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ABSTRACT

Time-series gravitational wave glitch detection presents significant challenges for
machine learning due to the complexity of the data, limited labeled examples,
and data imbalance. To address these issues, we introduce Debiased Contrastive
Learning with Multi-Resolution Kolmogorov-Arnold Network(dcMltR-KAN), a
novel self-supervised learning (SSL) approach that enhances glitch detection, ro-
bustness, explainability, and generalization. dcMltR-KAN consists of three key
novel components: Wasserstein Debiased Contrastive Learning (wDCL), a CNN-
based encoder, and a Multi-Resolution KAN (MltR-KAN). The wDCL improves
the model’s sensitivity to data imbalance and geometric structure. The CNN-based
encoder eliminates false negatives during training, refines feature representations
through similarity-based weighting (SBW), and reduces data complexity within
the embedding. Additionally, MltR-KAN enhances explainability, generalization,
and efficiency by adaptively learning parameters. Our model outperforms widely
used baselines on O1, O2, and O3 data, demonstrating its effectiveness. Extend-
ing dcMltR-KAN to other time-series benchmarks underscores its novelty and
efficiency, marking it as the first model of its kind and paving the way for future
SSL and astrophysics research.

1 INTRODUCTION

Gravitational waves are ripples in spacetime caused by some of the most violent and energetic events
in the universe, such as merging black holes, colliding neutron stars, and supernovae. Predicted
by Albert Einstein in 1915 as part of his theory of general relativity, these waves carry crucial
information about their origins and the nature of gravity itself. Their detection, along with the
identification of glitches, offers a new way to observe the cosmos, revealing insights unattainable
through traditional methods like light-based telescopes (Bi et al., 2024).

Glitches, short-lived noise transients from environmental or instrumental sources, closely mimic
complex gravitational wave signals, making it difficult to distinguish real events from noise. The
groundbreaking detection of gravitational waves by LIGO and Virgo in 2015 marked the begin-
ning of a new era in astrophysics, allowing scientists to explore phenomena previously undetectable
(Bailes et al., 2021). Since then, identifying and reducing gravitational wave glitches has become
increasingly important in both astrophysics and deep learning (Chowdhury, 2024).

However, the unique characteristics of gravitational wave data pose significant challenges for current
deep learning models, particularly in terms of data complexity, imbalance, limited labeled data, and
explainability, making it difficult to accurately detect meaningful glitches. Gravitational wave raw
data is inherently high-dimensional and multi-resolution, with signals captured at high sampling
rates across numerous sensors and frequencies (Chua et al., 2019).

This vast, non-stationary complex data, where noise and signal properties change over time, makes
it difficult for deep learning models to focus on relevant features across various scales (George &
Huerta, 2018; Chowdhury, 2024). The presence of instrumental and environmental noise further
complicates the distinction between real gravitational wave signals and glitches. Additionally, data
imbalance—with true gravitational wave events being rare compared to the overwhelming volume
of noise—leads to model overfitting on the dominant noise class, limiting detection accuracy.
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Limited labels pose another obstacle to deep learning models, which typically require large amounts
of labeled data for effective training. In gravitational wave glitch detection, labeled data is scarce due
to the expert knowledge and resources needed for annotation (Miller & Yunes, 2019). Consequently,
models often face generalization issues like underfitting or overfitting when applied to small or
imbalanced datasets (Powell et al., 2023; Cuoco et al., 2020).

The lack of explainability in deep learning models is also a major limitation. As black boxes, they
offer little insight into their predictions, reducing trust in gravitational wave detection where scien-
tific validation is critical. This lack of transparency hampers collaboration with experts and compli-
cates identifying biases or errors. These challenges highlight the shortcomings of deep learning in
effectively detecting and explaining meaningful gravitational wave glitches.

To address these challenges, we introduce Debiased Contrastive Learning with Multi-Resolution
Kolmogorov-Arnold Network (dcMltR-KAN), a novel self-supervised learning (SSL) framework
designed to learn meaningful representations of gravitational wave data. A key component of this
framework is our proposed Multi-Resolution Kolmogorov-Arnold Network (MltR-KAN), which is
uniquely suited to capture multi-scale patterns and complexities inherent in gravitational wave data.
Inspired by Kolmogorov’s superposition theorem, MltR-KAN employs wavelet basis functions and
hierarchical structures to enhance explainability, generalization, and efficiency. By leveraging the
additivity and learned parameters of KAN, our approach provides interpretable insights into the
detection of glitches while improving learning generalization and efficiency.

Problem formulation. Unlike fully-supervised deep learning approach, dcMltR-KAN offers the
solution to the following problem: Given a dataset X = {xi}Ni=1 of unlabeled gravitational wave
signals, where each xi ∈ Rd is a d-dimensional feature vector extracted from the raw time-series
data over the period interval T , the goal is to learn a representation function f : Rd → Rk that maps
signals to a k-dimensional feature space where meaningful signal and glitch patterns are captured.

dcMltR-KAN learns meaningful data representations through three novel components: Wasserstein
Debiased Contrastive Learning (wDCL), a CNN-based encoder, and a multi-resolution KAN (MltR-
KAN). It leverages wDCL to effectively handle both data complexity and the scarcity of labeled data,
while increasing sensitivity to the geometric structure of gravitational wave glitch data and managing
data imbalance. The CNN-based encoder is employed to conduct false negative elimination (FNE) in
training, optimize feature representation through similarity-based weighting (SBW), and reduce data
complexity via feature extraction in the embedding. MltR-KAN leverages wavelet basis functions
to capture complex, multi-scale patterns in gravitational wave data. Combined with hierarchical
learning, multi-resolution FNE and SBW, and learned parameters, this approach enhances glitch
detection while improving efficiency, explainability, and generalization.

The proposed model surpasses other supervised deep learning approaches on the benchmark O1,
O2, and O3 datasets (Abbott et al., 2019; 2021; 2023) demonstrating its superior performance and
advantages. Furthermore, we extend dcMltR-KAN to benchmark audio data, showcasing its supe-
riority. The dcMltR-KAN is the first model to integrate multi-resolution KAN into SSL, and it will
inspire future research in SSL and astrophysics.

2 RELATED WORK

Deep learning is widely used in gravitational wave glitch detection for their capabilities in finding
complex relationships and handling large-scale data.

Generative Adversarial Networks (GANs): Powell et al. (2023) employed GAN with advanced
applications in glitch detection. Dooney et al. (2022) introduced a dual-discriminator approach for
time-domain signal generation, improving convergence in gravitational wave detection. However,
GANs rely on large and diverse datasets for effective training, and their performance may be limited
by the availability of sufficient high-quality labeled data in the gravitational wave domain.

Convolutional Neural Networks (CNNs): Razzano & Cuoco (2018) developed a CNN pipeline
that efficiently classified detector glitches based on their time-frequency representations, achieving
high accuracy, especially in simulated data. Fernandes et al. (2023) improved glitch classification
by using transfer learning with advanced CNN architectures like ConvNeXt. Alvarez-Lopez et al.
(2023) integrated CNNs within a decision tree framework, showing robustness in diverse noise en-

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

vironments. CNNs, however, often struggle with overfitting and handling diverse noise conditions,
limiting real-world generalization (Schäfer et al., 2023).

Variational Autoencoders (VAEs) and SSL: Sakai et al. (2022) applied a VAE with invariant in-
formation clustering (IIC) to classify transient noises by learning from 2D image features, aligning
well with existing annotations. However, VAEs often produce blurry reconstructions and struggle
with non-linear data, resulting in suboptimal feature representation and classification accuracy. Fer-
nandes et al. (2023) combined SSL with CNNs to generate pseudo-labels for the Gravity Spy dataset,
showing promise but falling short of supervised methods in accuracy. SSL methods often underper-
form fully supervised approaches, particularly in detecting subtle glitches in noisy environments.

3 DEBIASED CONTRASTIVE LEARNING WITH MULTI-RESOLUTION KAN

Figure 1 illustrates the proposed novel self-supervised learning (SSL) model, dcMltR-KAN, which
enhances debiased contrastive learning using a multi-resolution KAN.

Figure 1: Debiased Contrastive Learning with Multi-Resolution Kolmogorov-Arnold Network

dcMltR-KAN. The model comprises three novel components. The first is the proposed Wasserstein
Debiased Contrastive Learning (wDCL) that optimizes embeddings and addresses data imbalance
by capturing the geometric structure of the input data.

The second is a CNN-based encoder that eliminates false negatives during training, refines feature
representations in the embedding through similarity-based weighting, uncovers latent features in
the input data while removing potential noise, reduces dimensionality, and lowers computational
complexity in SSL.

The third component includes multi-resolution KAN (MltR-KAN) layers, which decompose the
time-series glitch data into multiple resolutions using wavelets (e.g., Haar) within the KAN archi-
tecture to enhance explainability, efficiency, and generalization. Notably, SSL principles are applied
across all three components: wDCL, the CNN-based encoder, and MltR-KAN. We describe each
component in detail below.

3.1 WASSERSTEIN DEBIASED CONTRASTIVE LEARNING (WDCL)

wDCL extends debiased contrastive learning (DCL) by embedding the Wasserstein distance into
the loss function, enhancing the sensitivity to the underlying geometric structure of the data and
addressing data imbalance while maintaining the benefits of DCL.

Contrastive Learning and Debiased Contrastive Learning: Contrastive learning aims to mini-
mize the distance between embeddings of positive sample pairs (x, x+) (similar data points), which
are the transformed representations of input data after passing through an encoder, and maximize the
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distance for negative sample pairs (x, x−)(dissimilar data points), thereby improving the model’s
ability to differentiate between classes Chopra et al. (2005). Let pdata(x) represent the data dis-
tribution of samples x, and let ppos(x, x

+) denote the distribution of positive pairs, the objec-
tive function for the encoder f(x), which produces an L2-normalized feature vector, is defined

as:Lcontrastive = E(x,x+)∼ppos

[
− log ef(x)⊤f(x+)/τ∑M

i=1 ef(x)⊤f(x
−
i

)/τ

]
, where x−i are negative samples drawn

from pdata, M is the number of negative pairs, and τ denotes the temperature parameter that controls
the smoothness or sharpness of the similarity distribution in the softmax function (Wang & Isola,
2022; Chuang et al., 2020).

Contrastive learning assumes that all negative samples x− are true negatives dissimilar to the anchor
sample x. However, in practice, some negative samples might actually be similar to the anchor
(false negatives), introducing bias and degrading model performance. Debiased contrastive learning
(DCL) addresses this issue by adjusting the loss function to account for the probability that a negative
sample might be a false negative. The key idea is to re-weight the contribution of each negative
sample based on its similarity to the anchor, thereby reducing the bias introduced by false negatives:

Ldebiased = E(x,x+)∼ppos

− log ef(x)⊤f(x+)/τ

ef(x)⊤f(x+)/τ+
∑M

i=1

(
ef(x)⊤f(x

−
i

)/τ−γe2f(x)⊤f(x
−
i

)/τ

)
 , where γ is a

scaling factor representing the probability of a negative sample being a false negative.

Wasserstein-based Debiased Contrastive Learning (wDCL): The DCL loss function overcomes
the negative pair selection limitations in constrative learning. However, the Ldebiased can be sensitive
to imbalanced data distributions, where negative samples may actually be similar to the anchor (false
negatives). Furthermore, it can be hard for Ldebiased to capture the true structure of the data, because
of the limitations of Euclidean-based distances.

We propose Wasserstein-based Debiased Contrastive Learning by incorporating the Wasserstein dis-
tance into the debiased loss function to handle the challenge, forming the foundation of our dcMltR-
KAN model. Unlike Euclidean or similar metrics, the Wasserstein distance captures the true geomet-
ric structure of real-world data by measuring the discrepancy between two probability distributions
based on the geometry of the data space. This makes it particularly effective in high-dimensional
settings. Additionally, its evaluation of entire distributions, rather than isolated points, allows it to
handle imbalances between positive and negative samples more robustly. The Wasserstein distance
outperforms KL-divergence by handling disjoint supports, avoiding divergence issues. It measures
the ”cost” of transforming one distribution into another, is robust to outliers, and ensures unbiased,
symmetric comparisons, making it ideal for imbalanced datasets in contrastive learning.

The Wasserstein distance between two distributions µ and ν over a metric space X is defined as:

W (µ, ν) = inf
γ∈Γ(µ,ν)

∫
X×X

d(x, y) dγ(x, y), (1)

where Γ(µ, ν) denotes the set of all joint distributions γ with marginals µ and ν, and d(x, y) repre-
sents the metric on space X . Computing the Wasserstein distance is challenging due to optimization
over joint distributions. We use the Sinkhorn divergence with entropy regularization for efficiency,
preserving sensitivity to distributions (details in Appendix)

Wasserstein contrastive loss Lwdcl: We can build the Wasserstein contrastive loss by integrating
Wasserstein distance with Ldebiased. However, Ldebiased may not handle multiple pairs of negatives
and can not handle multiple similar and dissimilar pairs in high-dimensional spaces, besides more
computing in optimization. We tackle this challenge by integrating Wasserstein distance with N-pair

contrastive loss: LN -pair = − log ef(x)⊤f(x+)

ef(x)⊤f(x+)+
∑N−1

i=1 ef(x)⊤f(x
−
i

)
as,

Lwdcl(f, x, α, β) = λ · Lwass(f(x
+), f(x(α)−))− β · LN -pair(f(x), f(x

+), f(x(α)−)) (2)

Here Lwass(f(x
+), f(x(α)−)) is the the Wasserstein loss capturing the geometric structure of pos-

itive and negative sample pairs, which is calculated by the Sinkhorn-divergence-based method:
Lwass(f(x

+), f(x−)) = Sinkhorn-divergence(f(x+), f(x−)) (Appendix). This explicit Lwass term
integrates the Wasserstein distance into the contrastive learning objective, ensuring robustness to
data imbalance and alignment with the geometric structure of the feature space.
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The scaling coefficients λ and β are employed to modulate the Wasserstein and N-pair contrastive
objectives, respectively. The term x(α)− refers to a subset of negative samples determined by
the parameter α. These are most likely hard negatives, selected to reduce noise and redundancy,
sharpening the embedding space and improving class separability.

The hyperparameter α acts as a discriminative threshold to filter through negative pairs, refining the
model’s emphasis on important contrasts. The more details about α can be found in the following
False Negatives Elimination (FNE) part in section 3.2. It is recommended to select λ = β = 1 by
default, but it can be adjusted according to input data.

Positive sample generation. In our SSL setting, positive samples are generated by adding Gaus-
sian noise to the input data, creating slightly varied versions of the same datapoint. This approach
preserves key data characteristics while introducing variability, enhancing contrastive learning and
enabling the model to better generalize across noisy and imperfect data—an advantage for glitch
detection.

Dynamic α adjustment: We recommend to dynamically adjust the α according to input data size,
which helps optimizing negative sample selection and avoid the extreme cases where those ”easier”
negative samples, which are already different from the anchor, are selected if a too large α is picked.
For relatively small datasets, a smaller α preserves informative hard-negatives, preventing possible
overfitting and enhancing generalization.

For larger datasets, a larger α filters out more negatives, reducing false negatives and focusing on
informative hard-negatives, which are negative samples highly similar to the anchor but belong to a
different class. For instance, We set from 0.1% to 4% for the O1 dataset (41,717 samples) and from
2% to 10% for larger datasets like O2 and O3 (134,372 and 500,524 samples, respectively in this
study), By dynamically adjusting α based on the dataset size, our model adapts its learning strategy
to balance easy and hard negatives, enhancing generalization and feature discrimination across task.
Theorem 1 proves the robustness of wDCL to data imbalance from a loss function perspective.

Theorem 1 (Robustness of wDCL to imbalance): Lwdcl is robust to data imbalance than Ldebiased.

3.2 CNN-BASED ENCODER

Rationale: After applying wDCL, which uses the Wasserstein distance to optimize embeddings and
address data imbalance by capturing the geometric structure of the data, there remains a need to
refine false negative samples used in training. Furthermore, how to enhance feature representation
quality for learning remains another challenge.

CNN-based encoder. We propose a CNN-based encoder, inspired by (Wu et al., 2018), to address
these challenges using False Negatives Elimination (FNE) and Similarity-based Weighting (SBW)
techniques. The encoder extracts relevant features, such as transient signal patterns or glitches, while
filtering out noise in the embedding. Through convolutional, pooling, and dense layers, it captures
both local and global patterns while reducing dimensionality in gravitational wave data.

Feature similarity matrix calculation. FNE in training and following SBW-based data representa-
tion optimization both rely on the calculation of a feature similarity matrix S that evaluate proximity
between positive and negative pairs as follows.

The CNN-based encoder f maps each input sample xi into a feature vector fi: fi = f(xi), fi ∈
Rd, i = 1, 2, . . . , N . The feature vectors fi are further stacked to form the feature matrix F:

F = [f1 f2 · · · fN ]
⊤
= [f(x1) f(x2) · · · f(xN )]

⊤
, F ∈ RN×d (3)

We then calculate the matrix S to evaluate the similarity between positive and negative pairs, en-
abling the model to optimize the embeddings and assess how well the wDCL’s learned feature space
represents the underlying structure of the data under the Wasserstein contrastive loss:

S = FFT , S ∈ RN×N (4)

where each element of S is given by the dot product between feature vectors: Sij = f⊤i fj , where
each feature vector is normalized as fi = fi

∥fi∥2
to remove noise and possible outliers. This normal-

ization ensures that the similarity, which is calculated as a cosine similarity, is based on the shape of
the vectors rather than their magnitude, particularly important for robustly comparing noisy samples.
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False Negatives Elimination (FNE). To enhance the quality of embeddings and eliminate false
negatives during training, we utilize the matrix S to identify and exclude negative samples that
are excessively similar to the anchor sample. For each anchor xi, rank all other samples xj (j ̸=
i) by their similarity Sij . Then we eliminate top α fraction by defining α ∈ [0, 1] adaptive to
input data size as the elimination ratio (see dynamic α adjustment subsection in 3.1). With Nneg =
N(N − 1), we remove the top α ×Nneg negatives with the highest similarity scores. By removing
false negatives, the refined contrastive loss Lwdcl converges faster and improves downstream task
performance. Hence, FNE leads to a reduction in the overall loss, proving that it enhances SSL
training quality. Mathematically, it means the following proposition holds:

Proposition 1: Lwdcl with FNE is lower than the loss without FNE: E(x,x(α)−)

[
LFNE

wdcl

]
<

E(x,x−)

[
Lno FNE

wdcl

]
, where α is the the elimination ratio.

Similarity-Based Weighting (SBW). SBW refines feature representations in the embedding by
leveraging the relationships between similar data points. We leverage the similarity matrix S to
get si, representing the similarities from sample xi to the others. We then select top k similar
samples by picking indices Ki, which correspond the top khighest similarity scores in si. Next, we
compute weights for selected indices as: wij = exp(sij), ∀j ∈ Ki to emphasize the similarity
and ensure positive weights. We then aggregate the top k features vectors: vi =

∑
j∈Ki

wijfj . The
aggregated feature vector vi will replace the original sample xi to optimize its feature representation.
This weighted aggregation improves the quality of the data for subsequent models (e.g., multiR-
KAN). As such, SBW refines feature representations, leading to a lower expected contrastive loss
by improving the quality of the learned embeddings. Proposition 2 demonstrates the impact of
SBW on the expected wDCL loss, suggesting that the aggregated feature vector produced by SBW
enhances the quality of data representation, leading to improved model performance.

Proposition 2: The loss Lwdcl with SBW is lower than the loss without SBW: E(x,vi)

[
LSBW

wdcl

]
<

E(x,x−)

[
Lno SBW

wdcl

]
, where vi is the aggregated feature vector obtained from the top k most similar

samples through SBW.

3.3 MULTI-RESOLUTION KOLMOGOROV-ARNOLD NETWORK (MLTR-KAN)

Rationale: While FNE and SBW refine the data representation in the embedding, they do not
directly address the multi-scale patterns inherent in gravitational wave data. To handle this, we
integrate a Multi-Resolution KAN, following the CNN-based encoder, into our SSL framework.
MltR-KAN is a two-layer KAN with wavelet basis functions that provide built-in multi-resolution
analysis and learnable parameters (Liu et al., 2024). This will enhance the explainability, efficiency,
and generalization of the SSL model.

Formulation: Given a feature vector from the CNN-encoder fi = fCNN-encoder(xi), fi ∈ Rn,
MltR-KAN performs the following mapping:

F(l)(f
(l)
i ) =

2n∑
q=0

χ(l)
q

(
n∑

p=1

ψ(l)
pq (f

(l)
ip )

)
, (5)

Here, F(l)(f
(l)
i ) denotes the transformed feature vector at resolution level l, based on the input f (l)i ,

and the number of resolution levels L is set such that 2L ≤ |fi|. f (l)ip is the p-th component of f (l)i ,

n is the total number of components (features) at each resolution level, ψ(l)
pq are the wavelet basis

functions (e.g., ’db4’) applied to the components of the input signal at resolution level l, and χ(l)
q are

the parameters to be learned by the MltR-KAN.

Parameters learning. The parameters χq in the mltR-KAN are learned during the SSL train-
ing using backpropagation and an optimizer (e.g., SGD). The learning process involves mini-
mizing the Wasserstein-based debiased contrastive loss Lwdcl with respect to these parameters:
min{χq} Lwdcl(F(fi)). Specifically, mltR-KAN’s parameters χ(l)

q are updated to minimize the loss
at each resolution level l.

Wavelet selection. For effective glitch detection, wavelets should be orthogonal for precise signal
reconstruction, smooth with compact support to localize transient glitches, and computationally
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efficient for handling large datasets. We recommend ’db4’, ’sym4’, or similar. The ’db4’ wavelet is
defined by scaling coefficients hn and wavelet coefficients gn = (−1)nh3−n, with scaling function
ϕ(t) =

∑3
n=0 hnϕ(2t−n) and wavelet function ψ(t) =

∑3
n=0 gnϕ(2t−n). If computational speed

is critical, the Haar (’db1’) wavelet is orthogonal and compact but lacks smoothness. Its simplicity
makes it ideal for detecting short, abrupt glitches like ”blips” in gravitational wave data (Robson &
Cornish, 2019).

Enhance explainability and efficiency. MltR-KAN leverages hierarchical learning, feature weight-
ing, and multi-resolution FNE. MltR-KAN achieves hierarchical learning by decomposing fea-
ture representation into at multiple resolution levels l. It brings a hierarchical loss structure:
Lwdcl =

∑L
l=1 L(l), where L(l) represents the loss contribution from resolution level l. This de-

composition enhances explainability by providing insights into how features at different resolutions
contribute to the final prediction. Figure S1 in the Appendix illustrates the explainability enhance-
ment process within the MltR-KAN model for the SNR feature extracted from the O1 data.

Moreover, feature weighting is incorporated to further refine the model’s performance: Lweighted =∑L
l=1 ω

(l)L(l), where the learned weights ω(l) adjust the contribution of each resolution level to the
overall loss. These weights, distinct from the core MltR-KAN parameters (e.g., χ(l)

q ), are optimized
during training to balance multi-scale features and improve the model’s efficiency and performance.

MltR-KAN reduces false negatives by leveraging multi-resolution features that capture fine details
missed by single-scale models. Its hierarchical loss structure, LFNE =

∑L
l=1 L

(l)
FNE, minimizes false

negatives at each resolution. By focusing on fine-grained levels, the model captures subtle patterns
across scales, effectively lowering the false negative rate. Similarly, we have the following result
indicating that applying SBW before MltR-KAN reduces the overall loss. Figures S2 and S3 in the
Appendix demonstrate a simulated training scenario under hierarchical loss where SBW or FNE is
integrated within MltR-KAN. Furthermore, Proposition 3 demonstrates that applying SBW before
MltR-KAN across all resolution levels reduces the overall expected wDCL loss compared to not
applying SBW.

Proposition 3: Hierarchical feature representation with Multi-Resolution SBW. Let the overall
loss be Lwdcl =

∑L
l=1 L(l), where L(l) is the contribution from resolution level l, and ω(l) are learned

weights. With multi-resolution SBW applied before MltR-KAN, the refined feature representation
vi at each scale l leads to:

Exi∼pdata

[
LSBW

wdcl

]
< Exi∼pdata

[
Lno SBW

wdcl

]
. (6)

MltR-KAN has a lower norm-based Rademacher complexity than KAN using B-spline basis func-
tions and MLP, suggesting better generalization capability. Theorem 2 further supports that MltR-
KAN offers better generalization than the standard KAN using B-spline basis functions and MLP,
specifically in terms of norm-based Rademacher complexity.

Definition: Norm-based Rademacher Complexity of a hypothesis class H over a sample S =

{x1, . . . , xn} is defined as:R̂n(H) = Eσ

[
suph∈H,∥h∥≤C

1
n

∑
i σih(xi)

]
, where σi ∈ {−1, 1} are

independent Rademacher variables and ∥h∥ ≤ C constrains the function norm. It quantifies the
capacity of H to fit random noise, with lower values indicating better generalization.

Theorem 2: Let FKAN-W, FKAN-S, and FMLP represent the hypothesis classes of KAN with wavelet
basis, B-spline basis, and MLP, respectively. The norm-based Rademacher complexity of these
classes satisfies:

Rn(FKAN-W) ≺ Rn(FKAN-S) ≺ Rn(FMLP), (7)
where ≺ denotes strict inequality.

dcMltR-KAN generalization. We have proved that the dcMltR-KAN model with wavelet basis
functions exhibits a lower upper bound on the generalization error compared to dcMltR-KAN with
spline basis functions or the dc-MLP model, where MltR-KAN is replaced by MLP in the proposed
SSL model, as established in Theorem 2.

Theorem 3: Let FdcMltR-KAN-W, FdcMltR-KAN-S, and Fdc-MLP represent the hypothesis classes of
dcMltR-KAN with wavelet basis, B-spline basis, and dc-MLP model, respectively. The upper-bound
on the generalization error for these models satisfies:

Egen(FdcMltR-KAN-W) ≺ Egen(FdcMltR-KAN-S) ≺ Egen(Fdc-MLP), (8)
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where Egen(·) denotes the generalization error, and ≺ signifies strict inequality.

4 RESULTS

We evaluate our proposed dcMltR-KAN on benchmark gravitional wave dataset (O1,O2 and O3
(Abbott et al., 2019; 2021; 2023)), besides extending it to other time-series data.

Data and preprocessing. We employed the benchmark O1, O2, and O3 data preprocessed from the
Gravity Spy project (Glanzer et al., 2021). The preprocessed data are typically not full time-series
but rather a condensed form containing key extracted features. However, challenges inherent to
the original data—such as data complexity, noise, class imbalance, and the potential loss of certain
temporal dynamics—can still persist Bahaadini et al. (2018).

This preprocessing derived 33 meaningful features (such as trigger timing, peak frequency, signal-
to-noise ratio (SNR), amplitude, and bandwidth) from the original high-dimensional gravitational
wave data, resulting in O1 with 41,717 samples and 22 glitch types, O2 with 134,372 samples and
22 types, and O3 with 500,524 samples and 24 types. Figure 2 illustrates the glitch types and their
distributions for each dataset, showing that different datasets have different dominant types, with the
percentage of the smallest groups reaching as low as 0.02% (e.g., Chirp in O2 and O3).

Figure 2: The imbalanced Glitch type distribution across the preprocessed O1, O2, and O3 datatsets

Baselines: We compare dcMltR-KAN with widely-used fully-supervised baselines (CNN, GRU,
ResNet, GAN-DNN, Transformer) and three SOTA SSL models: CPC (Contrastive Predictive Cod-
ing), TS-TCC (Time-Series Representation Learning via Temporal and Contextual Contrasting), and
SimCLR (Simple Contrastive Learning of Representations) (van den Oord et al., 2018; Eldele et al.,
2021; Chen et al., 2020). Supervised models were trained with an 80/20 train-test split, with de-
tails in the Appendix. While CPC and TS-TCC are tailored for time-series data, SimCLR, though
originally designed for other domains, has been adapted for such tasks (Zhang et al., 2022). Like
its SSL peers, dcMltR-KAN is evaluated using top-1 results from a k-NN classifier on learned rep-
resentations. Our implementation features a CNN-based encoder with two convolutional layers, a
max-pooling layer, a dense layer, and a two-layer MltR-KAN, optimized using SGD.

D-index. To assess performance, we use accuracy and the D-index (Diagnostic Index) proposed by
(Han et al., 2023). While accuracy can be biased in imbalanced data scenarios, the D-index effec-
tively detects subtle performance differences and accounts for data imbalances. As an interpretable
measure ranging within (0, 2], the D-index measures performance by calculating the expected value
of local index values across all classes:d = 1

K

∑K
i=1

(
log2(1 + αi) + log2

(
1 + si+pi

2

))
, where αi

is accuracy, si is sensitivity, and pi is specificity for class i among K classes and i ∈ K. A higher
D-index indicates better learning performance.

Superiority of dcMltR-KAN: Figure 3 compares dcMltR-KAN (with Haar wavelets) against the
baseline models on the O1, O2, and O3 datasets. dcMltR-KAN consistently outperforms all the
other models in terms of accuracy and D-index. For O1 (41,717 samples), dcMltR-KAN achieved
an accuracy of 0.9817 ± 0.0017 and a D-index of 1.9936 ± 0.0009, surpassing the Transformer’s
accuracy of 0.9402 and D-index of 1.9110. This trend continues for larger datasets, such as O3
(500,524 samples), where dcMltR-KAN achieved an accuracy of 0.9009 and a D-index of 1.9377,
outperforming the Transformer’s accuracy of 0.8418 and D-index of 1.8389. These results demon-
strate that dcMltR-KAN provides superior performance, robust generalization, and effectiveness in
gravitational wave glitch detection, even compared to fully-supervised baselines.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 3: Comparisons of dcMltR-KAN with peer methods on O1, O2, and O3 datatsets

Although CPC showed poor performance, SimCLR and TS-TCC performed slightly worse than
dcMltR-KAN for the O1 and O2 datasets in terms of accuracy and d-index. However, their per-
formance significantly lagged behind dcMltR-KAN for the larger O3 data with 500,524 samples.
This disparity underscores the superior scalability of dcMltR-KAN, which maintains robust perfor-
mance even with large-scale data, thanks to its feature weighting (SBW), hierarchical learning, False
Negative Elimination (FNE), and multi-resolution KAN mechanisms.

Baseline overfitting on data imbalance. We find that the CNN shows higher accuracy but a lower
D-Index than ResNet on both the O1 and O3 datasets, suggesting it may overfit to majority classes
while underperforming on minority ones. Despite CNN’s higher overall accuracy (0.9288 on O1
and 0.8363 on O3), its lower D-Index reflects weaker performance on minority classes compared
to ResNet (accuracy: 0.9259 on O1, 0.8141 on O3; D-Index: 1.9071 and 1.8240. In other words,
while the CNN has high accuracy, it is biased toward the majority classes, meaning it overfits to
the dominant patterns without effectively learning from the minority instances. Similar trends are
observed for the Transformer on O2 compared to ResNet, as well as for GRU compared to the
Transformer on O3. Similar trends are observed for the Transformer on O2 compared to ResNet,
as well as for GRU compared to the Transformer on O3. Additionally, TS-TCC achieves 97.7%
accuracy on O1 data, slightly lower than its 98.0% accuracy on O2 data. However, its D-Index on
O1 is 1.984, which is higher than its D-Index on O2 (1.967), suggesting overfitting to the majority
groups.

Table 1: Ablation study of dcMltR-KAN on O1, O2, and O3 data.
Dataset Components Accuracy (mean ± std) D-Index (mean ± std)

O1 w/o wDCL 0.9219 ± 0.0014 1.9187 ± 0.0015
w/o mltR-KAN 0.9254 ± 0.0069 1.9174 ± 0.0025

O2 w/o wDCL 0.8887 ± 0.0015 1.8154 ± 0.0014
w/o mltR-KAN 0.8850 ± 0.0059 1.9272 ± 0.0035

O3 w/o wDCL 0.8888 ± 0.0008 1.9293 ± 0.0004
w/o mltR-KAN 0.8639 ± 0.0018 1.8830 ± 0.0012

Abalation studies. dcMltR-KAN consists of wDCL, a CNN-based encoder, and mltR-KAN. Since
the CNN-based encoder serves as the backbone of this SSL model, we focus our ablation study on
evaluating the contributions of wDCL and mltR-KAN individually. Table 1 highlights the essential
roles each component plays in enhancing the model’s performance across three datasets: O1, O2,
and O3, where mltR-KAN with Harr. The results reveal that removing wDCL leads to a noticeable
decrease in the D-Index across all datasets. Specifically, the D-Index drops to 1.9187, 1.8154, and
1.9293 on O1, O2, and O3 respectively, down from the original values of 1.9936, 1.9832, and
1.9377. Similarly, excluding mltR-KAN also results in diminished performance: on O1, the D-
Index decreases to 1.9174; on O2, it decreases to 1.9272; and on O3, it decreases to 1.8830. These
findings underscore the essential roles of both wDCL and mltR-KAN in maintaining and enhancing
the model’s performance across all evaluated datasets. The similar results can be found on other
wavelets (Appendix).

Impact of dcMltR-KAN on Data Representation We employ UMAP to visualize gravitional wave
data before and after dcMltR-KAN to examine this SSL model’s impacts on data representation.
Figure 4 presents UMAP visualizations of O1, O2, and O3 data, showcasing dcMltR-KAN’s effec-
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tiveness in enhancing feature separability and uncovering latent structures within large-scale gravita-
tional wave data. This is further supported by silhouette analysis, which consistently validates these
findings by showing a significant increase in silhouette scores for data representation after applying
dcMltR-KAN (Appendix). We use UMAP instead of t-SNE because it preserves global and local
structures, handles large datasets efficiently, and produces stable embeddings.

Figure 4: UMAP visualization before and after dcMltR-KAN on O1, O2 and O3 data

Extending dcMltR-KAN to other time-series data. We further extend dcMltR-KAN to other
time-series data, demonstrating its applicability to audio tasks. For this, we use the benchmark
EMODB dataset, a widely used resource for speech emotion recognition. The dataset contains 535
audio samples across seven imbalanced emotion categories: Anger (127), Boredom (81), Disgust
(46), Fear (69), Happiness (71), Sadness (62), and Neutral (79). After preprocessing and feature
extraction, 54 features are retained for analysis (see Appendix). dcMltR-KAN demonstrates its
superiority on this dataset. Table S5 in Appendix shows the Top-1 results of dcMltR-KAN on
the EMODB dataset and in the ablation study. Our model achieved 93.26% accuracy with the
Mexican-hat wavelet and 88.86% accuracy with the Haar wavelet. These results outperform almost
all previous fully supervised and SSL models. The ablation study further highlights the contribution
of key components, showing a performance drop when wDCL or mltR-KAN is excluded. For SOTA
comparison, Baek & Lee (2023) reported 90.4% weighted accuracy (WA) and 91.3% unweighted
accuracy (UA) with their CNN-BiLSTM model, while Wang et al. (2023) reported 86.31% using
Fairtune with a self-supervised wav2vec 2.0 model.

5 DISCUSSION AND CONCLUSION

While dcMltR-KAN shows strong performance in glitch detection and extends effectively to audio
data, it has some weaknesses. 1) The high computational complexity of dcMltR-KAN (O(N2+m2))
for large datasets like O3 (N = 5×106,m = 100) arises from similarity matrix calculations in FNE
and SBW, where N and m are the number of observations and training batch size during training.
This challenge can be mitigated through GPU acceleration, sparsification (Liu & Liu, 2019), mini-
batching (Recht et al., 2011), subsampling (Coates et al., 2011), and efficient computation libraries
like cuML (Rapp et al., 2021). 2) Dynamically adjusting α to balance easy and hard negatives is
challenging and may not generalize across datasets. Fine-tuning λ and β also remains complex
and requires further exploration. 3) While dcMltR-KAN excels on gravitational wave and speech
emotion datasets, its performance on diverse data types (e.g., audio, image) needs further evaluation.

We plan to enhance dcMltR-KAN by replacing the existing CNN-based encoder with MltR-KAN,
aiming to achieve greater complexity advantages through optimized FNE and SBW directly under
the MltR-KAN encoder. This will address current weaknesses and extend its applications to more
data domains besides extend our model to handle raw gravitational wave data. Additionally, we
intend to conduct further theoretical investigations to extend MltR-KAN in other SSL-related topics

As the first model to introduce multi-resolution KAN into SSL, dcMltR-KAN brings novelty, ef-
ficiency, and explainability to gravitational wave glitch detection and SSL, while inspiring future
research in AI and astrophysics.
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Gravitational Wave Glitch Detection Appendix
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1 Wasserstein distance andWasserstein loss Lwass

computation

The direct computation of the Wasserstein distance can be challenging due to
its optimization over the space of joint distributions. We implement the Wasser-
stein distance more practically by using Sinkhorn divergence [4]. Sinkhorn di-
vergence introduces entropy regularization to the optimal transport problem,
making it efficient to compute while retaining sensitivity to distributional char-
acteristics.

Given two distributions µ and ν, with corresponding samples {xi}ni=1 and
{yj}mj=1, the Sinkhorn divergence is defined as:

Wϵ(µ, ν) = min
γ∈Γ(µ,ν)

∑
i,j

γijc(xi, yj) + ϵ ·KL(γ∥µ⊗ ν), (1)

where:

• Γ(µ, ν): Set of all joint distributions with marginals µ and ν.

• γij : Transport plan between xi and yj .

• c(xi, yj): Cost function, often the squared Euclidean distance ∥xi − yj∥2.

• ϵ: Regularization parameter for entropy smoothing.

• KL(γ∥µ⊗ν): Kullback-Leibler divergence regularizing the transport plan.

• µ⊗ ν: Independent product of the distributions µ and ν.

1.1 Wasserstein loss Lwass(f(x
+), f(x−)) = Sinkhorn-divergence(f(x+), f(x−))

Our Wasserstein loss Lwass is defined as

Lwass(f(x
+), f(x−)) = min

γ∈Γ(f(x+),f(x−))

∑
i,j

γijc(f(x
+
i ), f(x

−
j ))+ϵ·KL(γ∥f(x+)⊗f(x−)),

(2)
where:

• Γ(f(x+), f(x−)): Set of all joint distributions between the embeddings of
positive samples f(x+) and negative samples f(x−).

• γij : Transport plan between f(x+i ) and f(x
−
j ).

• Cost function c(f(x+i ), f(x
−
j )):

1
2∥f(x

+
i )− f(x−j )∥2.

• ϵ (0.01): Regularization parameter for entropy smoothing .

• KL(γ∥f(x+)⊗f(x−)): Kullback-Leibler divergence regularizing the trans-
port plan.

• f(x+)⊗ f(x−): Independent product of the embeddings’ distributions.
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2 Proof of Theorem 1.

Theorem 1 (Robustness of wDCL to Data Imbalance):

Lwdcl is robust to data imbalance than Ldebiased.
Proof.
Let Lwdcl represent the Wasserstein-based Debiased Contrastive Loss, and

Ldebiased represent the standard Debiased Contrastive Loss, we will demonstrate
that the Wasserstein distance term in Lwdcl provides a more stable and repre-
sentative measure of dissimilarity between distributions, especially under data
imbalance.

1. Sensitivity of Ldebiased to Data Imbalance:

The Debiased Contrastive Loss Ldebiased is defined as:

Ldebiased = E(x,x+)∼ppos

− log
ef(x)

⊤f(x+)/τ

ef(x)⊤f(x+)/τ +
∑M
i=1

(
ef(x)

⊤f(x−
i

)/τ − γe2f(x)
⊤f(x−

i
)/τ

)

(3)

This loss function relies on pointwise similarities between embeddings f(x−i )
and f(x). Under data imbalance, where negative samples x−i dominate, the
pointwise similarities become biased, resulting in gradient updates that do not
reflect the true data structure!

It means that the variance of the gradient updates under data imbalance
becomes higher: Var(∇fLdebiased) is large due to this overrepresentation.

2. Robustness of the Wasserstein Distance:

The Wasserstein distance W (µ, ν) between two probability distributions µ and
ν over a metric space X is defined as:

W (µ, ν) = inf
γ∈Γ(µ,ν)

∫
X×X

d(x, y) dγ(x, y), (4)

where Γ(µ, ν) is the set of all couplings (joint distributions) with marginals
µ and ν, and d(x, y) is a distance metric.

a. Sensitivity to Distribution Geometry: The Wasserstein distance captures
global structural differences by considering optimal mass transport between dis-
tributions, not pointwise similarities.

b. Robustness to Data Imbalance: The Wasserstein distance evaluates the
entire distribution’s transport plan, making it less influenced by sample imbal-
ance and mitigating negative sample overrepresentation.
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3. Wasserstein-based Debiased Contrastive Loss Lwdcl:

The Wasserstein-based Debiased Contrastive Loss is defined as:

Lwdcl(f, x, α, β) = λLwass(f(x
+), f(x(α)−))− βLN-pair(f(x), f(x

+), f(x(α)−)),
(5)

where Lwass represents the Wasserstein distance between positive and negative
samples.

4. Gradient Stability and Generalization Comparison:

Gradient Stability: The gradient for Lwdcl with respect to the model param-
eters f is given by:

∇fLwdcl = λ∇fLwass − β∇fLN-pair. (6)

The Wasserstein term involves integration over the distributions, leading to
smoother gradients:

Var(∇fLwdcl) < Var(∇fLdebiased). (7)

Generalization: Generalization error is given by the expected difference
between the true data distribution Pdata and the model’s learned distribution
Qmodel:

Ex∼Pdata
[L(f(x))]− Ex∼Qmodel

[L(f(x))]. (8)

For Lwdcl, this difference is minimized, as it reflects the global structure of
the data.

5. Mathematical Justification:

For Ldebiased: The gradient with respect to f(x) is influenced by individual
negative samples f(x−i ). Overrepresentation of negative samples leads to biased
gradient updates.

For Lwdcl: The Wasserstein term involves integration over distributions:

∇fLwass ∝
∫
X

(
∇ff(x

+)−∇ff(x
−
i )
)
dγ(x+, x−i ), (9)

leading to smoother gradients and less sensitivity to imbalance.
By incorporating the Wasserstein distance, Lwdcl smooths the effect of im-

balanced samples and better captures the global structure of the data, resulting
in:

• More Stable Optimization: Gradients are less volatile:

Var(∇fLwdcl) < Var(∇fLdebiased). (10)

4



• Better Generalization: The model learns embeddings that reflect the
true data distribution:

Ex∼Pdata
[L(f(x))]− Ex∼Qmodel

[L(f(x))] is minimized for Lwdcl. (11)

Therefore, mathematically, Lwdcl is more robust to data imbalance than
Ldebiased.
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3 Proof of Theorem 2

Theorem 2 Let FKAN-W, FKAN-S, and FMLP be the hypothesis classes of KAN
with wavelet basis functions, B-spline basis functions, and MLP (Multilayer
Perceptron), respectively. The norm-based Rademacher complexity of these
function classes satisfies the following inequality:

Rn(FKAN-W) ≺ Rn(FKAN-S) ≺ Rn(FMLP), (12)

, where ≺ denotes a strict inequality.
Proof.
We begin with the empirical Rademacher complexity for a function class F

over a sample S = {x1, . . . , xn}:

Rn(F) = Eσ

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
, (13)

where σi are Rademacher random variables taking values in {−1, 1} with equal
probability, and f(xi) ∈ F represents the function applied to sample xi.

The Rademacher complexity can be bounded based on the norm of the
hypothesis class, using the inequality:

Rn(Fψ) ≤
λ√
n
· E
[
∥ψ∥Hψ

]
, (14)

where ∥ψ∥Hψ
is the norm of the basis function ψ in the appropriate Hilbert

space Hψ, and λ is a constant.
We compare the norms of the basis functions:
1. Wavelet Basis ψw: Wavelet functions have compact support and exhibit

localization in both time and frequency. TheH1 norm of a wavelet basis function
is given by:

∥ψw∥H1 =

∫ ∞

−∞

(
|ψw(x)|2 + |∇ψw(x)|2

)
dx.

Since wavelets are localized, this norm is relatively small, leading to a lower
Rademacher complexity.

2. B-Spline Basis ψs: Spline basis functions are smoother but more global
than wavelets. Their H1 norm is given by:

∥ψs∥H1 =

∫ 1

0

(
|ψs(x)|2 + |∇ψs(x)|2

)
dx. (15)

B-Splines typically have larger norms because they spread over larger inter-
vals and require more parameters, leading to a higher complexity compared to
wavelets.

3. MLP Functions: MLPs, with many parameters, exhibit high expressiv-
ity but also have very large norms due to the number of layers and parameters.
Therefore, the Rademacher complexity of MLPs grows significantly faster than
that of wavelet and spline functions.
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To rigorously quantify these differences, we apply Dudley’s entropy integral:

Rn(F) ≤ 12√
n

∫ ∞

0

√
logN(ϵ,F , ∥ · ∥) dϵ, (16)

where N(ϵ,F , ∥·∥) is the covering number of F with ϵ-balls under the norm ∥·∥.
Since wavelets require fewer terms to represent functions, the covering number
is smaller for FKAN-W, followed by FKAN-S, and then FMLP.

Thus, integrating the bounds gives:

Rn(FKAN-W) ≤ 12√
n

∫ ∞

0

√
logN(ϵ,FKAN-W, ∥ · ∥) dϵ, (17)

with the same inequality holding for FKAN-S and FMLP.
Therefore, by combining norm-based bounds and entropy integrals, we con-

clude:
Rn(FKAN-W) ≺ Rn(FKAN-S) ≺ Rn(FMLP) (18)
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4 Proof of Theorem 3

Theorem 3: Let FdcMltR-KAN-W, FdcMltR-KAN-S, and Fdc-MLP represent the
hypothesis classes of dcMltR-KAN with wavelet basis, B-spline basis, and dc-
MLP model, respectively. The upper-bound on the generalization error for these
models satisfies:

Egen(FdcMltR-KAN-W) ≺ Egen(FdcMltR-KAN-S) ≺ Egen(Fdc-MLP), (19)

where Egen(·) denotes the generalization error, and ≺ signifies strict inequality.
Proof.

1. Preliminaries

We are to prove that the upper bound on the generalization error for the models
satisfies: Egen(FdcMltR-KAN-W) ≺ Egen(FdcMltR-KAN-S) ≺ Egen(Fdc-MLP),

where:

• FdcMltR-KAN-W is the hypothesis class of the dcMltR-KAN model with
wavelet basis functions.

• FdcMltR-KAN-S is the hypothesis class of the dcMltR-KAN model with B-
spline basis functions.

• Fdc-MLP is the hypothesis class where MltR-KAN is replaced by an MLP.

The generalization error Egen(F) measures the difference between the ex-
pected loss and the empirical loss for a hypothesis class F :

Egen(F) = Ef∼F [Lexpected(f)− Lempirical(f)]. (20)

The Rademacher complexity Rn(F) of a hypothesis class F with sample size
n is a measure of its capacity, reflecting how well the class can fit random noise:

Rn(F) = Eσ,X

[
sup
f∈F

1

n

n∑
i=1

σif(xi)

]
, (21)

where σi are independent Rademacher variables taking values ±1 with equal
probability, and X = {x1, . . . , xn} is the sample.

2. Relate generalization error to Rademacher complexity

We can have the relationships between the generalization error and the Rademacher
complexity:

Egen(F) ≤ 2Rn(F) + ϵ(n, δ), (22)

where ϵ(n, δ) is a term that diminishes as the sample size n increases and
confidence level δ is considered. Since ϵ(n, δ) is common for all models (assuming
the same n and δ), the primary factor influencing the generalization error is the
Rademacher complexity Rn(F).
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3. Apply Theorem 2

From Theorem 2, we have the ordering of Rademacher complexities:

Rn(FdcMltR-KAN-W) ≺ Rn(FdcMltR-KAN-S) ≺ Rn(Fdc-MLP). (23)

Since the generalization error is directly proportional to the Rademacher
complexity, we have the ordering of generalization errors follows the same strict
inequalities:

Egen(FdcMltR-KAN-W) ≺ Egen(FdcMltR-KAN-S) ≺ Egen(Fdc-MLP). (24)

This result indicates that the dcMltR-KAN model with wavelet basis func-
tions has a strictly lower upper bound on the generalization error compared to
the versions with B-spline basis. This is because Wavelet Basis Functions offer
a sparse representation and capture localized features effectively, leading to a
more constrained hypothesis class with lower complexity.
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5 Ablation studies of dcMltR-KAN with four
wavelets

Table 1: Ablation Study: Top-1 Accuracy and D-Index for Different Methods
(Datasets: O1, O2, and O3)

Dataset Method Top-1 Accuracy (mean ± std) D-Index (mean ± std)

O1 Baseline - CNN 0.9288 1.9027

Ablation Components:
w/ wDCL 0.9219± 0.0014 1.9187± 0.0015
w/ MltR-KAN 0.9254± 0.0069 1.9174± 0.0025

dcMltR-KAN
Haar 0.9817± 0.0017 1.9936± 0.0009
Mexican Hat 0.9804± 0.0016 1.9929± 0.0009
Db4 0.9772± 0.0014 1.9916± 0.0005
Sym4 0.9772± 0.0031 1.9913± 0.0018

O2 Baseline - CNN 0.9155 1.8576

Ablation Components:
w/ wDCL 0.8887± 0.0015 1.8154± 0.0014
w/ MltR-KAN 0.8850± 0.0059 1.9272± 0.0035

dcMltR-KAN
Haar 0.9799± 0.0072 1.9832± 0.0059
Mexican Hat 0.9731± 0.0028 1.9776± 0.0023
Db4 0.9744± 0.0076 1.9811± 0.0056
Sym4 0.9803± 0.0029 1.9847± 0.0021

O3 Baseline - CNN 0.8363 1.8175

Ablation Components:
w/ wDCL 0.8888± 0.0008 1.9293± 0.0004
w/ MltR-KAN 0.8639± 0.0018 1.8830± 0.0012

dcMltR-KAN
Haar 0.9009± 0.0019 1.9377± 0.0010
Mexican Hat 0.9005± 0.0007 1.9126± 0.0007
Db4 0.9045± 0.0005 1.9399± 0.0003
Sym4 0.9010± 0.0019 1.9378± 0.0012
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6 Proof of Proposition 1

Proposition 1: Lwdcl with FNE is lower than the loss without FNE:
E(x,x(α)−)

[
LFNE
wdcl

]
< E(x,x−)

[
Lno FNE
wdcl

]
, where α is the the elimination ratio.

Statement: Let LFNE
wdcl(x) denote the Wasserstein Debiased Contrastive

Loss (wDCL) with False Negatives Elimination (FNE), and Lno FNE
wdcl (x) denote

the wDCL without FNE. Then, under the assumption that the set of negative
samples after FNE is a proper subset of the original negative samples, and that
the removed negatives are those with the highest similarity to the anchor sample
x, we have:

E(x,x+,x(α)−)

[
LFNE
wdcl(x)

]
< E(x,x+,x−)

[
Lno FNE
wdcl (x)

]
, (25)

where α is the elimination ratio, x− are negative samples, and x(α)− are the
negative samples after applying FNE.

Proof.
Let x be an anchor sample, x+ its positive counterpart, and N the set of all

negative samples.
Define N (α) ⊂ N as the set after FNE, where the top α fraction of negatives

most similar to x are removed.
Let f be the encoder mapping samples to normalized embeddings h = f(x),

h+ = f(x+), and h− = f(x−).
The N-pair contrastive loss without FNE is:

Lno FNE
N-pair = − log

 eh
⊤h+/τ

eh⊤h+/τ +
∑

x−∈N
eh⊤h−/τ

 . (26)

With FNE, it becomes:

LFNE
N-pair = − log

 eh
⊤h+/τ

eh⊤h+/τ +
∑

x−∈N (α)

eh⊤h−/τ

 . (27)

Since N (α) ⊂ N and the most similar negatives are removed, we have:∑
x−∈N (α)

eh
⊤h−/τ <

∑
x−∈N

eh
⊤h−/τ . (28)

This implies:

eh
⊤h+/τ

eh⊤h+/τ +
∑

x−∈N (α)

eh⊤h−/τ
>

eh
⊤h+/τ

eh⊤h+/τ +
∑

x−∈N
eh⊤h−/τ

. (29)
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Since − log(x) is a decreasing function, it follows that:

LFNE
N-pair < Lno FNE

N-pair . (30)

For the Wasserstein loss Lwass, removing negatives closest to x may increase
the distance:

LFNE
wass ≥ Lno FNE

wass . (31)

The total loss difference is:

∆L = LFNE
wdcl − Lno FNE

wdcl = λ
(
LFNE
wass − Lno FNE

wass

)
− β

(
LFNE
N-pair − Lno FNE

N-pair

)
. (32)

Since LFNE
N-pair < Lno FNE

N-pair (from Equation 30), the second term in Equation
32 is negative. The first term is non-negative due to Equation 31.

By choosing β sufficiently large relative to λ, the decrease in N-pair loss
outweighs any increase in Wasserstein loss, ensuring ∆L < 0.

Taking expectations over the data distribution:

E
[
LFNE
wdcl

]
= E

[
Lno FNE
wdcl +∆L

]
< E

[
Lno FNE
wdcl

]
, (33)

since ∆L < 0.
Therefore, we have

E(x,x+,x(α)−)

[
LFNE
wdcl(x)

]
< E(x,x+,x−)

[
Lno FNE
wdcl (x)

]
.

12



7 Proof of Proposition 2

The expected WDCL loss with Similarity-Based Weighting (SBW) is lower than
without SBW:

E(x,vi)

[
LSBW
wdcl

]
< E(x,x−)

[
Lno SBW
wdcl

]
, (34)

where vi is the aggregated feature vector from the top k most similar samples
via SBW.

Proof

1. WDCL Loss Function:

The Weighted Decoupled Contrastive Loss (WDCL) for a sample x is
defined as:

Lwdcl = − log

(
ef(x)

⊤f(x+)/τ

ef(x)⊤f(x+)/τ +
∑
x− w(x, x−) ef(x)

⊤f(x−)/τ

)
, (35)

where:

• f(x) is the feature representation of sample x.

• x+ is a positive sample associated with x.

• x− are negative samples.

• w(x, x−) is the weight assigned to each negative sample.

• τ is a temperature parameter.

2. Effect of SBW:

• With SBW: Focuses on the top k most similar negatives, aggregat-
ing them into vi and assigning appropriate weights.

• Without SBW: Considers a larger set of negatives, often with equal
weighting.

3. Comparison of Denominators:

• With SBW:

DSBW = ef(x)
⊤f(x+)/τ + wSBW · ef(x)

⊤vi/τ , (36)

where wSBW is the aggregated weight for the negative vi.

• Without SBW:

Dno SBW = ef(x)
⊤f(x+)/τ +

∑
x−

ef(x)
⊤f(x−)/τ . (37)

4. Key Observation:
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• Aggregated Negatives: SBW’s aggregation leads to a more in-
formative negative vi, but the overall denominator DSBW grows less
than Dno SBW.

• Denominator Size: A smaller denominator in SBW means the
fraction inside the logarithm is larger.

5. Implication on Loss: Since the negative logarithm function is decreas-
ing, a larger fraction results in a lower loss:

LSBW
wdcl < Lno SBW

wdcl . (38)

6. Expectation over Data:

Taking expectations over the data distribution confirms the inequality:

E(x,vi)

[
LSBW
wdcl

]
< E(x,x−)

[
Lno SBW
wdcl

]
. (39)

Thus, by focusing on the most informative negatives and weighting them
appropriately, SBW reduces the expected WDCL loss compared to not using
SBW.
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8 Proof of Proposition 3

The total loss in the Wasserstein Debiased Contrastive Learning (wDCL) frame-
work is a sum over all resolution levels:

Lwdcl =

L∑
l=1

ω(l)L(l), (40)

where:

• L(l) is the loss at resolution level l.

• ω(l) ≥ 0 are learned weights adjusting the contribution of each level.

1. Applying SBW at Each Level Reduces Loss:
From Proposition 2, we know that applying SBW to the feature representa-

tions reduces the expected loss at a single resolution level:

E
(x,v

(l)
i )

[
L(l),SBW

]
< E(x,x−)

[
L(l),no SBW

]
, (41)

where:

• v
(l)
i is the SBW-refined feature vector at level l.

• L(l),SBW is the loss at level l with SBW.

• L(l),no SBW is the loss at level l without SBW.

2. Summing Over All Levels:
Since the inequality holds at each level l, we can multiply both sides by the

non-negative weights ω(l) and sum over all levels:

L∑
l=1

ω(l)E
(x,v

(l)
i )

[
L(l),SBW

]
<

L∑
l=1

ω(l)E(x,x−)

[
L(l),no SBW

]
. (42)

3. Expressing the Overall Expected Loss:
The left side represents the overall expected loss with SBW applied:

Exi∼pdata

[
LSBW
wdcl

]
=

L∑
l=1

ω(l)E
(x,v

(l)
i )

[
L(l),SBW

]
. (43)

Similarly, the right side is the overall expected loss without SBW:

Exi∼pdata

[
Lno SBW
wdcl

]
=

L∑
l=1

ω(l)E(x,x−)

[
L(l),no SBW

]
. (44)

As such, combining the above, we have:

Exi∼pdata

[
LSBW
wdcl

]
< Exi∼pdata

[
Lno SBW
wdcl

]
. (45)
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This inequality demonstrates that applying SBW before MltR-KAN across
all resolution levels reduces the overall expected wDCL loss compared to not
applying SBW.
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9 Visualization of the explainability enhance-
ment process in MltR-KAN

The CNN encoder initially extracts high-level features from the normalized SNR
data, which are then decomposed by the Haar wavelet into approximation (cA)
and detail coefficients (cD1, cD2), which capture the global and local data
behaviors of the SNR feature after CNN. This provides a multi-resolution view
of the learned representation, enhancing the transparency and interpretability
of the feature extraction process.

The combined use of a CNN encoder followed by Haar wavelet transforma-
tion helps us clearly see what features are being learned from the SNR data.
The CNN extracts high-level features, while the Haar wavelet further breaks
down these features into explainable components, covering both broad trends
and finer details. This multi-stage process makes the learned representation
more transparent and easier to understand, enhancing explainability.

Figure S1: Visualization of the explainability enhancement process in MltR-
KAN for the SNR feature from gravitational wave O1 data. The original nor-
malized SNR data is processed by a CNN encoder to extract high-level features.
The learned CNN feature is subsequently decomposed using Haar wavelet trans-
formation, resulting in both approximation (cA) and detail coefficients (cD1,
cD2), which provide a multi-resolution view of the learned representation, en-
hancing transparency and interpretability of the feature extraction process
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10 Impact of False Negative Elimination (FNE)
on Hierarchical Loss During Training under
MltR-KAN

Figure S2: Simulated impact of False Negative Elimination (FNE) on Hierar-
chical Loss During Training. This figure compares the hierarchical loss values
for models trained with and without the False Negative Elimination (FNE) pro-
cess over 50 epochs. The green line represents the model incorporating FNE,
while the red dashed line shows the model without FNE. The model with FNE
exhibits a consistently lower loss, indicating that FNE helps to effectively min-
imize false negatives, leading to enhanced learning and improved convergence
during training

18



11 Impact of Similarity-BasedWeighting (SBW)
on Hierarchical Loss During Training under
MltR-KAN

Figure S3:Simulated impact of Similarity-Based Weighting (SBW) on Training
Loss. This figure illustrates the effect of incorporating SBW into a simulated
training process. The blue line represents the training loss with SBW, while the
orange dashed line shows the training loss without SBW. It is evident that using
SBW results in a more rapid decline in training loss, indicating enhanced model
convergence and efficiency. The reduced overall loss with SBW suggests better
feature representation, ultimately contributing to improved model performance.
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12 Baseline comparisons

12.1 CPC(Contrastive Predictive Coding) Result

Contrastive Predictive Coding (CPC) [7] is an unsupervised learning method
to extract robust high-level representations from sequential data such as audio,
images, text, and reinforcement learning trajectories. The CPC architecture
combines an encoder and an autoregressive model to capture temporal or spatial
dependencies, encoding input data into a compact latent space that emphasizes
essential features while filtering noise. An autoregressive model then processes
these encoded representations to create a context vector, preserving temporal
relationships and summarizing the information necessary for future predictions.
Using a contrastive loss function, specifically InfoNCE, CPC maximizes the
mutual information between the context vector and subsequent data, refining
its ability to predict future sequence elements. However, CPC has limitations:
it is best suited to sequential data, relying on temporal or spatial coherence; it
is sensitive to the quality of negative samples, which are essential for effective
contrastive learning; and, while it captures broad contextual information, it may
overlook finer details.

Table 2: Performance Metrics for Dataset O1, Dataset O2, and Dataset O3

Metric Dataset O1 Dataset O2 Dataset O3

Accuracy 0.775202 0.525758 0.510133
Precision 0.773208 0.499888 0.455736
Recall 0.775202 0.525758 0.510133
F1 Score 0.771829 0.475751 0.453775
D-index 1.877014 1.696813 1.638236

12.2 TS-TCC(Time-Series Representation Learning via Tem-
poral and Contextual Contrasting) Result

Time-Series Representation Learning via Temporal and Contextual Contrast-
ing (TS-TCC) [3] is an unsupervised framework designed to extract powerful
representations from time-series data, which makes it especially effective in sce-
narios with limited labeled data. By generating two augmented views of the
input, one with weaker augmentations and the other with stronger augmenta-
tions, TSC learns temporal dependencies by predicting future segments of one
view using the context of the other. This cross-view prediction strengthens
the model’s ability to handle variations from augmentation and capture essen-
tial patterns. The contextual contrasting module of TS-TCC further enhances
learning by maximizing similarity between contexts of the same sample and
minimizing similarity with others, promoting discriminative and generalizable
representations. However, TS-TCC demands high computational power due to
its use of augmented views and an autoregressive model, and it can be sensitive
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to hyperparameters. Additionally, while capturing general temporal patterns
effectively, TS-TCC may underperform on tasks that require very fine-grained
or specialized features.

Table 3: TS-TCC: Performance Metrics for Dataset O1, Dataset O2, and
Dataset O3

Metric Dataset O1 Dataset O2 Dataset O3

Accuracy 0.980205 0.976989 0.843326
Precision 0.980719 0.977677 0.840732
Recall 0.980205 0.976989 0.843326
F1 Score 0.980179 0.977055 0.839187
D-index 1.967096 1.984084 1.819134

12.3 SimCLR (Simple Contrastive Learning of Represen-
tations) Result

SimCLR [1] is a self-supervised framework for learning visual representations,
reducing contrastive learning by removing complex architectures and memory
banks in favor of large batch sizes and strong enhancements. Train by maxi-
mizing agreement between two augmented views of the same image, generated
through a data augmentation module that applies transformations such as crop-
ping and color distortion. These views, forming a positive pair, pass through
an encoder and projection head to a latent space where contrastive loss aligns
similar images. This approach allows SimCLR to achieve performance close
to fully supervised models on datasets such as ImageNet. However, SimCLR
requires large batch sizes, making it computationally demanding, and its per-
formance heavily depends on carefully chosen augmentations. While strong at
capturing general visual features, SimCLR may miss fine details that other,
more task-specific methods can capture.

Table 4: SimCLR: Performance Metrics for Dataset O1, Dataset O2, and
Dataset O3

Metric Dataset O1 Dataset O2 Dataset O3

Accuracy 0.969796 0.966020 0.828186
Precision 0.971033 0.968858 0.826369
Recall 0.969796 0.966020 0.828186
F1 Score 0.969475 0.966591 0.822599
D-index 1.971161 1.948001 1.826083
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12.4 Fully-supervised deep learning Models

To leverage the time-series structure of the data from all three observing runs
(O1, O2, O3), we begin by sorting the dataset chronologically, using earlier
data points to train the models and later points to test. Since our dataset is
heavily imbalanced, we ensure that both the training and testing sets reflect
the same label distribution to maintain a fair performance evaluation across all
deep learning models.

For model testing, we split the data, dedicating 80% to training and the
remaining 20% to testing. The following machine-learning models were imple-
mented:

• GAN-DNN Classifier [5]: This model employs a Generative Adversar-
ial Network (GAN) consisting of a generator and a discriminator to aug-
ment the dataset with synthetic samples. The generator network takes
random noise as input and produces synthetic data samples, utilizing two
dense layers with LeakyReLU activation and batch normalization to sta-
bilize training. The discriminator, structured to classify both real and
synthetic samples, has two dense layers with LeakyReLU activation fol-
lowed by a final dense layer with softmax activation to output labels. The
GAN generates 20,000 synthetic samples with three additional labels to
balance the original dataset. The final labeled dataset, combining real
and synthetic samples, is used for classification training with categorical
cross-entropy as the loss function.

• CNN: This Convolutional Neural Network (CNN) is designed for sequen-
tial data classification. It begins with an input layer that preserves the
original shape of the sequence. Two 1D convolutional layers with 64 fil-
ters and a kernel size of 3 apply ReLU activation while maintaining the
sequence length. The output is flattened and then passed through two
dense layers with 64 neurons and ReLU activations, which identify com-
plex patterns. Finally, a softmax output layer, with neurons equal to the
target classes, provides class probabilities for classification.

• Gated Recurrent Unit (GRU) [2]: This GRU model consists of three
layers with 128, 256, and 128 neurons, respectively. Each GRU layer is
followed by a dropout layer with rates of 0.1, 0.2, and 0.3. The GRU cells
include an update gate and a reset gate, both with sigmoid activation.
The update gate controls the balance between the previous hidden state
and the current node’s hidden state, while the reset gate controls the
degree of forgetting of the previous hidden state in calculating the new
candidate state. The model ends with a dense output layer that uses
softmax activation for class probability output, optimized with categorical
cross-entropy.

• Residual Networks (ResNet) [6]: A ResNet-50 model is implemented,
starting with an initial convolutional layer (64 filters, stride of 2) followed
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by batch normalization, ReLU activation, and a max-pooling layer (pool
size of 3, stride of 2). The main architecture includes four stages of bot-
tleneck blocks with configurations [3, 4, 6, 3]. Each bottleneck block
reduces dimensions, applies a convolution, and then restores dimensions
with shortcut connections between the input and output of each block.
Batch normalization and ReLU activation are applied throughout. Down-
sampling occurs at the start of each new stage by adjusting the stride.
The model concludes with global average pooling and a dense output
layer with softmax activation to produce class probabilities. Categorical
cross-entropy is used as the loss function for multiclass classification.

• Transformer [8]: This model utilizes a Transformer architecture with a
multi-head attention mechanism, configured with 32 heads alongside feed-
forward layers. Each Transformer block includes a multi-head attention
layer and a feed-forward neural network consisting of dense layers with
ReLU activation. Layer normalization is applied both before and after
the feed-forward network, while dropout layers are included after the at-
tention and feed-forward layers for regularization. After attention and
feed-forward processing, the output is flattened and passed through dense
layers for final classification.

Each model was trained for 100 epochs, experimenting with different learning
rates (1e-3, 1e-4, 1e-5) and batch sizes (64, 128, 256, 512). The optimal model
configuration was selected based on the highest accuracy and D-index, ensuring
it did not overfit the training data.
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13 Silhouette analysis of O1, O2, and O3 data
before and after dcMltR-KAN

Table 5: Silhouette analysis under UMAP

Data n neighbors (UMAP) Silhouette Score (K-Mean clustering)

Original O1 data

5 0.1847
10 0.2490
15 0.1991
20 0.3094
30 0.2457
50 0.2787

O1 data after dcMltR-KAN

5 0.3958
10 0.5028
15 0.5307
20 0.5319
30 0.5219
50 0.5401

Original O2 data

50 0.2293
60 0.2323
70 0.2139
80 0.2088
90 0.1966
100 0.2328

O2 data after dcMltR-KAN

50 0.4754
60 0.4963
70 0.5130
80 0.4748
90 0.5125
100 0.5041

Original O3 data

50 -0.0807
60 -0.0181
70 -0.0733
80 -0.0583
90 0.1428
100 0.1213

O3 data after dcMltR-KAN

50 0.4317
60 0.4450
70 0.4291
80 0.4237
90 0.4393
100 0.4391
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Note: UMAP is applied to original O1/O2/O3 and their corre-
sponding data after dcMltR-KAN before Kmeans
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14 dcMltR-KAN results on EMODB and abla-
tion study

Table S5: dcMltR-KAN results on EMODB and ablation study

Method Top1 Accuracy (mean ± std) D-Index (mean ± std)

Ablation components:

w/o wDCL 0.8503± 0.0277 1.9042± 0.0181
w/o MltR-KAN 0.8379± 0.0103 1.8955± 0.0067

dcMltR-KAN
Mexican-hat 0.9326± 0.0035 1.9573± 0.0022

Sym4 0.9186± 0.0055 1.9483± 0.0035
Db4 0.9180± 0.0036 1.9478± 0.0023

Haar 0.8866± 0.0061 1.9278± 0.0040
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15   Preprocessing and Feature Extraction for EMODB data  
 
The EMODB dataset consists of raw mono audio files, each sampled at 16,000 Hz and approximately two 
seconds in duration. The audio files were first blocked into small chunks of audio signals, i.e., windowing, 
where each window has a length of 1024 samples (block size) and is spaced by hop of 512 samples (hop 
size). For each windowed segment, we extracted features such as Mel Frequency Cepstral Coefficients 
(MFCC) (first 14 coefficients), spectral centroid, spectral bandwidth, spectral contrast, spectral rolloff, Zero-
Crossing Rate (ZCR), Root Mean Square Energy (RMS), and fundamental frequency (F0). Table 1 lists the 
dimensions of each feature. After feature extraction for each window, we computed two statistics, mean 
and standard deviation, to represent the overall characteristics of the audio file by aggregating all the 
instantaneous features. Figure 1 illustrates the preprocessing and feature extraction process.  
 

Table 1. Audio Dataset Features 
Features Feature Dim. for Each Windowed Segment Aggregated Feature Dim. for Each File 
MFCC 14 28 
Spectral Centroid 1 2 
Spectral Bandwidth 1 2 
Spectral Contrast 7 14 
Spectral Rolloff 1 2 
Zero-Crossing Rate  1 2 
RMS Energy 1 2 
F0 1 2 

 

 
 
 
Figure S1. Feature Extraction of EMODB data. Each audio file was divided into smaller segments. We 
then computed the features for each segment as detailed in Table 1. After all features are extracted for 
each window, we aggregated all these instantaneous features by computing mean and standard deviation 
to represent the audio file. 
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