arise
when the technology is being used as intended but gives incorrect results, and
harms following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible
mitigation strategies (e.g., gated release of models, providing defenses in
addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor
how a system learns from feedback over time, improving the efficiency and
accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for
responsible release of data or models that have a high risk for misuse (e.g., pretrained
language models, image generators, or scraped datasets)?
Answer: [NA]
Justification: This is a theoretical paper that does not poses such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example
by requiring that users adhere to usage guidelines or restrictions to access the
model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many
papers do not require this, but we encourage authors to take this into account
and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models),
used in the paper, properly credited and are the license and terms of use explicitly
mentioned and properly respected?
Answer: [NA]
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Justification: This is a theoretical paper that does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or

dataset.
• The authors should state which version of the asset is used and, if possible,

include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and

terms of service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in

the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the
license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach
out to the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the
documentation provided alongside the assets?
Answer: [NA]
Justification: This is a theoretical paper that does not involve new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as

part of their submissions via structured templates. This includes details about
training, license, limitations, etc.

• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You
can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots,
if applicable, as well as details about compensation (if any)?
Answer: [NA]
Justification: This is a theoretical paper that does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then as much detail as
possible should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection,
curation, or other labor should be paid at least the minimum wage in the
country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects

33

paperswithcode.com/datasets
paperswithcode.com/datasets


Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements
of your country or institution) were obtained?
Answer: [NA]
Justification: This is a theoretical paper that does not involve crowdsourcing nor
research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor
research with human subjects.

• Depending on the country in which research is conducted, IRB approval (or
equivalent) may be required for any human subjects research. If you obtained
IRB approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between
institutions and locations, and we expect authors to adhere to the NeurIPS
Code of Ethics and the guidelines for their institution.

• For initial submissions, do not include any information that would break
anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM
is used only for writing, editing, or formatting purposes and does not impact the
core methodology, scientific rigorousness, or originality of the research, declaration
is not required.
Answer: [NA]
Justification: LLMs were not used at all during this research.
Guidelines:

• The answer NA means that the core method development in this research does
not involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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