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ABSTRACT

Existing parameter-efficient fine-tuning (PEFT) methods for large language mod-
els (LLMs), such as LoRA, alleviate the computational burden but still introduce
redundant trainable parameters and remain susceptible to knowledge degradation
when fine-tuned sequentially. In this work, we propose LoRA without Forgetting
(LoRAF), a novel PEFT method that reduces trainable parameters while mitigat-
ing catastrophic forgetting. LoRAF achieves this by freezing the low-rank matrix
A and applying sparse, task-specific masks to the low-rank matrix B. To pre-
vent interference between tasks, LoRAF enforces non-overlapping masks across
different tasks. We evaluate LoRAF on natural language understanding and math-
ematical reasoning tasks using Mistral-7B. Our results demonstrate that LoRAF
outperforms full fine-tuning (FFT) and LoRA while using 95% fewer trainable
parameters than LoRA. In a sequential learning setting, LoRAF significantly out-
performs both LoRA and FFT in mitigating catastrophic forgetting.

1 INTRODUCTION

Large language models (LLMs) (Brown et al., 2020; Touvron et al., 2023; Chowdhery et al., 2023)
have transformed deep learning, showcasing remarkable capabilities across various domains. How-
ever, their deployment remains computationally demanding, particularly when fine-tuning is re-
quired to adapt to downstream tasks or align with human preferences. To mitigate the high resource
costs, researchers have developed a range of parameter-efficient fine-tuning (PEFT) techniques.
Among these techniques, LoRA has gained widespread adoption due to its strong performance and
efficient parameter utilization. Nevertheless, some studies (Aghajanyan et al., 2020; Malladi et al.,
2023) have highlighted the low intrinsic dimensionality of pretrained model features, reporting val-
ues significantly lower than the number of trainable parameters in LoRA. This suggests that LoRA
could be further optimized, leaving room for reductions in computational and memory overhead.

To enable a single model to handle multiple tasks, one or more fine-tuning phases with supervised
data or human feedback are necessary. This aligns with the sequential learning paradigm in ma-
chine learning, where a model is trained on a sequence of tasks (Lopez-Paz & Ranzato, 2017; Wu
et al., 2022; Ouyang et al., 2022). However, as sequential learning progresses, previously acquired
knowledge is at risk of catastrophic forgetting – a phenomenon where parameter updates for new
tasks overwrite existing knowledge, leading to degraded performance on earlier tasks (Li & Hoiem,
2017; Dong et al., 2023; Luo et al., 2023). Therefore, mitigating catastrophic forgetting is crucial
for enabling LLMs to acquire and retain multi-task capabilities over time.

Inspired by the success of neural network pruning (Han et al., 2015; Frantar & Alistarh, 2023; Kim
et al., 2023) and the lottery ticket hypothesis (Frankle & Carbin, 2018), we propose LoRA without
Forgetting (LoRAF) – a variant of LoRA designed to further reduce trainable parameters while
mitigating catastrophic forgetting during sequential learning. Inspired by the surprising effectiveness
of random projections (Aghajanyan et al., 2020; Lu et al., 2022; Zhang et al., 2023b), LoRAF keeps
the low-rank matrix A fixed as a random projection while training the low-rank matrix B. To
minimize memory overhead, we selectively retain the most critical elements of B by extracting a
sparse mask, which is determined based on the magnitude of elements in B through a few calibration
steps. To prevent interference with previously learned tasks, we explicitly ensure that the mask
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Figure 1: Illustration of our proposed method LoRAF. LoRAF freezes matrix A while sparsely fine-tuning ma-
trix B using task-specific masks. To prevent catastrophic forgetting, we exclude positions assigned to previous
tasks, ensuring that masks for different tasks do not overlap.

for each new task does not overlap with those from earlier tasks. Supervised fine-tuning (SFT) is
then conducted with the sparse mask applied to matrix B. By restricting the fine-tuning of LLMs
to a constrained subspace, LoRAF effectively regularizes adaptation while preserving previously
acquired knowledge.

To evaluate the effectiveness of LoRAF, we examine its performance in acquiring new capabilities
such as natural language understanding (NLU) and mathematical reasoning. By freezing matrix A
and maintaining a high sparsity ratio of 90% in matrix B, LoRAF requires only 5% of the trainable
parameters used in LoRA. Experimental results demonstrate that even with a 90% sparsity ratio
in matrix B, LoRAF surpasses full fine-tuning (FFT) and LoRA in performance. When trained
sequentially on two tasks – first mathematical reasoning, followed by NLU – LoRAF retains 57.0%
accuracy on mathematical reasoning while achieving an average of 84.8% in NLU, significantly
outperforming FFT and LoRA in mitigating catastrophic forgetting.

2 METHOD

2.1 FREEZING LOW-RANK MATRIX A

LoRA (Hu et al., 2021) fine-tunes a weight update matrix as a product of two low-rank matrices to
adapt LLMs to new tasks. Formally, for a pretrained weight matrix W (0) ∈ Rd1×d2 , the weight
update ∆ ∈ Rd1×d2 is constrained to a low-rank decomposition:

h = W (0)x+∆x = W (0)x+BAx. (1)
where A ∈ Rr×d2 , B ∈ Rd1×r, and r ≪ min{d1, d2}. Typically, the low-rank projection matrix
A and the low-rank expansion matrix B are updated via gradient descent. Matrix A is usually
initialized with a random Gaussian distribution, while matrix B is initialized to zero, ensuring that
∆ = 0 at the start of training. However, in LoRAF, we fix A as a random projection, meaning
the model only learns how to combine the fixed subspace via B. This simplifies the application of
sparse masking, as we only need to apply masks to B.

By freezing A, we eliminate the need to store its gradients and optimizer states, thereby reducing
memory consumption. In LoRA, computing gradients requires storing the activation of x for A
and Ax for B. However, LoRAF only requires the activation of Ax to compute the gradient of B,
significantly reducing activation memory overhead, as Ax is much smaller than x. During infer-
ence, similar to LoRA, LoRAF merges the low-rank weights by adding BA to W (0), ensuring no
additional inference latency compared to full fine-tuning.

2.2 SPARSE MASKING FOR LOW-RANK MATRIX B

Unlike standard LoRA, which updates matrices A and B without constraints, LoRAF freezes matrix
A and selectively fine-tunes only the most relevant parameters in B for each task, as illustrated in
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Figure 1. This selective adaptation allows the model to identify and modify only the most critical
parameters necessary for learning new tasks while preserving previously acquired knowledge. Lo-
RAF achieves this by first extracting a sparse mask through a lightweight calibration process and
then applying the mask to constrain supervised fine-tuning (SFT) to a limited subset of parameters
in B. We ensure that the mask for each new task does not overlap with those from previous tasks to
prevent catastrophic forgetting. The full procedure is summarized in Algorithm 1 in the Appendix.

Mask Calibration. During the mask calibration phase, LoRAF applies gradient updates to B us-
ing a small calibration dataset DC

t associated with the current task t. The calibration dataset is
sampled from the adaptation dataset DA

t and can be as small as a few mini-batches. We initialize
a feasible mask Ω = 1 ∈ Rd1×r, which defines the set of available trainable parameters in B. To
enforce task disjointness, positions allocated to previous tasks are excluded from Ω. During cali-
bration, parameters are masked by Ω, ensuring that only feasible positions receive gradient updates.
These updates are only used for mask calibration and do not persist beyond this phase.

Once the calibration is complete, we extract a task-specific sparse mask Mt by selecting the top-(1−
s)% highest-magnitude elements from the accumulated parameter updates in B, where s denotes the
sparsity ratio. We adopt this magnitude-based masking criterion due to its simplicity, computational
efficiency, and strong empirical performance. Unlike more complex methods such as SNIP (Lee
et al., 2018), SparseGPT (Frantar & Alistarh, 2023), and Wanda (Sun et al., 2023), magnitude-
based masking eliminates the need for second-order Hessian approximations and activation storage,
making it well-suited for large-scale LLM fine-tuning.

Sparse Adaptation. After the sparse mask Mt is extracted and applied to B, we reset B to its
pre-calibration state before proceeding to the adaptation phase. During the sparse adaptation phase,
LoRAF performs SFT on the adaptation dataset DA

t , but updates are restricted to the masked pa-
rameters defined by Mt. Only a limited number of parameters in B are modified while the majority
remain untouched. To maintain task disjointness, we update the feasible mask Ω by removing the
positions allocated to Mt, preventing future tasks from modifying the same parameters. By ensur-
ing that parameter subsets remain non-overlapping across tasks, LoRAF effectively prevents catas-
trophic forgetting, which is a key challenge in sequential learning. Unlike rehearsal-based methods
that require storing and revisiting previous task data, LoRAF eliminates the need for explicit mem-
ory retention, making it computationally more efficient than rehearsal-based methods.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We conduct a series of experiments to evaluate LoRAF’s ability to acquire new capabilities while
mitigating catastrophic forgetting. Specifically, we assess its performance on natural language un-
derstanding (NLU) and mathematical reasoning tasks. In future work, we plan to extend our evalua-
tion to a broader range of capabilities. For NLU, we fine-tune and evaluate LoRAF on six datasets:
BoolQ (Clark et al., 2019), PIQA (Bisk et al., 2020), SIQA (Sap et al., 2019), ARC-Easy (Clark
et al., 2018), ARC-Challenge (Clark et al., 2018), and OBQA (Mihaylov et al., 2018). We aggregate
the training data from all six datasets into a single fine-tuning dataset and evaluate performance on
the individual test set for each dataset. For mathematical reasoning, we fine-tune and evaluate Lo-
RAF using the GSM8K dataset (Cobbe et al., 2021). The model is fine-tuned on the GSM8K training
set and evaluated on the GSM8K test set. We compare LoRAF against full fine-tuning (FFT) and
LoRA. To balance performance and parameter efficiency, we set the sparsity ratio in LoRAF to 90%,
significantly reducing the number of trainable parameters while maintaining strong results. We use
Mistral-7B (Jiang et al., 2023) as the base model and conduct all experiments on 8 NVIDIA A5000
GPUs. Each dataset is fine-tuned for 1–3 epochs using the AdamW optimizer with rank r = 64.
Detailed hyperparameter settings are provided in the Appendix.

3.2 ACQUIRING NEW CAPABILITIES

To assess LoRAF’s effectiveness in acquiring new capabilities, we evaluate its performance on NLU
and mathematical reasoning tasks. Table 1 presents results across six NLU datasets and GSM8K.
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Table 1: Comparison of performance and number of trainable parameters for acquiring new capabilities using
FFT, LoRA, and LoRAF on NLU and math tasks. The base model is Mistral-7B. Bold indicates the best-
performing method.

Method # Params Natural Language Understanding Tasks Math Task AvgBoolQ PIQA SIQA ARC-E ARC-C OBQA GSM8K

FFT 7.2B 74.1 84.6 78.0 90.5 79.3 88.4 55.5 78.6
LoRA 167M 77.4 90.2 83.5 93.0 84.0 89.3 56.7 82.0
LoRAF 8.8M 74.2 90.7 83.5 92.6 83.0 89.5 58.4 81.7
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Figure 2: Comparison of sequential learning performance, where the model is first trained on GSM8K, followed
by fine-tuning on a dataset aggregated from six NLU datasets. Performance is evaluated after training on NLU
datasets. The base model is Mistral-7B.

While FFT fine-tunes all 7B parameters of Mistral-7B, LoRA reduces the number of trainable pa-
rameters to 167M (2.3%). LoRAF further reduces this to 8.8M (0.12%). LoRAF freezes matrix
A and applies a 90% sparsity ratio to matrix B, resulting in a 95% reduction in trainable parame-
ters compared to LoRA. Despite fine-tuning fewer parameters, LoRAF outperforms LoRA and FFT
across most NLU and math tasks. On GSM8K, LoRAF achieves 58.4% accuracy, outperforming
LoRA and FFT by 3.0% and 5.2%, respectively. These results suggest that even within LoRA, there
is parameter redundancy. By selectively updating only the most critical parameters while prun-
ing less relevant (or even detrimental) parameters, LoRAF achieves even better performance than
LoRA. We attribute the improved performance to the principled use of sparsity, which acts as a reg-
ularizer; another, perhaps equally important factor, is that LoRAF mitigates the forgetting of latent
task-specific knowledge in the pretrained model.

3.3 MITIGATING CATASTROPHIC FORGETTING

In addition to acquiring new capabilities, LoRAF is designed to mitigate catastrophic forgetting. To
assess its effectiveness, we conduct a sequential fine-tuning experiment in which the model is first
trained on GSM8K (math reasoning) and then fine-tuned on a dataset aggregated from six NLU
datasets. After completing the second fine-tuning stage, we evaluate performance on the NLU tasks
and the math task to assess knowledge retention. Figure 2 presents the results of this sequential
learning experiment. While FFT and LoRA suffer from significant forgetting on GSM8K after
adapting to NLU tasks, LoRAF preserves much of the original task performance while still excelling
in language understanding. Specifically, after adapting from GSM8K to NLU tasks, FFT retains only
2.3% accuracy on GSM8K, while LoRA retains 4.2%, indicating substantial loss of prior knowledge.
In contrast, LoRAF maintains 57.0% accuracy, preserving most of the math reasoning capabilities
while achieving competitive results on NLU tasks.

4 CONCLUSION

We introduced LoRA without Forgetting (LoRAF), a novel parameter-efficient fine-tuning method.
By freezing matrix A and applying sparse, task-specific masks to matrix B, LoRAF significantly re-
duces the number of trainable parameters while preserving previously acquired knowledge. Exper-
imental results demonstrate that LoRAF outperforms LoRA and FFT in acquiring new capabilities
and mitigating catastrophic forgetting, with 95% fewer trainable parameters than LoRA.
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A ALGORITHM OF LORAF

The full procedure of LoRAF is summarized in Algorithm 1 as follows.

Algorithm 1: LoRA without Forgetting (LoRAF)

Require: Number of tasks T , mask calibration datasets {DC
t }Tt=1, adaptation datasets {DA

t }Tt=1,
sparsity ratio s, loss function L, learning rate η

1: Initialize: Frozen low-rank matrix A ∼ N (0, σ2) ∈ Rr×d2 , trainable low-rank matrix B =
0 ∈ Rd1×r, feasible mask Ω = 1 ∈ Rd1×r

2: for each task t = 1, . . . , T do
3: B(0) ← B ▷ Store initial state of B
4: for each batch sampled from DC

t do
5: B ← B − η · (∇BL ⊙ Ω) ▷ Calibration step
6: end for
7: Mt ← TopK(|B −B(0)|,K = ⌊(1− s)d1r⌋) ▷ Select top-(1− s)% values
8: B ← B(0) ▷ Reset B to initial state
9: for each batch sampled from DA

t do
10: B ← B − η · (∇BL ⊙Mt) ▷ Adaptation step
11: end for
12: Ω← Ω⊙ (1−Mt) ▷ Update feasible mask
13: end for

B RELATED WORKS

Parameter-Efficient Fine-Tuning. Parameter-efficient fine-tuning (PEFT) methods (Houlsby
et al., 2019; Pfeiffer et al., 2020; Li & Liang, 2021; Lester et al., 2021; Liu et al., 2021; Hu et al.,
2021) have garnered increasing attention, driving a wide range of algorithmic and architectural ad-
vancements. Among them, LoRA (Hu et al., 2021) introduces trainable low-rank matrices into each
layer, which can be merged into the pretrained weights. Due to its strong performance and high
efficiency, LoRA has become one of the most widely adopted PEFT methods. Several studies have
proposed variants of LoRA to further reduce the number of trainable parameters (Kopiczko et al.,
2023; Ding et al., 2023; Zhang et al., 2023b; Nikdan et al., 2024), implement adaptive parameter
budget allocation (Zhang et al., 2023a;d), and integrate LoRA with techniques such as quantiza-
tion (Dettmers et al., 2024; Xu et al., 2023; Guo et al., 2023) and pruning (Zhang et al., 2023c). Un-
like previous methods, LoRAF leverages the sparsity of matrix B by applying task-specific masks
while keeping matrix A frozen. This significantly reduces the number of trainable parameters while
retaining knowledge from previous tasks.

Catastrophic Forgetting. Catastrophic forgetting is a fundamental challenge in sequential (con-
tinual) learning (McCloskey & Cohen, 1989; Ramasesh et al., 2021; Wang et al., 2024), where
neural networks struggle to retain previously learned knowledge when adapting to new tasks. Wu
et al. (2022) analyzed this phenomenon using layer-wise and task-wise probing to assess knowl-
edge retention across tasks. Several studies (Dong et al., 2023; Luo et al., 2023) have empirically
examined catastrophic forgetting in the sequential fine-tuning of LLMs. To mitigate catastrophic
forgetting, various approaches have been proposed. Rehearsal-based methods (Rolnick et al., 2019;
Shin et al., 2017) store or generate past data to reinforce prior knowledge during training. Param-
eter isolation methods (Rusu et al., 2016; Mallya & Lazebnik, 2018; Konishi et al., 2023; Panda
et al., 2024) allocate separate subnetworks or sparsely mask parameters for different tasks to prevent
interference. Additionally, O-LoRA (Wang et al., 2023) learns tasks in distinct low-rank vector sub-
spaces while ensuring orthogonality between them. LoRAF falls under the category of parameter
isolation methods but is specifically designed for sequential learning in LLMs, leveraging sparse
task-specific masks to mitigate catastrophic forgetting.
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C HYPERPARAMETER SETTINGS

Table 2: Hyperparameter settings for LoRAF on natural language understanding and mathematical
reasoning tasks with Mistral-7B.

Hyperparameters Natural Language Understanding Mathematical Reasoning

Base Model Mistral-7B Mistral-7B
r 64 64
α 128 64
Sparsity Ratio 0.9 0.9
Optimizer AdamW AdamW
Learning Rate 1e-4 5e-4
Batch size 32 32
Warmup Steps 0 0
Dropout 0.05 0.05
Epochs 1 3
Where q, k, v, o, gate, up, down q, k, v, o, gate, up, down
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