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Abstract001

Attention encoder-decoder model architecture002
is the backbone of several recent top perform-003
ing foundation speech models: Whisper, Seam-004
less, OWSM, and Canary-1B. However, the005
reported data and compute requirements for006
their training are prohibitive for many in the007
research community. In this work, we focus on008
the efficiency angle and ask the questions of009
whether we are training these speech models010
efficiently, and what can we do to improve?011

We argue that a major, if not the most severe,012
detrimental factor for training efficiency is re-013
lated to the sampling strategy of sequential data.014
We show that negligence in mini-batch sam-015
pling leads to more than 50% computation be-016
ing spent on padding. To that end, we study,017
profile, and optimize Canary-1B training to018
show gradual improvement in GPU utilization019
leading up to 5x increase in average batch sizes020
versus its original training settings. This in turn021
allows us to train an equivalent model using 4x022
less GPUs in the same wall time, or leverage023
the original resources and train it in 2x shorter024
wall time.025

Finally, we observe that the major inference026
bottleneck lies in the autoregressive decoder027
steps. We find that adjusting the model archi-028
tecture to transfer model parameters from the029
decoder to the encoder results in a 3x inference030
speedup as measured by inverse real-time fac-031
tor (RTFx) while preserving the accuracy and032
compute requirements for convergence. The033
training code and models will be available as034
open-source.035

1 Introduction036

The attention encoder-decoder (AED) architec-037

ture (Chan et al., 2016) is a core component of038

many recent foundation speech models (Radford039

et al., 2022; Barrault et al., 2023; Peng et al., 2023,040

2024; Puvvada et al., 2024). In this work, we scru-041

tinize the training and inference efficiency aspect042

of AED models. For the scope of this study, we 043

set two aims for the training of a model to be con- 044

sidered efficient: A) it leverages the available hard- 045

ware to the full extent possible; B) it minimizes 046

the amount of unnecessary computation. The first 047

aim can be monitored with hardware utilization 048

diagnostics, such as the percentage of GPU com- 049

pute and memory utilization. However, aim B is 050

defined broadly and must be further specified to be 051

measurable. 052

Speech modeling is inherently a sequence pro- 053

cessing problem, where training examples are se- 054

quences of variable length. Due to the design of 055

modern deep learning frameworks such as PyTorch, 056

individual examples must be brought to the same 057

shape before they can form a mini-batch tensor1. 058

The simplest way of accommodating this constraint 059

is to pad the examples and use appropriate padding 060

masks in model computation to ignore padding data 061

contribution. However, padding still contributes 062

to computation which is wasteful. Therefore, the 063

amount of padding may be used as a proxy measure 064

for one aspect of training efficiency. 065

Bucketing (Khomenko et al., 2016; Doetsch 066

et al., 2017) is a stratified sampling technique that 067

populates mini-batches with examples of similar 068

length to minimize the padding. However, as ob- 069

served by Żelasko et al. (2025), bucketing only 070

stratifies on a single sequence length dimension, 071

e.g., utterance duration. This is not sufficient for 072

some speech modeling tasks, such as speech recog- 073

nition and translation, which have two distinct se- 074

quence dimensions: the input sequence (i.e., utter- 075

ance duration) and the output sequence (i.e., the 076

transcription). We illustrate this in Figure 1, where 077

there are two separate axes of padding that affect 078

different operations in a neural network model. Że- 079

1It is possible to write specialized GPU kernels for pro-
cessing variable-shaped batches, e.g. in k2 or flash-attention.
Such implementations are specialized for specific operations
only, and as such are beyond the scope of this work.
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Figure 1: Visualization of a randomly sampled mini-
batch representing variable length input speech and
output transcription data as 3D activation tensors with
shape (batch, length, hidden_dim). The sequence
lengths were sampled from our training data distribution
and the hidden dimension was set to 8 for readability.
Grey elements indicate padding elements. There are
two axes of padding, one in each tensor, limiting the
efficiency of both encoder and decoder modules.

lasko et al. (2025) proposes a 2D bucketing scheme080

to minimize the padding in both dimensions. We081

study these enhancements in the context of training082

a state-of-the-art speech recognition and transla-083

tion model, Canary-1B (Puvvada et al., 2024), and084

further refine them.085

Our contributions are as follows:086

1. We use Canary-1B as a baseline training ex-087

periment, and apply 2D bucketing and batch088

size optimizer originally proposed by Żelasko 089

et al. (2025) in the context of machine transla- 090

tion. 091

2. We identify three issues with bucketing: tail- 092

worker effect in distributed training, token- 093

per-second outliers, and training start over- 094

head from dynamic bucketing buffering, and 095

propose adequate solutions. 096

3. We profile the inference of Canary-1B and 097

tune its architecture to achieve 3x faster infer- 098

ence without loss of accuracy. 099

4. We show that as a result of all applied op- 100

timizations, Canary-1B trains using 4x less 101

GPUs in the same wall time. 102

5. Compared to fixed batch size training, our 103

fully optimized setup converges 2x faster. 104

6. The training code will be released as open- 105

source software. 106

2 Methods 107

Distributed training and synchronized bucket- 108

ing. In a distributed data parallel (DDP) train- 109

ing setup, each rank (typically corresponding to 110

a single GPU) is expected to sample a different 111

mini-batch for a given training step. This is easily 112

achieved by seeding the RNG differently in each 113

rank’s training process. However, when combined 114

with dynamic bucketing, this leads to bucket se- 115

lection being unsynchronized between ranks. This 116

means that one rank may draw a large batch size 117

of short utterances, while another draws a small 118

batch size of long utterances. Due to the model’s 119

super-linear time and/or memory complexity in the 120

training step w.r.t. sequence lengths, this causes a 121

tail-worker effect to appear, i.e. all (but one) ranks 122

in DDP training have to wait for the slowest rank 123

to finish its training step in order to globally reduce 124

the gradients. 125

We amend this issue by maintaining a separate 126

RNG for bucket selection with a shared seed across 127

all ranks, with one caveat. Dynamic bucketing is 128

not guaranteed to have a mini-batch available in ev- 129

ery bucket at any given training step due to limited 130

buffer size. When a rank cannot sample mini-batch 131

from a globally selected bucket, we instead select 132

the closest bucket that has at least one mini-batch 133

available. Note that this synchronized bucketing 134

implementation is very efficient as it does not in- 135

troduce any inter-process synchronization. 136
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Figure 2: Memory usage profile of Canary-1B train-
ing on RTX 6000 Ada 48GB GPU using 1D dynamic
bucketing with equal batch duration heuristic. Each
peak denotes the point right after training loss compu-
tation for a single training step. The memory usage for
majority of training steps is well below the maximum,
showing room for efficiency improvement.

Output token rate distribution and token-per-137

second (TPS) filtering. Originally, Lhotse (Że-138

lasko et al., 2021) dynamic bucketing used a cu-139

mulative batch duration heuristic to determine the140

batch size for each bucket dynamically. The sam-141

pler would keep drawing examples until the cu-142

mulative speech duration in a batch exceeds a set143

threshold, naturally leading to smaller batch sizes144

for longer utterances. On the surface, this approach145

appears efficient, often indicating that the allocated146

GPU memory is close to the maximum for the en-147

tire training. However, through a closer inspection148

with PyTorch memory profiler in Figure 2, we ob-149

served that this heuristic leads to an unpredictable150

GPU memory usage pattern, making it difficult to151

tune the threshold well and to ensure full GPU uti-152

lization. Upon closer study, we discovered that153

the training sometimes runs into out-of-memory154

issues on mini-batches with output sequence length155

outliers–i.e., examples with unusually long tran-156

scripts. Such high variance of GPU memory usage157

for mini-batches drawn from the same bucket high-158

lights the importance of additional stratification on159

output sequence length in 2D bucketing. We show160

an example TPS distribution in Figure 3.161

The right solution to this issue requires a closer162

look at the training data. In some cases, high TPS163

outliers correspond to low-quality data, such as hal-164

lucinations from synthetic data generation stage.165

In such event, it is appropriate to incorporate a166

TPS filter before bucketing sampler. However, in167

other scenarios high TPS data may be very well ex-168

pected. Examples include augmenting transcripts169

with word-level timestamps or multilingual training170

with languages with vastly different token count171

distributions.172

To this end, we augment the 2D bucketing173

method proposed by Żelasko et al. (2025) with174

a modified sample-to-bucket allocation algorithm.175

Figure 3: Output token rate distribution on a 100k
sample of Canary-1B-Ti training data. Utterances are
grouped into duration bins with 2s increment. Short
utterances have significantly more transcript tokens per
second, partially due to a fixed-length prompt fed to
the decoder. This highlights the need for careful data
filtering and tuning of 2D bucketing settings.

We consider the baseline 2D bucketing algorithm 176

as strict: to match a sample to a bucket, it first 177

determines a 1D bucket based on the sample’s in- 178

put sequence length, and then chooses one of its 179

sub-buckets based on the sample’s output sequence 180

length. If the sample has longer transcript than 181

what was found as the upper bound during bucket 182

bin estimation, it would be discarded. In our mod- 183

ified flexible approach, we instead search for the 184

smallest bucket that can fit a given sample. That 185

means we may allocate that sample to a bucket cor- 186

responding to longer utterances with longer tran- 187

scipts, sacrificing some input padding for the ability 188

to keep the outlier sample. 189

Concurrent bucketing. Dynamic bucketing, 190

as implemented in Lhotse, maintains a fixed size 191

in-memory buffer for training examples to parti- 192

tion them into buckets. With sequential IO for- 193

mats such as webdataset (webdataset) or Lhotse 194

Shar (Żelasko et al., 2021) this means reading a 195

number of audio recordings into memory, which in 196

our setup resulted in a 5-10 minute overhead at the 197

start of training. Since in practice a single training 198

run is composed of many time-limited scheduler 199

jobs, this overhead becomes significant at scale. 200

We extended the dynamic bucketing sampler with 201

a producer thread that reads examples and popu- 202

lates a thread-safe queue. We adjust the existing 203

consumer thread to wait until the queue is 10% 204

populated and then start sampling mini-batches, 205

reducing the overhead to below one minute. We 206

find that in practice, data reading is much faster 207

than the training step, which lets the producer fill 208

the queue entirely after several more minutes while 209

the training is already ongoing. Note that simply 210
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Table 1: Training efficiency gains from synchronized
bucketing implementation. The gain grows with dis-
tributed training’s size due to increased severity of the
tail-worker effect when bucketing is not synchronized.

GPUs Training step speedup [%]
2 7
16 13
128 20

decreasing the buffer size impacts the randomness211

of sampling.212

Transferring model capacity from decoder to213

encoder. Upon model’s inference profiling, we no-214

ticed that the majority of the computation time is215

taken by the autoregressive cross-attention decoder.216

Its impact can be easily visualized by an order-of-217

magnitude gap between real-time factors (RTFx)218

of attention-encoder-decoder models (RTFx=235),219

and an otherwise similar 1B CTC (Graves et al.,220

2006) encoder-only model (RTFx=2728) available221

in HuggingFace Open ASR Leaderboard2. Simi-222

larly as Whisper-v3-turbo (Radford et al., 2022),223

we decrease the number of Canary-1B’s decoder224

layers from 24 to 4. However, this change reduces225

the model’s parameter count from 1016M to 680M,226

making it almost twice smaller. As a result we227

observed degraded prediction accuracy, especially228

for translation. This is consistent with Whisper-v3-229

turbo findings. Further, we find that this degrada-230

tion can be completely compensated by increasing231

the encoder’s capacity with minimal impact on in-232

ference speed, which we demonstrate in Section 4.233

Our final configuration increases the number of en-234

coder layers from 24 to 32 with a total of 882M235

parameters and is further referred to as Canary-1B-236

Ti.237

3 Experimental setup238

Unless otherwise stated, we adopt the same data,239

training, and evaluation setup as in Puvvada et al.240

(2024), resulting in a training set of 85k hours241

of speech recognition data in English, French,242

German, and Spanish, complemented by synthet-243

ically generated translations for the speech trans-244

lation task3. For our baseline we also adopt the245

model architecture and training hyperparameters246

2https://huggingface.co/spaces/hf-audio/open_
asr_leaderboard

3Megatron NMT model used: https://catalog.
ngc.nvidia.com/orgs/nvidia/teams/nemo/models/
megatronnmt_any_en_500m

Table 2: Canary-1B and Canary-1B-Ti final evalua-
tion WER on HuggingFace Open ASR Leaderboard
as a function of number of GPUs and wall time spent
on training. Optimizations include TPS filtering, 2D
bucketing, synchronized bucketing, and OOMptimizer.
Canary-1B-Ti is trained only with efficiency optimiza-
tions.

Experiment GPUs Runtime WER [%]
Canary-1B 128 36h 6.54

+optimized 32 36h 6.51
128 19h 6.47

Canary-1B-Ti 32 38h 6.5
128 46h 6.35

Table 3: RTFx comparison between baseline Canary-1B
and the modified architectures explored in this work.
This number is interpreted as how many seconds of
recorded speech can be transcribed in one second of
wall time. These values were measured on a single RTX
6000 Ada 48GB GPU.

Model Parameter count RTFx
Canary-1B 1018M 345
+ small decoder 680M 1097
+ larger encoder 882M 992

from Puvvada et al. (2024), meaning every model 247

in this work has its encoder initialized from a pre- 248

trained ASR checkpoint4. When we increase the 249

number of encoder layers, the additional top layers 250

are initialized randomly, and the decoder is always 251

initialized randomly. The models are trained on 252

NVIDIA A100 80GB GPUs. 253

We evaluate speech recognition with word er- 254

ror rate (WER) on Open ASR Leaderboard and 255

speech translation with COMET (Rei et al., 2020) 256

scores on FLEURS (Conneau et al., 2022) and CoV- 257

OST v2 (Wang et al., 2021) datasets. For COMET 258

metric we used Unbabel/wmt22-comet-da model 259

with ‘unbabel-comet‘ version 2.2.2. For tracking 260

validation metrics, we use BLEU scores computed 261

using SacreBLEU library (Post, 2018). The valida- 262

tion sets for each language are taken from Mozilla 263

CommonVoice 12 (Ardila et al., 2020) for speech 264

recognition and from FLEURS and CoVOST v2 265

for speech translation. 266

Training data sampling. For baseline Canary- 267

1B, we use 30 buckets ranging from 0.5s to 40s 268

with bins estimated for equal occupancy w.r.t. cu- 269

4https://catalog.ngc.nvidia.com/orgs/
nvidia/teams/nemo/models/stt_multilingual_
fastconformer_hybrid_large_pc_blend_eu

4
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Figure 4: Canary-1B training efficiency comparison across four training schemes. Scheme A is Canary-1B
baseline. Scheme B adds TPS filtering, freeing up GPU memory. Scheme C replaces batch duration heuristic with
OOMptimizer for batch size estimation. Scheme D adds 2D bucketing to further reduce the number of padding
tokens. The efficiency gains directly translate to quicker validation WER convergence. The horizontal axes for all
metrics except for WER demonstrate the first 100k training steps.

mulative bin duration on a 100k sample of training270

examples. The batch sizes for each bucket are271

determined using 360s cumulative batch duration272

threshold mentioned in Section 2. The 2D buck-273

eting setup leverages a 30x2 bucket configuration274

following Żelasko et al. (2025), which means that275

each of 30 duration bins is further sub-divided into276

2 token bins. Unless otherwise indicated, we cali-277

brate the batch sizes for each bucket with a batch278

size optimizer (Żelasko et al., 2025). All experi-279

ments except for the baseline use a TPS filter set280

at 25. During early experiments, we noticed that281

Canary-1B-Ti has convergence stability issues due282

to outliers above that threshold. A closer inspection283

revealed this is due to low quality synthetic transla-284

tion examples from Canary-1B training set. This285

issue was not originally noticed by Puvvada et al.286

(2024), where the model used 24 decoder layers. It287

may be indicative that the training of a model with 288

a smaller decoder is less resilient against inaccurate 289

labels. 290

Experiments. We present the following experi- 291

ments to validate our claims: 292

• [E1] Canary-1B training with and without 293

synchronized bucketing. The improvement 294

is measured by relative training step time re- 295

duction. 296

• [E2] Canary-1B training with different data 297

sampling schemes. The improvement is illus- 298

trated using multiple metrics including GPU 299

compute and memory utilization, amount of 300

padding, and convergence speed: 301

A. Baseline from Puvvada et al. (2024) with 302

batch duration heuristic. 303
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B. Same as A, but with TPS filtering set at304

25 tokens-per-second.305

C. Same as B, but with batch size optimizer306

replacing the heuristic.307

D. Same as C, but with 2D bucketing (30x2)308

replacing 1D bucketing (30). Bucket309

batch sizes are re-estimated.310

• [E3] Canary-1B-Ti architectural changes abla-311

tions, where Canary-1B serves as the baseline.312

We measure WER, COMET, and inference313

speed.314

• [E4] Canary-1B-Ti convergence speed com-315

parison between the widely adopted fixed316

batch size strategy and proposed fully opti-317

mized setup.318

Finally, we report the total training time and re-319

sources needed to reach original Canary-1B’s per-320

formance level for both Canary-1B and Canary-1B-321

Ti training with the full set of introduced optimiza-322

tions.323

4 Results324

Synchronized bucketing [E1]. We measure the325

mean time needed to execute 1000 training steps326

for Canary-1B in three distributed settings: with 2,327

16, and 128 GPUs. When we turn on synchronized328

bucketing, we observe a speedup starting from 7%329

for 2 GPUs and growing to 20% for 128 GPUs330

in Table 1. The increasing efficiency gain with331

training size scaling is in line with our expectations332

outlined in Section 2.333

2D bucketing and OOMptimizer [E2]. We334

show the effect of applying TPS filtering, OOMp-335

timizer, and 2D bucketing one-by-one in Figure 4.336

With TPS filtering alone, we notice the conver-337

gence speed is initially slower, but catches up in338

later training stage. However, it partially amends339

the issue seen in 2 through reducing the peak GPU340

memory allocation by 20%, allowing to increase341

the batch size further in the next steps. Replacing342

the equal batch duration heuristic with bucket batch343

sizes tuned by OOMptimizer increased the mean344

batch size by 3.4 times and mean GPU utilization345

by 20%. Further adding 2D bucketing resulted in a346

total of 5x mean batch size increase compared to347

the baseline.348

While larger batch sizes and GPU utilization are349

useful, the real value of these contributions is in the350

reduction of resources and time required to achieve351

Figure 5: Comparison of Canary-1B-Ti convergence
speed with fully optimized 2D bucketing scheme (or-
ange) vs fixed batch size of 768 (blue), both on 32
GPUs.

an equivalent result in terms of model accuracy. 352

In Table 2 we compare the resources and time re- 353

quired to train original Canary-1B with its fully 354

optimized training scheme. Row 2 demonstrates 355

that the introduced optimizations let us to train the 356

same model in the same amount of time (36 hours) 357

by using 4x less GPUs. Row 3 shows that if we 358

retain the same resources, we may train the model 359

in 2x shorter time. 360

Canary-1B-Ti architectural changes [E3]. 361

First, we show the effect of Canary-1B-Ti architec- 362

ture on inference speed in Table 3. Decreasing the 363

decoder size yields a major 3.2x improvement in 364

RTFx, and the increase in encoder size manages 365

to retain 2.9x improvment in RTFx compared to 366

the baseline. Note that despite inference speedups, 367

the training step speed is roughly the same for all 368

variants, because we leverage the efficiency gains 369

to further increase the batch size (tuned again with 370

OOMptimizer). 371

Table 4 shows the translation quality results 372

of Canary-1B and Canary-1B-Ti measured by 373

COMET score. As we mentioned in Section 2, 374

decreasing decoder size primarily impacts transla- 375

tion, but these losses fully recovered by transferring 376

the capacity to decoder–in fact, the Canary-1B-Ti 377

model outperforms the baseline in this setting. Our 378

findings are consistent with Kasai et al. (2021). 379

We present the ASR results for fully trained opti- 380

mized Canary-1B-Ti in rows 4 and 5 in Table 2. We 381

see that the overall ASR performance is retained 382

with the same amount of compute as used for opti- 383

mized Canary-1B. When using the original amount 384

of resources and training for 25% longer, we fur- 385

ther achieve a state-of-the-art WER of 6.35% on 386

the Open ASR Leaderboard. 387

Convergence speed advantages versus fixed 388

batch size training [E4]. Finally, the reader might 389
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Table 4: Ablation study for Canary-1B-Ti architecture design based on speech translation performance. We report
COMET scores on FLEURS and COVOST, translating from English to German, Spanish, and French, and in the
opposite direction. For readability, the COMET scores are multiplied by 100.

Model
COVOST (→EN) FLEURS (→EN) X→EN

AVG
FLEURS (EN→) EN→X

AVG AVG
DE ES FR DE ES FR DE ES FR

Canary-1B 82.4 85.4 83.4 84.2 81.5 83.2 83.3 81.4 81.1 81.6 81.4 82.7
+sm. dec. 81.2 85.0 83.3 83.0 81.4 83.0 82.8 80.1 80.8 80.9 80.6 82.1
+lg. enc. 83.6 86.0 84.2 85.3 82.4 84.5 84.3 81.3 81.7 82.6 81.9 83.5

be tempted to ask: does the proposed method in-390

deed improve compared to simply training with391

a fixed batch size, similarly to Whisper (Radford392

et al., 2022) or OWSM (Peng et al., 2024)? We393

answer this question by presenting validation WER394

and BLEU plots for both training schemes in Fig-395

ure 5. The same WER or BLEU values are achieved396

with roughly 2x more training steps by the fixed397

batch size scheme, with training step time being ap-398

proximately the same. In our setup the fixed batch399

size scheme requires padding every mini-batch to400

40 seconds duration, resulting in 57% padding of401

audio and 59% padding of transcripts on average.402

Notably it maintains high GPU compute and mem-403

ory utilization, but they are mostly spent on com-404

puting padding. For comparison, with 2D bucket-405

ing in a 30x2 configuration we achieved as little406

as 4.5% padding of audio and 19% padding of407

the transcripts. We noticed that driving the tran-408

script padding ratio lower is difficult due to the409

fact that longer recordings may contain little or410

no speech, resulting in a wider spread of output411

sequence lengths. Increasing the number of 2D412

buckets further did not yield meaningful improve-413

ment in this setup.414

5 Related work415

Whisper (Radford et al., 2022) is a trans-416

former (Vaswani et al., 2017) attention encoder-417

decoder (AED) model (Bahdanau et al., 2015) that418

has demonstrated impressive ASR and AST capa-419

bilities in 96 languages. It was initially trained420

with 680K hours of data (v1 and v2) and later ex-421

tended to 5M hours (v3), out of which 4M were422

transcribed by an earlier model version. In Distil-423

Whisper, Gandhi et al. (2023) optimized Whisper’s424

architecture for inference, noticing that distilled425

model still works well when only as little as two426

decoder layers are retained. As a result, Whisper427

was also released in a turbo variant that decreased428

the number of decoder layers to 4 and was fine-429

tuned from a larger initial model. Notably, Whisper 430

turbo was fine-tuned exclusively on speech recog- 431

nition data, as the authors claimed they did not 432

expect the model to perform well on translation5. 433

Seamless (Barrault et al., 2023) is a multimodal 434

streaming translation model supporting around 100 435

languages. It uses several components pretrained 436

on over 4M unlabeled hours of speech, which are 437

later fine-tuned jointly on 125k hours. 438

OWSM (Peng et al., 2023) is the first fully open- 439

source attempt at reproducing Whisper model. It 440

was trained on 180k hours of publicly available data 441

and supports 151 languages. OWSM v3.1 adopted 442

E-Branchformer architecture, achieving superior 443

accuracy and speed (Peng et al., 2024). 444

Canary-1B (Puvvada et al., 2024) is an attention 445

encoder-decoder model trained for speech recogni- 446

tion and translation with punctuation and capital- 447

ization recovery. It uses a FastConformer (Rekesh 448

et al., 2023) encoder architecture that is initial- 449

ized from a pretrained RNN-T (Graves, 2012) 450

ASR model for quicker convergence. Canary-1B 451

achieved similar level of translation performance to 452

Whisper and Seamless despite being trained on less 453

data, and using exclusively synthetic translation 454

data. 455

EMMeTT (Żelasko et al., 2025) introduced the 456

concepts of 2D bucketing and batch size optimizer– 457

OOMptimizer–to accelerate the training of large 458

language models (LLM) extended with a speech 459

encoder for multimodal machine translation ca- 460

pability. OOMptimizer algorithm is a variant of 461

bisection that simulates model training steps on 462

artificial data of various shapes to determine the 463

maximal batch size for each of sequence length 464

buckets. This extra tuning step is performed before 465

model training. 466

5https://github.com/openai/whisper/
discussions/2363
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6 Conclusion467

We demonstrated that stratified sampling is critical468

to achieve efficient training of attention-encoder-469

decoder speech models on the example of Canary-470

1B. We refined the methods proposed by Żelasko471

et al. (2021); Puvvada et al. (2024); Żelasko et al.472

(2025) to achieve a 4x reduction in GPU resources473

to train an equivalent model, without writing spe-474

cialized kernels for any of the operations. We also475

showed that equivalently, the same amount of com-476

pute may be used to train the model in 2x less time.477

Further, we optimized the model for 3x faster infer-478

ence without loss of accuracy through shifting the479

parameters from the decoder to the encoder. Per-480

haps somewhat surprisingly, Canary-1B-Ti is able481

to effectively learn speech translation despite hav-482

ing a smaller decoder, as we found that transferring483

the parameter budget to the encoder both prevents484

accuracy loss and has a marginal impact on the485

speed of inference. We emphasize that our pro-486

posed training optimization method did not require487

changing of a single line of code of the training488

script or the model’s logic–it is sufficient to adapt489

the data sampling module.490

Although this work focuses on AED models of491

speech, a similar analysis of the sequence length492

and output token rate distributions may be lever-493

aged for sampling stratification and increased train-494

ing efficiency in other sequence-to-sequence mod-495

eling problems. The training code, together with496

Canary-1B-Ti model will be available as open-497

source.498

Limitations499

This work studies the training and inference effi-500

ciency of models sized at between 600M and 1B501

parameters with a relatively large training dataset502

of 85k hours of speech. The main efficiency gains503

stem from the ability to increase the average batch504

size in training, which may or may not be applica-505

ble to smaller dataset and/or model setups charac-506

terized by a lower critical batch size (McCandlish507

et al., 2018; Shallue et al., 2019; Zhang et al., 2024).508

Conversely, models of larger size typically require509

some form of model parallelism for their training,510

which may require significant adjustments in the511

training setup to accommodate dynamically shaped512

batches, or to estimate the bucket batch sizes with513

OOMptimizer algorithm.514

The models studied in this work are trained on515

four languages (English, French, Spanish, and Ger-516

Gender Male Female N/A Other
Count 19325 24532 926 33
WER [%] 14.66 12.44 17.17 27.56

Table 5: The results of Canary-1B-Ti’s evaluation for
gender bias in English speech recognition.

Age 18-30 31-45 46-85 1-100
Count 15956 14585 13349 43890
WER [%] 13.18 13.45 13.64 13.41

Table 6: The results of Canary-1B-Ti’s evaluation for
age bias in English speech recognition.

man) which may be considered as high-resource. 517

The considered baseline models are of similar size 518

and architecture, but extend their support to about 519

100 languages. Parts of the data used to train our 520

models are not publicly available. We used training 521

data with no personally identifiable information or 522

offensive content. The model is trained to translate 523

from English to any of the other languages and 524

vice versa, but not between a pair of non-English 525

languages. For speech translation task, the model 526

is trained entirely on synthetic data, and is likely to 527

carry over the biases and errors present in the ma- 528

chine translation model used for generation. The 529

synthetic data was only lightly filtered to discard 530

severe hallucinations according to output token rate 531

thresholds, as explained in Section 3. 532

While this work is focused primarily on training 533

efficiency methods, we release one of the trained 534

models, Canary-1B-Ti, that is intended for speech 535

recognition and translation in English, German, 536

French, and Spanish. Given the ubiquity of ASR 537

and translation technology in these languages, we 538

don’t believe the model introduces any novel risks. 539

We will indicate the specific license for the release 540

at the time the paper is camera-ready. 541

Ethical considerations 542

As outlined in Hazirbas et al. (2021), we assessed 543

the Canary-1B-Ti model from row 5 of Table 2 for 544

age and gender bias using the Casual Conversations 545

v1 dataset. The results are presented in Table 5 546

and Table 6. This evaluation is limited to English 547

speech recognition. 548
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Table 7: Ablation study for Canary-1B-Ti architecture design based on speech translation performance. We report
SacreBLEU scores on FLEURS and COVOST, translating from English to German, Spanish, and French, and in the
opposite direction. We include comparison with other baseline models that report BLEU scores.

Model
COVOST (→EN) FLEURS (→EN) FLEURS (EN→)
DE ES FR DE ES FR DE ES FR

OWSM-v3.1 (1B) 18.1 23.9 24.5 13.2 9.4 12.4 24.4 11.4 16.4
Whisper-large-v3 (1.5B) 34.2 39.2 35.5 33.4 22.7 31.0 - - -
SeamlessM4T-medium (1.2B) 35.6 39.2 39.3 33.4 21.7 30.9 28.3 21.1 37.4
SeamlessM4T-large-v2 (2.3B) 40.0 42.9 42.1 37.1 25.4 33.7 33.2 23.7 43.1
Canary-1B 37.0 40.3 40.0 32.7 22.0 31.1 31.4 22.4 40.2
+sm. dec. (680M) 35.9 40.2 39.7 32.1 21.3 30.7 29.8 21.7 38.5
+lg. enc. (880M) 37.9 40.7 40.4 34.5 23.0 32.1 32.5 22.4 40.0

A Appendix A: Speech translation691

evaluation with BLEU scores692

We report the speech translation evaluation results693

in BLEU scores in Table 7 for an easier comparison694

with other foundation speech models that did not695

report COMET scores. The patterns observed we696

observed with COMET evaluation in Table 4 hold.697

The optimized Canary-1B-Ti model maintains the698

advantage over other similarly sized models. Given699

that the machine translation community has found700

COMET to be more reliable (Mathur et al., 2020),701

we encourage the readers to consult Table 4.702
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